151
|
Sazer S, Schiessel H. The biology and polymer physics underlying large-scale chromosome organization. Traffic 2018; 19:87-104. [PMID: 29105235 PMCID: PMC5846894 DOI: 10.1111/tra.12539] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Chromosome large-scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high-resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome.
Collapse
Affiliation(s)
- Shelley Sazer
- Verna and Marrs McLean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTexas
| | - Helmut Schiessel
- Institute Lorentz for Theoretical PhysicsLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
152
|
Lioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O, Boccard F, Koszul R. Multiscale Structuring of the E. coli Chromosome by Nucleoid-Associated and Condensin Proteins. Cell 2018; 172:771-783.e18. [PMID: 29358050 DOI: 10.1016/j.cell.2017.12.027] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/02/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
As in eukaryotes, bacterial genomes are not randomly folded. Bacterial genetic information is generally carried on a circular chromosome with a single origin of replication from which two replication forks proceed bidirectionally toward the opposite terminus region. Here, we investigate the higher-order architecture of the Escherichia coli genome, showing its partition into two structurally distinct entities by a complex and intertwined network of contacts: the replication terminus (ter) region and the rest of the chromosome. Outside of ter, the condensin MukBEF and the ubiquitous nucleoid-associated protein (NAP) HU promote DNA contacts in the megabase range. Within ter, the MatP protein prevents MukBEF activity, and contacts are restricted to ∼280 kb, creating a domain with distinct structural properties. We also show how other NAPs contribute to nucleoid organization, such as H-NS, which restricts short-range interactions. Combined, these results reveal the contributions of major evolutionarily conserved proteins in a bacterial chromosome organization.
Collapse
Affiliation(s)
- Virginia S Lioy
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Axel Cournac
- Institut Pasteur, Département Génomes et Génétique, Groupe Régulation spatiale des génomes, 75015 Paris, France; CNRS, UMR 3525, 75015 Paris, France
| | - Martial Marbouty
- Institut Pasteur, Département Génomes et Génétique, Groupe Régulation spatiale des génomes, 75015 Paris, France; CNRS, UMR 3525, 75015 Paris, France
| | - Stéphane Duigou
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Julien Mozziconacci
- Sorbonne Universités, Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600, Université Pierre et Marie Curie, 75005 Paris, France
| | - Olivier Espéli
- Centre Interdisciplinaire de Recherche en Biologie, Collège de France, UMR-CNRS 7241, INSERM U1050, Paris, France
| | - Frédéric Boccard
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Romain Koszul
- Institut Pasteur, Département Génomes et Génétique, Groupe Régulation spatiale des génomes, 75015 Paris, France; CNRS, UMR 3525, 75015 Paris, France.
| |
Collapse
|
153
|
Abstract
With single-molecule localization microscopy (SMLM) it is possible to reveal the internal composition, architecture, and dynamics of molecular machines and large cellular complexes. SMLM remains technically challenging, and frequently its implementation requires tailored experimental conditions that depend on the complexity of the subcellular structure of interest. Here, we describe two simple, robust, and high-throughput protocols to study molecular motors and machineries responsible for chromosome transport and organization in bacteria using 2D- and 3D-SMLM.
Collapse
Affiliation(s)
- Diego I Cattoni
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, Montpellier, France
| | - Antoine Le Gall
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, Montpellier, France.
| |
Collapse
|
154
|
Abstract
In order to interpret data from Hi-C studies genome-wide contact probability maps need to be translated into models of functional 3D genome organization. Here, we first present an overview of computational methods to analyze contact probability maps in terms of features such as the level and shape of compartmentalization. Next, we describe approaches to modeling 3D genome organization based on Hi-C data.
Collapse
Affiliation(s)
- Andreas Hofmann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Dieter W Heermann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
155
|
Abstract
The spatial organization of genomes is based on their hierarchical compartmentalization in topological domains. There is growing evidence that bacterial genomes are organized into insulated domains similar to the Topologically Associating Domains (TADs) detected in eukaryotic cells. Chromosome conformation capture (3C) technologies are used to analyze in vivo DNA proximity based on ligation of distal DNA segments crossed-linked by bridging proteins. By combining 3C and high-throughput sequencing, the Hi-C method reveals genome-wide interactions within topological domains and global genome structure as a whole. This chapter provides detailed guidelines for the preparation of Hi-C sequencing libraries for bacteria.
Collapse
|
156
|
Kamada K, Barillà D. Combing Chromosomal DNA Mediated by the SMC Complex: Structure and Mechanisms. Bioessays 2017; 40. [DOI: 10.1002/bies.201700166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/29/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Katsuhiko Kamada
- Chromosome Dynamics Laboratory; RIKEN; 2-1 Hirosawa; Wako Saitama 351-0198 Japan
| | | |
Collapse
|
157
|
Hutchison E, Yager NA, Taw MN, Taylor M, Arroyo F, Sannino DR, Angert ER. Developmental stage influences chromosome segregation patterns and arrangement in the extremely polyploid, giant bacterium Epulopiscium sp. type B. Mol Microbiol 2017; 107:68-80. [PMID: 29024073 DOI: 10.1111/mmi.13860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
Few studies have described chromosomal dynamics in bacterial cells with more than two complete chromosome copies or described changes with respect to development in polyploid cells. We examined the arrangement of chromosomal loci in the very large, highly polyploid, uncultivated intestinal symbiont Epulopiscium sp. type B using fluorescent in situ hybridization. We found that in new offspring, chromosome replication origins (oriCs) are arranged in a three-dimensional array throughout the cytoplasm. As development progresses, most oriCs become peripherally located. Siblings within a mother cell have similar numbers of oriCs. When chromosome orientation was assessed in situ by labeling two chromosomal regions, no specific pattern was detected. The Epulopiscium genome codes for many of the conserved positional guide proteins used for chromosome segregation in bacteria. Based on this study, we present a model that conserved chromosomal maintenance proteins, combined with entropic demixing, provide the forces necessary for distributing oriCs. Without the positional regulation afforded by radial confinement, chromosomes are more randomly oriented in Epulopiscium than in most small rod-shaped cells. Furthermore, we suggest that the random orientation of individual chromosomes in large polyploid cells would not hamper reproductive success as it would in smaller cells with more limited genomic resources.
Collapse
Affiliation(s)
- Elizabeth Hutchison
- Department of Biology, SUNY Geneseo, Geneseo, NY, USA.,Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | - May N Taw
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | - Francine Arroyo
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - David R Sannino
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
158
|
Miravet-Verde S, Lloréns-Rico V, Serrano L. Alternative transcriptional regulation in genome-reduced bacteria. Curr Opin Microbiol 2017; 39:89-95. [PMID: 29154025 DOI: 10.1016/j.mib.2017.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
Abstract
Transcription is a core process of bacterial physiology, and as such it must be tightly controlled, so that bacterial cells maintain steady levels of each RNA molecule in homeostasis and modify them in response to perturbations. The major regulators of transcription in bacteria (and in eukaryotes) are transcription factors. However, in genome-reduced bacteria, the limited number of these proteins is insufficient to explain the variety of responses shown upon changes in their environment. Thus, alternative regulators may play a central role in orchestrating RNA levels in these microorganisms. These alternative mechanisms rely on intrinsic features within DNA and RNA molecules, suggesting they are ancestral mechanisms shared among bacteria that could have an increased relevance on transcriptional regulation in minimal cells. In this review, we summarize the alternative elements that can regulate transcript abundance in genome-reduced bacteria and how they contribute to the RNA homeostasis at different levels.
