151
|
Abstract
Mitochondria undergo continuous challenges in the course of their life, from their generation to their degradation. These challenges include the management of reactive oxygen species, the proper assembly of mitochondrial respiratory complexes and the need to balance potential mutations in the mitochondrial DNA. The detection of damage and the ability to keep it under control is critical to fine-tune mitochondrial function to the organismal energy needs. In this review, we will analyze the multiple mechanisms that safeguard mitochondrial function in light of in crescendo damage. This sequence of events will include initial defense against excessive reactive oxygen species production, compensation mechanisms by the unfolded protein response (UPRmt), mitochondrial dynamics and elimination by mitophagy.
Collapse
Affiliation(s)
- Miriam Valera-Alberni
- Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne.,School of Life Sciences, EPFL, 1015 Lausanne
| | - Carles Canto
- Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne.,School of Life Sciences, EPFL, 1015 Lausanne
| |
Collapse
|
152
|
Briston T, Stephen JM, Thomas LW, Esposito C, Chung YL, Syafruddin SE, Turmaine M, Maddalena LA, Greef B, Szabadkai G, Maxwell PH, Vanharanta S, Ashcroft M. VHL-Mediated Regulation of CHCHD4 and Mitochondrial Function. Front Oncol 2018; 8:388. [PMID: 30338240 PMCID: PMC6180203 DOI: 10.3389/fonc.2018.00388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/29/2018] [Indexed: 12/30/2022] Open
Abstract
Dysregulated mitochondrial function is associated with the pathology of a wide range of diseases including renal disease and cancer. Thus, investigating regulators of mitochondrial function is of particular interest. Previous work has shown that the von Hippel-Lindau tumor suppressor protein (pVHL) regulates mitochondrial biogenesis and respiratory chain function. pVHL is best known as an E3-ubiquitin ligase for the α-subunit of the hypoxia inducible factor (HIF) family of dimeric transcription factors. In normoxia, pVHL recognizes and binds hydroxylated HIF-α (HIF-1α and HIF-2α), targeting it for ubiquitination and proteasomal degradation. In this way, HIF transcriptional activity is tightly controlled at the level of HIF-α protein stability. At least 80% of clear cell renal carcinomas exhibit inactivation of the VHL gene, which leads to HIF-α protein stabilization and constitutive HIF activation. Constitutive HIF activation in renal carcinoma drives tumor progression and metastasis. Reconstitution of wild-type VHL protein (pVHL) in pVHL-defective renal carcinoma cells not only suppresses HIF activation and tumor growth, but also enhances mitochondrial respiratory chain function via mechanisms that are not fully elucidated. Here, we show that pVHL regulates mitochondrial function when re-expressed in pVHL-defective 786O and RCC10 renal carcinoma cells distinct from its regulation of HIF-α. Expression of CHCHD4, a key component of the disulphide relay system (DRS) involved in mitochondrial protein import within the intermembrane space (IMS) was elevated by pVHL re-expression alongside enhanced expression of respiratory chain subunits of complex I (NDUFB10) and complex IV (mtCO-2 and COX IV). These changes correlated with increased oxygen consumption rate (OCR) and dynamic changes in glucose and glutamine metabolism. Knockdown of HIF-2α also led to increased OCR, and elevated expression of CHCHD4, NDUFB10, and COXIV in 786O cells. Expression of pVHL mutant proteins (R200W, N78S, D126N, and S183L) that constitutively stabilize HIF-α but differentially promote glycolytic metabolism, were also found to differentially promote the pVHL-mediated mitochondrial phenotype. Parallel changes in mitochondrial morphology and the mitochondrial network were observed. Our study reveals a new role for pVHL in regulating CHCHD4 and mitochondrial function in renal carcinoma cells.
Collapse
Affiliation(s)
- Thomas Briston
- Division of Medicine, Centre for Cell Signalling and Molecular Genetics, University College London, London, United Kingdom
| | - Jenna M. Stephen
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Cinzia Esposito
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Institute of Cancer Research London, London, United Kingdom
| | - Saiful E. Syafruddin
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Mark Turmaine
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Lucas A. Maddalena
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Basma Greef
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gyorgy Szabadkai
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Patrick H. Maxwell
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Sakari Vanharanta
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
153
|
Wang JZ, Dehesh K. ER: the Silk Road of interorganellar communication. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:171-177. [PMID: 30149191 PMCID: PMC6240488 DOI: 10.1016/j.pbi.2018.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 05/05/2023]
Abstract
Cellular adaptive responses arise from an array of spatially and temporally distinct biochemical interactions that modulate biological processes and reorganize subcellular structures tailored to the nature of stimulus. As such, cells have evolved elegantly and tightly regulated mechanisms to enable interorganellar communication in part through the dynamic readjustment of physical distance enabling the tethering between two closely apposed membranous organelles and thus formation of Membrane Contact Sites (MCSs). MCSs are dynamic and ubiquitous interorganellar structures that serve as regulatory interfaces to facilitate transmission of signals and to integrate synthesis of metabolic pathways such as lipids required for upholding cellular homeostasis in response to environmental and developmental inputs. Endoplasmic reticulum (ER) is the most copious endomembrane system that extend throughout the cell, and functions in production, processing, and transport of proteins and lipids, as well as in intracellular signaling. Reminiscent of the ancient Silk Road, ER connection to other membranous organelles via MCSs alters cellular landscape and serves as nexus for coordinating exchange of metabolites such as lipids, ions such as Ca2+, and other small molecules involved in maintaining cellular integrity under prevailing conditions. Delineating the molecular organization of the tethering complexes, molecular action of exchanged molecules and hence the nature of information transmitted will afford insight into underlying basis of interorganellar communication and shed light on the evolutionarily conserved function of ER as the ancient trans-kingdom Silk Road trafficking vital metabolites via the non-vesicular pathway.
Collapse
Affiliation(s)
- Jin-Zheng Wang
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA 92506, USA.
| |
Collapse
|
154
|
Kim KH, Son JM, Benayoun BA, Lee C. The Mitochondrial-Encoded Peptide MOTS-c Translocates to the Nucleus to Regulate Nuclear Gene Expression in Response to Metabolic Stress. Cell Metab 2018; 28:516-524.e7. [PMID: 29983246 PMCID: PMC6185997 DOI: 10.1016/j.cmet.2018.06.008] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/07/2018] [Accepted: 06/13/2018] [Indexed: 01/09/2023]
Abstract
Cellular homeostasis is coordinated through communication between mitochondria and the nucleus, organelles that each possess their own genomes. Whereas the mitochondrial genome is regulated by factors encoded in the nucleus, the nuclear genome is currently not known to be actively controlled by factors encoded in the mitochondrial DNA. Here, we show that MOTS-c, a peptide encoded in the mitochondrial genome, translocates to the nucleus and regulates nuclear gene expression following metabolic stress in a 5'-adenosine monophosphate-activated protein kinase (AMPK)-dependent manner. In the nucleus, MOTS-c regulated a broad range of genes in response to glucose restriction, including those with antioxidant response elements (ARE), and interacted with ARE-regulating stress-responsive transcription factors, such as nuclear factor erythroid 2-related factor 2 (NFE2L2/NRF2). Our findings indicate that the mitochondrial and nuclear genomes co-evolved to independently encode for factors to cross-regulate each other, suggesting that mitonuclear communication is genetically integrated.
