151
|
Huang JW, Acharya A, Taglialatela A, Nambiar TS, Cuella-Martin R, Leuzzi G, Hayward SB, Joseph SA, Brunette GJ, Anand R, Soni RK, Clark NL, Bernstein KA, Cejka P, Ciccia A. MCM8IP activates the MCM8-9 helicase to promote DNA synthesis and homologous recombination upon DNA damage. Nat Commun 2020; 11:2948. [PMID: 32528060 PMCID: PMC7290032 DOI: 10.1038/s41467-020-16718-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
Homologous recombination (HR) mediates the error-free repair of DNA double-strand breaks to maintain genomic stability. Here we characterize C17orf53/MCM8IP, an OB-fold containing protein that binds ssDNA, as a DNA repair factor involved in HR. MCM8IP-deficient cells exhibit HR defects, especially in long-tract gene conversion, occurring downstream of RAD51 loading, consistent with a role for MCM8IP in HR-dependent DNA synthesis. Moreover, loss of MCM8IP confers cellular sensitivity to crosslinking agents and PARP inhibition. Importantly, we report that MCM8IP directly associates with MCM8-9, a helicase complex mutated in primary ovarian insufficiency, and RPA1. We additionally show that the interactions of MCM8IP with MCM8-9 and RPA facilitate HR and promote replication fork progression and cellular viability in response to treatment with crosslinking agents. Mechanistically, MCM8IP stimulates the helicase activity of MCM8-9. Collectively, our work identifies MCM8IP as a key regulator of MCM8-9-dependent DNA synthesis during DNA recombination and replication.
Collapse
Affiliation(s)
- Jen-Wei Huang
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ananya Acharya
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah A Joseph
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gregory J Brunette
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
152
|
Yu TY, Garcia VE, Symington LS. CDK and Mec1/Tel1-catalyzed phosphorylation of Sae2 regulate different responses to DNA damage. Nucleic Acids Res 2020; 47:11238-11249. [PMID: 31552432 PMCID: PMC6868371 DOI: 10.1093/nar/gkz814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 11/14/2022] Open
Abstract
Sae2 functions in the DNA damage response by controlling Mre11-Rad50-Xrs2 (MRX)-catalyzed end resection, an essential step for homology-dependent repair of double-strand breaks (DSBs), and by attenuating DNA damage checkpoint signaling. Phosphorylation of Sae2 by cyclin-dependent kinase (CDK1/Cdc28) activates the Mre11 endonuclease, while the physiological role of Sae2 phosphorylation by Mec1 and Tel1 checkpoint kinases is not fully understood. Here, we compare the phenotype of sae2 mutants lacking the main CDK (sae2-S267A) or Mec1 and Tel1 phosphorylation sites (sae2-5A) with sae2Δ and Mre11 nuclease defective (mre11-nd) mutants. The phosphorylation-site mutations confer DNA damage sensitivity, but not to the same extent as sae2Δ. The sae2-S267A mutation is epistatic to mre11-nd for camptothecin (CPT) sensitivity and synergizes with sgs1Δ, whereas sae2-5A synergizes with mre11-nd and exhibits epistasis with sgs1Δ. We find that attenuation of checkpoint signaling by Sae2 is mostly independent of Mre11 endonuclease activation but requires Mec1 and Tel1-dependent phosphorylation of Sae2. These results support a model whereby CDK-catalyzed phosphorylation of Sae2 activates resection via Mre11 endonuclease, whereas Sae2 phosphorylation by Mec1 and Tel1 promotes resection by the Dna2-Sgs1 and Exo1 pathways indirectly by dampening the DNA damage response.
Collapse
Affiliation(s)
- Tai-Yuan Yu
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Valerie E Garcia
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
153
|
Tisi R, Vertemara J, Zampella G, Longhese MP. Functional and structural insights into the MRX/MRN complex, a key player in recognition and repair of DNA double-strand breaks. Comput Struct Biotechnol J 2020; 18:1137-1152. [PMID: 32489527 PMCID: PMC7260605 DOI: 10.1016/j.csbj.2020.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Chromosomal DNA double-strand breaks (DSBs) are potentially lethal DNA lesions that pose a significant threat to genome stability and therefore need to be repaired to preserve genome integrity. Eukaryotic cells possess two main mechanisms for repairing DSBs: non-homologous end-joining (NHEJ) and homologous recombination (HR). HR requires that the 5' terminated strands at both DNA ends are nucleolytically degraded by a concerted action of nucleases in a process termed DNA-end resection. This degradation leads to the formation of 3'-ended single-stranded DNA (ssDNA) ends that are essential to use homologous DNA sequences for repair. The evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 complex (MRX/MRN) has enzymatic and structural activities to initiate DSB resection and to maintain the DSB ends tethered to each other for their repair. Furthermore, it is required to recruit and activate the protein kinase Tel1/ATM, which plays a key role in DSB signaling. All these functions depend on ATP-regulated DNA binding and nucleolytic activities of the complex. Several structures have been obtained in recent years for Mre11 and Rad50 subunits from archaea, and a few from the bacterial and eukaryotic orthologs. Nevertheless, the mechanism of activation of this protein complex is yet to be fully elucidated. In this review, we focused on recent biophysical and structural insights on the MRX complex and their interplay.
Collapse
Affiliation(s)
- Renata Tisi
- Dipartimento di Biotecnologie and Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie and Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Giuseppe Zampella
- Dipartimento di Biotecnologie and Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie and Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
154
|
Batenburg NL, Walker JR, Coulombe Y, Sherker A, Masson JY, Zhu XD. CSB interacts with BRCA1 in late S/G2 to promote MRN- and CtIP-mediated DNA end resection. Nucleic Acids Res 2020; 47:10678-10692. [PMID: 31501894 PMCID: PMC6847465 DOI: 10.1093/nar/gkz784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/19/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023] Open
Abstract
CSB, a member of the SWI2/SNF2 superfamily, has been implicated in evicting histones to promote the DSB pathway choice towards homologous recombination (HR) repair. However, how CSB promotes HR repair remains poorly characterized. Here we demonstrate that CSB interacts with both MRE11/RAD50/NBS1 (MRN) and BRCA1 in a cell cycle regulated manner, with the former requiring its WHD and occurring predominantly in early S phase. CSB interacts with the BRCT domain of BRCA1 and this interaction is regulated by CDK-dependent phosphorylation of CSB on S1276. The CSB–BRCA1 interaction, which peaks in late S/G2 phase, is responsible for mediating the interaction of CSB with the BRCA1-C complex consisting of BRCA1, MRN and CtIP. While dispensable for histone eviction at DSBs, CSB phosphorylation on S1276 is necessary to promote efficient MRN- and CtIP-mediated DNA end resection, thereby restricting NHEJ and enforcing the DSB repair pathway choice to HR. CSB phosphorylation on S1276 is also necessary to support cell survival in response to DNA damage-inducing agents. These results altogether suggest that CSB interacts with BRCA1 to promote DNA end resection for HR repair and that although prerequisite, CSB-mediated histone eviction alone is insufficient to promote the pathway choice towards HR.
Collapse
Affiliation(s)
- Nicole L Batenburg
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - John R Walker
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Alana Sherker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, ON M5S 1A8, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
155
|
Colombo CV, Gnugnoli M, Gobbini E, Longhese MP. How do cells sense DNA lesions? Biochem Soc Trans 2020; 48:677-691. [PMID: 32219379 DOI: 10.1042/bst20191118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2023]
Abstract
DNA is exposed to both endogenous and exogenous DNA damaging agents that chemically modify it. To counteract the deleterious effects exerted by DNA lesions, eukaryotic cells have evolved a network of cellular pathways, termed DNA damage response (DDR). The DDR comprises both mechanisms devoted to repair DNA lesions and signal transduction pathways that sense DNA damage and transduce this information to specific cellular targets. These targets, in turn, impact a wide range of cellular processes including DNA replication, DNA repair and cell cycle transitions. The importance of the DDR is highlighted by the fact that DDR inactivation is commonly found in cancer and causes many different human diseases. The protein kinases ATM and ATR, as well as their budding yeast orthologs Tel1 and Mec1, act as master regulators of the DDR. The initiating events in the DDR entail both DNA lesion recognition and assembly of protein complexes at the damaged DNA sites. Here, we review what is known about the early steps of the DDR.