Collapse
Affiliation(s)
- Samuel Miravet-Verde
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Verónica Lloréns-Rico
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
159
|
Wang X, Brandão HB, Le TBK, Laub MT, Rudner DZ. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 2017; 355:524-527. [PMID: 28154080 DOI: 10.1126/science.aai8982] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/05/2017] [Indexed: 01/18/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes play critical roles in chromosome dynamics in virtually all organisms, but how they function remains poorly understood. In the bacterium Bacillus subtilis, SMC-condensin complexes are topologically loaded at centromeric sites adjacent to the replication origin. Here we provide evidence that these ring-shaped assemblies tether the left and right chromosome arms together while traveling from the origin to the terminus (>2 megabases) at rates >50 kilobases per minute. Condensin movement scales linearly with time, providing evidence for an active transport mechanism. These data support a model in which SMC complexes function by processively enlarging DNA loops. Loop formation followed by processive enlargement provides a mechanism by which condensin complexes compact and resolve sister chromatids in mitosis and by which cohesin generates topologically associating domains during interphase.
Collapse
Affiliation(s)
- Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Hugo B Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Tung B K Le
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
160
|
Lazar-Stefanita L, Scolari VF, Mercy G, Muller H, Guérin TM, Thierry A, Mozziconacci J, Koszul R. Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle. EMBO J 2017; 36:2684-2697. [PMID: 28729434 PMCID: PMC5599795 DOI: 10.15252/embj.201797342] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 11/09/2022] Open
Abstract
Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome-wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher-order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long-range intra-chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin-dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin-mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle-dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division.
Collapse
Affiliation(s)
- Luciana Lazar-Stefanita
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
- Sorbonne Universités, UPMC Université Paris 6, Complexité du Vivant, Paris, France
| | - Vittore F Scolari
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
| | - Guillaume Mercy
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
- Sorbonne Universités, UPMC Université Paris 6, Complexité du Vivant, Paris, France
| | - Héloise Muller
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
| | - Thomas M Guérin
- Laboratoire Télomères et Réparation du Chromosome, CEA, INSERM, UMR 967, IRCM, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Agnès Thierry
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
| | - Julien Mozziconacci
- Sorbonne Universités, Theoretical Physics for Condensed Matter Lab, UPMC Université Paris 06, Paris, France
- CNRS, UMR 7600, Paris, France
| | - Romain Koszul
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
| |
Collapse
|
161
|
Diebold-Durand ML, Lee H, Ruiz Avila LB, Noh H, Shin HC, Im H, Bock FP, Bürmann F, Durand A, Basfeld A, Ham S, Basquin J, Oh BH, Gruber S. Structure of Full-Length SMC and Rearrangements Required for Chromosome Organization. Mol Cell 2017; 67:334-347.e5. [PMID: 28689660 PMCID: PMC5526789 DOI: 10.1016/j.molcel.2017.06.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/03/2017] [Accepted: 06/09/2017] [Indexed: 01/09/2023]
Abstract
Multi-subunit SMC complexes control chromosome superstructure and promote chromosome disjunction, conceivably by actively translocating along DNA double helices. SMC subunits comprise an ABC ATPase "head" and a "hinge" dimerization domain connected by a 49 nm coiled-coil "arm." The heads undergo ATP-dependent engagement and disengagement to drive SMC action on the chromosome. Here, we elucidate the architecture of prokaryotic Smc dimers by high-throughput cysteine cross-linking and crystallography. Co-alignment of the Smc arms tightly closes the interarm space and misaligns the Smc head domains at the end of the rod by close apposition of their ABC signature motifs. Sandwiching of ATP molecules between Smc heads requires them to substantially tilt and translate relative to each other, thereby opening up the Smc arms. We show that this mechanochemical gating reaction regulates chromosome targeting and propose a mechanism for DNA translocation based on the merging of DNA loops upon closure of Smc arms.
Collapse
Affiliation(s)
- Marie-Laure Diebold-Durand
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland
| | - Hansol Lee
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Laura B Ruiz Avila
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Haemin Noh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Ho-Chul Shin
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Haeri Im
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul 04310, Korea
| | - Florian P Bock
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland
| | - Frank Bürmann
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alexandre Durand
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland
| | - Alrun Basfeld
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sihyun Ham
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul 04310, Korea
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.
| | - Stephan Gruber
- Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland.
| |
Collapse
|
162
|
Abstract
Faithful replication and maintenance of the genome are essential to the ability of any organism to survive and propagate. For an obligate pathogen such as Mycobacterium tuberculosis that has to complete successive cycles of transmission, infection, and disease in order to retain a foothold in the human population, this requires that genome replication and maintenance must be accomplished under the metabolic, immune, and antibiotic stresses encountered during passage through variable host environments. Comparative genomic analyses have established that chromosomal mutations enable M. tuberculosis to adapt to these stresses: the emergence of drug-resistant isolates provides direct evidence of this capacity, so too the well-documented genetic diversity among M. tuberculosis lineages across geographic loci, as well as the microvariation within individual patients that is increasingly observed as whole-genome sequencing methodologies are applied to clinical samples and tuberculosis (TB) disease models. However, the precise mutagenic mechanisms responsible for M. tuberculosis evolution and adaptation are poorly understood. Here, we summarize current knowledge of the machinery responsible for DNA replication in M. tuberculosis, and discuss the potential contribution of the expanded complement of mycobacterial DNA polymerases to mutagenesis. We also consider briefly the possible role of DNA replication-in particular, its regulation and coordination with cell division-in the ability of M. tuberculosis to withstand antibacterial stresses, including host immune effectors and antibiotics, through the generation at the population level of a tolerant state, or through the formation of a subpopulation of persister bacilli-both of which might be relevant to the emergence and fixation of genetic drug resistance.
Collapse
|
163
|
Chromosome segregation drives division site selection in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2017; 114:E5959-E5968. [PMID: 28674002 DOI: 10.1073/pnas.1620608114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accurate spatial and temporal positioning of the tubulin-like protein FtsZ is key for proper bacterial cell division. Streptococcus pneumoniae (pneumococcus) is an oval-shaped, symmetrically dividing opportunistic human pathogen lacking the canonical systems for division site control (nucleoid occlusion and the Min-system). Recently, the early division protein MapZ was identified and implicated in pneumococcal division site selection. We show that MapZ is important for proper division plane selection; thus, the question remains as to what drives pneumococcal division site selection. By mapping the cell cycle in detail, we show that directly after replication both chromosomal origin regions localize to the future cell division sites, before FtsZ. Interestingly, Z-ring formation occurs coincidently with initiation of DNA replication. Perturbing the longitudinal chromosomal organization by mutating the condensin SMC, by CRISPR/Cas9-mediated chromosome cutting, or by poisoning DNA decatenation resulted in mistiming of MapZ and FtsZ positioning and subsequent cell elongation. Together, we demonstrate an intimate relationship between DNA replication, chromosome segregation, and division site selection in the pneumococcus, providing a simple way to ensure equally sized daughter cells.