Collapse
Affiliation(s)
- Kyung Hwa Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA; USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
155
|
The Sec1/Munc18 (SM) protein Vps45 is involved in iron uptake, mitochondrial function and virulence in the pathogenic fungus Cryptococcus neoformans. PLoS Pathog 2018; 14:e1007220. [PMID: 30071112 PMCID: PMC6091972 DOI: 10.1371/journal.ppat.1007220] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/14/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The battle for iron between invading microorganisms and mammalian hosts is a pivotal determinant of the outcome of infection. The pathogenic fungus, Cryptococcus neoformans, employs multiple mechanisms to compete for iron during cryptococcosis, a disease primarily of immunocompromised hosts. In this study, we examined the role of endocytic trafficking in iron uptake by characterizing a mutant defective in the Sec1/Munc18 (SM) protein Vps45. This protein is known to regulate the machinery for vesicle trafficking and fusion via interactions with SNARE proteins. As expected, a vps45 deletion mutant was impaired in endocytosis and showed sensitivity to trafficking inhibitors. The mutant also showed poor growth on iron-limited media and a defect in transporting the Cfo1 ferroxidase of the high-affinity iron uptake system from the plasma membrane to the vacuole. Remarkably, we made the novel observation that Vps45 also contributes to mitochondrial function in that a Vps45-Gfp fusion protein associated with mitotracker, and a vps45 mutant showed enhanced sensitivity to inhibitors of electron transport complexes as well as changes in mitochondrial membrane potential. Consistent with mitochondrial function, the vps45 mutant was impaired in calcium homeostasis. To assess the relevance of these defects for virulence, we examined cell surface properties of the vps45 mutant and found increased sensitivity to agents that challenge cell wall integrity and to antifungal drugs. A change in cell wall properties was consistent with our observation of altered capsule polysaccharide attachment, and with attenuated virulence in a mouse model of cryptococcosis. Overall, our studies reveal a novel role for Vps45-mediated trafficking for iron uptake, mitochondrial function and virulence. Cryptococcus neoformans is a causative agent of cryptococcal meningitis, a disease that is estimated to cause ~ 15% of AIDS-related deaths. In this context, cryptococosis is one of the most common causes of mortality in people with HIV/AIDS, closely behind tuberculosis. Unfortunately, very few antifungal drugs are available to treat this disease. However, understanding mechanisms involved in the pathogenesis of C. neoformans can lead to new therapeutic avenues. In this study, we discovered a new role for a regulatory protein involved in vesicle transport. Specifically, we found that the Vps45 protein, which regulates vesicle fusion, participates in the trafficking of iron into fungal cells, supports mitochondria function, mediates antifungal resistance and is required for virulence. These discoveries shed light on the molecular mechanisms underlying the uptake and use of iron as an essential nutrient for the virulence of C. neoformans. Further investigations could lead to the development of drugs that target Vps45-mediated processes.
Collapse
|
156
|
Bean BDM, Dziurdzik SK, Kolehmainen KL, Fowler CMS, Kwong WK, Grad LI, Davey M, Schluter C, Conibear E. Competitive organelle-specific adaptors recruit Vps13 to membrane contact sites. J Cell Biol 2018; 217:3593-3607. [PMID: 30018089 PMCID: PMC6168272 DOI: 10.1083/jcb.201804111] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 01/24/2023] Open
Abstract
Targeting of Vps13 to membranes is highly dynamic. Bean et al. identify Ypt35 and Mcp1 as adaptors for Vps13 at endosomes and mitochondria, respectively, and show all known Vps13 adaptors use a related motif to compete for Vps13 membrane recruitment. The regulated expansion of membrane contact sites, which mediate the nonvesicular exchange of lipids between organelles, requires the recruitment of additional contact site proteins. Yeast Vps13 dynamically localizes to membrane contacts that connect the ER, mitochondria, endosomes, and vacuoles and is recruited to the prospore membrane in meiosis, but its targeting mechanism is unclear. In this study, we identify the sorting nexin Ypt35 as a novel adaptor that recruits Vps13 to endosomal and vacuolar membranes. We characterize an interaction motif in the Ypt35 N terminus and identify related motifs in the prospore membrane adaptor Spo71 and the mitochondrial membrane protein Mcp1. We find that Mcp1 is a mitochondrial adaptor for Vps13, and the Vps13–Mcp1 interaction, but not Ypt35, is required when ER-mitochondria contacts are lost. All three adaptors compete for binding to a conserved six-repeat region of Vps13 implicated in human disease. Our results support a competition-based model for regulating Vps13 localization at cellular membranes.
Collapse
Affiliation(s)
- Björn D M Bean
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Samantha K Dziurdzik
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Kathleen L Kolehmainen
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Claire M S Fowler
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Waldan K Kwong
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Leslie I Grad
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Cayetana Schluter
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
157
|
A Current Overview of the Biological and Cellular Effects of Nanosilver. Int J Mol Sci 2018; 19:ijms19072030. [PMID: 30002330 PMCID: PMC6073671 DOI: 10.3390/ijms19072030] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Nanosilver plays an important role in nanoscience and nanotechnology, and is becoming increasingly used for applications in nanomedicine. Nanosilver ranges from 1 to 100 nanometers in diameter. Smaller particles more readily enter cells and interact with the cellular components. The exposure dose, particle size, coating, and aggregation state of the nanosilver, as well as the cell type or organism on which it is tested, are all large determining factors on the effect and potential toxicity of nanosilver. A high exposure dose to nanosilver alters the cellular stress responses and initiates cascades of signalling that can eventually trigger organelle autophagy and apoptosis. This review summarizes the current knowledge of the effects of nanosilver on cellular metabolic function and response to stress. Both the causative effects of nanosilver on oxidative stress, endoplasmic reticulum stress, and hypoxic stress—as well as the effects of nanosilver on the responses to such stresses—are outlined. The interactions and effects of nanosilver on cellular uptake, oxidative stress (reactive oxygen species), inflammation, hypoxic response, mitochondrial function, endoplasmic reticulum (ER) function and the unfolded protein response, autophagy and apoptosis, angiogenesis, epigenetics, genotoxicity, and cancer development and tumorigenesis—as well as other pathway alterations—are examined in this review.
Collapse
|
158
|
Mitochondrial junctions with cellular organelles: Ca 2+ signalling perspective. Pflugers Arch 2018; 470:1181-1192. [PMID: 29982949 PMCID: PMC6060751 DOI: 10.1007/s00424-018-2179-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 01/21/2023]
Abstract
Cellular organelles form multiple junctional complexes with one another and the emerging research area dealing with such structures and their functions is undergoing explosive growth. A new research journal named “Contact” has been recently established to facilitate the development of this research field. The current consensus is to define an organellar junction by the maximal distance between the participating organelles; and the gap of 30 nm or less is considered appropriate for classifying such structures as junctions or membrane contact sites. Ideally, the organellar junction should have a functional significance, i.e. facilitate transfer of calcium, sterols, phospholipids, iron and possibly other substances between the organelles (Carrasco and Meyer in Annu Rev Biochem 80:973–1000, 2011; Csordas et al. in Trends Cell Biol 28:523–540, 2018; Phillips and Voeltz in Nat Rev Mol Cell Biol 17:69–82, 2016; Prinz in J Cell Biol 205:759–769, 2014). It is also important to note that the junction is not just a result of a random organelle collision but have active and specific formation, stabilisation and disassembly mechanisms. The nature of these mechanisms and their role in physiology/pathophysiology are the main focus of an emerging research field. In this review, we will briefly describe junctional complexes formed by cellular organelles and then focus on the junctional complexes that are formed by mitochondria with other organelles and the role of these complexes in regulating Ca2+ signalling.