Collapse
Affiliation(s)
- Chiara Vittoria Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
156
|
Akagawa R, Trinh HT, Saha LK, Tsuda M, Hirota K, Yamada S, Shibata A, Kanemaki MT, Nakada S, Takeda S, Sasanuma H. UBC13-Mediated Ubiquitin Signaling Promotes Removal of Blocking Adducts from DNA Double-Strand Breaks. iScience 2020; 23:101027. [PMID: 32283528 PMCID: PMC7155233 DOI: 10.1016/j.isci.2020.101027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/22/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022] Open
Abstract
Chemical modifications and adducts at DNA double-strand break (DSB) ends must be cleaned before re-joining by non-homologous end-joining (NHEJ). MRE11 nuclease is essential for efficient removal of Topoisomerase II (TOP2)-DNA adducts from TOP2 poison-induced DSBs. However, mechanisms in MRE11 recruitment to DSB sites in G1 phase remain poorly understood. Here, we report that TOP2-DNA adducts are expeditiously removed through UBC13-mediated polyubiquitination, which promotes DSB resection in G2 phase. We found that this ubiquitin signaling is required for efficient recruitment of MRE11 onto DSB sites in G1 by facilitating localization of RAP80 and BRCA1 to DSB sites and complex formation between BRCA1 and MRE11 at DSB sites. UBC13 and MRE11 are dispensable for restriction-enzyme-induced "clean" DSBs repair but responsible for over 50% and 70% of NHEJ-dependent repair of γ-ray-induced "dirty" DSBs, respectively. In conclusion, ubiquitin signaling promotes nucleolytic removal of DSB blocking adducts by MRE11 before NHEJ.
Collapse
Affiliation(s)
- Remi Akagawa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hai Thanh Trinh
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Liton Kumar Saha
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Masato T Kanemaki
- National Institute of Genetics, Research Organization of Information and Systems (ROIS), and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
157
|
Ceppi I, Howard SM, Kasaciunaite K, Pinto C, Anand R, Seidel R, Cejka P. CtIP promotes the motor activity of DNA2 to accelerate long-range DNA end resection. Proc Natl Acad Sci U S A 2020; 117:8859-8869. [PMID: 32241893 PMCID: PMC7183222 DOI: 10.1073/pnas.2001165117] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To repair a DNA double-strand break by homologous recombination, 5'-terminated DNA strands must first be resected to reveal 3'-overhangs. This process is initiated by a short-range resection catalyzed by MRE11-RAD50-NBS1 (MRN) stimulated by CtIP, which is followed by a long-range step involving EXO1 or DNA2 nuclease. DNA2 is a bifunctional enzyme that contains both single-stranded DNA (ssDNA)-specific nuclease and motor activities. Upon DNA unwinding by Bloom (BLM) or Werner (WRN) helicase, RPA directs the DNA2 nuclease to degrade the 5'-strand. RPA bound to ssDNA also represents a barrier, explaining the need for the motor activity of DNA2 to displace RPA prior to resection. Using ensemble and single-molecule biochemistry, we show that CtIP also dramatically stimulates the adenosine 5'-triphosphate (ATP) hydrolysis-driven motor activity of DNA2 involved in the long-range resection step. This activation in turn strongly promotes the degradation of RPA-coated ssDNA by DNA2. Accordingly, the stimulatory effect of CtIP is only observed with wild-type DNA2, but not the helicase-deficient variant. Similarly to the function of CtIP to promote MRN, also the DNA2 stimulatory effect is facilitated by CtIP phosphorylation. The domain of CtIP required to promote DNA2 is located in the central region lacking in lower eukaryotes and is fully separable from domains involved in the stimulation of MRN. These results establish how CtIP couples both MRE11-dependent short-range and DNA2-dependent long-range resection and define the involvement of the motor activity of DNA2 in this process. Our data might help explain the less severe resection defects of MRE11 nuclease-deficient cells compared to those lacking CtIP.
Collapse
Affiliation(s)
- Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland
- Institute of Biochemistry, Department of Biology, ETH, Zürich, 8093, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland
| | - Kristina Kasaciunaite
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Cosimo Pinto
- Institute of Molecular Cancer Research, University of Zürich, Zürich, 8057, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland;
- Institute of Biochemistry, Department of Biology, ETH, Zürich, 8093, Switzerland
| |
Collapse
|
158
|
Abstract
In this review, Mirman et al. summarize the current understanding of the role of 53BP1 in DSB repair at deprotected telomeres, in class switch recombination in the immune system, and in the context of PARPi-treated BRCA1-deficient cells. They argue that the primary function of 53BP1 is not to regulate the choice between c-NHEJ and HDR, but to ensure the fidelity of DSB repair, a function that is corrupted in diseases where DNA repair is rewired. 53BP1 is an enigmatic DNA damage response factor that gained prominence because it determines the efficacy of PARP1 inhibitory drugs (PARPi) in BRCA1-deficient cancers. Recent studies have elevated 53BP1 from its modest status of (yet another) DNA damage factor to master regulator of double-strand break (DSB) repair pathway choice. Our review of the literature suggests an alternative view. We propose that 53BP1 has evolved to avoid mutagenic repair outcomes and does so by controlling the processing of DNA ends and the dynamics of DSBs. The consequences of 53BP1 deficiency, such as diminished PARPi efficacy in BRCA1-deficient cells and altered repair of damaged telomeres, can be explained from this viewpoint. We further propose that some of the fidelity functions of 53BP1 coevolved with class switch recombination (CSR) in the immune system. We speculate that, rather than being deterministic in DSB repair pathway choice, 53BP1 functions as a DSB escort that guards against illegitimate and potentially tumorigenic recombination.
Collapse
Affiliation(s)
- Zachary Mirman
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
159
|
Paiano J, Wu W, Yamada S, Sciascia N, Callen E, Paola Cotrim A, Deshpande RA, Maman Y, Day A, Paull TT, Nussenzweig A. ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis. Nat Commun 2020; 11:857. [PMID: 32051414 PMCID: PMC7016097 DOI: 10.1038/s41467-020-14654-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
Meiotic recombination is initiated by SPO11-induced double-strand breaks (DSBs). In most mammals, the methyltransferase PRDM9 guides SPO11 targeting, and the ATM kinase controls meiotic DSB numbers. Following MRE11 nuclease removal of SPO11, the DSB is resected and loaded with DMC1 filaments for homolog invasion. Here, we demonstrate the direct detection of meiotic DSBs and resection using END-seq on mouse spermatocytes with low sample input. We find that DMC1 limits both minimum and maximum resection lengths, whereas 53BP1, BRCA1 and EXO1 play surprisingly minimal roles. Through enzymatic modifications to END-seq, we identify a SPO11-bound meiotic recombination intermediate (SPO11-RI) present at all hotspots. We propose that SPO11-RI forms because chromatin-bound PRDM9 asymmetrically blocks MRE11 from releasing SPO11. In Atm-/- spermatocytes, trapped SPO11 cleavage complexes accumulate due to defective MRE11 initiation of resection. Thus, in addition to governing SPO11 breakage, ATM and PRDM9 are critical local regulators of mammalian SPO11 processing.