Collapse
|
164
|
Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, Villa TG. Considerations on bacterial nucleoids. Appl Microbiol Biotechnol 2017; 101:5591-5602. [PMID: 28664324 DOI: 10.1007/s00253-017-8381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Abstract
The classic genome organization of the bacterial chromosome is normally envisaged with all its genetic markers linked, thus forming a closed genetic circle of duplex stranded DNA (dsDNA) and several proteins in what it is called as "the bacterial nucleoid." This structure may be more or less corrugated depending on the physiological state of the bacterium (i.e., resting state or active growth) and is not surrounded by a double membrane as in eukayotic cells. The universality of the closed circle model in bacteria is however slowly changing, as new data emerge in different bacterial groups such as in Planctomycetes and related microorganisms, species of Borrelia, Streptomyces, Agrobacterium, or Phytoplasma. In these and possibly other microorganisms, the existence of complex formations of intracellular membranes or linear chromosomes is typical; all of these situations contributing to weakening the current cellular organization paradigm, i.e., prokaryotic vs eukaryotic cells.
Collapse
Affiliation(s)
- Lucía Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - José Luis R Rama
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Angeles Sánchez-Pérez
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tomás G Villa
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
165
|
Three-Dimensional Genome Organization and Function in Drosophila. Genetics 2017; 205:5-24. [PMID: 28049701 PMCID: PMC5223523 DOI: 10.1534/genetics.115.185132] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/15/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.
Collapse
|
166
|
Duigou S, Boccard F. Long range chromosome organization in Escherichia coli: The position of the replication origin defines the non-structured regions and the Right and Left macrodomains. PLoS Genet 2017; 13:e1006758. [PMID: 28486476 PMCID: PMC5441646 DOI: 10.1371/journal.pgen.1006758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/23/2017] [Accepted: 04/12/2017] [Indexed: 01/14/2023] Open
Abstract
The Escherichia coli chromosome is organized into four macrodomains (Ori, Ter, Right and Left) and two non-structured regions. This organization influences the segregation of sister chromatids, the mobility of chromosomal DNA, and the cellular localization of the chromosome. The organization of the Ter and Ori macrodomains relies on two specific systems, MatP/matS for the Ter domain and MaoP/maoS for the Ori domain, respectively. Here by constructing strains with chromosome rearrangements to reshuffle the distribution of chromosomal segments, we reveal that the difference between the non-structured regions and the Right and Left lateral macrodomains relies on their position on the chromosome. A change in the genetic location of oriC generated either by an inversion within the Ori macrodomain or by the insertion of a second oriC modifies the position of Right and Left macrodomains, as the chromosome region the closest to oriC are always non-structured while the regions further away behave as macrodomain regardless of their DNA sequence. Using fluorescent microscopy we estimated that loci belonging to a non-structured region are significantly closer to the Ori MD than loci belonging to a lateral MD. Altogether, our results suggest that the origin of replication plays a prominent role in chromosome organization in E. coli, as it determines structuring and localization of macrodomains in growing cell. Chromosomes allow the genetic information to be stored, transmitted and organized inside the cell. In bacteria, chromosomes are generally circular and they are shaped and organized by several mechanisms allowing simultaneous transcription, replication and segregation. The way such fundamental processes are managed is still unclear, but in the Gram negative bacteria Escherichia coli, one level of chromosome organization relies on a large scale structuring of the chromosome in macrodomains and non-structured regions. Macrodomains have been defined as chromosomal domains of megabase (Mb) sized genetically isolated from each other. E. coli chromosome is divided in 4 macrodomains (Ter, Ori, Right and Left) and two right/left non-structured regions (NSR, and NSL). Factors that organize Ter and Ori MD have been identified and characterized previously: MatP structures the Ter MD by binding to 23 matS sequences disseminated in the Ter MD, and MaoP together with the unique sequence maoS organises the Ori MD by an unknown mechanism. In constrast, we show here by reshuffling the chromosome that the Right and Left MD as well as the NSR and NSL regions are defined by their chromosomal location and that the chromosomal position of oriC defines the position and the extent of the NS regions and Right/Left macrodomains.
Collapse
Affiliation(s)
- Stéphane Duigou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
- * E-mail:
| | - Frédéric Boccard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
| |
Collapse
|
167
|
Overall Shapes of the SMC-ScpAB Complex Are Determined by Balance between Constraint and Relaxation of Its Structural Parts. Structure 2017; 25:603-616.e4. [PMID: 28286005 DOI: 10.1016/j.str.2017.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/08/2017] [Accepted: 02/16/2017] [Indexed: 01/12/2023]
Abstract
The SMC-ScpAB complex plays a crucial role in chromosome organization and segregation in many bacteria. It is composed of a V-shaped SMC dimer and an ScpAB subcomplex that bridges the two Structural Maintenance of Chromosomes (SMC) head domains. Despite its functional significance, the mechanistic details of SMC-ScpAB remain obscure. Here we provide evidence that ATP-dependent head-head engagement induces a lever movement of the SMC neck region, which might help to separate juxtaposed coiled-coil arms. Binding of the ScpA N-terminal domain (NTD) to the SMC neck region is negatively regulated by the ScpB C-terminal domain. Mutations in the ScpA NTD compromise this regulation and profoundly affect the overall shape of the complex. The SMC hinge domain is structurally relaxed when free from coiled-coil juxtaposition. Taken together, we propose that the structural parts of SMC-ScpAB are subjected to the balance between constraint and relaxation, cooperating to modulate dynamic conformational changes of the whole complex.
Collapse
|
168
|
Trussart M, Yus E, Martinez S, Baù D, Tahara YO, Pengo T, Widjaja M, Kretschmer S, Swoger J, Djordjevic S, Turnbull L, Whitchurch C, Miyata M, Marti-Renom MA, Lluch-Senar M, Serrano L. Defined chromosome structure in the genome-reduced bacterium Mycoplasma pneumoniae. Nat Commun 2017; 8:14665. [PMID: 28272414 PMCID: PMC5344976 DOI: 10.1038/ncomms14665] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/20/2017] [Indexed: 12/24/2022] Open
Abstract
DNA-binding proteins are central regulators of chromosome organization; however, in genome-reduced bacteria their diversity is largely diminished. Whether the chromosomes of such bacteria adopt defined three-dimensional structures remains unexplored. Here we combine Hi-C and super-resolution microscopy to determine the structure of the Mycoplasma pneumoniae chromosome at a 10 kb resolution. We find a defined structure, with a global symmetry between two arms that connect opposite poles, one bearing the chromosomal Ori and the other the midpoint. Analysis of local structures at a 3 kb resolution indicates that the chromosome is organized into domains ranging from 15 to 33 kb. We provide evidence that genes within the same domain tend to be co-regulated, suggesting that chromosome organization influences transcriptional regulation, and that supercoiling regulates local organization. This study extends the current understanding of bacterial genome organization and demonstrates that a defined chromosomal structure is a universal feature of living systems.
