151
|
Piejko M, Niewieczerzal S, Sulkowska JI. The Folding of Knotted Proteins: Distinguishing the Distinct Behavior of Shallow and Deep Knots. Isr J Chem 2020. [DOI: 10.1002/ijch.202000036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maciej Piejko
- Faculty of ChemistryUniversity of Warsaw Pasteura 1 Warsaw 02-093 Poland
- Centre of New TechnologiesUniversity of Warsaw Banacha 2c Warsaw 02-097 Poland
| | | | - Joanna I. Sulkowska
- Faculty of ChemistryUniversity of Warsaw Pasteura 1 Warsaw 02-093 Poland
- Centre of New TechnologiesUniversity of Warsaw Banacha 2c Warsaw 02-097 Poland
| |
Collapse
|
152
|
Kozyra EJ, Pastor VB, Lefkopoulos S, Sahoo SS, Busch H, Voss RK, Erlacher M, Lebrecht D, Szvetnik EA, Hirabayashi S, Pasaulienė R, Pedace L, Tartaglia M, Klemann C, Metzger P, Boerries M, Catala A, Hasle H, de Haas V, Kállay K, Masetti R, De Moerloose B, Dworzak M, Schmugge M, Smith O, Starý J, Mejstrikova E, Ussowicz M, Morris E, Singh P, Collin M, Derecka M, Göhring G, Flotho C, Strahm B, Locatelli F, Niemeyer CM, Trompouki E, Wlodarski MW. Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with GATA2 deficiency. Leukemia 2020; 34:2673-2687. [PMID: 32555368 PMCID: PMC7515837 DOI: 10.1038/s41375-020-0899-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023]
Abstract
Deficiency of the transcription factor GATA2 is a highly penetrant genetic disorder predisposing to myelodysplastic syndromes (MDS) and immunodeficiency. It has been recognized as the most common cause underlying primary MDS in children. Triggered by the discovery of a recurrent synonymous GATA2 variant, we systematically investigated 911 patients with phenotype of pediatric MDS or cellular deficiencies for the presence of synonymous alterations in GATA2. In total, we identified nine individuals with five heterozygous synonymous mutations: c.351C>G, p.T117T (N = 4); c.649C>T, p.L217L; c.981G>A, p.G327G; c.1023C>T, p.A341A; and c.1416G>A, p.P472P (N = 2). They accounted for 8.2% (9/110) of cases with GATA2 deficiency in our cohort and resulted in selective loss of mutant RNA. While for the hotspot mutation (c.351C>G) a splicing error leading to RNA and protein reduction was identified, severe, likely late stage RNA loss without splicing disruption was found for other mutations. Finally, the synonymous mutations did not alter protein function or stability. In summary, synonymous GATA2 substitutions are a new common cause of GATA2 deficiency. These findings have broad implications for genetic counseling and pathogenic variant discovery in Mendelian disorders.
Collapse
Affiliation(s)
- Emilia J Kozyra
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Victor B Pastor
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stylianos Lefkopoulos
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.,Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Sushree S Sahoo
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Hematology, St. Jude Children´s Research Hospital, Memphis, USA
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,Lübeck Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rebecca K Voss
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Lebrecht
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Enikoe A Szvetnik
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shinsuke Hirabayashi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ramunė Pasaulienė
- Vilnius University Hospital Santaros Klinikos, Center for Pediatric Oncology and Hematology, Bone Marrow Transplantations Unit, Vilnius, Lithuania
| | - Lucia Pedace
- Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Christian Klemann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Patrick Metzger
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albert Catala
- Department of Hematology and Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Valerie de Haas
- Dutch Childhood Oncology Group (DCOG), Princess Máxima Centre, Utrecht, The Netherlands
| | - Krisztián Kállay
- Central Hospital of Southern Pest-National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Riccardo Masetti
- Department of Pediatric Oncology and Hematology, University of Bologna, Bologna, Italy
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Michael Dworzak
- St. Anna Children´s Hospital and Cancer Research Institute, Pediatric Clinic, Medical University of Vienna, Vienna, Austria
| | - Markus Schmugge
- Department of Hematology and Oncology, University Children's Hospital, Zurich, Switzerland
| | - Owen Smith
- Paediatric Oncology and Haematology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Jan Starý
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ester Mejstrikova
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marek Ussowicz
- Department of Paediatric Bone Marrow Transplantation, Oncology and Hematology, Medical University of Wroclaw, Wroclaw, Poland
| | - Emma Morris
- Institute of Immunity and Transplantation, University College London (UCL), London, UK.,Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, UK.,Department of Immunology, Royal Free London NHS FT, London, UK
| | - Preeti Singh
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marta Derecka
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gudrun Göhring
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signaling Studies, Freiburg, Germany
| | - Marcin W Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Department of Hematology, St. Jude Children´s Research Hospital, Memphis, USA.
| | | |
Collapse
|
153
|
Roskamp KW, Azim S, Kassier G, Norton-Baker B, Sprague-Piercy MA, Miller RJD, Martin RW. Human γS-Crystallin-Copper Binding Helps Buffer against Aggregation Caused by Oxidative Damage. Biochemistry 2020; 59:2371-2385. [PMID: 32510933 DOI: 10.1021/acs.biochem.0c00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divalent metal cations can play a role in protein aggregation diseases, including cataract. Here we compare the aggregation of human γS-crystallin, a key structural protein of the eye lens, via mutagenesis, ultraviolet light damage, and the addition of metal ions. All three aggregation pathways result in globular, amorphous-looking structures that do not elongate into fibers. We also investigate the molecular mechanism underlying copper(II)-induced aggregation. This work was motivated by the observation that zinc(II)-induced aggregation of γS-crystallin is driven by intermolecular bridging of solvent-accessible cysteine residues, while in contrast, copper(II)-induced aggregation of this protein is exacerbated by the removal of solvent-accessible cysteines via mutation. Here we find that copper(II)-induced aggregation results from a complex mechanism involving multiple interactions with the protein. The initial protein-metal interactions result in the reduction of Cu(II) to Cu(I) with concomitant oxidation of γS-crystallin. In addition to the intermolecular disulfides that represent a starting point for aggregation, intramolecular disulfides also occur in the cysteine loop, a region of the N-terminal domain that was previously found to mediate the early stages of cataract formation. This previously unobserved ability of γS-crystallin to transfer disulfides intramolecularly suggests that it may serve as an oxidation sink for the lens after glutathione levels have become depleted during aging. γS-Crystallin thus serves as the last line of defense against oxidation in the eye lens, a result that underscores the chemical functionality of this protein, which is generally considered to play a purely structural role.
Collapse
Affiliation(s)
- Kyle W Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sana Azim
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Günther Kassier
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - R J Dwyane Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany.,Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
154
|
Wright G, Rodriguez A, Li J, Clark PL, Milenković T, Emrich SJ. Analysis of computational codon usage models and their association with translationally slow codons. PLoS One 2020; 15:e0232003. [PMID: 32352987 PMCID: PMC7192439 DOI: 10.1371/journal.pone.0232003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/05/2020] [Indexed: 11/19/2022] Open
Abstract
Improved computational modeling of protein translation rates, including better prediction of where translational slowdowns along an mRNA sequence may occur, is critical for understanding co-translational folding. Because codons within a synonymous codon group are translated at different rates, many computational translation models rely on analyzing synonymous codons. Some models rely on genome-wide codon usage bias (CUB), believing that globally rare and common codons are the most informative of slow and fast translation, respectively. Others use the CUB observed only in highly expressed genes, which should be under selective pressure to be translated efficiently (and whose CUB may therefore be more indicative of translation rates). No prior work has analyzed these models for their ability to predict translational slowdowns. Here, we evaluate five models for their association with slowly translated positions as denoted by two independent ribosome footprint (RFP) count experiments from S. cerevisiae, because RFP data is often considered as a “ground truth” for translation rates across mRNA sequences. We show that all five considered models strongly associate with the RFP data and therefore have potential for estimating translational slowdowns. However, we also show that there is a weak correlation between RFP counts for the same genes originating from independent experiments, even when their experimental conditions are similar. This raises concerns about the efficacy of using current RFP experimental data for estimating translation rates and highlights a potential advantage of using computational models to understand translation rates instead.
Collapse
Affiliation(s)
- Gabriel Wright
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN, United States of America
- * E-mail:
| | - Anabel Rodriguez
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, United States of America
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Tijana Milenković
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN, United States of America
| | - Scott J. Emrich
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
155
|
Abstract
Messenger RNAs (mRNAs) consist of a coding region (open reading frame (ORF)) and two untranslated regions (UTRs), 5'UTR and 3'UTR. Ribosomes travel along the coding region, translating nucleotide triplets (called codons) to a chain of amino acids. The coding region was long believed to mainly encode the amino acid content of proteins, whereas regulatory signals reside in the UTRs and in other genomic regions. However, in recent years we have learned that the ORF is expansively populated with various regulatory signals, or codes, which are related to all gene expression steps and additional intracellular aspects. In this paper, we review the current knowledge related to overlapping codes inside the coding regions, such as the influence of synonymous codon usage on translation speed (and, in turn, the effect of translation speed on protein folding), ribosomal frameshifting, mRNA stability, methylation, splicing, transcription and more. All these codes come together and overlap in the ORF sequence, ensuring production of the right protein at the right time.