Collapse
Affiliation(s)
- Jacob Paiano
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Nicholas Sciascia
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
- Institute for Biomedical Sciences, George Washington University, Washington, DC, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ana Paola Cotrim
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Rajashree A Deshpande
- The Howard Hughes Medical Institute and The University of Texas at Austin, Austin, TX, 78712, USA
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Tanya T Paull
- The Howard Hughes Medical Institute and The University of Texas at Austin, Austin, TX, 78712, USA
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
160
|
Yang C, Sofroni K, Wijnker E, Hamamura Y, Carstens L, Harashima H, Stolze SC, Vezon D, Chelysheva L, Orban‐Nemeth Z, Pochon G, Nakagami H, Schlögelhofer P, Grelon M, Schnittger A. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis. EMBO J 2020; 39:e101625. [PMID: 31556459 PMCID: PMC6996576 DOI: 10.15252/embj.2019101625] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Meiosis is key to sexual reproduction and genetic diversity. Here, we show that the Arabidopsis cyclin-dependent kinase Cdk1/Cdk2 homolog CDKA;1 is an important regulator of meiosis needed for several aspects of meiosis such as chromosome synapsis. We identify the chromosome axis protein ASYNAPTIC 1 (ASY1), the Arabidopsis homolog of Hop1 (homolog pairing 1), essential for synaptonemal complex formation, as a target of CDKA;1. The phosphorylation of ASY1 is required for its recruitment to the chromosome axis via ASYNAPTIC 3 (ASY3), the Arabidopsis reductional division 1 (Red1) homolog, counteracting the disassembly activity of the AAA+ ATPase PACHYTENE CHECKPOINT 2 (PCH2). Furthermore, we have identified the closure motif in ASY1, typical for HORMA domain proteins, and provide evidence that the phosphorylation of ASY1 regulates the putative self-polymerization of ASY1 along the chromosome axis. Hence, the phosphorylation of ASY1 by CDKA;1 appears to be a two-pronged mechanism to initiate chromosome axis formation in meiosis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Kostika Sofroni
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Erik Wijnker
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
- Present address:
Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| | - Yuki Hamamura
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Lena Carstens
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
- Present address:
Plant Developmental Biology & Plant PhysiologyKiel UniversityKielGermany
| | - Hirofumi Harashima
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Present address:
Solution Research LaboratoryAS ONE CorporationKawasakiku, KawasakiJapan
| | | | - Daniel Vezon
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Liudmila Chelysheva
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Zsuzsanna Orban‐Nemeth
- Department of Chromosome BiologyMax F. Perutz LaboratoriesVienna BiocenterUniversity of ViennaViennaAustria
- Present address:
Institute of Molecular PathologyVienna BiocenterViennaAustria
| | - Gaëtan Pochon
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | | | - Peter Schlögelhofer
- Department of Chromosome BiologyMax F. Perutz LaboratoriesVienna BiocenterUniversity of ViennaViennaAustria
| | - Mathilde Grelon
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Arp Schnittger
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| |
Collapse
|
161
|
Serrano-Benítez A, Cortés-Ledesma F, Ruiz JF. "An End to a Means": How DNA-End Structure Shapes the Double-Strand Break Repair Process. Front Mol Biosci 2020; 6:153. [PMID: 31998749 PMCID: PMC6965357 DOI: 10.3389/fmolb.2019.00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Endogenously-arising DNA double-strand breaks (DSBs) rarely harbor canonical 5′-phosphate, 3′-hydroxyl moieties at the ends, which are, regardless of the pathway used, ultimately required for their repair. Cells are therefore endowed with a wide variety of enzymes that can deal with these chemical and structural variations and guarantee the formation of ligatable termini. An important distinction is whether the ends are directly “unblocked” by specific enzymatic activities without affecting the integrity of the DNA molecule and its sequence, or whether they are “processed” by unspecific nucleases that remove nucleotides from the termini. DNA end structure and configuration, therefore, shape the repair process, its requirements, and, importantly, its final outcome. Thus, the molecular mechanisms that coordinate and integrate the cellular response to blocked DSBs, although still largely unexplored, can be particularly relevant for maintaining genome integrity and avoiding malignant transformation and cancer.
Collapse
Affiliation(s)
- Almudena Serrano-Benítez
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER-CSIC-University of Seville-Pablo de Olavide University), Seville, Spain
| | - Felipe Cortés-Ledesma
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER-CSIC-University of Seville-Pablo de Olavide University), Seville, Spain.,Topology and DNA breaks Group, Spanish National Cancer Research Center, Madrid, Spain
| | - Jose F Ruiz
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER-CSIC-University of Seville-Pablo de Olavide University), Seville, Spain.,Department of Plant Biochemistry and Molecular Biology, University of Seville, Seville, Spain
| |
Collapse
|
162
|
Deshpande RA, Myler LR, Soniat MM, Makharashvili N, Lee L, Lees-Miller SP, Finkelstein IJ, Paull TT. DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. SCIENCE ADVANCES 2020; 6:eaay0922. [PMID: 31934630 PMCID: PMC6949041 DOI: 10.1126/sciadv.aay0922] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The repair of DNA double-strand breaks occurs through nonhomologous end joining or homologous recombination in vertebrate cells-a choice that is thought to be decided by a competition between DNA-dependent protein kinase (DNA-PK) and the Mre11/Rad50/Nbs1 (MRN) complex but is not well understood. Using ensemble biochemistry and single-molecule approaches, here, we show that the MRN complex is dependent on DNA-PK and phosphorylated CtIP to perform efficient processing and resection of DNA ends in physiological conditions, thus eliminating the competition model. Endonucleolytic removal of DNA-PK-bound DNA ends is also observed at double-strand break sites in human cells. The involvement of DNA-PK in MRN-mediated end processing promotes an efficient and sequential transition from nonhomologous end joining to homologous recombination by facilitating DNA-PK removal.
Collapse
Affiliation(s)
- Rajashree A. Deshpande
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Logan R. Myler
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY 10065, USA
| | - Michael M. Soniat
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Nodar Makharashvili
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta T2N 1N4, Canada
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta T2N 1N4, Canada
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T. Paull
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
163
|
Sutcu HH, Matta E, Ishchenko AA. Role of PARP-catalyzed ADP-ribosylation in the Crosstalk Between DNA Strand Breaks and Epigenetic Regulation. J Mol Biol 2019:S0022-2836(19)30719-3. [PMID: 31866292 DOI: 10.1016/j.jmb.2019.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Covalent linkage of ADP-ribose units to proteins catalyzed by poly(ADP-ribose) polymerases (PARPs) plays important signaling functions in a plethora of cellular processes including DNA damage response, chromatin organization, and gene transcription. Poly- and mono-ADP-ribosylation of target macromolecules are often responsible both for the initiation and for coordination of these processes in mammalian cells. Currently, the number of cellular targets for ADP-ribosylation is rapidly expanding, and the molecular mechanisms underlying the broad substrate specificity of PARPs present enormous interest. In this review, the roles of PARP-mediated modifications of protein and nucleic acids, the readers of ADP-ribosylated structures, and the origin and function of programmed DNA strand breaks in PARP activation, transcription regulation, and DNA demethylation are discussed.
Collapse
Affiliation(s)
- Haser H Sutcu
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Elie Matta
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.
| |
Collapse
|
164
|
Stroik S, Kurtz K, Hendrickson EA. CtIP is essential for telomere replication. Nucleic Acids Res 2019; 47:8927-8940. [PMID: 31378812 PMCID: PMC6755089 DOI: 10.1093/nar/gkz652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 01/10/2023] Open
Abstract
The maintenance of telomere length is critical to longevity and survival. Specifically, the failure to properly replicate, resect, and/or form appropriate telomeric structures drives telomere shortening and, in turn, genomic instability. The endonuclease CtIP is a DNA repair protein that is well-known to promote genome stability through the resection of endogenous DNA double-stranded breaks. Here, we describe a novel role for CtIP. We show that in the absence of CtIP, human telomeres shorten rapidly to non-viable lengths. This telomere dysfunction results in an accumulation of fusions, breaks, and frank telomere loss. Additionally, CtIP suppresses the generation of circular, extrachromosomal telomeric DNA. These latter structures appear to arise from arrested DNA replication forks that accumulate in the absence of CtIP. Hence, CtIP is required for faithful replication through telomeres via its roles at stalled replication tracts. Our findings demonstrate a new role for CtIP as a protector of human telomere integrity.
Collapse
Affiliation(s)
- Susanna Stroik
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kevin Kurtz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
165
|
Pharmacological methods to transcriptionally modulate double-strand break DNA repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 354:187-213. [PMID: 32475473 DOI: 10.1016/bs.ircmb.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is much interest in targeting DNA repair pathways for use in cancer therapy, as the effectiveness of many therapeutic agents relies on their ability to cause damage to DNA, and deficiencies in DSB repair pathways can make cells more sensitive to specific cancer therapies. For example, defects in the double-strand break (DSB) pathways, non-homologous end joining (NHEJ) and homology-directed repair (HDR), induce sensitivity to radiation therapy and poly(ADP)-ribose polymerase (PARP) inhibitors, respectively. However, traditional approaches to inhibit DNA repair through small molecule inhibitors have often been limited by toxicity and poor bioavailability. This review identifies several pharmacologic manipulations that modulate DSB repair by reducing expression of DNA repair factors. A number of pathways have been identified that modulate activity of NHEJ and HDR through this mechanism, including growth and hormonal receptor signaling pathways as well as epigenetic modifiers. We also discuss the effects of anti-angiogenic therapy on DSB repair. Preclinically, these pharmacological manipulations of DNA repair factor expression have been shown to increase sensitivity to specific cancer therapies, including ionizing radiation and PARP inhibitors. When applicable, relevant clinical trials are discussed and areas for future study are identified.