Collapse
Affiliation(s)
- Marie Trussart
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Eva Yus
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Sira Martinez
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Davide Baù
- Gene Regulation, Stem Cells and Cancer Program. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Yuhei O Tahara
- Department of Biology, Graduate School of Science, Osaka City University, 558-8585 Osaka, Japan.,OCU Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University, 558-8585 Osaka, Japan
| | - Thomas Pengo
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Advanced Light Microscopy Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Michael Widjaja
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Simon Kretschmer
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Jim Swoger
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Steven Djordjevic
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lynne Turnbull
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Cynthia Whitchurch
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, 558-8585 Osaka, Japan.,OCU Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University, 558-8585 Osaka, Japan
| | - Marc A Marti-Renom
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,Gene Regulation, Stem Cells and Cancer Program. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Luís Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
169
|
Management of E. coli sister chromatid cohesion in response to genotoxic stress. Nat Commun 2017; 8:14618. [PMID: 28262707 PMCID: PMC5343486 DOI: 10.1038/ncomms14618] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/13/2017] [Indexed: 11/08/2022] Open
Abstract
Aberrant DNA replication is a major source of the mutations and chromosomal rearrangements associated with pathological disorders. In bacteria, several different DNA lesions are repaired by homologous recombination, a process that involves sister chromatid pairing. Previous work in Escherichia coli has demonstrated that sister chromatid interactions (SCIs) mediated by topological links termed precatenanes, are controlled by topoisomerase IV. In the present work, we demonstrate that during the repair of mitomycin C-induced lesions, topological links are rapidly substituted by an SOS-induced sister chromatid cohesion process involving the RecN protein. The loss of SCIs and viability defects observed in the absence of RecN were compensated by alterations in topoisomerase IV, suggesting that the main role of RecN during DNA repair is to promote contacts between sister chromatids. RecN also modulates whole chromosome organization and RecA dynamics suggesting that SCIs significantly contribute to the repair of DNA double-strand breaks (DSBs).
Collapse
|
170
|
Zhang H, Schumacher MA. Structures of partition protein ParA with nonspecific DNA and ParB effector reveal molecular insights into principles governing Walker-box DNA segregation. Genes Dev 2017; 31:481-492. [PMID: 28373206 PMCID: PMC5393062 DOI: 10.1101/gad.296319.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/22/2017] [Indexed: 02/02/2023]
Abstract
Walker-box partition systems are ubiquitous in nature and mediate the segregation of bacterial and archaeal DNA. Well-studied plasmid Walker-box partition modules require ParA, centromere-DNA, and a centromere-binding protein, ParB. In these systems, ParA-ATP binds nucleoid DNA and uses it as a substratum to deliver ParB-attached cargo DNA, and ParB drives ParA dynamics, allowing ParA progression along the nucleoid. How ParA-ATP binds nonspecific DNA and is regulated by ParB is unclear. Also under debate is whether ParA polymerizes on DNA to mediate segregation. Here we describe structures of key ParA segregation complexes. The ParA-β,γ-imidoadenosine 5'-triphosphate (AMPPNP)-DNA structure revealed no polymers. Instead, ParA-AMPPNP dimerization creates a multifaceted DNA-binding surface, allowing it to preferentially bind high-density DNA regions (HDRs). DNA-bound ParA-AMPPNP adopts a dimer conformation distinct from the ATP sandwich dimer, optimized for DNA association. Our ParA-AMPPNP-ParB structure reveals that ParB binds at the ParA dimer interface, stabilizing the ATPase-competent ATP sandwich dimer, ultimately driving ParA DNA dissociation. Thus, the data indicate how harnessing a conformationally adaptive dimer can drive large-scale cargo movement without the requirement for polymers and suggest a segregation mechanism by which ParA-ATP dimers equilibrate to HDRs shown to be localized near cell poles of dividing chromosomes, thus mediating equipartition of attached ParB-DNA substrates.
Collapse
Affiliation(s)
- Hengshan Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
171
|
Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic Condensin. Mol Cell 2017; 65:861-872.e9. [PMID: 28238653 PMCID: PMC5344682 DOI: 10.1016/j.molcel.2017.01.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/23/2016] [Accepted: 01/18/2017] [Indexed: 11/24/2022]
Abstract
SMC proteins support vital cellular processes in all domains of life by organizing chromosomal DNA. They are composed of ATPase “head” and “hinge“ dimerization domains and a connecting coiled-coil “arm.” Binding to a kleisin subunit creates a closed tripartite ring, whose ∼47-nm-long SMC arms act as barrier for DNA entrapment. Here, we uncover another, more active function of the bacterial Smc arm. Using high-throughput genetic engineering, we resized the arm in the range of 6–60 nm and found that it was functional only in specific length regimes following a periodic pattern. Natural SMC sequences reflect these length constraints. Mutants with improper arm length or peptide insertions in the arm efficiently target chromosomal loading sites and hydrolyze ATP but fail to use ATP hydrolysis for relocation onto flanking DNA. We propose that SMC arms implement force transmission upon nucleotide hydrolysis to mediate DNA capture or loop extrusion. Short and long but not intermediate-length Smc coiled-coil arms are functional Smc complexes with improper arms accumulate at chromosomal loading sites Smc arms are functional units linking ATP hydrolysis to an essential DNA transaction Pro- and eukaryotic SMC sequences reflect similar periodic length constraints
Collapse
|
172
|
Affiliation(s)
- David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
173
|
Marbouty M, Baudry L, Cournac A, Koszul R. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. SCIENCE ADVANCES 2017; 3:e1602105. [PMID: 28232956 PMCID: PMC5315449 DOI: 10.1126/sciadv.1602105] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/09/2017] [Indexed: 05/05/2023]
Abstract
The biochemical activities of microbial communities, or microbiomes, are essential parts of environmental and animal ecosystems. The dynamics, balance, and effects of these communities are strongly influenced by phages present in the population. Being able to characterize bacterium-phage relationships is therefore essential to investigate these ecosystems to the full extent of their complexity. However, this task is currently limited by (i) the ability to characterize complete bacterial and viral genomes from a complex mix of species and (ii) the difficulty to assign phage sequences to their bacterial hosts. We show that both limitations can be circumvented using meta3C, an experimental and computational approach that exploits the physical contacts between DNA molecules to infer their proximity. In a single experiment, dozens of bacterial and phage genomes present in a complex mouse gut microbiota were assembled and scaffolded de novo. The phage genomes were then assigned to their putative bacterial hosts according to the physical contacts between the different DNA molecules, opening new perspectives for a comprehensive picture of the genomic structure of the gut flora. Therefore, this work holds far-reaching implications for human health studies aiming to bridge the virome to the microbiome.
Collapse
Affiliation(s)
- Martial Marbouty
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France
- CNRS, UMR 3525, 75015 Paris, France
| | - Lyam Baudry
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France
- CNRS, UMR 3525, 75015 Paris, France
| | - Axel Cournac
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France
- CNRS, UMR 3525, 75015 Paris, France
| | - Romain Koszul
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France
- CNRS, UMR 3525, 75015 Paris, France
- Corresponding author.
| |
Collapse
|
174
|
Davies JOJ, Oudelaar AM, Higgs DR, Hughes JR. How best to identify chromosomal interactions: a comparison of approaches. Nat Methods 2017; 14:125-134. [PMID: 28139673 DOI: 10.1038/nmeth.4146] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/20/2016] [Indexed: 12/28/2022]
Abstract
Chromosome conformation capture (3C) methods are central to understanding the link between nuclear structure and function, and the physical interactions between distal regulatory elements and promoters. However, no one method is appropriate to address all biological questions, as each variant differs markedly in resolution, reproducibility, throughput and biases. A thorough appreciation of the strengths and weaknesses of each technique is critical when choosing the correct method for a specific application or for gauging how best to interpret different sources of data. In addition, the analysis method must be carefully considered, as this choice can profoundly affect the output. In this Review, we describe and compare the different available 3C-based approaches, with a focus on the analysis of mammalian genomes.