Collapse
Affiliation(s)
- Shaked Bergman
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
156
|
Van Aalst E, Yekefallah M, Mehta AK, Eason I, Wylie B. Codon Harmonization of a Kir3.1-KirBac1.3 Chimera for Structural Study Optimization. Biomolecules 2020; 10:biom10030430. [PMID: 32164257 PMCID: PMC7175280 DOI: 10.3390/biom10030430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
The expression of functional, folded, and isotopically enriched membrane proteins is an enduring bottleneck for nuclear magnetic resonance (NMR) studies. Indeed, historically, protein yield optimization has been insufficient to allow NMR analysis of many complex Eukaryotic membrane proteins. However, recent work has found that manipulation of plasmid codons improves the odds of successful NMR-friendly protein production. In the last decade, numerous studies showed that matching codon usage patterns in recombinant gene sequences to those in the native sequence is positively correlated with increased protein yield. This phenomenon, dubbed codon harmonization, may be a powerful tool in optimizing recombinant expression of difficult-to-produce membrane proteins for structural studies. Here, we apply this technique to an inward rectifier K+ Channel (Kir) 3.1-KirBac1.3 chimera. Kir3.1 falls within the G protein-coupled inward rectifier K+ (GIRK) channel family, thus NMR studies may inform on the nuances of GIRK gating action in the presence and absence of its G Protein, lipid, and small molecule ligands. In our hands, harmonized plasmids increase protein yield nearly two-fold compared to the traditional ‘fully codon optimized’ construct. We then employ a fluorescence-based functional assay and solid-state NMR correlation spectroscopy to show the final protein product is folded and functional.
Collapse
Affiliation(s)
- Evan Van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
| | - Anil K. Mehta
- National High Magnetic Field Laboratory and McKnight Brain Institute, University of Florida, Box 10015, Gainesville, FL 32610, USA;
| | - Isaac Eason
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
| | - Benjamin Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
- Correspondence:
| |
Collapse
|
157
|
Weiner I, Feldman Y, Shahar N, Yacoby I, Tuller T. CSO – A sequence optimization software for engineering chloroplast expression in Chlamydomonas reinhardtii. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
158
|
Faber MS, Wrenbeck EE, Azouz LR, Steiner PJ, Whitehead TA. Impact of In Vivo Protein Folding Probability on Local Fitness Landscapes. Mol Biol Evol 2020; 36:2764-2777. [PMID: 31400199 DOI: 10.1093/molbev/msz184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is incompletely understood how biophysical properties like protein stability impact molecular evolution and epistasis. Epistasis is defined as specific when a mutation exclusively influences the phenotypic effect of another mutation, often at physically interacting residues. In contrast, nonspecific epistasis results when a mutation is influenced by a large number of nonlocal mutations. As most mutations are pleiotropic, the in vivo folding probability-governed by basal protein stability-is thought to determine activity-enhancing mutational tolerance, implying that nonspecific epistasis is dominant. However, evidence exists for both specific and nonspecific epistasis as the prevalent factor, with limited comprehensive data sets to support either claim. Here, we use deep mutational scanning to probe how in vivo enzyme folding probability impacts local fitness landscapes. We computationally designed two different variants of the amidase AmiE with statistically indistinguishable catalytic efficiencies but lower probabilities of folding in vivo compared with wild-type. Local fitness landscapes show slight alterations among variants, with essentially the same global distribution of fitness effects. However, specific epistasis was predominant for the subset of mutations exhibiting positive sign epistasis. These mutations mapped to spatially distinct locations on AmiE near the initial mutation or proximal to the active site. Intriguingly, the majority of specific epistatic mutations were codon dependent, with different synonymous codons resulting in fitness sign reversals. Together, these results offer a nuanced view of how protein folding probability impacts local fitness landscapes and suggest that transcriptional-translational effects are as important as stability in determining evolutionary outcomes.
Collapse
Affiliation(s)
- Matthew S Faber
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Emily E Wrenbeck
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI
| | - Laura R Azouz
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI
| | - Paul J Steiner
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | - Timothy A Whitehead
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI.,Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO.,E.E.W. Ginkgo Bioworks, L.R.A. McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX
| |
Collapse
|
159
|
Tesina P, Lessen LN, Buschauer R, Cheng J, Wu CC, Berninghausen O, Buskirk AR, Becker T, Beckmann R, Green R. Molecular mechanism of translational stalling by inhibitory codon combinations and poly(A) tracts. EMBO J 2020; 39:e103365. [PMID: 31858614 PMCID: PMC6996574 DOI: 10.15252/embj.2019103365] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
Inhibitory codon pairs and poly(A) tracts within the translated mRNA cause ribosome stalling and reduce protein output. The molecular mechanisms that drive these stalling events, however, are still unknown. Here, we use a combination of in vitro biochemistry, ribosome profiling, and cryo-EM to define molecular mechanisms that lead to these ribosome stalls. First, we use an in vitro reconstituted yeast translation system to demonstrate that inhibitory codon pairs slow elongation rates which are partially rescued by increased tRNA concentration or by an artificial tRNA not dependent on wobble base-pairing. Ribosome profiling data extend these observations by revealing that paused ribosomes with empty A sites are enriched on these sequences. Cryo-EM structures of stalled ribosomes provide a structural explanation for the observed effects by showing decoding-incompatible conformations of mRNA in the A sites of all studied stall- and collision-inducing sequences. Interestingly, in the case of poly(A) tracts, the inhibitory conformation of the mRNA in the A site involves a nucleotide stacking array. Together, these data demonstrate a novel mRNA-induced mechanisms of translational stalling in eukaryotic ribosomes.
Collapse
Affiliation(s)
- Petr Tesina
- Gene Center and Center for Integrated Protein Science MunichDepartment of BiochemistryUniversity of MunichMunichGermany
| | - Laura N Lessen
- Program in Molecular BiophysicsJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Robert Buschauer
- Gene Center and Center for Integrated Protein Science MunichDepartment of BiochemistryUniversity of MunichMunichGermany
| | - Jingdong Cheng
- Gene Center and Center for Integrated Protein Science MunichDepartment of BiochemistryUniversity of MunichMunichGermany
| | - Colin Chih‐Chien Wu
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
- Howard Hughes Medical InstituteJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Otto Berninghausen
- Gene Center and Center for Integrated Protein Science MunichDepartment of BiochemistryUniversity of MunichMunichGermany
| | - Allen R Buskirk
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Thomas Becker
- Gene Center and Center for Integrated Protein Science MunichDepartment of BiochemistryUniversity of MunichMunichGermany
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science MunichDepartment of BiochemistryUniversity of MunichMunichGermany
| | - Rachel Green
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
- Howard Hughes Medical InstituteJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
160
|
Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. Proc Natl Acad Sci U S A 2020; 117:3528-3534. [PMID: 32015130 DOI: 10.1073/pnas.1907126117] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the cell, proteins are synthesized from N to C terminus and begin to fold during translation. Cotranslational folding mechanisms are therefore linked to elongation rate, which varies as a function of synonymous codon usage. However, synonymous codon substitutions can affect many distinct cellular processes, which has complicated attempts to deconvolve the extent to which synonymous codon usage can promote or frustrate proper protein folding in vivo. Although previous studies have shown that some synonymous changes can lead to different final structures, other substitutions will likely be more subtle, perturbing predominantly the protein folding pathway without radically altering the final structure. Here we show that synonymous codon substitutions encoding a single essential enzyme lead to dramatically slower cell growth. These mutations do not prevent active enzyme formation; instead, they predominantly alter the protein folding mechanism, leading to enhanced degradation in vivo. These results support a model in which synonymous codon substitutions can impair cell fitness by significantly perturbing cotranslational protein folding mechanisms, despite the chaperoning provided by the cellular protein homeostasis network.
Collapse
|
161
|
Kames J, Alexaki A, Holcomb DD, Santana-Quintero LV, Athey JC, Hamasaki-Katagiri N, Katneni U, Golikov A, Ibla JC, Bar H, Kimchi-Sarfaty C. TissueCoCoPUTs: Novel Human Tissue-Specific Codon and Codon-Pair Usage Tables Based on Differential Tissue Gene Expression. J Mol Biol 2020; 432:3369-3378. [PMID: 31982380 DOI: 10.1016/j.jmb.2020.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 02/05/2023]
Abstract
Protein expression in multicellular organisms varies widely across tissues. Codon usage in the transcriptome of each tissue is derived from genomic codon usage and the relative expression level of each gene. We created a comprehensive computational resource that houses tissue-specific codon, codon-pair, and dinucleotide usage data for 51 Homo sapiens tissues (TissueCoCoPUTs: https://hive.biochemistry.gwu.edu/review/tissue_codon), using transcriptome data from the Broad Institute Genotype-Tissue Expression (GTEx) portal. Distances between tissue-specific codon and codon-pair frequencies were used to generate a dendrogram based on the unique patterns of codon and codon-pair usage in each tissue that are clearly distinct from the genomic distribution. This novel resource may be useful in unraveling the relationship between codon usage and tRNA abundance, which could be critical in determining translation kinetics and efficiency across tissues. Areas of investigation such as biotherapeutic development, tissue-specific genetic engineering, and genetic disease prediction will greatly benefit from this resource.