Collapse
|
166
|
Trenner A, Sartori AA. Harnessing DNA Double-Strand Break Repair for Cancer Treatment. Front Oncol 2019; 9:1388. [PMID: 31921645 PMCID: PMC6921965 DOI: 10.3389/fonc.2019.01388] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly deleterious, with a single unrepaired DSB being sufficient to trigger cell death. Compared to healthy cells, cancer cells have a higher DSB burden due to oncogene-induced replication stress and acquired defects in DNA damage response (DDR) mechanisms. Consequently, hyperproliferating cancer cells rely on efficient DSB repair for their survival. Moreover, augmented DSB repair capacity is a major cause of radio- and chemoresistance and, ultimately, cancer recurrence. Although inherited DDR defects can predispose individuals to develop certain cancers, the very same vulnerability may be therapeutically exploited to preferentially kill tumor cells. A paradigm for DNA repair targeted therapy has emerged in cancers that exhibit mutations in BRCA1 or BRCA2 tumor suppressor genes, conferring a strong defect in homologous recombination, a major and error-free DSB repair pathway. Clinical validation of such approaches, commonly described as synthetic lethality (SL), has been provided by the regulatory approval of poly(ADP-ribose) polymerase 1 inhibitors (PARPi) as monotherapy for BRCA1/2-mutated breast and ovarian tumors. In this review, we will describe the different DSB repair mechanisms and discuss how their specific features could be exploited for cancer therapy. A major emphasis is put on advances in combinatorial treatment modalities and SL approaches arising from DSB repair pathway interdependencies.
Collapse
Affiliation(s)
- Anika Trenner
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
167
|
Hwang SY, Kang MA, Baik CJ, Lee Y, Hang NT, Kim BG, Han JS, Jeong JH, Park D, Myung K, Lee JS. CTCF cooperates with CtIP to drive homologous recombination repair of double-strand breaks. Nucleic Acids Res 2019; 47:9160-9179. [PMID: 31340001 PMCID: PMC6753481 DOI: 10.1093/nar/gkz639] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023] Open
Abstract
The pleiotropic CCCTC-binding factor (CTCF) plays a role in homologous recombination (HR) repair of DNA double-strand breaks (DSBs). However, the precise mechanistic role of CTCF in HR remains largely unclear. Here, we show that CTCF engages in DNA end resection, which is the initial, crucial step in HR, through its interactions with MRE11 and CtIP. Depletion of CTCF profoundly impairs HR and attenuates CtIP recruitment at DSBs. CTCF physically interacts with MRE11 and CtIP and promotes CtIP recruitment to sites of DNA damage. Subsequently, CTCF facilitates DNA end resection to allow HR, in conjunction with MRE11–CtIP. Notably, the zinc finger domain of CTCF binds to both MRE11 and CtIP and enables proficient CtIP recruitment, DNA end resection and HR. The N-terminus of CTCF is able to bind to only MRE11 and its C-terminus is incapable of binding to MRE11 and CtIP, thereby resulting in compromised CtIP recruitment, DSB resection and HR. Overall, this suggests an important function of CTCF in DNA end resection through the recruitment of CtIP at DSBs. Collectively, our findings identify a critical role of CTCF at the first control point in selecting the HR repair pathway.
Collapse
Affiliation(s)
- Soon Young Hwang
- Department of Life Sciences and Cellulomics Institute Ajou University, Suwon 16499, Korea
| | - Mi Ae Kang
- Department of Life Sciences and Cellulomics Institute Ajou University, Suwon 16499, Korea
| | - Chul Joon Baik
- Department of Life Sciences and Cellulomics Institute Ajou University, Suwon 16499, Korea
| | - Yejin Lee
- Department of Life Sciences and Cellulomics Institute Ajou University, Suwon 16499, Korea
| | - Ngo Thanh Hang
- Department of Life Sciences and Cellulomics Institute Ajou University, Suwon 16499, Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, UNIST, Ulsan 44919, Korea
| | - Joo Seok Han
- Center for Genomic Integrity, Institute for Basic Science, UNIST, Ulsan 44919, Korea
| | - Jae-Hoon Jeong
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea
| | - Daechan Park
- Department of Life Sciences and Cellulomics Institute Ajou University, Suwon 16499, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, UNIST, Ulsan 44919, Korea
| | - Jong-Soo Lee
- Department of Life Sciences and Cellulomics Institute Ajou University, Suwon 16499, Korea
| |
Collapse
|
168
|
Jimeno S, Camarillo R, Mejías-Navarro F, Fernández-Ávila MJ, Soria-Bretones I, Prados-Carvajal R, Huertas P. The Helicase PIF1 Facilitates Resection over Sequences Prone to Forming G4 Structures. Cell Rep 2019; 24:3262-3273.e4. [PMID: 30232007 DOI: 10.1016/j.celrep.2018.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/16/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022] Open
Abstract
DNA breaks are complex lesions that can be repaired either by non-homologous end joining (NHEJ) or by homologous recombination (HR). The decision between these two routes of DNA repair is a key point of the DNA damage response (DDR) that is controlled by DNA resection. The core machinery catalyzing the resection process is well established. However, little is known about the additional requirements of DNA resection over DNA structures with high complexity. Here, we found evidence that the human helicase PIF1 has a role in DNA resection, specifically for defined DNA regions, such as those prone to form G-quadruplexes. Indeed, PIF1 is recruited to the site of DNA damage and physically interacts with proteins involved in DNA resection, and its depletion causes DNA damage sensitivity and a reduction of HR efficiency. Moreover, G4 stabilization by itself hampers DNA resection, a phenomenon suppressed by PIF1 overexpression.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain.
| | - Rosa Camarillo
- Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Fernando Mejías-Navarro
- Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Maria Jesús Fernández-Ávila
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Isabel Soria-Bretones
- Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Rosario Prados-Carvajal
- Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain.
| |
Collapse
|
169
|
Shukla V, Halabelian L, Balagere S, Samaniego-Castruita D, Feldman DE, Arrowsmith CH, Rao A, Aravind L. HMCES Functions in the Alternative End-Joining Pathway of the DNA DSB Repair during Class Switch Recombination in B Cells. Mol Cell 2019; 77:384-394.e4. [PMID: 31806351 DOI: 10.1016/j.molcel.2019.10.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/06/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
HMCES (5hmC binding, embryonic stem cell-specific-protein), originally identified as a protein capable of binding 5-hydroxymethylcytosine (5hmC), an epigenetic modification generated by TET proteins, was previously reported to covalently crosslink to DNA at abasic sites via a conserved cysteine. We show here that Hmces-deficient mice display normal hematopoiesis without global alterations in 5hmC. HMCES specifically enables DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway during class switch recombination (CSR) in B cells, and HMCES deficiency leads to a significant defect in CSR. HMCES mediates Alt-EJ through its SOS-response-associated-peptidase domain (SRAPd), a function that requires DNA binding but is independent of its autopeptidase and DNA-crosslinking activities. We show that HMCES is recruited to switch regions of the immunoglobulin locus and provide a potential structural basis for the interaction of HMCES with long DNA overhangs generated by Alt-EJ during CSR. Our studies provide further evidence for a specialized role for HMCES in DNA repair.
Collapse
Affiliation(s)
- Vipul Shukla
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sanjana Balagere
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Daniela Samaniego-Castruita
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Douglas E Feldman
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA 93033, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; Department of Pharmacology and Moores Cancer Center, University of San Diego, California, 9500 Gilman Drive, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
170
|
Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 2019; 21:1468-1478. [PMID: 31792376 DOI: 10.1038/s41556-019-0425-z] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Eukaryotic cells deploy overlapping repair pathways to resolve DNA damage. Advancements in genome editing take advantage of these pathways to produce permanent genetic changes. Despite recent improvements, genome editing can produce diverse outcomes that can introduce risks in clinical applications. Although homology-directed repair is attractive for its ability to encode precise edits, it is particularly difficult in human cells. Here we discuss the DNA repair pathways that underlie genome editing and strategies to favour various outcomes.