Collapse
|
159
|
González Montoro A, Auffarth K, Hönscher C, Bohnert M, Becker T, Warscheid B, Reggiori F, van der Laan M, Fröhlich F, Ungermann C. Vps39 Interacts with Tom40 to Establish One of Two Functionally Distinct Vacuole-Mitochondria Contact Sites. Dev Cell 2018; 45:621-636.e7. [PMID: 29870720 DOI: 10.1016/j.devcel.2018.05.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/13/2018] [Accepted: 05/06/2018] [Indexed: 11/29/2022]
Abstract
The extensive subcellular network of membrane contact sites plays central roles in organelle biogenesis and communication, yet the precise contributions of the involved machineries remain largely enigmatic. The yeast vacuole forms a membrane contact site with mitochondria, called vacuolar and mitochondrial patch (vCLAMP). Formation of vCLAMPs involves the vacuolar Rab GTPase Ypt7 and the Ypt7-interacting Vps39 subunit of the HOPS tethering complex. Here, we uncover the general preprotein translocase of the outer membrane (TOM) subunit Tom40 as the direct binding partner of Vps39 on mitochondria. We identify Vps39 mutants defective in TOM binding, but functional for HOPS. Cells that cannot form vCLAMPs show reduced growth under stress conditions and impaired survival upon starvation. Unexpectedly, our mutant analysis revealed the existence of two functionally independent vacuole-mitochondria MCSs: one formed by the Ypt7-Vps39-Tom40 tether and a second one by Vps13-Mcp1, which is redundant with ER-mitochondrial contacts formed by ERMES.
Collapse
Affiliation(s)
- Ayelén González Montoro
- Department of Biology/Chemistry, Biochemistry Section University of Osnabrück, Barbarastrasse 13, Osnabrück 49076, Germany.
| | - Kathrin Auffarth
- Department of Biology/Chemistry, Biochemistry Section University of Osnabrück, Barbarastrasse 13, Osnabrück 49076, Germany
| | - Carina Hönscher
- Department of Biology/Chemistry, Biochemistry Section University of Osnabrück, Barbarastrasse 13, Osnabrück 49076, Germany
| | - Maria Bohnert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany; Institute of Biology II, Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Martin van der Laan
- Department of Medical Biochemistry & Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, Homburg 66421, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Molecular Membrane Biology Section, University of Osnabrück, Barbarastrasse 13, Osnabrück 49076, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section University of Osnabrück, Barbarastrasse 13, Osnabrück 49076, Germany.
| |
Collapse
|
160
|
Moore AS, Holzbaur ELF. Mitochondrial-cytoskeletal interactions: dynamic associations that facilitate network function and remodeling. CURRENT OPINION IN PHYSIOLOGY 2018; 3:94-100. [PMID: 30555978 PMCID: PMC6289269 DOI: 10.1016/j.cophys.2018.03.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mitochondria are dynamic organelles that can form complex networks in the cell. These networks can be rapidly remodeled in response to environmental changes or to support cellular needs. Mitochondrial dynamics are dependent on interactions with the cellular cytoskeleton - both microtubules and actin filaments. Mitochondrial-cytoskeletal interactions have a well-established role in mitochondrial motility. Recent progress indicates that these interactions also regulate the balance of mitochondrial fission/fusion, as well as mitochondria turnover and mitochondrial inheritance during cell division. We review these advances, and how this work has deepened our understanding of mitochondrial dynamics in the cell.
Collapse
Affiliation(s)
- Andrew S Moore
- Department of Physiology, University of Pennsylvania Perelman School of Medicine 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104-6085
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine 638A Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104-6085
| |
Collapse
|
161
|
Diogo CV, Yambire KF, Fernández Mosquera L, Branco F T, Raimundo N. Mitochondrial adventures at the organelle society. Biochem Biophys Res Commun 2018; 500:87-93. [PMID: 28456629 PMCID: PMC5930832 DOI: 10.1016/j.bbrc.2017.04.124] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 01/16/2023]
Abstract
Mitochondria are constantly communicating with the rest of the cell. Defects in mitochondria underlie severe pathologies, whose mechanisms remain poorly understood. It is becoming increasingly evident that mitochondrial malfunction resonates in other organelles, perturbing their function and their biogenesis. In this manuscript, we review the current knowledge on the cross-talk between mitochondria and other organelles, particularly lysosomes, peroxisomes and the endoplasmic reticulum. Several organelle interactions are mediated by transcriptional programs, and other signaling mechanisms are likely mediating organelle dysfunction downstream of mitochondrial impairments. Many of these organelle crosstalk pathways are likely to have a role in pathological processes.
Collapse
Affiliation(s)
- Cátia V Diogo
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany
| | - King Faisal Yambire
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany; International Max-Planck Research School in Neuroscience, Göttingen, Germany
| | - Lorena Fernández Mosquera
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany
| | - Tiago Branco F
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany
| | - Nuno Raimundo
- Universitätsmedizin Göttingen, Institute fur Zellbiochemie, Humboldtallee 23, room 01.423, 37073 Göttingen, Germany.
| |
Collapse
|
162
|
Jefcoate CR, Lee J. Cholesterol signaling in single cells: lessons from STAR and sm-FISH. J Mol Endocrinol 2018; 60:R213-R235. [PMID: 29691317 PMCID: PMC6324173 DOI: 10.1530/jme-17-0281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/11/2022]
Abstract
Cholesterol is an important regulator of cell signaling, both through direct impacts on cell membranes and through oxy-metabolites that activate specific receptors (steroids, hydroxy-cholesterols, bile acids). Cholesterol moves slowly through and between cell membranes with the assistance of specific binding proteins and transfer processes. The prototype cholesterol regulator is the Steroidogenesis Acute Regulatory (STAR), which moves cholesterol into mitochondria, where steroid synthesis is initiated by cytochrome P450 11A1 in multiple endocrine cell types. CYP27A1 generates hydroxyl cholesterol metabolites that activate LXR nuclear receptors to control cholesterol homeostatic and transport mechanisms. LXR regulation of cholesterol transport and storage as cholesterol ester droplets is shared by both steroid-producing cells and macrophage. This cholesterol signaling is crucial to brain neuron regulation by astrocytes and microglial macrophage, mediated by ApoE and sensitive to disruption by β-amyloid plaques. sm-FISH delivers appreciable insights into signaling in single cells, by resolving single RNA molecules as mRNA and by quantifying pre-mRNA at gene loci. sm-FISH has been applied to problems in physiology, embryo development and cancer biology, where single cell features have critical impacts. sm-FISH identifies novel features of STAR transcription in adrenal and testis cells, including asymmetric expression at individual gene loci, delayed splicing and 1:1 association of mRNA with mitochondria. This may represent a functional unit for the translation-dependent cholesterol transfer directed by STAR, which integrates into mitochondrial fusion dynamics. Similar cholesterol dynamics repeat with different players in the cycling of cholesterol between astrocytes and neurons in the brain, which may be abnormal in neurodegenerative diseases.
Collapse
Affiliation(s)
- Colin R Jefcoate
- Department of Cell and Regenerative Biology and the Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology and the Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
163
|
Sherman DJ, Xie R, Taylor RJ, George AH, Okuda S, Foster PJ, Needleman DJ, Kahne D. Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge. Science 2018; 359:798-801. [PMID: 29449493 DOI: 10.1126/science.aar1886] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
Abstract
Gram-negative bacteria have an outer membrane that serves as a barrier to noxious agents in the environment. This protective function is dependent on lipopolysaccharide, a large glycolipid located in the outer leaflet of the outer membrane. Lipopolysaccharide is synthesized at the cytoplasmic membrane and must be transported to the cell surface. To understand this transport process, we reconstituted membrane-to-membrane movement of lipopolysaccharide by incorporating purified inner and outer membrane transport complexes into separate proteoliposomes. Transport involved stable association between the inner and outer membrane proteoliposomes. Our results support a model in which lipopolysaccharide molecules are pushed one after the other in a PEZ dispenser-like manner across a protein bridge that connects the inner and outer membranes.