Collapse
Affiliation(s)
- Jacob Kames
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Aikaterini Alexaki
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - David D Holcomb
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Luis V Santana-Quintero
- High Performance Integrated Environment, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - John C Athey
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nobuko Hamasaki-Katagiri
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Upendra Katneni
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Anton Golikov
- High Performance Integrated Environment, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Juan C Ibla
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT, 06268, USA
| | - Chava Kimchi-Sarfaty
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
162
|
Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps. Proc Natl Acad Sci U S A 2020; 117:1485-1495. [PMID: 31911473 DOI: 10.1073/pnas.1913207117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many large proteins suffer from slow or inefficient folding in vitro. It has long been known that this problem can be alleviated in vivo if proteins start folding cotranslationally. However, the molecular mechanisms underlying this improvement have not been well established. To address this question, we use an all-atom simulation-based algorithm to compute the folding properties of various large protein domains as a function of nascent chain length. We find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by nonnative interactions involving C-terminal residues. Thus, cotranslational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins' sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modeling, we show that under certain conditions, such a slowdown indeed improves cotranslational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from cotranslational folding due to a lack of significant nonnative interactions, and indeed these proteins' sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell and how biomolecular self-assembly may be optimized evolutionarily.
Collapse
|
163
|
Cotranslational Folding of Proteins on the Ribosome. Biomolecules 2020; 10:biom10010097. [PMID: 31936054 PMCID: PMC7023365 DOI: 10.3390/biom10010097] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 02/04/2023] Open
Abstract
Many proteins in the cell fold cotranslationally within the restricted space of the polypeptide exit tunnel or at the surface of the ribosome. A growing body of evidence suggests that the ribosome can alter the folding trajectory in many different ways. In this review, we summarize the recent examples of how translation affects folding of single-domain, multiple-domain and oligomeric proteins. The vectorial nature of translation, the spatial constraints of the exit tunnel, and the electrostatic properties of the ribosome-nascent peptide complex define the onset of early folding events. The ribosome can facilitate protein compaction, induce the formation of intermediates that are not observed in solution, or delay the onset of folding. Examples of single-domain proteins suggest that early compaction events can define the folding pathway for some types of domain structures. Folding of multi-domain proteins proceeds in a domain-wise fashion, with each domain having its role in stabilizing or destabilizing neighboring domains. Finally, the assembly of protein complexes can also begin cotranslationally. In all these cases, the ribosome helps the nascent protein to attain a native fold and avoid the kinetic traps of misfolding.
Collapse
|
164
|
Mortazavi M, Nezafat N, Negahdaripour M, Raee MJ, Torkzadeh-Mahani M, Riahi-Madvar A, Ghasemi Y. In silicoEvaluation of Substrate Binding Site and Rare Codons in the Structure of CYP152A1. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164616666190220143131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:The Cytochromes P450 (CYPs) have an essential role in the oxidation of endogenous and exogenous molecules. The CYPs are identified in all domains of life, but the CYP152A1 from Bacillus subtilis is specially considered for clinical and industrial applications. The molecular cloning of a new type of CYP from Bacillus subtilis was reported, previously. Here, we describe the hidden layer of biological information of the CYP152A1 enzyme, which can help researchers for better understanding of enzyme application. In this study, four rare codons of enzyme, including Arg63, Arg187, Arg276, and Arg338 were identified and evaluated using the bioinformatics web servers.Methods:Through in silico modeling of CYP152A1 via the I-TASSER server, the above-mentioned rare codons were studied in the structure of enzyme that may have an important role in the proper folding of CYP152A1. In the following, the substrate binding site of CYP152A1 was studied by AutoDock Vina, and the heme and palmitic acid were considered as the substrates.Results:The results of docking study elucidated the Arg242 in the active site is closely related to the substrate binding site of CYP152A1, which help us to further clarify the mechanism of the enzyme reaction.Conclusion:Studies of these hidden information’s can enhance our understanding of CYP152A1 folding and protein expression challenges. Moreover, identification of rare codons can help in the rational design of new and effective drugs.
Collapse
Affiliation(s)
- Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Mohammad J. Raee
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Riahi-Madvar
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| |
Collapse
|
165
|
Towards next generation therapies for cystic fibrosis: Folding, function and pharmacology of CFTR. J Cyst Fibros 2020; 19 Suppl 1:S25-S32. [PMID: 31902693 PMCID: PMC7052731 DOI: 10.1016/j.jcf.2019.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
The treatment of cystic fibrosis (CF) has been transformed by orally-bioavailable small molecule modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), which restore function to CF mutants. However, CFTR modulators are not available to all people with CF and better modulators are required to prevent disease progression. Here, we review selectively recent advances in CFTR folding, function and pharmacology. We highlight ensemble and single-molecule studies of CFTR folding, which provide new insight into CFTR assembly, its perturbation by CF mutations and rescue by CFTR modulators. We discuss species-dependent differences in the action of the F508del-CFTR mutation on CFTR expression, stability and function, which might influence pharmacological studies of CFTR modulators in CF animal models. Finally, we illuminate the identification of combinations of two CFTR potentiators (termed co-potentiators), which restore therapeutically-relevant levels of CFTR activity to rare CF mutations. Thus, mechanistic studies of CFTR folding, function and pharmacology inform the development of highly effective CFTR modulators.
Collapse
|
166
|
Sinitski D, Gruner K, Bernhagen J, Panstruga R. Studying Plant MIF/D-DT-Like Genes and Proteins (MDLs). Methods Mol Biol 2020; 2080:249-261. [PMID: 31745887 DOI: 10.1007/978-1-4939-9936-1_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human macrophage migration inhibitory factor (MIF) is an inflammatory cytokine with chemokine-like characteristics and an upstream regulator of host innate immunity. It is a critical mediator of a variety of human diseases, such as acute and chronic inflammatory diseases, autoimmunity, atherosclerosis, and cancer. MIF is an atypical chemokine that not only signals through its cognate receptor CD74, but also interacts with the classical chemokine receptors CXCR2 and CXCR4. MIF and its homolog D-dopachrome tautomerase (D-DT)/MIF-2 are structurally unique proteins that are conserved across kingdoms and that share a remarkable homology with bacterial tautomerases/isomerases, albeit the relevance of the tautomerase activity in mammalian systems has remained unclear. Intriguingly, in silico analysis also predicts MIF orthologs in plants such as in the model plant Arabidopsis thaliana. There are three predicted MIF orthologs in A. thaliana, which have been termed A. thaliana MIF/D-DT-like proteins (AtMDLs). Anticipating that there will be a future research interest in studying AtMDLs or other plant MDLs, here we describe methods how to clone, recombinantly express and purify AtMDL proteins, taking into account codon usage differences between plant and mammalian cell systems.
Collapse
Affiliation(s)
- Dzmitry Sinitski
- Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Katrin Gruner
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.
- Munich Heart Alliance, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
167
|
|
168
|
Calles J, Justice I, Brinkley D, Garcia A, Endy D. Fail-safe genetic codes designed to intrinsically contain engineered organisms. Nucleic Acids Res 2019; 47:10439-10451. [PMID: 31511890 PMCID: PMC6821295 DOI: 10.1093/nar/gkz745] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022] Open
Abstract
One challenge in engineering organisms is taking responsibility for their behavior over many generations. Spontaneous mutations arising before or during use can impact heterologous genetic functions, disrupt system integration, or change organism phenotype. Here, we propose restructuring the genetic code itself such that point mutations in protein-coding sequences are selected against. Synthetic genetic systems so-encoded should fail more safely in response to most spontaneous mutations. We designed fail-safe codes and simulated their expected effects on the evolution of so-encoded proteins. We predict fail-safe codes supporting expression of 20 or 15 amino acids could slow protein evolution to ∼30% or 0% the rate of standard-encoded proteins, respectively. We also designed quadruplet-codon codes that should ensure all single point mutations in protein-coding sequences are selected against while maintaining expression of 20 or more amino acids. We demonstrate experimentally that a reduced set of 21 tRNAs is capable of expressing a protein encoded by only 20 sense codons, whereas a standard 64-codon encoding is not expressed. Our work suggests that biological systems using rationally depleted but otherwise natural translation systems should evolve more slowly and that such hypoevolvable organisms may be less likely to invade new niches or outcompete native populations.
Collapse
Affiliation(s)
- Jonathan Calles
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Isaac Justice
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Detravious Brinkley
- Department of Mathematics and Computer Science, Claflin University, Orangeburg, SC 29115, USA
| | - Alexa Garcia
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Drew Endy
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
169
|
Yang Q, Yu CH, Zhao F, Dang Y, Wu C, Xie P, Sachs MS, Liu Y. eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons. Nucleic Acids Res 2019; 47:9243-9258. [PMID: 31410471 PMCID: PMC6755126 DOI: 10.1093/nar/gkz710] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Codon usage bias is a universal feature of eukaryotic and prokaryotic genomes and plays an important role in regulating gene expression levels. A major role of codon usage is thought to regulate protein expression levels by affecting mRNA translation efficiency, but the underlying mechanism is unclear. By analyzing ribosome profiling results, here we showed that codon usage regulates translation elongation rate and that rare codons are decoded more slowly than common codons in all codon families in Neurospora. Rare codons resulted in ribosome stalling in manners both dependent and independent of protein sequence context and caused premature translation termination. This mechanism was shown to be conserved in Drosophila cells. In both Neurospora and Drosophila cells, codon usage plays an important role in regulating mRNA translation efficiency. We found that the rare codon-dependent premature termination is mediated by the translation termination factor eRF1, which recognizes ribosomes stalled on rare sense codons. Silencing of eRF1 expression resulted in codon usage-dependent changes in protein expression. Together, these results establish a mechanism for how codon usage regulates mRNA translation efficiency.