Collapse
|
171
|
Fiévet A, Bellanger D, Zahed L, Burglen L, Derrien AC, Dubois d'Enghien C, Lespinasse J, Parfait B, Pedespan JM, Rieunier G, Stoppa-Lyonnet D, Stern MH. DNA repair functional analyses of NBN hypomorphic variants associated with NBN-related infertility. Hum Mutat 2019; 41:608-618. [PMID: 31729086 DOI: 10.1002/humu.23955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 01/17/2023]
Abstract
Nijmegen breakage syndrome caused by biallelic pathogenic variants of the DNA-damage response gene NBN, is characterized by severe microcephaly, cancer proneness, infertility, and karyotype abnormalities. We previously reported NBN variants in siblings suffering from fertility defects. Here, we identify a new founder NBN variant (c.442A>G, p.(Thr148Ala)) in Lebanese patients associated with isolated infertility. Functional analyses explored preserved or altered functions correlated with their remarkably mild phenotype. Transcript and protein analyses supported the use of an alternative transcript with in-frame skipping of exons 4-5, leading to p84-NBN protein with a preserved forkhead-associated (FHA) domain. The level of NBN was dramatically reduced and the MRN complex delocalized to the cytoplasm. Interestingly, ataxia-elangiectasia mutated (ATM) also shifted from the nucleus to the cytoplasm, suggesting some interaction between ATM and the MRN complex at a steady state. The ATM pathway activation, attenuated in typical patients with NBS, appeared normal under camptothecin treatment in these new NBN-related infertile patients. Cell cycle checkpoint defect was present in these atypical patients, although to a lesser extent than in typical patients with NBS. In conclusion, we report three new NBN-related infertile patients and we suggest that preserved FHA domain could be responsible for the mild phenotype and intermediate DNA-damage response defects.
Collapse
Affiliation(s)
- Alice Fiévet
- INSERM U830, Institut Curie, PSL Research University, Paris, France.,D.R.U.M. Team, INSERM U830, Institut Curie, Paris, France.,Service de Génétique, Institut Curie Hôpital, Paris, France.,Service Génétique des Tumeurs, Gustave Roussy, Villejuif, France
| | - Dorine Bellanger
- INSERM U830, Institut Curie, PSL Research University, Paris, France.,D.R.U.M. Team, INSERM U830, Institut Curie, Paris, France
| | - Laila Zahed
- Department of Clinical Laboratory, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Lydie Burglen
- Centre de Référence des, Malformations et Maladies Congénitales du Cervelet, Paris, France.,GRC n°19, Pathologies Congénitales du Cervelet-LeucoDystrophies, Hôpital Armand Trousseau (APHP), Sorbonne Université, Paris, France.,INSERM U1141, Université Paris Diderot, Paris, France.,Département de Génétique Médicale (GHUEP), Hôpital Armand Trousseau (APHP), Paris, France
| | - Anne-Céline Derrien
- INSERM U830, Institut Curie, PSL Research University, Paris, France.,D.R.U.M. Team, INSERM U830, Institut Curie, Paris, France
| | | | - James Lespinasse
- Génétique Chromosomique, Centre Hospitalier Metropole Savoie, Chambéry-Hôtel-Dieu, Chambéry, France
| | - Béatrice Parfait
- Centre de ressources Biologiques, Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | - Guillaume Rieunier
- INSERM U830, Institut Curie, PSL Research University, Paris, France.,D.R.U.M. Team, INSERM U830, Institut Curie, Paris, France
| | - Dominique Stoppa-Lyonnet
- D.R.U.M. Team, INSERM U830, Institut Curie, Paris, France.,Service de Génétique, Institut Curie Hôpital, Paris, France.,Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Marc-Henri Stern
- INSERM U830, Institut Curie, PSL Research University, Paris, France.,D.R.U.M. Team, INSERM U830, Institut Curie, Paris, France.,Service de Génétique, Institut Curie Hôpital, Paris, France
| |
Collapse
|
172
|
Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 2019; 20:698-714. [PMID: 31263220 PMCID: PMC7315405 DOI: 10.1038/s41580-019-0152-0] [Citation(s) in RCA: 948] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Abstract
The major pathways of DNA double-strand break (DSB) repair are crucial for maintaining genomic stability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. The two major mechanisms of DSB repair in mammalian cells are non-homologous end joining (NHEJ) and homologous recombination. In this Review, we consider DSB repair-pathway choice in somatic mammalian cells as a series of 'decision trees', and explore how defective pathway choice can lead to genomic instability. Stalled, collapsed or broken DNA replication forks present a distinctive challenge to the DSB repair system. Emerging evidence suggests that the 'rules' governing repair-pathway choice at stalled replication forks differ from those at replication-independent DSBs.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
173
|
Käshammer L, Saathoff JH, Lammens K, Gut F, Bartho J, Alt A, Kessler B, Hopfner KP. Mechanism of DNA End Sensing and Processing by the Mre11-Rad50 Complex. Mol Cell 2019; 76:382-394.e6. [DOI: 10.1016/j.molcel.2019.07.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/17/2019] [Accepted: 07/25/2019] [Indexed: 02/01/2023]
|
174
|
Yao L, Yu F, Xu Y, Wang Y, Zuo Y, Wang C, Ye L. DNA damage response manages cell cycle restriction of senile multipotent mesenchymal stromal cells. Mol Biol Rep 2019; 47:809-818. [PMID: 31664596 DOI: 10.1007/s11033-019-05150-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/18/2019] [Indexed: 02/05/2023]
Abstract
Multipotent mesenchymal stromal cells (MMSCs) are promising to treat a variety of traumatic and degenerative diseases. However, in vitro-passage aging induces cell cycle arrest and a series of genetic and biological changes, which greatly limits ex vivo cell number expansion and further clinical application of MMSCs. In most cases, DNA damage and DNA damage response (DDR) act as the main cause and executor of cellular senescence respectively. Mechanistically, DNA damage signals induce cell cycle arrest and DNA damage repair via DDR. If the DNA damage is indelible, MMSCs would entry into a permanent cell cycle arrest. It should be noted that apart from DDR signaling, certain proliferation or metabolism pathways are also occupied in DNA damage related cell cycle arrest. New findings of these aspects will also be summarized in this study. In summary, we aim to provide a comprehensive review of DDR associated cell cycle regulation and other major molecular signaling in the senescence of MMSCs. Above knowledge could contribute to improve the limited capacity of in vitro expansion of MMSCs, and then promote their clinical applications.
Collapse
Affiliation(s)
- Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yining Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
175
|
Abstract
The repair of DNA double-strand breaks occurs through a series of defined steps that are evolutionarily conserved and well-understood in most experimental organisms. However, it is becoming increasingly clear that repair does not occur in isolation from other DNA transactions. Transcription of DNA produces topological changes, RNA species, and RNA-dependent protein complexes that can dramatically influence the efficiency and outcomes of DNA double-strand break repair. The transcription-associated history of several double-strand break repair factors is reviewed here, with an emphasis on their roles in regulating R-loops and the emerging role of R-loops in coordination of repair events. Evidence for nucleolytic processing of R-loops is also discussed, as well as the molecular tools commonly used to measure RNA-DNA hybrids in cells.
Collapse
Affiliation(s)
- Tanya T Paull
- The Department of Molecular Biosciences and the Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
176
|
Bai Y, Wang W, Li S, Zhan J, Li H, Zhao M, Zhou XA, Li S, Li X, Huo Y, Shen Q, Zhou M, Zhang H, Luo J, Sung P, Zhu WG, Xu X, Wang J. C1QBP Promotes Homologous Recombination by Stabilizing MRE11 and Controlling the Assembly and Activation of MRE11/RAD50/NBS1 Complex. Mol Cell 2019; 75:1299-1314.e6. [PMID: 31353207 DOI: 10.1016/j.molcel.2019.06.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022]
Abstract
MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.
Collapse
Affiliation(s)
- Yongtai Bai
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Weibin Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Siyu Li
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hanxiao Li
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Meimei Zhao
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Albert Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shiwei Li
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoman Li
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yanfei Huo
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qinjian Shen
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mei Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xingzhi Xu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiadong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
177
|
Densham RM, Morris JR. Moving Mountains-The BRCA1 Promotion of DNA Resection. Front Mol Biosci 2019; 6:79. [PMID: 31552267 PMCID: PMC6733915 DOI: 10.3389/fmolb.2019.00079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand breaks (DSBs) occur in our cells in the context of chromatin. This type of lesion is toxic, entirely preventing genome continuity and causing cell death or terminal arrest. Several repair mechanisms can act on DNA surrounding a DSB, only some of which carry a low risk of mutation, so that which repair process is utilized is critical to the stability of genetic material of cells. A key component of repair outcome is the degree of DNA resection directed to either side of the break site. This in turn determines the subsequent forms of repair in which DNA homology plays a part. Here we will focus on chromatin and chromatin-bound complexes which constitute the "mountains" that block resection, with a particular focus on how the breast and ovarian cancer predisposition protein-1 (BRCA1) contributes to repair outcomes through overcoming these blocks.