Collapse
Affiliation(s)
- David J Sherman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ran Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Rebecca J Taylor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander H George
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Suguru Okuda
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter J Foster
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel J Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. .,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
164
|
Acidocalcisome-Mitochondrion Membrane Contact Sites in Trypanosoma brucei. Pathogens 2018; 7:pathogens7020033. [PMID: 29565282 PMCID: PMC6027259 DOI: 10.3390/pathogens7020033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022] Open
Abstract
Membrane contact sites are regions of close apposition between two organelles, typically less than 30 nanometers apart, that facilitate transfer of biomolecules. The presence of contact sites has been demonstrated in yeast, plants, and mammalian cells. Here, we investigated the presence of such contact sites in Trypanosoma brucei. In mammalian cells, endoplasmic reticulum-mitochondria contact sites facilitate mitochondrial uptake of Ca2+ released by the ER-located inositol 1,4,5-trisphosphate receptor (InsP3R). However, the InsP3R in trypanosomes localizes to acidocalcisomes, which serve as major Ca2+ stores in these parasites. In this work, we have used super-resolution structured illumination microscopy and electron microscopy to identify membrane contact sites that exist between acidocalcisomes and mitochondria. Furthermore, we have confirmed the close association of these organelles using proximity ligation assays. Characterization of these contact sites may be a necessary starting point towards unraveling the role of Ca2+ in regulating trypanosome bioenergetics.
Collapse
|
165
|
Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8 + T Cells. Immunity 2018. [PMID: 29523440 DOI: 10.1016/j.immuni.2018.02.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function.
Collapse
|
166
|
Delprat B, Maurice T, Delettre C. Wolfram syndrome: MAMs' connection? Cell Death Dis 2018; 9:364. [PMID: 29511163 PMCID: PMC5840383 DOI: 10.1038/s41419-018-0406-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022]
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative disease, the main pathological hallmarks of which associate with diabetes, optic atrophy, and deafness. Other symptoms may be identified in some but not all patients. Prognosis is poor, with death occurring around 35 years of age. To date, no treatment is available. WS was first described as a mitochondriopathy. However, the localization of the protein on the endoplasmic reticulum (ER) membrane challenged this hypothesis. ER contacts mitochondria to ensure effective Ca2+ transfer, lipids transfer, and apoptosis within stabilized and functionalized microdomains, termed “mitochondria-associated ER membranes” (MAMs). Two types of WS are characterized so far and Wolfram syndrome type 2 is due to mutation in CISD2, a protein mostly expressed in MAMs. The aim of the present review is to collect evidences showing that WS is indeed a mitochondriopathy, with established MAM dysfunction, and thus share commonalities with several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, as well as metabolic diseases, such as diabetes.
Collapse
Affiliation(s)
- Benjamin Delprat
- INSERM UMR-S1198, 34095, Montpellier, France. .,University of Montpellier, 34095, Montpellier, France.
| | - Tangui Maurice
- INSERM UMR-S1198, 34095, Montpellier, France.,University of Montpellier, 34095, Montpellier, France
| | - Cécile Delettre
- University of Montpellier, 34095, Montpellier, France. .,INSERM UMR-S1051, Institute of Neurosciences of Montpellier, 34090, Montpellier, France.
| |
Collapse
|
167
|
Besprozvannaya M, Dickson E, Li H, Ginburg KS, Bers DM, Auwerx J, Nunnari J. GRAM domain proteins specialize functionally distinct ER-PM contact sites in human cells. eLife 2018; 7:31019. [PMID: 29469807 PMCID: PMC5823543 DOI: 10.7554/elife.31019] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
Endoplasmic reticulum (ER) membrane contact sites (MCSs) are crucial regulatory hubs in cells, playing roles in signaling, organelle dynamics, and ion and lipid homeostasis. Previous work demonstrated that the highly conserved yeast Ltc/Lam sterol transporters localize and function at ER MCSs. Our analysis of the human family members, GRAMD1a and GRAMD2a, demonstrates that they are ER-PM MCS proteins, which mark separate regions of the plasma membrane (PM) and perform distinct functions in vivo. GRAMD2a, but not GRAMD1a, co-localizes with the E-Syt2/3 tethers at ER-PM contacts in a PIP lipid-dependent manner and pre-marks the subset of PI(4,5)P2-enriched ER-PM MCSs utilized for STIM1 recruitment. Data from an analysis of cells lacking GRAMD2a suggest that it is an organizer of ER-PM MCSs with pleiotropic functions including calcium homeostasis. Thus, our data demonstrate the existence of multiple ER-PM domains in human cells that are functionally specialized by GRAM-domain containing proteins.
Collapse
Affiliation(s)
- Marina Besprozvannaya
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Eamonn Dickson
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States
| | - Hao Li
- Laboratory of Integrative and Systems Physiology, EPFL, Lausanne, Switzerland
| | - Kenneth S Ginburg
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, EPFL, Lausanne, Switzerland
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
168
|
Pernice WM, Swayne TC, Boldogh IR, Pon LA. Mitochondrial Tethers and Their Impact on Lifespan in Budding Yeast. Front Cell Dev Biol 2018; 5:120. [PMID: 29359129 PMCID: PMC5766657 DOI: 10.3389/fcell.2017.00120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022] Open
Abstract
Tethers that link mitochondria to other organelles are critical for lipid and calcium transport as well as mitochondrial genome replication and fission of the organelle. Here, we review recent advances in the characterization of interorganellar mitochondrial tethers in the budding yeast, Saccharomyces cerevisiae. We specifically focus on evidence for a role for mitochondrial tethers that anchor mitochondria to specific regions within yeast cells. These tethering events contribute to two processes that are critical for normal replicative lifespan: inheritance of fitter mitochondria by daughter cells, and retention of a small pool of higher-functioning mitochondria in mother cells. Since asymmetric inheritance of mitochondria also occurs in human mammary stem-like cells, it is possible that mechanisms underlying mitochondrial segregation in yeast also operate in other cell types.
Collapse
Affiliation(s)
- Wolfgang M Pernice
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Theresa C Swayne
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Istvan R Boldogh
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| |
Collapse
|
169
|
Yang Z, Zhao X, Xu J, Shang W, Tong C. A novel fluorescent reporter detects plastic remodeling of mitochondria-ER contact sites. J Cell Sci 2018; 131:jcs.208686. [PMID: 29158224 DOI: 10.1242/jcs.208686] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondria-ER contact sites (MERCs) enable communication between the ER and mitochondria and serve as platforms for many cellular events, including autophagy. Nonetheless, the molecular organization of MERCs is not known, and there is no bona fide marker of these contact sites in mammalian cells. In this study, we designed a genetically encoded reporter using split GFP protein for labeling MERCs. We subsequently analyzed its distribution and dynamics during the cell cycle and under stressful cellular conditions such as starvation, apoptosis and ER stress. We found that MERCs are dynamic structures that undergo remodeling within minutes. Mitochondrial morphology, but not ER morphology, affected the distribution of MERCs. We also found that carbonyl cyanidem-chlorophenyl hydrazone (CCCP) and oligomycin A treatment enhanced MERC formation. The stimulations that led to apoptosis or autophagy increased the MERC signal. By contrast, increasing cellular lipid droplet load did not change the pattern of MERCs.