Collapse
Affiliation(s)
- Qian Yang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chien-Hung Yu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 701, Taiwan
| | - Fangzhou Zhao
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yunkun Dang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Pancheng Xie
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
170
|
Korniy N, Goyal A, Hoffmann M, Samatova E, Peske F, Pöhlmann S, Rodnina MV. Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance. Nucleic Acids Res 2019; 47:5210-5222. [PMID: 30968122 PMCID: PMC6547452 DOI: 10.1093/nar/gkz202] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
A hallmark of translation in human immunodeficiency virus type 1 (HIV-1) is a –1 programmed ribosome frameshifting event that produces the Gag-Pol fusion polyprotein. The constant Gag to Gag-Pol ratio is essential for the virion structure and infectivity. Here we show that the frameshifting efficiency is modulated by Leu-tRNALeu that reads the UUA codon at the mRNA slippery site. This tRNALeu isoacceptor is particularly rare in human cell lines derived from T-lymphocytes, the cells that are targeted by HIV-1. When UUA decoding is delayed, the frameshifting follows an alternative route, which maintains the Gag to Gag-Pol ratio constant. A second potential slippery site downstream of the first one is normally inefficient but can also support –1-frameshifting when altered by a compensatory resistance mutation in response to current antiviral drug therapy. Together these different regimes allow the virus to maintain a constant –1-frameshifting efficiency to ensure successful virus propagation.
Collapse
Affiliation(s)
- Natalia Korniy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.,Faculty of Biology and Psychology, University of Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
171
|
Victor MP, Acharya D, Begum T, Ghosh TC. The optimization of mRNA expression level by its intrinsic properties—Insights from codon usage pattern and structural stability of mRNA. Genomics 2019; 111:1292-1297. [DOI: 10.1016/j.ygeno.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 11/17/2022]
|
172
|
Hunt R, Hettiarachchi G, Katneni U, Hernandez N, Holcomb D, Kames J, Alnifaidy R, Lin B, Hamasaki-Katagiri N, Wesley A, Kafri T, Morris C, Bouché L, Panico M, Schiller T, Ibla J, Bar H, Ismail A, Morris H, Komar A, Kimchi-Sarfaty C. A Single Synonymous Variant (c.354G>A [p.P118P]) in ADAMTS13 Confers Enhanced Specific Activity. Int J Mol Sci 2019; 20:ijms20225734. [PMID: 31731663 PMCID: PMC6888508 DOI: 10.3390/ijms20225734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Synonymous variants within coding regions may influence protein expression and function. We have previously reported increased protein expression levels ex vivo (~120% in comparison to wild-type) from a synonymous polymorphism variant, c.354G>A [p.P118P], of the ADAMTS13 gene, encoding a plasma protease responsible for von Willebrand Factor (VWF) degradation. In the current study, we investigated the potential mechanism(s) behind the increased protein expression levels from this variant and its effect on ADAMTS13 physico-chemical properties. Cell-free assays showed enhanced translation of the c.354G>A variant and the analysis of codon usage characteristics suggested that introduction of the frequently used codon/codon pair(s) may have been potentially responsible for this effect. Limited proteolysis, however, showed no substantial influence of altered translation on protein conformation. Analysis of post-translational modifications also showed no notable differences but identified three previously unreported glycosylation markers. Despite these similarities, p.P118P variant unexpectedly showed higher specific activity. Structural analysis using modeled interactions indicated that subtle conformational changes arising from altered translation kinetics could affect interactions between an exosite of ADAMTS13 and VWF resulting in altered specific activity. This report highlights how a single synonymous nucleotide variation can impact cellular expression and specific activity in the absence of measurable impact on protein structure.
Collapse
Affiliation(s)
- Ryan Hunt
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Gaya Hettiarachchi
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Upendra Katneni
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Nancy Hernandez
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - David Holcomb
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Jacob Kames
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Redab Alnifaidy
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Brian Lin
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Nobuko Hamasaki-Katagiri
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Aaron Wesley
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Present Address: Department of Emergency Medicine, Banner University Medical Center, The University of Arizona, Tucson, AZ 85724, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Laura Bouché
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Present Address: Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Maria Panico
- BioPharmaSpec Ltd., St. Saviour JE2 7LA, UK or or
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Tal Schiller
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
| | - Juan Ibla
- Departments of Cardiac Surgery and Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
| | - Amra Ismail
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological & Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Howard Morris
- BioPharmaSpec Ltd., St. Saviour JE2 7LA, UK or or
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Anton Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological & Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD 20993, USA
- Correspondence: ; Tel.: +1-(240)-402-8203
| |
Collapse
|
173
|
Komar AA. [Synonymous Codon Usage-a Guide for Co-Translational Protein Folding in the Cell]. Mol Biol (Mosk) 2019; 53:883-898. [PMID: 31876270 PMCID: PMC8462064 DOI: 10.1134/s0026898419060090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/14/2019] [Indexed: 06/10/2023]
Abstract
In the cell, protein folding begins during protein synthesis/translation and thus is a co-translational process. Co-translational protein folding is tightly linked to translation elongation, which is not a uniform process. While there are many reasons for translation non-uniformity, it is generally believed that non-uniform synonymous codon usage is one of the key factors modulating translation elongation rates. Frequent/optimal codons as a rule are translated more rapidly than infrequently used ones and vice versa. Over 30 years ago, it was hypothesized that changes in synonymous codon usage affecting translation elongation rates could impinge on co-translation protein folding and that many synonymous codons are strategically placed within mRNA to ensure a particular translation kinetics facilitating productive step-by-step co-translational folding of proteins. It was suggested that this particular translation kinetics (and, specifically, translation pause sites) may define the window of opportunity for the protein parts to fold locally, particularly at the critical points where folding is far from equilibrium. It was thus hypothesized that synonymous codons may provide a secondary code for protein folding in the cell. Although, mostly accepted now, this hypothesis appeared to be difficult to prove and many convincing results were obtained only relatively recently. Here, I review the progress in the field and explain, why this simple idea appeared to be so challenging to prove.
Collapse
Affiliation(s)
- A A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, 44115 USA
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, 44106 USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195 USA
- DAPCEL, Inc., Cleveland, Ohio, 44106 USA
| |
Collapse
|
174
|
Alexaki A, Hettiarachchi GK, Athey JC, Katneni UK, Simhadri V, Hamasaki-Katagiri N, Nanavaty P, Lin B, Takeda K, Freedberg D, Monroe D, McGill JR, Peters R, Kames JM, Holcomb DD, Hunt RC, Sauna ZE, Gelinas A, Janjic N, DiCuccio M, Bar H, Komar AA, Kimchi-Sarfaty C. Effects of codon optimization on coagulation factor IX translation and structure: Implications for protein and gene therapies. Sci Rep 2019; 9:15449. [PMID: 31664102 PMCID: PMC6820528 DOI: 10.1038/s41598-019-51984-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022] Open
Abstract
Synonymous codons occur with different frequencies in different organisms, a phenomenon termed codon usage bias. Codon optimization, a common term for a variety of approaches used widely by the biopharmaceutical industry, involves synonymous substitutions to increase protein expression. It had long been presumed that synonymous variants, which, by definition, do not alter the primary amino acid sequence, have no effect on protein structure and function. However, a critical mass of reports suggests that synonymous codon variations may impact protein conformation. To investigate the impact of synonymous codons usage on protein expression and function, we designed an optimized coagulation factor IX (FIX) variant and used multiple methods to compare its properties to the wild-type FIX upon expression in HEK293T cells. We found that the two variants differ in their conformation, even when controlling for the difference in expression levels. Using ribosome profiling, we identified robust changes in the translational kinetics of the two variants and were able to identify a region in the gene that may have a role in altering the conformation of the protein. Our data have direct implications for codon optimization strategies, for production of recombinant proteins and gene therapies.
Collapse
Affiliation(s)
- Aikaterini Alexaki
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Gaya K Hettiarachchi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - John C Athey
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Upendra K Katneni
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vijaya Simhadri
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Nobuko Hamasaki-Katagiri
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Puja Nanavaty
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Brian Lin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Kazuyo Takeda
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Darón Freedberg
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Dougald Monroe
- University of North Carolina at Chapel hill, Chapel hill, NC, USA
| | - Joseph R McGill
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Jacob M Kames
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - David D Holcomb
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ryan C Hunt
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Zuben E Sauna
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - Michael DiCuccio
- National Center of Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Chava Kimchi-Sarfaty
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
175
|
Zeng Z, Bromberg Y. Predicting Functional Effects of Synonymous Variants: A Systematic Review and Perspectives. Front Genet 2019; 10:914. [PMID: 31649718 PMCID: PMC6791167 DOI: 10.3389/fgene.2019.00914] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Recent advances in high-throughput experimentation have put the exploration of genome sequences at the forefront of precision medicine. In an effort to interpret the sequencing data, numerous computational methods have been developed for evaluating the effects of genome variants. Interestingly, despite the fact that every person has as many synonymous (sSNV) as non-synonymous single nucleotide variants, our ability to predict their effects is limited. The paucity of experimentally tested sSNV effects appears to be the limiting factor in development of such methods. Here, we summarize the details and evaluate the performance of nine existing computational methods capable of predicting sSNV effects. We used a set of observed and artificially generated variants to approximate large scale performance expectations of these tools. We note that the distribution of these variants across amino acid and codon types suggests purifying evolutionary selection retaining generated variants out of the observed set; i.e., we expect the generated set to be enriched for deleterious variants. Closer inspection of the relationship between the observed variant frequencies and the associated prediction scores identifies predictor-specific scoring thresholds of reliable effect predictions. Notably, across all predictors, the variants scoring above these thresholds were significantly more often generated than observed. which confirms our assumption that the generated set is enriched for deleterious variants. Finally, we find that while the methods differ in their ability to identify severe sSNV effects, no predictor appears capable of definitively recognizing subtle effects of such variants on a large scale.