Collapse
Affiliation(s)
- James O J Davies
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - A Marieke Oudelaar
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Douglas R Higgs
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Jim R Hughes
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
175
|
Seid CA, Smith JL, Grossman AD. Genetic and biochemical interactions between the bacterial replication initiator DnaA and the nucleoid-associated protein Rok in Bacillus subtilis. Mol Microbiol 2017; 103:798-817. [PMID: 27902860 DOI: 10.1111/mmi.13590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/16/2022]
Abstract
We identified interactions between the conserved bacterial replication initiator and transcription factor DnaA and the nucleoid-associated protein Rok of Bacillus subtilis. DnaA binds directly to clusters of DnaA boxes at the origin of replication and elsewhere, including the promoters of several DnaA-regulated genes. Rok, an analog of H-NS from gamma-proteobacteria that affects chromosome architecture and of Lsr2 from Mycobacteria, binds A+T-rich sequences throughout the genome and represses expression of many genes. Using crosslinking and immunoprecipitation followed by deep sequencing (ChIP-seq), we found that DnaA was associated with eight previously identified regions containing clusters of DnaA boxes, plus 36 additional regions that were also bound by Rok. Association of DnaA with these additional regions appeared to be indirect as it was dependent on Rok and independent of the DNA-binding domain of DnaA. Gene expression and mutant analyses support a model in which DnaA and Rok cooperate to repress transcription of yxaJ, the yybNM operon and the sunA-bdbB operon. Our results indicate that DnaA modulates the activity of Rok. We postulate that this interaction might affect nucleoid architecture. Furthermore, DnaA might interact similarly with Rok analogues in other organisms.
Collapse
Affiliation(s)
- Charlotte A Seid
- Department of Biology, Massachusetts Institute of Technology, Building 68-530, Cambridge, MA, 02139, USA
| | - Janet L Smith
- Department of Biology, Massachusetts Institute of Technology, Building 68-530, Cambridge, MA, 02139, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Building 68-530, Cambridge, MA, 02139, USA
| |
Collapse
|
176
|
Abstract
This methods article described a protocol aiming at generating chromosome contact maps of bacterial species using a genome-wide derivative of the chromosome conformation capture (3C) technique. The approach is readily applicable on a broad variety of gram + and gram-bacterial species. It describes and addresses known caveats and technicalities associated with the technique, and should be of interest to any laboratory interested to perform a multiscale analysis of the genome structure of its species of interest.
Collapse
Affiliation(s)
- Martial Marbouty
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France. .,CNRS, UMR 3525, 75724, Paris Cedex 15, France. .,Centre de Bioinformatique, Biostatistique et Biologie Intégrative, USR 3756, Institut Pasteur, Paris Cedex 15, 75724, Paris Cedex 15, France.
| | - Romain Koszul
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France. .,CNRS, UMR 3525, 75724, Paris Cedex 15, France. .,Centre de Bioinformatique, Biostatistique et Biologie Intégrative, USR 3756, Institut Pasteur, Paris Cedex 15, 75724, Paris Cedex 15, France.
| |
Collapse
|
177
|
Arias-Cartin R, Dobihal GS, Campos M, Surovtsev IV, Parry B, Jacobs-Wagner C. Replication fork passage drives asymmetric dynamics of a critical nucleoid-associated protein in Caulobacter. EMBO J 2016; 36:301-318. [PMID: 28011580 DOI: 10.15252/embj.201695513] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
In bacteria, chromosome dynamics and gene expression are modulated by nucleoid-associated proteins (NAPs), but little is known about how NAP activity is coupled to cell cycle progression. Using genomic techniques, quantitative cell imaging, and mathematical modeling, our study in Caulobacter crescentus identifies a novel NAP (GapR) whose activity over the cell cycle is shaped by DNA replication. GapR activity is critical for cellular function, as loss of GapR causes severe, pleiotropic defects in growth, cell division, DNA replication, and chromosome segregation. GapR also affects global gene expression with a chromosomal bias from origin to terminus, which is associated with a similar general bias in GapR binding activity along the chromosome. Strikingly, this asymmetric localization cannot be explained by the distribution of GapR binding sites on the chromosome. Instead, we present a mechanistic model in which the spatiotemporal dynamics of GapR are primarily driven by the progression of the replication forks. This model represents a simple mechanism of cell cycle regulation, in which DNA-binding activity is intimately linked to the action of DNA replication.
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Genevieve S Dobihal
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Bradley Parry
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT, USA .,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale Medical School, Yale University, New Haven, CT, USA
| |
Collapse
|
178
|
Kagami Y, Yoshida K. The functional role for condensin in the regulation of chromosomal organization during the cell cycle. Cell Mol Life Sci 2016; 73:4591-4598. [PMID: 27402120 PMCID: PMC11108269 DOI: 10.1007/s00018-016-2305-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
In all organisms, the control of cell cycle progression is a fundamental process that is essential for cell growth, development, and survival. Through each cell cycle phase, the regulation of chromatin organization is essential for natural cell proliferation and maintaining cellular homeostasis. During mitosis, the chromatin morphology is dramatically changed to have a "thread-like" shape and the condensed chromosomes are segregated equally into two daughter cells. Disruption of the mitotic chromosome architecture physically impedes chromosomal behaviors, such as chromosome alignment and chromosome segregation; therefore, the proper mitotic chromosome structure is required to maintain chromosomal stability. Accumulating evidence has demonstrated that mitotic chromosome condensation is induced by condensin complexes. Moreover, recent studies have shown that condensin also modulates interphase chromatin and regulates gene expression. This review mainly focuses on the molecular mechanisms that condensin uses to exert its functions during the cell cycle progression. Moreover, we discuss the condensin-mediated chromosomal organization in cancer cells.
Collapse
Affiliation(s)
- Yuya Kagami
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
179
|
Xiao J, Dufrêne YF. Optical and force nanoscopy in microbiology. Nat Microbiol 2016; 1:16186. [PMID: 27782138 PMCID: PMC5839876 DOI: 10.1038/nmicrobiol.2016.186] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
Microbial cells have developed sophisticated multicomponent structures and machineries to govern basic cellular processes, such as chromosome segregation, gene expression, cell division, mechanosensing, cell adhesion and biofilm formation. Because of the small cell sizes, subcellular structures have long been difficult to visualize using diffraction-limited light microscopy. During the last three decades, optical and force nanoscopy techniques have been developed to probe intracellular and extracellular structures with unprecedented resolutions, enabling researchers to study their organization, dynamics and interactions in individual cells, at the single-molecule level, from the inside out, and all the way up to cell-cell interactions in microbial communities. In this Review, we discuss the principles, advantages and limitations of the main optical and force nanoscopy techniques available in microbiology, and we highlight some outstanding questions that these new tools may help to answer.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Biophysics &Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21212, USA
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), Belgium
| |
Collapse
|
180
|
Abstract
Chromosome conformation capture (3C)-based techniques have revolutionized the field of nuclear organization, partly replacing DNA FISH as the method of choice for studying three-dimensional chromosome architecture. Although DNA FISH is commonly used for confirming 3C-based findings, the two techniques are conceptually and technically different and comparing their results is not trivial. Here, we discuss both 3C-based techniques and DNA FISH approaches to highlight their similarities and differences. We then describe the technical biases that affect each approach, and review the available reports that address their compatibility. Finally, we propose an experimental scheme for comparison of 3C and DNA FISH results.