Collapse
Affiliation(s)
- Zhaoying Yang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xiaocui Zhao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Jiashen Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Weina Shang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Chao Tong
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
170
|
Koch B, Tucey TM, Lo TL, Novakovic S, Boag P, Traven A. The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans. Front Microbiol 2017; 8:2555. [PMID: 29326680 PMCID: PMC5742345 DOI: 10.3389/fmicb.2017.02555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 01/27/2023] Open
Abstract
The interactions of mitochondria with the endoplasmic reticulum (ER) are crucial for maintaining proper mitochondrial morphology, function and dynamics. This enables cells to utilize their mitochondria optimally for energy production and anabolism, and it further provides for metabolic control over developmental decisions. In fungi, a key mechanism by which ER and mitochondria interact is via a membrane tether, the protein complex ERMES (ER-Mitochondria Encounter Structure). In the model yeast Saccharomyces cerevisiae, the mitochondrial GTPase Gem1 interacts with ERMES, and it has been proposed to regulate its activity. Here we report on the first characterization of Gem1 in a human fungal pathogen. We show that in Candida albicans Gem1 has a dominant role in ensuring proper mitochondrial morphology, and our data is consistent with Gem1 working with ERMES in this role. Mitochondrial respiration and steady state cellular phospholipid homeostasis are not impacted by inactivation of GEM1 in C. albicans. There are two major virulence-related consequences of disrupting mitochondrial morphology by GEM1 inactivation: C. albicans becomes hypersusceptible to cell wall stress, and is unable to grow invasively. In the gem1Δ/Δ mutant, it is specifically the invasive capacity of hyphae that is compromised, not the ability to transition from yeast to hyphal morphology, and this phenotype is shared with ERMES mutants. As a consequence of the hyphal invasion defect, the gem1Δ/Δ mutant is drastically hypovirulent in the worm infection model. Activation of the mitogen activated protein (MAP) kinase Cek1 is reduced in the gem1Δ/Δ mutant, and this function could explain both the susceptibility to cell wall stress and lack of invasive growth. This result establishes a new, respiration-independent mechanism of mitochondrial control over stress signaling and hyphal functions in C. albicans. We propose that ER-mitochondria interactions and the ER-Mitochondria Organizing Network (ERMIONE) play important roles in adaptive responses in fungi, in particular cell surface-related mechanisms that drive invasive growth and stress responsive behaviors that support fungal pathogenicity.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Timothy M Tucey
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tricia L Lo
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stevan Novakovic
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter Boag
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
171
|
SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death Differ 2017; 25:1131-1145. [PMID: 29229997 PMCID: PMC5988678 DOI: 10.1038/s41418-017-0033-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 01/06/2023] Open
Abstract
Contact sites are discrete areas of organelle proximity that coordinate essential physiological processes across membranes, including Ca2+ signaling, lipid biosynthesis, apoptosis, and autophagy. However, tools to easily image inter-organelle proximity over a range of distances in living cells and in vivo are lacking. Here we report a split-GFP-based contact site sensor (SPLICS) engineered to fluoresce when organelles are in proximity. Two SPLICS versions efficiently measured narrow (8–10 nm) and wide (40–50 nm) juxtapositions between endoplasmic reticulum and mitochondria, documenting the existence of at least two types of contact sites in human cells. Narrow and wide ER–mitochondria contact sites responded differently to starvation, ER stress, mitochondrial shape modifications, and changes in the levels of modulators of ER–mitochondria juxtaposition. SPLICS detected contact sites in soma and axons of D. rerio Rohon Beard (RB) sensory neurons invivo, extending its use to analyses of organelle juxtaposition in the whole animal.
Collapse
|
172
|
Yu-Wai-Man P, Newman NJ. Inherited eye-related disorders due to mitochondrial dysfunction. Hum Mol Genet 2017; 26:R12-R20. [PMID: 28481993 DOI: 10.1093/hmg/ddx182] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
Genetic disorders due to mitochondrial dysfunction are not uncommon and the majority of these patients will have eye-related manifestations, including visual loss from the optic nerve and retinal disease, visual field loss from retrochiasmal visual pathway damage, and ptosis and ocular dysmotility from extraocular muscle involvement. Defects in both the nuclear and mitochondrial genomes cause mitochondrial dysfunction via several mechanisms, including impaired mitochondrial energy production, oxidative stress, mitochondrial DNA instability, abnormalities in the regulation of mitochondrial dynamics and mitochondrial quality control, and disturbed cellular interorganellar communication. Advances in our understanding of the molecular genetic basis of mitochondrial disease have not only improved genetic diagnosis, but they have provided important insights into the pathophysiologic basis of these disorders and potential therapeutic targets. In parallel, more sophisticated techniques for genetic manipulation are facilitating the development of animal and in vitro models that should prove powerful and versatile tools for disease modelling and therapeutic experimentation. Effective therapies for mitochondrial disorders are beginning to translate from bench to bedside along the paths of neuroprotection, gene replacement and stem cell-based regenerative paradigms. Additionally, preventing the transmission of pathogenic mtDNA mutations from mother to child is now a reality with in vitro fertilization mitochondrial replacement techniques.
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.,NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Nancy J Newman
- Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
173
|
Maeda A, Uchida M, Nishikawa S, Nishino T, Konishi H. Role of N-myristoylation in stability and subcellular localization of the CLPABP protein. Biochem Biophys Res Commun 2017; 495:1249-1256. [PMID: 29180010 DOI: 10.1016/j.bbrc.2017.11.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 11/28/2022]
Abstract
Cardiolipin and phosphatidic acid-binding protein (CLPABP) controls the stability of the mRNA harboring an AU-rich element (ARE) in the 3' UTR with the help of the RNA stabilizer, human antigen R (HuR). Although CLPABP is localized on the mitochondrial surface as a large protein-RNA complex, its precise role is not yet known. Recently, CLPABP was identified as an N-myristoylated protein. Here, we demonstrate the effects of N-myristoylation on the functions of CLPABP. In the present study, compared to the wild-type protein that possessed the "MG" motif at the N-terminus for N-myristoylation, the mutant CLPABP protein that lacked N-myristoylation modification site was unstable. Furthermore, the expression of the G/A mutant of CLPABP, which lacked N-myristoylation site, induced morphological alterations in mitochondria. Because pleckstrin homology domain-deleted mutant, which was fused with the N-myristoylation site derived from intact CLPABP, could not colocalize with mitochondria, N-myristoylation of CLPABP was predicted to affect its stability onto the mitochondrial membrane rather than its subcellular localization.
Collapse
Affiliation(s)
- Akane Maeda
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Moe Uchida
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Sumire Nishikawa
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Tasuku Nishino
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Hiroaki Konishi
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
174
|
Soto-Heredero G, Baixauli F, Mittelbrunn M. Interorganelle Communication between Mitochondria and the Endolysosomal System. Front Cell Dev Biol 2017; 5:95. [PMID: 29164114 PMCID: PMC5681906 DOI: 10.3389/fcell.2017.00095] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023] Open
Abstract
The function of mitochondria and lysosomes has classically been studied separately. However, evidence has now emerged of intense crosstalk between these two organelles, such that the activity or stress status of one organelle may affect the other. Direct physical contacts between mitochondria and the endolysosomal compartment have been reported as a rapid means of interorganelle communication, mediating lipid or other metabolite exchange. Moreover, mitochondrial derived vesicles can traffic obsolete mitochondrial proteins into the endolysosomal system for their degradation or secretion to the extracellular milieu as exosomes, representing an additional mitochondrial quality control mechanism that connects mitochondria and lysosomes independently of autophagosome formation. Here, we present what is currently known about the functional and physical communication between mitochondria and lysosomes or lysosome-related organelles, and their role in sustaining cellular homeostasis.
Collapse
Affiliation(s)
| | - Francesc Baixauli
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - María Mittelbrunn
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
175
|
Wolf SG, Mutsafi Y, Dadosh T, Ilani T, Lansky Z, Horowitz B, Rubin S, Elbaum M, Fass D. 3D visualization of mitochondrial solid-phase calcium stores in whole cells. eLife 2017; 6:29929. [PMID: 29106371 PMCID: PMC5703638 DOI: 10.7554/elife.29929] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
The entry of calcium into mitochondria is central to metabolism, inter-organelle communication, and cell life/death decisions. Long-sought transporters involved in mitochondrial calcium influx and efflux have recently been identified. To obtain a unified picture of mitochondrial calcium utilization, a parallel advance in understanding the forms and quantities of mitochondrial calcium stores is needed. We present here the direct 3D visualization of mitochondrial calcium in intact mammalian cells using cryo-scanning transmission electron tomography (CSTET). Amorphous solid granules containing calcium and phosphorus were pervasive in the mitochondrial matrices of a variety of mammalian cell types. Analysis based on quantitative electron scattering revealed that these repositories are equivalent to molar concentrations of dissolved ions. These results demonstrate conclusively that calcium buffering in the mitochondrial matrix in live cells occurs by phase separation, and that solid-phase stores provide a major ion reservoir that can be mobilized for bioenergetics and signaling.