Collapse
Affiliation(s)
- Zishuo Zeng
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, United States
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
- Department of Genetics, Rutgers University, Human Genetics Institute, Piscataway, NJ, United States
| |
Collapse
|
176
|
Ghoneim DH, Zhang X, Brule CE, Mathews DH, Grayhack EJ. Conservation of location of several specific inhibitory codon pairs in the Saccharomyces sensu stricto yeasts reveals translational selection. Nucleic Acids Res 2019; 47:1164-1177. [PMID: 30576464 PMCID: PMC6379720 DOI: 10.1093/nar/gky1262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/19/2018] [Accepted: 12/06/2018] [Indexed: 12/30/2022] Open
Abstract
Synonymous codons provide redundancy in the genetic code that influences translation rates in many organisms, in which overall codon use is driven by selection for optimal codons. It is unresolved if or to what extent translational selection drives use of suboptimal codons or codon pairs. In Saccharomyces cerevisiae, 17 specific inhibitory codon pairs, each comprised of adjacent suboptimal codons, inhibit translation efficiency in a manner distinct from their constituent codons, and many are translated slowly in native genes. We show here that selection operates within Saccharomyces sensu stricto yeasts to conserve nine of these codon pairs at defined positions in genes. Conservation of these inhibitory codon pairs is significantly greater than expected, relative to conservation of their constituent codons, with seven pairs more highly conserved than any other synonymous pair. Conservation is strongly correlated with slow translation of the pairs. Conservation of suboptimal codon pairs extends to two related Candida species, fungi that diverged from Saccharomyces ∼270 million years ago, with an enrichment for codons decoded by I•A and U•G wobble in both Candida and Saccharomyces. Thus, conservation of inhibitory codon pairs strongly implies selection for slow translation at particular gene locations, executed by suboptimal codon pairs.
Collapse
Affiliation(s)
- Dalia H Ghoneim
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Xiaoju Zhang
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Christina E Brule
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Elizabeth J Grayhack
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
177
|
Loos MS, Ramakrishnan R, Vranken W, Tsirigotaki A, Tsare EP, Zorzini V, Geyter JD, Yuan B, Tsamardinos I, Klappa M, Schymkowitz J, Rousseau F, Karamanou S, Economou A. Structural Basis of the Subcellular Topology Landscape of Escherichia coli. Front Microbiol 2019; 10:1670. [PMID: 31404336 PMCID: PMC6677119 DOI: 10.3389/fmicb.2019.01670] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/08/2019] [Indexed: 11/21/2022] Open
Abstract
Cellular proteomes are distributed in multiple compartments: on DNA, ribosomes, on and inside membranes, or they become secreted. Structural properties that allow polypeptides to occupy subcellular niches, particularly to after crossing membranes, remain unclear. We compared intrinsic and extrinsic features in cytoplasmic and secreted polypeptides of the Escherichia coli K-12 proteome. Structural features between the cytoplasmome and secretome are sharply distinct, such that a signal peptide-agnostic machine learning tool distinguishes cytoplasmic from secreted proteins with 95.5% success. Cytoplasmic polypeptides are enriched in aliphatic, aromatic, charged and hydrophobic residues, unique folds and higher early folding propensities. Secretory polypeptides are enriched in polar/small amino acids, β folds, have higher backbone dynamics, higher disorder and contact order and are more often intrinsically disordered. These non-random distributions and experimental evidence imply that evolutionary pressure selected enhanced secretome flexibility, slow folding and looser structures, placing the secretome in a distinct protein class. These adaptations protect the secretome from premature folding during its cytoplasmic transit, optimize its lipid bilayer crossing and allowed it to acquire cell envelope specific chemistries. The latter may favor promiscuous multi-ligand binding, sensing of stress and cell envelope structure changes. In conclusion, enhanced flexibility, slow folding, looser structures and unique folds differentiate the secretome from the cytoplasmome. These findings have wide implications on the structural diversity and evolution of modern proteomes and the protein folding problem.
Collapse
Affiliation(s)
- Maria S Loos
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Reshmi Ramakrishnan
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium.,VIB Switch Laboratory, Department for Cellular and Molecular Medicine, VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, Free University of Brussels, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel and Center for Structural Biology, Brussels, Belgium
| | - Alexandra Tsirigotaki
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Evrydiki-Pandora Tsare
- Metabolic Engineering & Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Patras, Greece
| | - Valentina Zorzini
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jozefien De Geyter
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Biao Yuan
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Ioannis Tsamardinos
- Gnosis Data Analysis PC, Heraklion, Greece.,Department of Computer Science, University of Crete, Heraklion, Greece
| | - Maria Klappa
- Metabolic Engineering & Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Patras, Greece
| | - Joost Schymkowitz
- VIB Switch Laboratory, Department for Cellular and Molecular Medicine, VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Switch Laboratory, Department for Cellular and Molecular Medicine, VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium.,Gnosis Data Analysis PC, Heraklion, Greece
| |
Collapse
|
178
|
Polte C, Wedemeyer D, Oliver KE, Wagner J, Bijvelds MJC, Mahoney J, de Jonge HR, Sorscher EJ, Ignatova Z. Assessing cell-specific effects of genetic variations using tRNA microarrays. BMC Genomics 2019; 20:549. [PMID: 31307398 PMCID: PMC6632033 DOI: 10.1186/s12864-019-5864-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background By definition, effect of synonymous single-nucleotide variants (SNVs) on protein folding and function are neutral, as they alter the codon and not the encoded amino acid. Recent examples indicate tissue-specific and transfer RNA (tRNA)-dependent effects of some genetic variations arguing against neutrality of synonymous SNVs for protein biogenesis. Results We performed systematic analysis of tRNA abunandance across in various models used in cystic fibrosis (CF) research and drug development, including Fischer rat thyroid (FRT) cells, patient-derived primary human bronchial epithelia (HBE) from lung biopsies, primary human nasal epithelia (HNE) from nasal curettage, intestinal organoids, and airway progenitor-directed differentiation of human induced pluripotent stem cells (iPSCs). These were compared to an immortalized CF bronchial cell model (CFBE41o−) and two widely used laboratory cell lines, HeLa and HEK293. We discovered that specific synonymous SNVs exhibited differential effects which correlated with variable concentrations of cognate tRNAs. Conclusions Our results highlight ways in which the presence of synonymous SNVs may alter local kinetics of mRNA translation; and thus, impact protein biogenesis and function. This effect is likely to influence results from mechansistic analysis and/or drug screeining efforts, and establishes importance of cereful model system selection based on genetic variation profile. Electronic supplementary material The online version of this article (10.1186/s12864-019-5864-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Polte
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Daniel Wedemeyer
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Kathryn E Oliver
- Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Johannes Wagner
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Marcel J C Bijvelds
- Gastroenterology and Hepatology Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - John Mahoney
- Cystic Fibrosis Foundation CFFT Lab, Lexington, MA, 02421, USA
| | - Hugo R de Jonge
- Gastroenterology and Hepatology Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146, Hamburg, Germany.
| |
Collapse
|
179
|
Pellowe GA, Booth PJ. Structural insight into co-translational membrane protein folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183019. [PMID: 31302079 DOI: 10.1016/j.bbamem.2019.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022]
Abstract
Membrane protein folding studies lag behind those of water-soluble proteins due to immense difficulties of experimental study, resulting from the need to provide a hydrophobic lipid-bilayer environment when investigated in vitro. A sound understanding of folding mechanisms is important for membrane proteins as they contribute to a third of the proteome and are frequently associated with disease when mutated and/or misfolded. Membrane proteins largely consist of α-helical, hydrophobic transmembrane domains, which insert into the membrane, often using the SecYEG/Sec61 translocase system. This mini-review highlights recent advances in techniques that can further our understanding of co-translational folding and notably, the structure and insertion of nascent chains as they emerge from translating ribosomes. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Grant A Pellowe
- Department of Chemistry, King's College London, 7 Trinity Street, SE1 1DB, London, UK
| | - Paula J Booth
- Department of Chemistry, King's College London, 7 Trinity Street, SE1 1DB, London, UK.
| |
Collapse
|
180
|
Waudby CA, Dobson CM, Christodoulou J. Nature and Regulation of Protein Folding on the Ribosome. Trends Biochem Sci 2019; 44:914-926. [PMID: 31301980 PMCID: PMC7471843 DOI: 10.1016/j.tibs.2019.06.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/23/2022]
Abstract
Co-translational protein folding is an essential process by which cells ensure the safe and efficient production and assembly of new proteins in their functional native states following biosynthesis on the ribosome. In this review, we describe recent progress in probing the changes during protein synthesis of the free energy landscapes that underlie co-translational folding and discuss the critical coupling between these landscapes and the rate of translation that ultimately determines the success or otherwise of the folding process. Recent developments have revealed a variety of mechanisms by which both folding and translation can be modulated or regulated, and we discuss how these effects are utilised by the cell to optimise the outcome of protein biosynthesis.