Collapse
Affiliation(s)
- Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland.
| | - Edith Heard
- Institut Curie, CNRS UMR3215, INSERM U934, Paris, Cedex 05, France. .,Collège de France, Paris, 75005, France.
| |
Collapse
|
181
|
The mechanism of force transmission at bacterial focal adhesion complexes. Nature 2016; 539:530-535. [PMID: 27749817 DOI: 10.1038/nature20121] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
Various rod-shaped bacteria mysteriously glide on surfaces in the absence of appendages such as flagella or pili. In the deltaproteobacterium Myxococcus xanthus, a putative gliding motility machinery (the Agl-Glt complex) localizes to so-called focal adhesion sites (FASs) that form stationary contact points with the underlying surface. Here we show that the Agl-Glt machinery contains an inner-membrane motor complex that moves intracellularly along a right-handed helical path; when the machinery becomes stationary at FASs, the motor complex powers a left-handed rotation of the cell around its long axis. At FASs, force transmission requires cyclic interactions between the molecular motor and the adhesion proteins of the outer membrane via a periplasmic interaction platform, which presumably involves contractile activity of motor components and possible interactions with peptidoglycan. Our results provide a molecular model of bacterial gliding motility.
Collapse
|
182
|
Ricci DP, Melfi MD, Lasker K, Dill DL, McAdams HH, Shapiro L. Cell cycle progression in Caulobacter requires a nucleoid-associated protein with high AT sequence recognition. Proc Natl Acad Sci U S A 2016; 113:E5952-E5961. [PMID: 27647925 PMCID: PMC5056096 DOI: 10.1073/pnas.1612579113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Faithful cell cycle progression in the dimorphic bacterium Caulobacter crescentus requires spatiotemporal regulation of gene expression and cell pole differentiation. We discovered an essential DNA-associated protein, GapR, that is required for Caulobacter growth and asymmetric division. GapR interacts with adenine and thymine (AT)-rich chromosomal loci, associates with the promoter regions of cell cycle-regulated genes, and shares hundreds of recognition sites in common with known master regulators of cell cycle-dependent gene expression. GapR target loci are especially enriched in binding sites for the transcription factors GcrA and CtrA and overlap with nearly all of the binding sites for MucR1, a regulator that controls the establishment of swarmer cell fate. Despite constitutive synthesis, GapR accumulates preferentially in the swarmer compartment of the predivisional cell. Homologs of GapR, which are ubiquitous among the α-proteobacteria and are encoded on multiple bacteriophage genomes, also accumulate in the predivisional cell swarmer compartment when expressed in Caulobacter The Escherichia coli nucleoid-associated protein H-NS, like GapR, selectively associates with AT-rich DNA, yet it does not localize preferentially to the swarmer compartment when expressed exogenously in Caulobacter, suggesting that recognition of AT-rich DNA is not sufficient for the asymmetric accumulation of GapR. Further, GapR does not silence the expression of H-NS target genes when expressed in E. coli, suggesting that GapR and H-NS have distinct functions. We propose that Caulobacter has co-opted a nucleoid-associated protein with high AT recognition to serve as a mediator of cell cycle progression.
Collapse
Affiliation(s)
- Dante P Ricci
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - Michael D Melfi
- Department of Developmental Biology, Stanford University, Stanford, CA 94305; Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Keren Lasker
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - David L Dill
- Department of Computer Science, Stanford University, Stanford, CA 94305
| | - Harley H McAdams
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University, Stanford, CA 94305;
| |
Collapse
|
183
|
The MaoP/maoS Site-Specific System Organizes the Ori Region of the E. coli Chromosome into a Macrodomain. PLoS Genet 2016; 12:e1006309. [PMID: 27627105 PMCID: PMC5023128 DOI: 10.1371/journal.pgen.1006309] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/19/2016] [Indexed: 11/23/2022] Open
Abstract
The Ori region of bacterial genomes is segregated early in the replication cycle of bacterial chromosomes. Consequently, Ori region positioning plays a pivotal role in chromosome dynamics. The Ori region of the E. coli chromosome is organized as a macrodomain with specific properties concerning DNA mobility, segregation of loci and long distance DNA interactions. Here, by using strains with chromosome rearrangements and DNA mobility as a read-out, we have identified the MaoP/maoS system responsible for constraining DNA mobility in the Ori region and limiting long distance DNA interactions with other regions of the chromosome. MaoP belongs to a group of proteins conserved in the Enterobacteria that coevolved with Dam methylase including SeqA, MukBEF and MatP that are all involved in the control of chromosome conformation and segregation. Analysis of DNA rings excised from the chromosome demonstrated that the single maoS site is required in cis on the chromosome to exert its effect while MaoP can act both in cis and in trans. The position of markers in the Ori region was affected by inactivating maoP. However, the MaoP/maoS system was not sufficient for positioning the Ori region at the ¼–¾ regions of the cell. We also demonstrate that the replication and the resulting expansion of bulk DNA are localized centrally in the cell. Implications of these results for chromosome positioning and segregation in E. coli are discussed. The Ori region from bacterial chromosomes plays a pivotal role in chromosome organization and segregation as it is replicated and segregated early in cell division cycle and its positioning impacts the cellular organization of the chromosome in the cell. The E. coli chromosome is divided into four macrodomains (MD) defined as large regions in which DNA interactions occurred preferentially. Here we have identified a new system responsible for specifying properties to the Ori MD. This system is composed of two elements: a cis-acting target sequence called maoS and a gene of unknown function acting in trans called maoP. Remarkably, MaoP belongs to a group of proteins conserved only in Enterobacteria that coevolved with the Dam DNA methylase and that includes the MatP protein structuring the Ter macrodomain and the SeqA and MukBEF proteins involved in the control of chromosome conformation and segregation. These results reveal the presence of a dedicated set of factors required in chromosome management in enterobacteria that might compensate, at least partially, for the absence of the ParABS system involved in the condensation and/or segregation of the Ori region in most bacteria.
Collapse
|
184
|
Barillà D. Driving Apart and Segregating Genomes in Archaea. Trends Microbiol 2016; 24:957-967. [PMID: 27450111 PMCID: PMC5120986 DOI: 10.1016/j.tim.2016.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/16/2016] [Accepted: 07/01/2016] [Indexed: 11/01/2022]
Abstract
Genome segregation is a fundamental biological process in organisms from all domains of life. How this stage of the cell cycle unfolds in Eukarya has been clearly defined and considerable progress has been made to unravel chromosome partition in Bacteria. The picture is still elusive in Archaea. The lineages of this domain exhibit different cell-cycle lifestyles and wide-ranging chromosome copy numbers, fluctuating from 1 up to 55. This plurality of patterns suggests that a variety of mechanisms might underpin disentangling and delivery of DNA molecules to daughter cells. Here I describe recent developments in archaeal genome maintenance, including investigations of novel genome segregation machines that point to unforeseen bacterial and eukaryotic connections.