Collapse
Affiliation(s)
- Sharon Grayer Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Mutsafi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zipora Lansky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ben Horowitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Rubin
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elbaum
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
176
|
Han Y, Li M, Qiu F, Zhang M, Zhang YH. Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions. Nat Commun 2017; 8:1307. [PMID: 29101340 PMCID: PMC5670236 DOI: 10.1038/s41467-017-01503-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 09/22/2017] [Indexed: 01/10/2023] Open
Abstract
Characterizing the long-term nanometer-scale interactions between lysosomes and mitochondria in live cells is essential for understanding their functions but remains challenging due to limitations of the existing fluorescent probes. Here, we develop cell-permeable organic fluorescent probes for lysosomes with excellent specificity and high photostability. We also use an existing Atto 647N dye with high brightness and excellent photostability to achieve specific labeling of mitochondria in live cells. Using these probes, we obtain dual-color structured illumination microscopy (SIM) images of dynamic physical lysosome-mitochondrion interactions in live cells at an ~90-nm resolution over a long time course of ~13 min. We successfully record the consecutive dynamic processes of lysosomal fusion and fission, as well as four types of physical lysosome-mitochondrion interactions by super-resolution imaging. Our probes provide an avenue for understanding the functions and the dynamic interplay of lysosomes and mitochondria in live cells. Studying interactions between lysosomes and mitochondria in living cells is difficult due to the limitations of existing probes. Here, the authors develop new cell-permeable fluorescent probes to image the dynamics of lysosomes and their physical interactions with mitochondria using super-resolution microscopy.
Collapse
Affiliation(s)
- Yubing Han
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Meihua Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Fengwu Qiu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Meng Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. .,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
177
|
Schorr S, van der Laan M. Integrative functions of the mitochondrial contact site and cristae organizing system. Semin Cell Dev Biol 2017; 76:191-200. [PMID: 28923515 DOI: 10.1016/j.semcdb.2017.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022]
Abstract
Mitochondria are complex double-membrane-bound organelles of eukaryotic cells that function as energy-converting powerhouses, metabolic factories and signaling centers. The outer membrane controls the exchange of material and information with other cellular compartments. The inner membrane provides an extended, highly folded surface for selective transport and energy-coupling reactions. It can be divided into an inner boundary membrane and tubular or lamellar cristae membranes that accommodate the oxidative phosphorylation units. Outer membrane, inner boundary membrane and cristae come together at crista junctions, where the mitochondrial contact site and cristae organizing system (MICOS) acts as a membrane-shaping and -connecting scaffold. This peculiar architecture is of pivotal importance for multiple mitochondrial functions. Many elaborate studies in the past years have shed light on the subunit composition and organization of MICOS. In this review article, we summarize these insights and then move on to discuss exciting recent discoveries on the integrative functions of MICOS. Multi-faceted connections to other major players of mitochondrial biogenesis and physiology, like the protein import machineries, the oxidative phosphorylation system, carrier proteins and phospholipid biosynthesis enzymes, are currently emerging. Therefore, we propose that MICOS acts as a central hub in mitochondrial membrane architecture and functionality.
Collapse
Affiliation(s)
- Stefan Schorr
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Saarland University, School of Medicine, 66421, Homburg, Germany
| | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Saarland University, School of Medicine, 66421, Homburg, Germany.
| |
Collapse
|
178
|
Kameoka S, Adachi Y, Okamoto K, Iijima M, Sesaki H. Phosphatidic Acid and Cardiolipin Coordinate Mitochondrial Dynamics. Trends Cell Biol 2017; 28:67-76. [PMID: 28911913 DOI: 10.1016/j.tcb.2017.08.011] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022]
Abstract
Membrane organelles comprise both proteins and lipids. Remodeling of these membrane structures is controlled by interactions between specific proteins and lipids. Mitochondrial structure and function depend on regulated fusion and the division of both the outer and inner membranes. Here we discuss recent advances in the regulation of mitochondrial dynamics by two critical phospholipids, phosphatidic acid (PA) and cardiolipin (CL). These two lipids interact with the core components of mitochondrial fusion and division (Opa1, mitofusin, and Drp1) to activate and inhibit these dynamin-related GTPases. Moreover, lipid-modifying enzymes such as phospholipases and lipid phosphatases may organize local lipid composition to spatially and temporarily coordinate a balance between fusion and division to establish mitochondrial morphology.
Collapse
Affiliation(s)
- Shoichiro Kameoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
179
|
Rambold AS, Pearce EL. Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function. Trends Immunol 2017; 39:6-18. [PMID: 28923365 DOI: 10.1016/j.it.2017.08.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
Abstract
Immune cell differentiation and function are crucially dependent on specific metabolic programs dictated by mitochondria, including the generation of ATP from the oxidation of nutrients and supplying precursors for the synthesis of macromolecules and post-translational modifications. The many processes that occur in mitochondria are intimately linked to their morphology that is shaped by opposing fusion and fission events. Exciting evidence is now emerging that demonstrates reciprocal crosstalk between mitochondrial dynamics and metabolism. Metabolic cues can control the mitochondrial fission and fusion machinery to acquire specific morphologies that shape their activity. We review the dynamic properties of mitochondria and discuss how these organelles interlace with immune cell metabolism and function.
Collapse
Affiliation(s)
- Angelika S Rambold
- Center of Chronic Immunodeficiency, Medical Center, Freiburg University, Freiburg, Germany; Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.
| | - Erika L Pearce
- Department of Immunometabolism, Max-Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
180
|
Ellenrieder L, Rampelt H, Becker T. Connection of Protein Transport and Organelle Contact Sites in Mitochondria. J Mol Biol 2017; 429:2148-2160. [DOI: 10.1016/j.jmb.2017.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
|
181
|
Rieusset J. Mitochondria-associated membranes (MAMs): An emerging platform connecting energy and immune sensing to metabolic flexibility. Biochem Biophys Res Commun 2017. [PMID: 28647358 DOI: 10.1016/j.bbrc.2017.06.097] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Living organisms have the capacity to sense both nutrients and immune signals in order to adapt their metabolism to the needs, and both metabolic inflexibility and exacerbated immune responses are associated with metabolic diseases. Over the past decade, mitochondria emerged as key nutrient and immune sensors regulating numerous signalling pathways, and mitochondria dysfunction has been extensively implicated in metabolic diseases. Interestingly, mitochondria interact physically and functionally with the endoplasmic reticulum (ER, in contact sites named mitochondria-associated membranes (MAMs), in order to exchange metabolites and calcium and regulate cellular homeostasis. Emerging evidences suggest that MAMs provide a platform for hormone and nutrient signalling pathways and for innate immune responses, then regulating mitochondrial bioenergetics and apoptosis. Here, I thus propose the concept that MAMs could be attractive nutrient and immune sensors that regulate mitochondria physiology in order to adapt metabolism and cell fate, and that organelle miscommunication could be involved in the metabolic inflexibility and the pro-inflammatory status associated with metabolic diseases.
Collapse
Affiliation(s)
- Jennifer Rieusset
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Université Claude Bernard Lyon1, INSA-Lyon, F-69600 Oullins, France.
| |
Collapse
|
182
|
Gottschling DE, Nyström T. The Upsides and Downsides of Organelle Interconnectivity. Cell 2017; 169:24-34. [PMID: 28340346 DOI: 10.1016/j.cell.2017.02.030] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
Interconnectivity and feedback control are hallmarks of biological systems. This includes communication between organelles, which allows them to function and adapt to changing cellular environments. While the specific mechanisms for all communications remain opaque, unraveling the wiring of organelle networks is critical to understand how biological systems are built and why they might collapse, as occurs in aging. A comprehensive understanding of all the routes involved in inter-organelle communication is still lacking, but important themes are beginning to emerge, primarily in budding yeast. These routes are reviewed here in the context of sub-system proteostasis and complex adaptive systems theory.