Collapse
Affiliation(s)
- Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| |
Collapse
|
181
|
LaBella AL, Opulente DA, Steenwyk JL, Hittinger CT, Rokas A. Variation and selection on codon usage bias across an entire subphylum. PLoS Genet 2019; 15:e1008304. [PMID: 31365533 PMCID: PMC6701816 DOI: 10.1371/journal.pgen.1008304] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 07/11/2019] [Indexed: 01/04/2023] Open
Abstract
Variation in synonymous codon usage is abundant across multiple levels of organization: between codons of an amino acid, between genes in a genome, and between genomes of different species. It is now well understood that variation in synonymous codon usage is influenced by mutational bias coupled with both natural selection for translational efficiency and genetic drift, but how these processes shape patterns of codon usage bias across entire lineages remains unexplored. To address this question, we used a rich genomic data set of 327 species that covers nearly one third of the known biodiversity of the budding yeast subphylum Saccharomycotina. We found that, while genome-wide relative synonymous codon usage (RSCU) for all codons was highly correlated with the GC content of the third codon position (GC3), the usage of codons for the amino acids proline, arginine, and glycine was inconsistent with the neutral expectation where mutational bias coupled with genetic drift drive codon usage. Examination between genes' effective numbers of codons and their GC3 contents in individual genomes revealed that nearly a quarter of genes (381,174/1,683,203; 23%), as well as most genomes (308/327; 94%), significantly deviate from the neutral expectation. Finally, by evaluating the imprint of translational selection on codon usage, measured as the degree to which genes' adaptiveness to the tRNA pool were correlated with selective pressure, we show that translational selection is widespread in budding yeast genomes (264/327; 81%). These results suggest that the contribution of translational selection and drift to patterns of synonymous codon usage across budding yeasts varies across codons, genes, and genomes; whereas drift is the primary driver of global codon usage across the subphylum, the codon bias of large numbers of genes in the majority of genomes is influenced by translational selection.
Collapse
Affiliation(s)
- Abigail L. LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dana A. Opulente
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Wisconsin, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
182
|
Abstract
Synonymous mutations have been viewed as silent mutations, since they only affect the DNA and mRNA, but not the amino acid sequence of the resulting protein. Nonetheless, recent studies suggest their significant impact on splicing, RNA stability, RNA folding, translation or co-translational protein folding. Hence, we compile 659194 synonymous mutations found in human cancer and characterize their properties. We provide the user-friendly, comprehensive resource for synonymous mutations in cancer, SynMICdb (http://SynMICdb.dkfz.de), which also contains orthogonal information about gene annotation, recurrence, mutation loads, cancer association, conservation, alternative events, impact on mRNA structure and a SynMICdb score. Notably, synonymous and missense mutations are depleted at the 5'-end of the coding sequence as well as at the ends of internal exons independent of mutational signatures. For patient-derived synonymous mutations in the oncogene KRAS, we indicate that single point mutations can have a relevant impact on expression as well as on mRNA secondary structure. Synonymous mutations do not alter amino acid sequence but may exert oncogenic effects in other ways. Here, the authors present a catalogue of synonymous mutations in cancer and characterise their properties.
Collapse
|
183
|
Rozov SM, Deineko EV. Strategies for Optimizing Recombinant Protein Synthesis in Plant Cells: Classical Approaches and New Directions. Mol Biol 2019. [DOI: 10.1134/s0026893319020146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
184
|
Codon and Codon-Pair Usage Tables (CoCoPUTs): Facilitating Genetic Variation Analyses and Recombinant Gene Design. J Mol Biol 2019; 431:2434-2441. [PMID: 31029701 DOI: 10.1016/j.jmb.2019.04.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
Usage of sequential codon-pairs is non-random and unique to each species. Codon-pair bias is related to but clearly distinct from individual codon usage bias. Codon-pair bias is thought to affect translational fidelity and efficiency and is presumed to be under the selective pressure. It was suggested that changes in codon-pair utilization may affect human disease more significantly than changes in single codons. Although recombinant gene technologies often take codon-pair usage bias into account, codon-pair usage data/tables are not readily available, thus potentially impeding research efforts. The present computational resource (https://hive.biochemistry.gwu.edu/review/codon2) systematically addresses this issue. Building on our recent HIVE-Codon Usage Tables, we constructed a new database to include genomic codon-pair and dinucleotide statistics of all organisms with sequenced genome, available in the GenBank. We believe that the growing understanding of the importance of codon-pair usage will make this resource an invaluable tool to many researchers in academia and pharmaceutical industry.
Collapse
|
185
|
"CodonWizard" - An intuitive software tool with graphical user interface for customizable codon optimization in protein expression efforts. Protein Expr Purif 2019; 160:84-93. [PMID: 30953700 DOI: 10.1016/j.pep.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/25/2019] [Accepted: 03/31/2019] [Indexed: 11/22/2022]
Abstract
Optimization of coding sequences to maximize protein expression yield is often outsourced to external service providers during commercial gene synthesis and thus unfortunately remains a black box for many researchers. The presented software program "CodonWizard" offers scientists a powerful but easy-to-use tool for customizable codon optimization: The intuitive graphical user interface empowers even scientists inexperienced in the art to straightforward design, modify, test and save complex codon optimization strategies and to publicly share successful otimization strategies among the scientific community. "Codon Wizard" provides highly flexible features for sequence analysis and completely customizable modification/optimization of codon usage of any given input sequence data (DNA/RNA/peptide) using freely combinable algorithms, allowing for implementation of contemporary, well-established optimization strategies as well as novel, proprietary ones alike. Contrary to comparable tools, "Codon Wizard" thus finally opens up ways for an empirical approach to codon optimization and may also >be used completely offline to protect resulting intellectual property. As a benchmark, the reliability, intuitiveness and utility of the application could be demonstrated by increasing the yield of recombinant TEV-protease expressed in E. coli by several orders of magnitude after codon optimization using "CodonWizard" - Permanently available for download on the web at http://schwalbe.org.chemie.uni-frankfurt.de/node/3324.
Collapse
|
186
|
Wright G, Rodriguez A, Clark PL, Emrich S. A New Look at Codon Usage and Protein Expression. EPIC SERIES IN COMPUTING 2019; 60:104-112. [PMID: 35342824 PMCID: PMC8953497 DOI: 10.29007/d4tz] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
%MinMax, a model of intra-gene translational elongation rate, relies on codon usage frequencies. Historically, %MinMax has used tables that measure codon usage bias for all genes in an organism, such as those found at HIVE-CUT. In this paper, we provide evidence that codon usage bias based on all genes is insufficient to accurately measure absolute translation rate. We show that alternative "High-ϕ" codon usage tables, generated by another model (ROC-SEMPPR), are a promising alternative. By creating a hybrid model, future codon usage analyses and their applications (e.g., codon harmonization) are likely to more accurately measure the "tempo" of translation elongation. We also suggest a High-ϕ alternative to the Codon Adaptation Index (CAI), a classic metric of codon usage bias based on highly expressed genes. Significantly, our new alternative is equally well correlated with empirical data as traditional CAI without using experimentally determined expression counts as input.
Collapse
Affiliation(s)
- Gabriel Wright
- Department of Computer Science, University of Notre Dame
| | - Anabel Rodriguez
- Department of Chemistry & Biochemistry, University of Notre Dame
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame
| | - Scott Emrich
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville
| |
Collapse
|
187
|
Liu K, Maciuba K, Kaiser CM. The Ribosome Cooperates with a Chaperone to Guide Multi-domain Protein Folding. Mol Cell 2019; 74:310-319.e7. [PMID: 30852061 DOI: 10.1016/j.molcel.2019.01.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/12/2018] [Accepted: 01/30/2019] [Indexed: 11/28/2022]
Abstract
Multi-domain proteins, containing several structural units within a single polypeptide, constitute a large fraction of all proteomes. Co-translational folding is assumed to simplify the conformational search problem for large proteins, but the events leading to correctly folded, functional structures remain poorly characterized. Similarly, how the ribosome and molecular chaperones promote efficient folding remains obscure. Using optical tweezers, we have dissected early folding events of nascent elongation factor G, a multi-domain protein that requires chaperones for folding. The ribosome and the chaperone trigger factor reduce inter-domain misfolding, permitting folding of the N-terminal G-domain. Successful completion of this step is a crucial prerequisite for folding of the next domain. Unexpectedly, co-translational folding does not proceed unidirectionally; emerging unfolded polypeptide can denature an already-folded domain. Trigger factor, but not the ribosome, protects against denaturation. The chaperone thus serves a previously unappreciated function, helping multi-domain proteins overcome inherent challenges during co-translational folding.