Collapse
Affiliation(s)
| | - Joanna R. Morris
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
178
|
Byrum AK, Vindigni A, Mosammaparast N. Defining and Modulating 'BRCAness'. Trends Cell Biol 2019; 29:740-751. [PMID: 31362850 DOI: 10.1016/j.tcb.2019.06.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023]
Abstract
The concept of 'BRCAness' defines the pathogenesis and vulnerability of multiple cancers. The canonical definition of BRCAness is a defect in homologous recombination repair, mimicking BRCA1 or BRCA2 loss. In turn, BRCA-deficient cells utilize error-prone DNA-repair pathways, causing increased genomic instability, which may be responsible for their sensitivity to DNA damaging agents and poly-(ADP)-ribose polymerase inhibitors (PARPis). However, recent work has expanded the mechanistic basis of BRCAness, to include defects in replication fork protection (RFP). Here, we broaden the definition of BRCAness to include RFP and regulatory mechanisms that cause synthetic lethality with PARPis. We highlight these recent discoveries, which include mechanisms of RFP regulation, DNA damage checkpoint proteins, as well as kinases that regulate BRCA1/2 function. Importantly, many of these emerging mechanisms may be targeted for inhibition with small molecule inhibitors, thus inducing BRCAness in a much larger subset of BRCA-proficient tumors, with significant translational potential.
Collapse
Affiliation(s)
- Andrea K Byrum
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
179
|
Srinivasan G, Williamson EA, Kong K, Jaiswal AS, Huang G, Kim HS, Schärer O, Zhao W, Burma S, Sung P, Hromas R. MiR223-3p promotes synthetic lethality in BRCA1-deficient cancers. Proc Natl Acad Sci U S A 2019; 116:17438-17443. [PMID: 31395736 PMCID: PMC6717293 DOI: 10.1073/pnas.1903150116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Defects in DNA repair give rise to genomic instability, leading to neoplasia. Cancer cells defective in one DNA repair pathway can become reliant on remaining repair pathways for survival and proliferation. This attribute of cancer cells can be exploited therapeutically, by inhibiting the remaining repair pathway, a process termed synthetic lethality. This process underlies the mechanism of the Poly-ADP ribose polymerase-1 (PARP1) inhibitors in clinical use, which target BRCA1 deficient cancers, which is indispensable for homologous recombination (HR) DNA repair. HR is the major repair pathway for stressed replication forks, but when BRCA1 is deficient, stressed forks are repaired by back-up pathways such as alternative nonhomologous end-joining (aNHEJ). Unlike HR, aNHEJ is nonconservative, and can mediate chromosomal translocations. In this study we have found that miR223-3p decreases expression of PARP1, CtIP, and Pso4, each of which are aNHEJ components. In most cells, high levels of microRNA (miR) 223-3p repress aNHEJ, decreasing the risk of chromosomal translocations. Deletion of the miR223 locus in mice increases PARP1 levels in hematopoietic cells and enhances their risk of unprovoked chromosomal translocations. We also discovered that cancer cells deficient in BRCA1 or its obligate partner BRCA1-Associated Protein-1 (BAP1) routinely repress miR223-3p to permit repair of stressed replication forks via aNHEJ. Reconstituting the expression of miR223-3p in BRCA1- and BAP1-deficient cancer cells results in reduced repair of stressed replication forks and synthetic lethality. Thus, miR223-3p is a negative regulator of the aNHEJ DNA repair and represents a therapeutic pathway for BRCA1- or BAP1-deficient cancers.
Collapse
Affiliation(s)
- Gayathri Srinivasan
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Elizabeth A Williamson
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Kimi Kong
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Aruna S Jaiswal
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Guangcun Huang
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 689-798, Republic of Korea
| | - Orlando Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 689-798, Republic of Korea
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229;
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 689-798, Republic of Korea
| |
Collapse
|
180
|
Walker AK, Na J, Browning L, Humayun-Zakaria N, Zeegers MP, Cheng K, James ND, Bryan RT, Arnold R, Kiltie AE. MRE11A Isoform Expression Associated with Outcome Following Radiotherapy in Muscle-Invasive Bladder Cancer does not Alter Cell Survival and DNA Double-Strand Break Repair Following Ionising Radiation. Bladder Cancer 2019; 5:147-157. [PMID: 31942442 PMCID: PMC6949534 DOI: 10.3233/blc-190209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND DNA double strand breaks are the cytotoxic lesions produced by ionising radiation. Critical for the repair of these lesions is the DNA damage response protein MRE11 which, in a complex with RAD50 and NBS1, mediates DNA damage signalling and double-strand break repair. We previously found the presence of an MRE11 germline single nucleotide polymorphism (SNP), rs1805363 (G > A), to be associated with poor outcome following radiotherapy (RT) and increased expression of MRE11 isoform 2 in a limited panel of bladder cancer cell lines and tumours. OBJECTIVES To look for further evidence in support of the SNP/isoform association in a larger panel of germline and tumour samples donated by patients diagnosed with invasive bladder cancer, and to test the hypothesis that bladder cancer cells expressing MRE11 isoform 2 would be more radio resistant than cells expressing MRE11 isoform 1. METHODS Germline DNA from 189 patients with invasive bladder cancer (141 T2, 48 T1) was genotyped for the rs1805363 G > A SNP. Loss of heterozygosity was determined by genotyping tumour DNA in 17GA germline patients. The Cancer Genome Atlas was mined to correlate presence of the GA germline genotype with MRE11 isoform expression. We used colony formation assays and γH2AX foci kinetics after ionising radiation in RT112 MRE11 knockdown cells expressing ectopic MRE11 isoform 1 or 2. RESULTS Of the 189 germline DNA samples, 22 contained both the A minor allele and G major allele with the remaining wild type containing only the G major allele. LOH was identified in seven of 17 available tumour samples. Tumour MRE11 isoform 2 expression was found to be significantly higher (p = 0.007) in patients's samples containing the A minor allele compared to those with only the G major allele (n = 23). In the TCGA database we found 16% (66 out of 406) of bladder tumours heterozygous for the SNP and only two homozygous, and a significant relative increase of isoform 2 usage (p = 0.017). We identified no significant difference in radio sensitivity between bladder cancer cells expressing either MRE11 isoform. CONCLUSIONS In this study the MRE11 isoform 2 was not found to be associated with increased cellular sensitivity to radiation. We conclude that the previously reported association between the germline rs1805363 SNP and poor survival in MIBC patients following RT is unlikely to be related to the DNA damage response function of MRE11 isoform 2.
Collapse
Affiliation(s)
- Alexandra K. Walker
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Juri Na
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Lisa Browning
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, and NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Nada Humayun-Zakaria
- The Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Maurice P. Zeegers
- NUTRIM School for Nutrition and Translational Research in Metabolism and CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - K.K. Cheng
- The Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nicholas D. James
- The Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Richard T. Bryan
- The Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Roland Arnold
- The Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Anne E. Kiltie
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
181
|
Schrank B, Gautier J. Assembling nuclear domains: Lessons from DNA repair. J Cell Biol 2019; 218:2444-2455. [PMID: 31324649 PMCID: PMC6683749 DOI: 10.1083/jcb.201904202] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
Schrank and Gautier discuss the generation and function of nuclear domains during DNA repair with a special focus on nuclear actin polymerization. Eukaryotic nuclei are organized into nuclear domains that unite loci sharing a common function. These domains are essential for diverse processes including (1) the formation of topologically associated domains (TADs) that coordinate replication and transcription, (2) the formation of specialized transcription and splicing factories, and (3) the clustering of DNA double-strand breaks (DSBs), which concentrates damaged DNA for repair. The generation of nuclear domains requires forces that are beginning to be identified. In the case of DNA DSBs, DNA movement and clustering are driven by actin filament nucleators. Furthermore, RNAs and low-complexity protein domains such as RNA-binding proteins also accumulate around sites of transcription and repair. The link between liquid–liquid phase separation and actin nucleation in the formation of nuclear domains is still unknown. This review discusses DSB repair domain formation as a model for functional nuclear domains in other genomic contexts.