Collapse
Affiliation(s)
- Daniela Barillà
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
185
|
Guiziou S, Sauveplane V, Chang HJ, Clerté C, Declerck N, Jules M, Bonnet J. A part toolbox to tune genetic expression in Bacillus subtilis. Nucleic Acids Res 2016; 44:7495-508. [PMID: 27402159 PMCID: PMC5009755 DOI: 10.1093/nar/gkw624] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/04/2016] [Indexed: 12/22/2022] Open
Abstract
Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis. We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis.
Collapse
Affiliation(s)
- Sarah Guiziou
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, France
| | - Vincent Sauveplane
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Hung-Ju Chang
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, France
| | - Caroline Clerté
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, France
| | - Nathalie Declerck
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, France
| | - Matthieu Jules
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Jerome Bonnet
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, France
| |
Collapse
|
186
|
Bacterial partition complexes segregate within the volume of the nucleoid. Nat Commun 2016; 7:12107. [PMID: 27377966 PMCID: PMC4935973 DOI: 10.1038/ncomms12107] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/31/2016] [Indexed: 11/08/2022] Open
Abstract
Precise and rapid DNA segregation is required for proper inheritance of genetic material. In most bacteria and archaea, this process is assured by a broadly conserved mitotic-like apparatus in which a NTPase (ParA) displaces the partition complex. Competing observations and models imply starkly different 3D localization patterns of the components of the partition machinery during segregation. Here we use super-resolution microscopies to localize in 3D each component of the segregation apparatus with respect to the bacterial chromosome. We show that Par proteins locate within the nucleoid volume and reveal that proper volumetric localization and segregation of partition complexes requires ATPase and DNA-binding activities of ParA. Finally, we find that the localization patterns of the different components of the partition system highly correlate with dense chromosomal regions. We propose a new mechanism in which the nucleoid provides a scaffold to guide the proper segregation of partition complexes. In most bacteria and archaea, a broadly conserved mitotic-like apparatus assures the inheritance of duplicated genetic material before cell division. Here, the authors use super-resolution microscopies to dissect the activities required for proper DNA segregation through the nucleoid interior.
Collapse
|
187
|
Slager J, Veening JW. Hard-Wired Control of Bacterial Processes by Chromosomal Gene Location. Trends Microbiol 2016; 24:788-800. [PMID: 27364121 PMCID: PMC5034851 DOI: 10.1016/j.tim.2016.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/31/2016] [Accepted: 06/08/2016] [Indexed: 12/23/2022]
Abstract
Bacterial processes, such as stress responses and cell differentiation, are controlled at many different levels. While some factors, such as transcriptional regulation, are well appreciated, the importance of chromosomal gene location is often underestimated or even completely neglected. A combination of environmental parameters and the chromosomal location of a gene determine how many copies of its DNA are present at a given time during the cell cycle. Here, we review bacterial processes that rely, completely or partially, on the chromosomal location of involved genes and their fluctuating copy numbers. Special attention will be given to the several different ways in which these copy-number fluctuations can be used for bacterial cell fate determination or coordination of interdependent processes in a bacterial cell.
Collapse
Affiliation(s)
- Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
188
|
Le TB, Laub MT. Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries. EMBO J 2016; 35:1582-95. [PMID: 27288403 DOI: 10.15252/embj.201593561] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/20/2016] [Indexed: 01/26/2023] Open
Abstract
Chromosomes in all organisms are highly organized and divided into multiple chromosomal interaction domains, or topological domains. Regions of active, high transcription help establish and maintain domain boundaries, but precisely how this occurs remains unclear. Here, using fluorescence microscopy and chromosome conformation capture in conjunction with deep sequencing (Hi-C), we show that in Caulobacter crescentus, both transcription rate and transcript length, independent of concurrent translation, drive the formation of domain boundaries. We find that long, highly expressed genes do not form topological boundaries simply through the inhibition of supercoil diffusion. Instead, our results support a model in which long, active regions of transcription drive local decompaction of the chromosome, with these more open regions of the chromosome forming spatial gaps in vivo that diminish contacts between DNA in neighboring domains. These insights into the molecular forces responsible for domain formation in Caulobacter likely generalize to other bacteria and possibly eukaryotes.
Collapse
Affiliation(s)
- Tung Bk Le
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
189
|
Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology? G3-GENES GENOMES GENETICS 2016; 6:1597-606. [PMID: 27172194 PMCID: PMC4889656 DOI: 10.1534/g3.116.028274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences.
Collapse
|
190
|
|
191
|
Connecting the dots of the bacterial cell cycle: Coordinating chromosome replication and segregation with cell division. Semin Cell Dev Biol 2016; 53:2-9. [DOI: 10.1016/j.semcdb.2015.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
|
192
|
Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 2016; 126:33-44. [DOI: 10.1007/s00412-016-0593-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/10/2016] [Accepted: 04/12/2016] [Indexed: 12/17/2022]
|
193
|
Abstract
SMC (structural maintenance of chromosomes) complexes - which include condensin, cohesin and the SMC5-SMC6 complex - are major components of chromosomes in all living organisms, from bacteria to humans. These ring-shaped protein machines, which are powered by ATP hydrolysis, topologically encircle DNA. With their ability to hold more than one strand of DNA together, SMC complexes control a plethora of chromosomal activities. Notable among these are chromosome condensation and sister chromatid cohesion. Moreover, SMC complexes have an important role in DNA repair. Recent mechanistic insight into the function and regulation of these universal chromosomal machines enables us to propose molecular models of chromosome structure, dynamics and function, illuminating one of the fundamental entities in biology.
Collapse
|
194
|
Val ME, Marbouty M, de Lemos Martins F, Kennedy SP, Kemble H, Bland MJ, Possoz C, Koszul R, Skovgaard O, Mazel D. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae. SCIENCE ADVANCES 2016; 2:e1501914. [PMID: 27152358 PMCID: PMC4846446 DOI: 10.1126/sciadv.1501914] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/28/2016] [Indexed: 05/04/2023]
Abstract
Bacteria with multiple chromosomes represent up to 10% of all bacterial species. Unlike eukaryotes, these bacteria use chromosome-specific initiators for their replication. In all cases investigated, the machineries for secondary chromosome replication initiation are of plasmid origin. One of the important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell cycle and coordinated in such a way that replication termination occurs at the same time. However, the mechanism coordinating this synchrony remains speculative. We investigated this mechanism and revealed that initiation of Chr2 replication is triggered by the replication of a 150-bp locus positioned on Chr1, called crtS. This crtS replication-mediated Chr2 replication initiation mechanism explains how the two chromosomes communicate to coordinate their replication. Our study reveals a new checkpoint control mechanism in bacteria, and highlights possible functional interactions mediated by contacts between two chromosomes, an unprecedented observation in bacteria.