Collapse
Affiliation(s)
- Kaixian Liu
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kevin Maciuba
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
188
|
Abstract
Ribosomes are biological nanomachine that synthesise all proteins within a cell. It took decades to reveal the architecture of this essential cellular component. To understand the structure -function relationship of this nanomachine needed the utilisisation of different biochemical, biophysical and structural techniques. Structural studies combined with mutagenesis of the different ribosomal complexes comprising various RNAs and proteins enabled us to understand how this machine works inside a cell. Nowadays quite a number of ribosomal structures were published that confirmed biochemical studies on particular steps of protein synthesis by the ribosome . Four major steps were identified: initiation , elongation, termination and recycling. These steps lead us to the important question how the ribosome function can be regulated. Advances in technology for cryo electron microscopy: sample preparations, image recording, developments in algorithms for image analysis and processing significantly helped in revelation of structural details of the ribosome . We now have a library of ribosome structures from prokaryotes to eukaryotes that enable us to understand the complex mechanics of this nanomachine. As this structural library continues to grow, we gradually improve our understanding of this process and how it can be regulated and how the specific ribosomes can be stalled or activated, or completely disabled. This article provides a comprehensive overview of ribosomal structures that represent structural snapshots of the ribosome at its different functional states. Better understanding rises more particular questions that have to be addressed by determination structures of more complexes.Synopsis: Structural biology of the ribosome.
Collapse
Affiliation(s)
- Abid Javed
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
189
|
Lipońska A, Ousalem F, Aalberts DP, Hunt JF, Boël G. The new strategies to overcome challenges in protein production in bacteria. Microb Biotechnol 2019; 12:44-47. [PMID: 30484965 PMCID: PMC6302713 DOI: 10.1111/1751-7915.13338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Recombinant proteins are essential for biotechnology. Here we review some of the key points for improving the production of heterologous proteins, and what can be the future of the field.
Collapse
Affiliation(s)
- Anna Lipońska
- Institut de Biologie Physico‐ChimiqueSorbonne Paris CitéUMR 8261 CNRS‐University Paris Diderot13 rue Pierre et Marie Curie75005ParisFrance
| | - Farès Ousalem
- Institut de Biologie Physico‐ChimiqueSorbonne Paris CitéUMR 8261 CNRS‐University Paris Diderot13 rue Pierre et Marie Curie75005ParisFrance
| | | | - John F. Hunt
- Department of Biological SciencesColumbia UniversityNew YorkNY10027USA
| | - Grégory Boël
- Institut de Biologie Physico‐ChimiqueSorbonne Paris CitéUMR 8261 CNRS‐University Paris Diderot13 rue Pierre et Marie Curie75005ParisFrance
| |
Collapse
|
190
|
Stein KC, Frydman J. The stop-and-go traffic regulating protein biogenesis: How translation kinetics controls proteostasis. J Biol Chem 2018; 294:2076-2084. [PMID: 30504455 DOI: 10.1074/jbc.rev118.002814] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Generating a functional proteome requires the ribosome to carefully regulate disparate co-translational processes that determine the fate of nascent polypeptides. With protein synthesis being energetically expensive, the ribosome must balance the costs of efficiently making a protein with those of properly folding it. Emerging as a primary means of regulating this trade-off is the nonuniform rate of translation elongation that defines translation kinetics. The varying speeds with which the ribosome progresses along a transcript have been implicated in several aspects of protein biogenesis, including co-translational protein folding and translational fidelity, as well as gene expression by mediating mRNA decay and protein quality control pathways. The optimal translation kinetics required to efficiently execute these processes can be distinct. Thus, the ribosome is tasked with tightly regulating translation kinetics to balance these processes while maintaining adaptability for changing cellular conditions. In this review, we first discuss the regulatory role of translation elongation in protein biogenesis and what factors influence elongation kinetics. We then describe how changes in translation kinetics signal downstream pathways that dictate the fate of nascent polypeptides. By regulating these pathways, the kinetics of translation elongation has emerged as a critical tool for driving gene expression and maintaining proteostasis through varied mechanisms, including nascent chain folding and binding different ribosome-associated machinery. Indeed, a growing number of examples demonstrate the important role of local changes in elongation kinetics in modulating the pathophysiology of human disease.
Collapse
Affiliation(s)
| | - Judith Frydman
- From the Departments of Biology and .,Genetics, Stanford University, Stanford, California 94305
| |
Collapse
|
191
|
Ahmad F, Kannan M, Obser T, Budde U, Schneppenheim S, Saxena R, Schneppenheim R. Characterization ofVWFgene conversions causing von Willebrand disease. Br J Haematol 2018; 184:817-825. [DOI: 10.1111/bjh.15709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/05/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Firdos Ahmad
- Sharjah Institute for Medical Research and, College of Medicine; University of Sharjah; Sharjah UAE
| | - Meganathan Kannan
- Division of Blood and Vascular Biology; Department of Life Sciences; School of Basic and Applied Sciences; Central University of Tamilnadu; Thiruvarur India
| | - Tobias Obser
- Department of Pediatric Haematology and Oncology; University Medical Centre; Eppendorf Hamburg Germany
| | - Ulrich Budde
- Medilys Laboratory Coagulation; Asklepios Hospital Altona; Hamburg Germany
| | | | - Renu Saxena
- Department of Haematology; All India Institute of Medical Sciences; New Delhi India
| | - Reinhard Schneppenheim
- Department of Pediatric Haematology and Oncology; University Medical Centre; Eppendorf Hamburg Germany
| |
Collapse
|
192
|
Mandad S, Rahman RU, Centeno TP, Vidal RO, Wildhagen H, Rammner B, Keihani S, Opazo F, Urban I, Ischebeck T, Kirli K, Benito E, Fischer A, Yousefi RY, Dennerlein S, Rehling P, Feussner I, Urlaub H, Bonn S, Rizzoli SO, Fornasiero EF. The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain. Sci Rep 2018; 8:16913. [PMID: 30443017 PMCID: PMC6237891 DOI: 10.1038/s41598-018-35277-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
The homeostasis of the proteome depends on the tight regulation of the mRNA and protein abundances, of the translation rates, and of the protein lifetimes. Results from several studies on prokaryotes or eukaryotic cell cultures have suggested that protein homeostasis is connected to, and perhaps regulated by, the protein and the codon sequences. However, this has been little investigated for mammals in vivo. Moreover, the link between the coding sequences and one critical parameter, the protein lifetime, has remained largely unexplored, both in vivo and in vitro. We tested this in the mouse brain, and found that the percentages of amino acids and codons in the sequences could predict all of the homeostasis parameters with a precision approaching experimental measurements. A key predictive element was the wobble nucleotide. G-/C-ending codons correlated with higher protein lifetimes, protein abundances, mRNA abundances and translation rates than A-/U-ending codons. Modifying the proportions of G-/C-ending codons could tune these parameters in cell cultures, in a proof-of-principle experiment. We suggest that the coding sequences are strongly linked to protein homeostasis in vivo, albeit it still remains to be determined whether this relation is causal in nature.
Collapse
Affiliation(s)
- Sunit Mandad
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute of Biophysical Chemistry, 37077, Göttingen, Germany
| | - Raza-Ur Rahman
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Tonatiuh Pena Centeno
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Ramon O Vidal
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Hanna Wildhagen
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Burkhard Rammner
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Sarva Keihani
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Inga Urban
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37073, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University, 37073, Göttingen, Germany
| | - Koray Kirli
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, 37073, Göttingen, Germany
| | - Eva Benito
- Laboratory of Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - André Fischer
- Laboratory of Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Roya Y Yousefi
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
- Max Planck Institute for Biophysical Chemistry, 37073, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University, 37073, Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute of Biophysical Chemistry, 37077, Göttingen, Germany
| | - Stefan Bonn
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany.
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany.
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075, Göttingen, Germany.
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany.
| |
Collapse
|
193
|
Kaiser CM, Liu K. Folding up and Moving on-Nascent Protein Folding on the Ribosome. J Mol Biol 2018; 430:4580-4591. [PMID: 29981746 PMCID: PMC6384192 DOI: 10.1016/j.jmb.2018.06.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023]
Abstract
All cellular proteins are synthesized by the ribosome, an intricate molecular machine that translates the information of protein coding genes into the amino acid alphabet. The linear polypeptides synthesized by the ribosome must generally fold into specific three-dimensional structures to become biologically active. Folding has long been recognized to begin before synthesis is complete. Recently, biochemical and biophysical studies have shed light onto how the ribosome shapes the folding pathways of nascent proteins. Here, we discuss recent progress that is beginning to define the role of the ribosome in the folding of newly synthesized polypeptides.