Collapse
Affiliation(s)
- Benjamin Schrank
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
182
|
Zarkovic G, Belousova EA, Talhaoui I, Saint-Pierre C, Kutuzov MM, Matkarimov BT, Biard D, Gasparutto D, Lavrik OI, Ishchenko AA. Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation. Nucleic Acids Res 2019; 46:2417-2431. [PMID: 29361132 PMCID: PMC5861426 DOI: 10.1093/nar/gkx1318] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) act as DNA break sensors and catalyze the synthesis of polymers of ADP-ribose (PAR) covalently attached to acceptor proteins at DNA damage sites. It has been demonstrated that both mammalian PARP1 and PARP2 PARylate double-strand break termini in DNA oligonucleotide duplexes in vitro. Here, we show that mammalian PARP2 and PARP3 can PARylate and mono(ADP-ribosyl)ate (MARylate), respectively, 5′- and 3′-terminal phosphate residues at double- and single-strand break termini of a DNA molecule containing multiple strand breaks. PARP3-catalyzed DNA MARylation can be considered a new type of reversible post-replicative DNA modification. According to DNA substrate specificity of PARP3 and PARP2, we propose a putative mechanistic model of PARP-catalyzed strand break–oriented ADP-ribosylation of DNA termini. Notably, PARP-mediated DNA ADP-ribosylation can be more effective than PARPs’ auto-ADP-ribosylation depending on the DNA substrates and reaction conditions used. Finally, we show an effective PARP3- or PARP2-catalyzed ADP-ribosylation of high-molecular-weight (∼3-kb) DNA molecules, PARP-mediated DNA PARylation in cell-free extracts and a persisting signal of anti-PAR antibodies in a serially purified genomic DNA from bleomycin-treated poly(ADP-ribose) glycohydrolase-depleted HeLa cells. These results suggest that certain types of complex DNA breaks can be effectively ADP-ribosylated by PARPs in cellular response to DNA damage.
Collapse
Affiliation(s)
- Gabriella Zarkovic
- Laboratoire «Stabilité Génétique et Oncogenèse» CNRS, UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, F-94805 Villejuif, France.,Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Ekaterina A Belousova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Av. 8, Novosibirsk 630090, Russia
| | - Ibtissam Talhaoui
- Laboratoire «Stabilité Génétique et Oncogenèse» CNRS, UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, F-94805 Villejuif, France.,Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Christine Saint-Pierre
- Université Grenoble Alpes, CEA, CNRS, INAC/SyMMES-UMR5819/CREAB, F-38000 Grenoble, France
| | - Mikhail M Kutuzov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Av. 8, Novosibirsk 630090, Russia
| | - Bakhyt T Matkarimov
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Denis Biard
- CEA, Institut de Biologie François Jacob, SEPIA, Team Cellular Engineering and Human Syndromes, Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France
| | - Didier Gasparutto
- Université Grenoble Alpes, CEA, CNRS, INAC/SyMMES-UMR5819/CREAB, F-38000 Grenoble, France
| | - Olga I Lavrik
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Av. 8, Novosibirsk 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Alexander A Ishchenko
- Laboratoire «Stabilité Génétique et Oncogenèse» CNRS, UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, F-94805 Villejuif, France.,Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| |
Collapse
|
183
|
Jimeno S, Prados-Carvajal R, Huertas P. The role of RNA and RNA-related proteins in the regulation of DNA double strand break repair pathway choice. DNA Repair (Amst) 2019; 81:102662. [PMID: 31303544 DOI: 10.1016/j.dnarep.2019.102662] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA end resection is a critical step in the repair of DNA double strand breaks. It controls the way the lesion is going to be repaired, thus its regulation has a great importance in maintaining genomic stability. In this review, we focus in recent discoveries in the field that point to a modulation of resection by RNA molecules and RNA-related proteins. Moreover, we aim to reconcile contradictory reports on the positive or negative effect of DNA:RNA hybrids in the resection process.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Rosario Prados-Carvajal
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain.
| |
Collapse
|
184
|
Sheppard EC, Rogers S, Harmer NJ, Chahwan R. A universal fluorescence-based toolkit for real-time quantification of DNA and RNA nuclease activity. Sci Rep 2019; 9:8853. [PMID: 31222049 PMCID: PMC6586798 DOI: 10.1038/s41598-019-45356-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
DNA and RNA nucleases play a critical role in a growing number of cellular processes ranging from DNA repair to immune surveillance. Nevertheless, many nucleases have unknown or poorly characterized activities. Elucidating nuclease substrate specificities and co-factors can support a more definitive understanding of cellular mechanisms in physiology and disease. Using fluorescence-based methods, we present a quick, safe, cost-effective, and real-time versatile nuclease assay, which uniquely studies nuclease enzyme kinetics. In conjunction with a substrate library we can now analyse nuclease catalytic rates, directionality, and substrate preferences. The assay is sensitive enough to detect kinetics of repair enzymes when confronted with DNA mismatches or DNA methylation sites. We have also extended our analysis to study the kinetics of human single-strand DNA nuclease TREX2, DNA polymerases, RNA, and RNA:DNA nucleases. These nucleases are involved in DNA repair, immune regulation, and have been associated with various diseases, including cancer and immune disorders.
Collapse
Affiliation(s)
- Emily C Sheppard
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Sally Rogers
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Nicholas J Harmer
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Richard Chahwan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK. .,Institute of Experimental Immunology, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
185
|
Casari E, Rinaldi C, Marsella A, Gnugnoli M, Colombo CV, Bonetti D, Longhese MP. Processing of DNA Double-Strand Breaks by the MRX Complex in a Chromatin Context. Front Mol Biosci 2019; 6:43. [PMID: 31231660 PMCID: PMC6567933 DOI: 10.3389/fmolb.2019.00043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic lesions that must be repaired to ensure genomic stability and avoid cell death. The cellular response to DSBs is initiated by the evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 (MRX/MRN) complex that has structural and catalytic functions. Furthermore, it is responsible for DSB signaling through the activation of the checkpoint kinase Tel1/ATM. Here, we review functions and regulation of the MRX/MRN complex in DSB processing in a chromatin context, as well as its interplay with Tel1/ATM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
186
|
Godau J, Ferretti LP, Trenner A, Dubois E, von Aesch C, Marmignon A, Simon L, Kapusta A, Guérois R, Bétermier M, Sartori AA. Identification of a miniature Sae2/Ctp1/CtIP ortholog from Paramecium tetraurelia required for sexual reproduction and DNA double-strand break repair. DNA Repair (Amst) 2019; 77:96-108. [DOI: 10.1016/j.dnarep.2019.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/28/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
|
187
|
Lewis TW, Barthelemy JR, Virts EL, Kennedy FM, Gadgil RY, Wiek C, Linka RM, Zhang F, Andreassen PR, Hanenberg H, Leffak M. Deficiency of the Fanconi anemia E2 ubiqitin conjugase UBE2T only partially abrogates Alu-mediated recombination in a new model of homology dependent recombination. Nucleic Acids Res 2019; 47:3503-3520. [PMID: 30715513 PMCID: PMC6468168 DOI: 10.1093/nar/gkz026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
The primary function of the UBE2T ubiquitin conjugase is in the monoubiquitination of the FANCI-FANCD2 heterodimer, a central step in the Fanconi anemia (FA) pathway. Genetic inactivation of UBE2T is responsible for the phenotypes of FANCT patients; however, a FANCT patient carrying a maternal duplication and a paternal deletion in the UBE2T loci displayed normal peripheral blood counts and UBE2T protein levels in B-lymphoblast cell lines. To test whether reversion by recombination between UBE2T AluYa5 elements could have occurred in the patient's hematopoietic stem cells despite the defects in homologous recombination (HR) in FA cells, we constructed HeLa cell lines containing the UBE2T AluYa5 elements and neighboring intervening sequences flanked by fluorescent reporter genes. Introduction of a DNA double strand break in the model UBE2T locus in vivo promoted single strand annealing (SSA) between proximal Alu elements and deletion of the intervening color marker gene, recapitulating the reversion of the UBE2T duplication in the FA patient. To test whether UBE2T null cells retain HR activity, the UBE2T genes were knocked out in HeLa cells and U2OS cells. CRISPR/Cas9-mediated genetic knockout of UBE2T only partially reduced HR, demonstrating that UBE2T-independent pathways can compensate for the recombination defect in UBE2T/FANCT null cells.