Collapse
Affiliation(s)
- Marie-Eve Val
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Martial Marbouty
- CNRS UMR 3525, Paris 75015, France
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
| | - Francisco de Lemos Martins
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | | | - Harry Kemble
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Michael J. Bland
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Christophe Possoz
- Department of Genome Biology, Institute of Integrative Biology of the Cell (I2BC), Paris-Sud University, CEA, CNRS, Gif-sur-Yvette 91190, France
| | - Romain Koszul
- CNRS UMR 3525, Paris 75015, France
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
| | - Ole Skovgaard
- Department of Science, Systems and Models, Roskilde University, Roskilde DK-4000, Denmark
- Corresponding author. E-mail: (D.M.); (O.S.)
| | - Didier Mazel
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
- Corresponding author. E-mail: (D.M.); (O.S.)
| |
Collapse
|
195
|
Dame RT, Tark-Dame M. Bacterial chromatin: converging views at different scales. Curr Opin Cell Biol 2016; 40:60-65. [PMID: 26942688 DOI: 10.1016/j.ceb.2016.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 01/13/2023]
Abstract
Bacterial genomes are functionally organized and compactly folded into a structure referred to as bacterial chromatin or the nucleoid. An important role in genome folding is attributed to Nucleoid-Associated Proteins, also referred to as bacterial chromatin proteins. Although a lot of molecular insight in the mechanisms of operation of these proteins has been generated in the test tube, knowledge on genome organization in the cellular context is still lagging behind severely. Here, we discuss important advances in the understanding of three-dimensional genome organization due to the application of Chromosome Conformation Capture and super-resolution microscopy techniques. We focus on bacterial chromatin proteins whose proposed role in genome organization is supported by these approaches. Moreover, we discuss recent insights into the interrelationship between genome organization and genome activity/stability in bacteria.
Collapse
Affiliation(s)
- Remus T Dame
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands.
| | - Mariliis Tark-Dame
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
196
|
Abstract
Condensins are large protein complexes that play a central role in chromosome organization and segregation in the three domains of life. They display highly characteristic, rod-shaped structures with SMC (structural maintenance of chromosomes) ATPases as their core subunits and organize large-scale chromosome structure through active mechanisms. Most eukaryotic species have two distinct condensin complexes whose balanced usage is adapted flexibly to different organisms and cell types. Studies of bacterial condensins provide deep insights into the fundamental mechanisms of chromosome segregation. This Review surveys both conserved features and rich variations of condensin-based chromosome organization and discusses their evolutionary implications.
Collapse
Affiliation(s)
- Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
197
|
Minnen A, Bürmann F, Wilhelm L, Anchimiuk A, Diebold-Durand ML, Gruber S. Control of Smc Coiled Coil Architecture by the ATPase Heads Facilitates Targeting to Chromosomal ParB/parS and Release onto Flanking DNA. Cell Rep 2016; 14:2003-16. [PMID: 26904953 PMCID: PMC4785775 DOI: 10.1016/j.celrep.2016.01.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/22/2015] [Accepted: 01/21/2016] [Indexed: 11/01/2022] Open
Abstract
Smc/ScpAB promotes chromosome segregation in prokaryotes, presumably by compacting and resolving nascent sister chromosomes. The underlying mechanisms, however, are poorly understood. Here, we investigate the role of the Smc ATPase activity in the recruitment of Smc/ScpAB to the Bacillus subtilis chromosome. We demonstrate that targeting of Smc/ScpAB to ParB/parS loading sites is strictly dependent on engagement of Smc head domains and relies on an open organization of the Smc coiled coils. We find that dimerization of the Smc hinge domain stabilizes closed Smc rods and hinders head engagement as well as chromosomal targeting. Conversely, the ScpAB sub-complex promotes head engagement and Smc rod opening and thereby facilitates recruitment of Smc to parS sites. Upon ATP hydrolysis, Smc/ScpAB is released from loading sites and relocates within the chromosome-presumably through translocation along DNA double helices. Our findings define an intermediate state in the process of chromosome organization by Smc.
Collapse
Affiliation(s)
- Anita Minnen
- Research Group 'Chromosome Organization and Dynamics', Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Bürmann
- Research Group 'Chromosome Organization and Dynamics', Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Larissa Wilhelm
- Research Group 'Chromosome Organization and Dynamics', Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Anna Anchimiuk
- Research Group 'Chromosome Organization and Dynamics', Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marie-Laure Diebold-Durand
- Research Group 'Chromosome Organization and Dynamics', Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Stephan Gruber
- Research Group 'Chromosome Organization and Dynamics', Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
198
|
Understanding Spatial Genome Organization: Methods and Insights. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:7-20. [PMID: 26876719 PMCID: PMC4792841 DOI: 10.1016/j.gpb.2016.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Abstract
The manner by which eukaryotic genomes are packaged into nuclei while maintaining crucial nuclear functions remains one of the fundamental mysteries in biology. Over the last ten years, we have witnessed rapid advances in both microscopic and nucleic acid-based approaches to map genome architecture, and the application of these approaches to the dissection of higher-order chromosomal structures has yielded much new information. It is becoming increasingly clear, for example, that interphase chromosomes form stable, multilevel hierarchical structures. Among them, self-associating domains like so-called topologically associating domains (TADs) appear to be building blocks for large-scale genomic organization. This review describes features of these broadly-defined hierarchical structures, insights into the mechanisms underlying their formation, our current understanding of how interactions in the nuclear space are linked to gene regulation, and important future directions for the field.
Collapse
|
199
|
The role of ATP-dependent machines in regulating genome topology. Curr Opin Struct Biol 2016; 36:85-96. [PMID: 26827284 DOI: 10.1016/j.sbi.2016.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/22/2022]
Abstract
All cells must copy and express genes in accord with internal and external cues. The proper timing and response of such events relies on the active control of higher-order genomic organization. Cells use ATP-dependent molecular machines to alter the local and global topology of DNA so as to promote and counteract the persistent effects of transcription and replication. X-ray crystallography and electron microscopy, coupled with biochemical and single molecule methods are continuing to provide a wealth of mechanistic information on how DNA remodeling factors are employed to dynamically shape and organize the genome.
Collapse
|
200
|
MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation. Nat Commun 2016; 7:10466. [PMID: 26818444 PMCID: PMC4738335 DOI: 10.1038/ncomms10466] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023] Open
Abstract
The Escherichia coli SMC complex, MukBEF, forms clusters of molecules that interact with the decatenase topisomerase IV and which are normally associated with the chromosome replication origin region (ori). Here we demonstrate an additional ATP-hydrolysis-dependent association of MukBEF with the replication termination region (ter). Consistent with this, MukBEF interacts with MatP, which binds matS sites in ter. MatP displaces wild-type MukBEF complexes from ter, thereby facilitating their association with ori, and limiting the availability of topoisomerase IV (TopoIV) at ter. Displacement of MukBEF is impaired when MukB ATP hydrolysis is compromised and when MatP is absent, leading to a stable association of ter and MukBEF. Impairing the TopoIV-MukBEF interaction delays sister ter segregation in cells lacking MatP. We propose that the interplay between MukBEF and MatP directs chromosome organization in relation to MukBEF clusters and associated topisomerase IV, thereby ensuring timely chromosome unlinking and segregation. MukBEF, the bacterial structural maintenance of chromosomes complex, is known to associate with origins of replication and topoisomerase IV. Here the authors show an association of MukBEF with MatP and replication termination regions, important for proper sister chromatid decatenation and segregation.
Collapse
|