Collapse
Affiliation(s)
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
183
|
Mitochondrial contact site and cristae organizing system: A central player in membrane shaping and crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1481-1489. [PMID: 28526561 DOI: 10.1016/j.bbamcr.2017.05.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/01/2017] [Indexed: 01/08/2023]
Abstract
Mitochondria are multifunctional metabolic factories and integrative signaling organelles of eukaryotic cells. The structural basis for their numerous functions is a complex and dynamic double-membrane architecture. The outer membrane connects mitochondria to the cytosol and other organelles. The inner membrane is composed of a boundary region and highly folded cristae membranes. The evolutionarily conserved mitochondrial contact site and cristae organizing system (MICOS) connects the two inner membrane domains via formation and stabilization of crista junction structures. Moreover, MICOS establishes contact sites between inner and outer mitochondrial membranes by interacting with outer membrane protein complexes. MICOS deficiency leads to a grossly altered inner membrane architecture resulting in far-reaching functional perturbations in mitochondria. Consequently, mutations affecting the function of MICOS are responsible for a diverse spectrum of human diseases. In this article, we summarize recent insights and concepts on the role of MICOS in the organization of mitochondrial membranes. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
|
184
|
Taylor EB. Functional Properties of the Mitochondrial Carrier System. Trends Cell Biol 2017; 27:633-644. [PMID: 28522206 DOI: 10.1016/j.tcb.2017.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 11/28/2022]
Abstract
The mitochondrial carrier system (MCS) transports small molecules between mitochondria and the cytoplasm. It is integral to the core mitochondrial function to regulate cellular chemistry by metabolism. The mammalian MCS comprises the transporters of the 53-member canonical SLC25A family and a lesser number of identified noncanonical transporters. The recent discovery and investigations of the mitochondrial pyruvate carrier (MPC) illustrate the diverse effects a single mitochondrial carrier may exert on cellular function. However, the transport selectivities of many carriers remain unknown, and most have not been functionally investigated in mammalian cells. The mechanisms coordinating their function as a unified system remain undefined. Increased accessibility to molecular genetic and metabolomic technologies now greatly enables investigation of the MCS. Continued investigation of the MCS may reveal how mitochondria encode complex regulatory information within chemical thermodynamic gradients. This understanding may enable precision modulation of cellular chemistry to counteract the dysmetabolism inherent in disease.
Collapse
Affiliation(s)
- Eric B Taylor
- Department of Biochemistry, Fraternal Order of the Eagles Diabetes Center, Holden Comprehensive Cancer Center, Abboud Cardiovascular Research Center, Pappajohn Biomedical Discovery Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
185
|
McWilliams TG, Muqit MM. PINK1 and Parkin: emerging themes in mitochondrial homeostasis. Curr Opin Cell Biol 2017; 45:83-91. [PMID: 28437683 DOI: 10.1016/j.ceb.2017.03.013] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/22/2017] [Accepted: 03/22/2017] [Indexed: 12/23/2022]
Abstract
The Parkinson's disease (PD)-associated protein kinase, PTEN-induced putative kinase1 (PINK1), and ubiquitin E3 ligase Parkin, function in a common signalling pathway known to regulate mitochondrial network homeostasis and quality control, including mitophagy. The multistep activation of this pathway, as well as an unexpected convergence between the post-translational modifications of ubiquitylation and phosphorylation, has added breadth to our understanding of cellular damage responses during human disease. In concert with these new insights in signal transduction, unique modalities and signatures of vertebrate mitophagy have been unravelled in vivo for the very first time. The cell biology of mammalian mitophagy, and the roles of PINK1-Parkin signalling in vivo have emerged to be more complex than previously thought.
Collapse
Affiliation(s)
- Thomas G McWilliams
- MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Miratul Mk Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
186
|
Logan A, Murphy MP. Using chemical biology to assess and modulate mitochondria: progress and challenges. Interface Focus 2017; 7:20160151. [PMID: 28382206 PMCID: PMC5311910 DOI: 10.1098/rsfs.2016.0151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Our understanding of the role of mitochondria in biomedical sciences has expanded considerably over the past decade. In addition to their well-known metabolic roles, mitochondrial are also central to signalling for various processes through the generation of signals such as ROS and metabolites that affect cellular homeostasis, as well as other processes such as cell death and inflammation. Thus, mitochondrial function and dysfunction are central to the health and fate of the cell. Consequently, there is considerable interest in better understanding and assessing the many roles of mitochondria. Furthermore, there is also a growing realization that mitochondrial are a promising drug target in a wide range of pathologies. The application of interdisciplinary approaches at the interface between chemistry and biology are opening up new opportunities to understand mitochondrial function and in assessing the role of the organelle in biology. This work and the experience thus gained are leading to the development of new classes of therapies. Here, we overview the progress that has been made to date on exploring the chemical biology of the organelle and then focus on future challenges and opportunities that face this rapidly developing field.
Collapse
Affiliation(s)
- Angela Logan
- MRC Mitochondrial Biology Unit , Hills Road, Cambridge CB2 0XY , UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit , Hills Road, Cambridge CB2 0XY , UK
| |
Collapse
|
187
|
Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis. Sci Rep 2017; 7:45076. [PMID: 28345620 PMCID: PMC5366864 DOI: 10.1038/srep45076] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/17/2017] [Indexed: 11/09/2022] Open
Abstract
Mitochondria are key cellular signaling platforms, affecting fundamental processes such as cell proliferation, differentiation and death. However, it remains unclear how mitochondrial signaling affects other organelles, particularly lysosomes. Here, we demonstrate that mitochondrial respiratory chain (RC) impairments elicit a stress signaling pathway that regulates lysosomal biogenesis via the microphtalmia transcription factor family. Interestingly, the effect of mitochondrial stress over lysosomal biogenesis depends on the timeframe of the stress elicited: while RC inhibition with rotenone or uncoupling with CCCP initially triggers lysosomal biogenesis, the effect peaks after few hours and returns to baseline. Long-term RC inhibition by long-term treatment with rotenone, or patient mutations in fibroblasts and in a mouse model result in repression of lysosomal biogenesis. The induction of lysosomal biogenesis by short-term mitochondrial stress is dependent on TFEB and MITF, requires AMPK signaling and is independent of calcineurin signaling. These results reveal an integrated view of how mitochondrial signaling affects lysosomes, which is essential to fully comprehend the consequences of mitochondrial malfunction, particularly in the context of mitochondrial diseases.
Collapse
|
188
|
Ba Q, Yang G. Intracellular organelle networks: Understanding their organization and communication through systems-level modeling and analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-016-1436-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
189
|
Filadi R, Theurey P, Pizzo P. The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance. Cell Calcium 2017; 62:1-15. [PMID: 28108029 DOI: 10.1016/j.ceca.2017.01.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
The close apposition between endoplasmic reticulum (ER) and mitochondria represents a key platform, capable to regulate different fundamental cellular pathways. Among these, Ca2+ signaling and lipid homeostasis have been demonstrated over the last years to be deeply modulated by ER-mitochondria cross-talk. Given its importance in cell life/death decisions, increasing evidence suggests that alterations of the ER-mitochondria axis could be responsible for the onset and progression of several diseases, including neurodegeneration, cancer and obesity. However, the molecular identity of the proteins controlling this inter-organelle apposition is still debated. In this review, we summarize the main cellular pathways controlled by ER-mitochondria appositions, focusing on the principal molecules reported to be involved in this interplay and on those diseases for which alterations in organelles communication have been reported.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Italy
| | - Pierre Theurey
- Department of Biomedical Sciences, University of Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Italy; Neuroscience Institute, National Research Council (CNR), Padova, Italy.
| |
Collapse
|
190
|
Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 2017; 482:426-431. [DOI: 10.1016/j.bbrc.2016.11.088] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
|
191
|
Lewis SC, Uchiyama LF, Nunnari J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 2016; 353:aaf5549. [PMID: 27418514 DOI: 10.1126/science.aaf5549] [Citation(s) in RCA: 465] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/26/2016] [Indexed: 12/17/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria.