Collapse
Affiliation(s)
- Christian M Kaiser
- Department of Biology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA; Department of Biophysics, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | - Kaixian Liu
- Department of Biology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA; CMDB Graduate Program, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
194
|
Investigating the Effect of Chain Connectivity on the Folding of a Beta-Sheet Protein On and Off the Ribosome. J Mol Biol 2018; 430:5207-5216. [PMID: 30365950 PMCID: PMC6288478 DOI: 10.1016/j.jmb.2018.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/11/2018] [Accepted: 10/16/2018] [Indexed: 11/21/2022]
Abstract
Determining the relationship between protein folding pathways on and off the ribosome remains an important area of investigation in biology. Studies on isolated domains have shown that alteration of the separation of residues in a polypeptide chain, while maintaining their spatial contacts, may affect protein stability and folding pathway. Due to the vectorial emergence of the polypeptide chain from the ribosome, chain connectivity may have an important influence upon cotranslational folding. Using MATH, an all β-sandwich domain, we investigate whether the connectivity of residues and secondary structure elements is a key determinant of when cotranslational folding can occur on the ribosome. From Φ-value analysis, we show that the most structured region of the transition state for folding in MATH includes the N and C terminal strands, which are located adjacent to each other in the structure. However, arrest peptide force-profile assays show that wild-type MATH is able to fold cotranslationally, while some C-terminal residues remain sequestered in the ribosome, even when destabilized by 2–3 kcal mol−1. We show that, while this pattern of Φ-values is retained in two circular permutants in our studies of the isolated domains, one of these permutants can fold only when fully emerged from the ribosome. We propose that in the case of MATH, onset of cotranslational folding is determined by the ability to form a sufficiently stable folding nucleus involving both β-sheets, rather than by the location of the terminal strands in the ribosome tunnel. Adjacent N and C terminal strands are most structured region in the transition state. Two circular permutants retain the same folding pathway as wild-type MATH. On the ribosome, early emergence of terminal strands does not promote earlier folding. Formation of both β-sheets is energetically critical for folding on the ribosome. Folding pathway minimizes formation of partly structured states prone to mis-folding.
Collapse
|
195
|
Fu J, Dang Y, Counter C, Liu Y. Codon usage regulates human KRAS expression at both transcriptional and translational levels. J Biol Chem 2018; 293:17929-17940. [PMID: 30275015 DOI: 10.1074/jbc.ra118.004908] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
KRAS and HRAS are highly homologous oncogenic Ras GTPase family members that are mutated in a wide spectrum of human cancers. Despite having high amino acid identity, KRAS and HRAS have very different codon usage biases: the HRAS gene contains many common codons, and KRAS is enriched for rare codons. Rare codons in KRAS suppress its protein expression, which has been shown to affect both normal and cancer biology in mammals. Here, using HRAS or KRAS expression in different human cell lines and in vitro transcription and translation assays, we show that KRAS rare codons inhibit both translation efficiency and transcription and that the contribution of these two processes varies among different cell lines. We observed that codon usage regulates mRNA translation efficiency such that WT KRAS mRNA is poorly translated. On the other hand, common codons increased transcriptional rates by promoting activating histone modifications and recruitment of transcriptional coactivators. Finally, we found that codon usage also influences KRAS protein conformation, likely because of its effect on co-translational protein folding. Together, our results reveal that codon usage has multidimensional effects on protein expression, ranging from effects on transcription to protein folding in human cells.
Collapse
Affiliation(s)
- Jingjing Fu
- From the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Christopher Counter
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, North Carolina 27708
| | - Yi Liu
- From the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235.
| |
Collapse
|
196
|
Fukuda R, Okiyoneda T. Peripheral Protein Quality Control as a Novel Drug Target for CFTR Stabilizer. Front Pharmacol 2018; 9:1100. [PMID: 30319426 PMCID: PMC6170605 DOI: 10.3389/fphar.2018.01100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Conformationally defective cystic fibrosis transmembrane conductance regulator (CFTR) including rescued ΔF508-CFTR is rapidly eliminated from the plasma membrane (PM) even in the presence of a CFTR corrector and potentiator, limiting the therapeutic effort of the combination therapy. CFTR elimination from the PM is determined by the conformation-dependent ubiquitination as a part of the peripheral quality control (PQC) mechanism. Recently, the molecular machineries responsible for the CFTR PQC mechanism which includes molecular chaperones and ubiquitination enzymes have been revealed. This review summarizes the molecular mechanism of the CFTR PQC and discusses the possibility that the peripheral ubiquitination mechanism becomes a novel drug target to develop the CFTR stabilizer as a novel class of CFTR modulator.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Nishinomiya, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Nishinomiya, Japan
| |
Collapse
|
197
|
Abstract
This review summarizes our current understanding of translation in prokaryotes, focusing on the mechanistic and structural aspects of each phase of translation: initiation, elongation, termination, and ribosome recycling. The assembly of the initiation complex provides multiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon-anticodon interaction during the decoding phase of elongation results in major conformational changes of the small ribosomal subunit and shapes the reaction pathway of guanosine triphosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond formation, but requires the help of elongation factor P (EF-P) when two or more consecutive Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA) and mRNA movements during translocation helps to place the available structures of translocation intermediates onto the time axis of the reaction pathway. The nascent protein begins to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribosome. When a stop codon is reached at the end of the coding sequence, the ribosome, assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby releasing the nascent protein. Following termination, the ribosome is dissociated into subunits and recycled into another round of initiation. At each step of translation, the ribosome undergoes dynamic fluctuations between different conformation states. The aim of this article is to show the link between ribosome structure, dynamics, and function.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| |
Collapse
|
198
|
Effect of rare codons in C-terminal of green fluorescent protein on protein production in Escherichia coli. Protein Expr Purif 2018; 149:23-30. [DOI: 10.1016/j.pep.2018.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
|
199
|
Kristofich J, Morgenthaler AB, Kinney WR, Ebmeier CC, Snyder DJ, Old WM, Cooper VS, Copley SD. Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. PLoS Genet 2018; 14:e1007615. [PMID: 30148850 PMCID: PMC6128649 DOI: 10.1371/journal.pgen.1007615] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/07/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023] Open
Abstract
Synonymous mutations do not alter the specified amino acid but may alter the structure or function of an mRNA in ways that impact fitness. There are few examples in the literature, however, in which the effects of synonymous mutations on microbial growth rates have been measured, and even fewer for which the underlying mechanism is understood. We evolved four populations of a strain of Salmonella enterica in which a promiscuous enzyme has been recruited to replace an essential enzyme. A previously identified point mutation increases the enzyme’s ability to catalyze the newly needed reaction (required for arginine biosynthesis) but decreases its ability to catalyze its native reaction (required for proline biosynthesis). The poor performance of this enzyme limits growth rate on glucose. After 260 generations, we identified two synonymous mutations in the first six codons of the gene encoding the weak-link enzyme that increase growth rate by 41 and 67%. We introduced all possible synonymous mutations into the first six codons and found substantial effects on growth rate; one doubles growth rate, and another completely abolishes growth. Computational analyses suggest that these mutations affect either the stability of a stem-loop structure that sequesters the start codon or the accessibility of the region between the Shine-Dalgarno sequence and the start codon. Thus, these mutations would be predicted to affect translational efficiency and thereby indirectly affect mRNA stability because translating ribosomes protect mRNA from degradation. Experimental data support these hypotheses. We conclude that the effects of the synonymous mutations are due to a combination of effects on mRNA stability and translation efficiency that alter levels of the weak-link enzyme. These findings suggest that synonymous mutations can have profound effects on fitness under strong selection and that their importance in evolution may be under-appreciated. When a new enzyme is needed, microbes often recruit a pre-existing enzyme with a promiscuous activity corresponding to the newly needed activity. Such enzymes are often the “weak-link” in metabolism because they have not evolved to efficiently catalyze the new reaction. Under these circumstances, increasing the level of the weak-link enzyme can improve fitness. We evolved a strain of S. enterica in which a weak-link enzyme–E383A ProA–serves essential functions in synthesis of proline and arginine for 260 generations and then sequenced the genomes of several evolved strains. A mutation in the promoter of the operon encoding E383A ProA increased growth rate 9-fold. More surprisingly, a mutation upstream of the start codon and two synonymous mutations within the first six codons also increased growth rate by up to 68%. Introduction of all possible synonymous mutations in the first six codons showed that some doubled growth rate, while others slowed or even prevented growth. Computational and experimental data suggest that these effects were due to enhanced translational efficiency of the weak-link enzyme. These results show that synonymous mutations, once assumed to be selectively neutral, can have strong impacts on fitness when growth rate is limited by a weak-link enzyme.
Collapse
Affiliation(s)
- JohnCarlo Kristofich
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Andrew B. Morgenthaler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Wallis R. Kinney
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Christopher C. Ebmeier
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Daniel J. Snyder
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - William M. Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Vaughn S. Cooper
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
- * E-mail:
| |
Collapse
|
200
|
Tajima K, Katoh T, Suga H. Genetic code expansion via integration of redundant amino acid assignment by finely tuning tRNA pools. Curr Opin Chem Biol 2018; 46:212-218. [PMID: 30072241 DOI: 10.1016/j.cbpa.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/23/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
In all translation systems, the genetic code assigns codons to amino acids as building blocks of polypeptides, defining their chemical, structural and physiological properties. The canonical genetic code, however, utilizes only 20 proteinogenic amino acids redundantly encoded in 61 codons. In order to expand the building block repertoire, this redundancy was reduced by tuning composition of the transfer RNA (tRNA) mixture in vitro. Depletion of particular tRNAs from the total tRNA mixture or its reconstitution with in vitro-transcribed tRNASNNs (S = C or G, N = U, C, A or G) divided a codon box to encode two amino acids, expanding the repertoire to 23. The expanded genetic codes may benefit analysis of cellular regulatory pathways and drug screening.
Collapse
Affiliation(s)
- Kenya Tajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|