Collapse
Affiliation(s)
- Samantha C Lewis
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Lauren F Uchiyama
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
192
|
Kojima R, Kajiura S, Sesaki H, Endo T, Tamura Y. Identification of multi-copy suppressors for endoplasmic reticulum-mitochondria tethering proteins in Saccharomyces cerevisiae. FEBS Lett 2016; 590:3061-70. [PMID: 27531107 DOI: 10.1002/1873-3468.12358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/16/2016] [Accepted: 08/09/2016] [Indexed: 11/08/2022]
Abstract
In yeast, the endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) tethers the ER to mitochondria, but its primary function remains unclear. To gain insight into ERMES functions, we screened multi-copy suppressors of the growth-defective phenotype of mmm1∆ cells, which lack a core component of ERMES, and identified MCP1, MGA2, SPT23, and YGR250C (termed RIE1). Spt23 and Mga2 are homologous transcription factors known to activate transcription of the OLE1 gene, which encodes the fatty acid ∆9 desaturase. We found that Ole1 partially relieves the growth defects of ERMES-lacking cells, thus uncovering a relationship between fatty acid metabolism and ERMES functions.
Collapse
Affiliation(s)
- Rieko Kojima
- Department of Chemistry, Graduate School of Science, Nagoya University, Japan.,Department of Material and Biological Science, Faculty of Science, Yamagata University, Japan
| | - Shu Kajiura
- Department of Chemistry, Graduate School of Science, Nagoya University, Japan
| | - Hiromi Sesaki
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Japan. .,Faculty of Life Sciences, Kyoto Sangyo University, Japan. .,JST/CREST, Kyoto Sangyo University, Japan.
| | - Yasushi Tamura
- Department of Material and Biological Science, Faculty of Science, Yamagata University, Japan. .,Research Center for Materials Science, Nagoya University, Japan.
| |
Collapse
|
193
|
Dimmer KS, Rapaport D. Mitochondrial contact sites as platforms for phospholipid exchange. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:69-80. [PMID: 27477677 DOI: 10.1016/j.bbalip.2016.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
Abstract
Mitochondria are unique organelles that contain their own - although strongly reduced - genome, and are surrounded by two membranes. While most cellular phospholipid biosynthesis takes place in the ER, mitochondria harbor the whole spectrum of glycerophospholipids common to biological membranes. Mitochondria also contribute to overall phospholipid biosynthesis in cells by producing phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Considering these features, it is not surprising that mitochondria maintain highly active exchange of phospholipids with other cellular compartments. In this contribution we describe the transport of phospholipids between mitochondria and other organelles, and discuss recent developments in our understanding of the molecular functions of the protein complexes that mediate these processes. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|
194
|
A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro. Sci Rep 2016; 6:30777. [PMID: 27469264 PMCID: PMC4965753 DOI: 10.1038/srep30777] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022] Open
Abstract
As phospholipids are synthesized mainly in the endoplasmic reticulum (ER) and mitochondrial inner membranes, how cells properly distribute specific phospholipids to diverse cellular membranes is a crucial problem for maintenance of organelle-specific phospholipid compositions. Although the ER-mitochondria encounter structure (ERMES) was proposed to facilitate phospholipid transfer between the ER and mitochondria, such a role of ERMES is still controversial and awaits experimental demonstration. Here we developed a novel in vitro assay system with isolated yeast membrane fractions to monitor phospholipid exchange between the ER and mitochondria. With this system, we found that phospholipid transport between the ER and mitochondria relies on membrane intactness, but not energy sources such as ATP, GTP or the membrane potential across the mitochondrial inner membrane. We further found that lack of the ERMES component impairs the phosphatidylserine transport from the ER to mitochondria, but not the phosphatidylethanolamine transport from mitochondria to the ER. This in vitro assay system thus offers a powerful tool to analyze the non-vesicular phospholipid transport between the ER and mitochondria.
Collapse
|
195
|
The Endoplasmic Reticulum-Mitochondrion Tether ERMES Orchestrates Fungal Immune Evasion, Illuminating Inflammasome Responses to Hyphal Signals. mSphere 2016; 1:mSphere00074-16. [PMID: 27303738 PMCID: PMC4888881 DOI: 10.1128/msphere.00074-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
The pathogenic yeast Candida albicans escapes macrophages by triggering NLRP3 inflammasome-dependent host cell death (pyroptosis). Pyroptosis is inflammatory and must be tightly regulated by host and microbe, but the mechanism is incompletely defined. We characterized the C. albicans endoplasmic reticulum (ER)-mitochondrion tether ERMES and show that the ERMES mmm1 mutant is severely crippled in killing macrophages despite hyphal formation and normal phagocytosis and survival. To understand dynamic inflammasome responses to Candida with high spatiotemporal resolution, we established live-cell imaging for parallel detection of inflammasome activation and pyroptosis at the single-cell level. This showed that the inflammasome response to mmm1 mutant hyphae is delayed by 10 h, after which an exacerbated activation occurs. The NLRP3 inhibitor MCC950 inhibited inflammasome activation and pyroptosis by C. albicans, including exacerbated inflammasome activation by the mmm1 mutant. At the cell biology level, inactivation of ERMES led to a rapid collapse of mitochondrial tubular morphology, slow growth and hyphal elongation at host temperature, and reduced exposed 1,3-β-glucan in hyphal populations. Our data suggest that inflammasome activation by C. albicans requires a signal threshold dependent on hyphal elongation and cell wall remodeling, which could fine-tune the response relative to the level of danger posed by C. albicans. The phenotypes of the ERMES mutant and the lack of conservation in animals suggest that ERMES is a promising antifungal drug target. Our data further indicate that NLRP3 inhibition by MCC950 could modulate C. albicans-induced inflammation. IMPORTANCE The yeast Candida albicans causes human infections that have mortality rates approaching 50%. The key to developing improved therapeutics is to understand the host-pathogen interface. A critical interaction is that with macrophages: intracellular Candida triggers the NLRP3/caspase-1 inflammasome for escape through lytic host cell death, but this also activates antifungal responses. To better understand how the inflammasome response to Candida is fine-tuned, we established live-cell imaging of inflammasome activation at single-cell resolution, coupled with analysis of the fungal ERMES complex, a mitochondrial regulator that lacks human homologs. We show that ERMES mediates Candida escape via inflammasome-dependent processes, and our data suggest that inflammasome activation is controlled by the level of hyphal growth and exposure of cell wall components as a proxy for severity of danger. Our study provides the most detailed dynamic analysis of inflammasome responses to a fungal pathogen so far and establishes promising pathogen- and host-derived therapeutic strategies.
Collapse
|
196
|
Gould SB, Garg SG, Martin WF. Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System. Trends Microbiol 2016; 24:525-534. [PMID: 27040918 DOI: 10.1016/j.tim.2016.03.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022]
Abstract
Eukaryotes possess an elaborate endomembrane system with endoplasmic reticulum, nucleus, Golgi, lysosomes, peroxisomes, autophagosomes, and dynamic vesicle traffic. Theories addressing the evolutionary origin of eukaryotic endomembranes have overlooked the outer membrane vesicles (OMVs) that bacteria, archaea, and mitochondria secrete into their surroundings. We propose that the eukaryotic endomembrane system originated from bacterial OMVs released by the mitochondrial ancestor within the cytosol of its archaeal host at eukaryote origin. Confined within the host's cytosol, OMVs accumulated naturally, fusing either with each other or with the host's plasma membrane. This matched the host's archaeal secretory pathway for cotranslational protein insertion with outward bound mitochondrial-derived vesicles consisting of bacterial lipids, forging a primordial, secretory endoplasmic reticulum as the cornerstone of the eukaryotic endomembrane system. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sven B Gould
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Sriram G Garg
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|