Collapse
Affiliation(s)
- Todd W Lewis
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Joanna R Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Elizabeth L Virts
- Department of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Felicia M Kennedy
- Department of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rujuta Y Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Duüsseldorf, Germany
| | - Rene M Linka
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Duüsseldorf, Germany
| | - Feng Zhang
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paul R Andreassen
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Duüsseldorf, Germany
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
188
|
|
189
|
Setiaputra D, Durocher D. Shieldin - the protector of DNA ends. EMBO Rep 2019; 20:embr.201847560. [PMID: 30948458 DOI: 10.15252/embr.201847560] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
DNA double-strand breaks are a threat to genome integrity and cell viability. The nucleolytic processing of broken DNA ends plays a central role in dictating the repair processes that will mend these lesions. Usually, DNA end resection promotes repair by homologous recombination, whereas minimally processed ends are repaired by non-homologous end joining. Important in this process is the chromatin-binding protein 53BP1, which inhibits DNA end resection. How 53BP1 shields DNA ends from nucleases has been an enduring mystery. The recent discovery of shieldin, a four-subunit protein complex with single-stranded DNA-binding activity, illuminated a strong candidate for the ultimate effector of 53BP1-dependent end protection. Shieldin consists of REV7, a known 53BP1-pathway component, and three hitherto uncharacterized proteins: C20orf196 (SHLD1), FAM35A (SHLD2), and CTC-534A2.2 (SHLD3). Shieldin promotes many 53BP1-associated activities, such as the protection of DNA ends, non-homologous end joining, and immunoglobulin class switching. This review summarizes the identification of shieldin and the various models of shieldin action and highlights some outstanding questions requiring answers to gain a full molecular understanding of shieldin function.
Collapse
Affiliation(s)
- Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
190
|
Anand R, Jasrotia A, Bundschuh D, Howard SM, Ranjha L, Stucki M, Cejka P. NBS1 promotes the endonuclease activity of the MRE11-RAD50 complex by sensing CtIP phosphorylation. EMBO J 2019; 38:e101005. [PMID: 30787182 PMCID: PMC6443204 DOI: 10.15252/embj.2018101005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/08/2019] [Accepted: 02/01/2019] [Indexed: 11/09/2022] Open
Abstract
DNA end resection initiates DNA double-strand break repair by homologous recombination. MRE11-RAD50-NBS1 and phosphorylated CtIP perform the first resection step via MRE11-catalyzed endonucleolytic DNA cleavage. Human NBS1, more than its homologue Xrs2 in Saccharomyces cerevisiae, is crucial for this process, highlighting complex mechanisms that regulate the MRE11 nuclease in higher eukaryotes. Using a reconstituted system, we show here that NBS1, through its FHA and BRCT domains, functions as a sensor of CtIP phosphorylation. NBS1 then activates the MRE11-RAD50 nuclease through direct physical interactions with MRE11. In the absence of NBS1, MRE11-RAD50 exhibits a weaker nuclease activity, which requires CtIP but not strictly its phosphorylation. This identifies at least two mechanisms by which CtIP augments MRE11: a phosphorylation-dependent mode through NBS1 and a phosphorylation-independent mode without NBS1. In support, we show that limited DNA end resection occurs in vivo in the absence of the FHA and BRCT domains of NBS1. Collectively, our data suggest that NBS1 restricts the MRE11-RAD50 nuclease to S-G2 phase when CtIP is extensively phosphorylated. This defines mechanisms that regulate the MRE11 nuclease in DNA metabolism.
Collapse
Affiliation(s)
- Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Arti Jasrotia
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| | - Diana Bundschuh
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| | - Sean Michael Howard
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| |
Collapse
|
191
|
Stepwise 5' DNA end-specific resection of DNA breaks by the Mre11-Rad50-Xrs2 and Sae2 nuclease ensemble. Proc Natl Acad Sci U S A 2019; 116:5505-5513. [PMID: 30819891 DOI: 10.1073/pnas.1820157116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To repair DNA double-strand breaks by homologous recombination, the 5'-terminated DNA strands must first be resected to produce 3' overhangs. Mre11 from Saccharomyces cerevisiae is a 3' → 5' exonuclease that is responsible for 5' end degradation in vivo. Using plasmid-length DNA substrates and purified recombinant proteins, we show that the combined exonuclease and endonuclease activities of recombinant MRX-Sae2 preferentially degrade the 5'-terminated DNA strand, which extends beyond the vicinity of the DNA end. Mechanistically, Rad50 restricts the Mre11 exonuclease in an ATP binding-dependent manner, preventing 3' end degradation. Phosphorylated Sae2, along with stimulating the MRX endonuclease as shown previously, also overcomes this inhibition to promote the 3' → 5' exonuclease of MRX, which requires ATP hydrolysis by Rad50. Our results support a model in which MRX-Sae2 catalyzes 5'-DNA end degradation by stepwise endonucleolytic DNA incisions, followed by exonucleolytic 3' → 5' degradation of the individual DNA fragments. This model explains how both exonuclease and endonuclease activities of Mre11 functionally integrate within the MRX-Sae2 ensemble to resect 5'-terminated DNA.
Collapse
|
192
|
Andres SN, Li ZM, Erie DA, Williams RS. Ctp1 protein-DNA filaments promote DNA bridging and DNA double-strand break repair. J Biol Chem 2019; 294:3312-3320. [PMID: 30626735 DOI: 10.1074/jbc.ra118.006759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/26/2018] [Indexed: 12/13/2022] Open
Abstract
The Ctp1 protein in Schizosaccharomyces pombe is essential for DNA double-strand break (DSB) repair by homologous recombination. Fission yeast Ctp1 and its budding yeast (Sae2) and human (CtIP) homologs control Mre11-Rad50-Nbs1 nuclease complex activity and harbor DNA-binding and -bridging activities. However, the molecular basis for Ctp1-DNA transactions remains undefined. Here, we report atomic force microscopy (AFM) imaging of S. pombe Ctp1-DNA complexes revealing that Ctp1 polymerizes on dsDNA molecules and forms synaptic filaments that bridge two dsDNA strands. We observed that Ctp1 DNA filaments are typified by an average filament length of ∼180 bp of dsDNA and a Ctp1 tetramer footprint of ∼15 bp. Biochemical results characterizing Ctp1 variants with impaired DNA-binding or -bridging properties were consistent with Ctp1-mediated DNA bridging requiring the intact and correctly folded Ctp1 tetramer. Furthermore, mutations altering Ctp1 oligomerization and DNA bridging in vitro conferred cell sensitivity to DSB-producing agents. Together, these results support an important role for Ctp1-regulated DNA strand coordination required for DNA DSB repair in S. pombe.
Collapse
Affiliation(s)
- Sara N Andres
- From the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Zimeng M Li
- the Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27695, and
| | - Dorothy A Erie
- the Department of Chemistry, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - R Scott Williams
- From the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709,
| |
Collapse
|
193
|
Gridina ММ. Improvement of the knock-in effciency in the genome of human induced pluripotent stem cells using the CRISPR/Cas9 system. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj18.446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human induced pluripotent stem (hiPS) cells are a powerful tool for biomedical research. The ability to create patient-specifc pluripotent cells and their subsequent differentiation into any somatic cell type makes hiPS cells a valuable object for creating in vitro models of human diseases, screening drugs and a future source of cells for regenerative medicine. To realize entirely a potential of hiPScells, effective and precise methods for their genome editing are needed. The CRISPR/Cas9 system is the most widely used method for introducing site-specifc double-stranded breaks into DNA. It allows genes of interest to be knocked out with high efciency. However, knock-in into the target site of the genome is a much more difcult task. Moreover, many researchers have noted a low efciency of introducing target constructs into the hiPS cells’ genome. In this review, I attempt to describe the currently known information regarding the matter of increasing efciency of targeted insertions into hiPS cells’ genome. Here I will describe the most effective strategies for designing the donor template for homology-directed repair, methods to manipulate the double-strand break repair pathways introduced by a nuclease, including control of CRISPR/Cas9 delivery time. A low survival rate of hiPS cells following genome editing experiments is another difculty on the way towards successful knock-in, and here several highly effective approaches addressing it are proposed. Finally, I describe the most promising strategies, one-step reprogramming and genome editing, which allows gene-modifed integration-free hiPS cells to be efciently generated directly from somatic cells.
Collapse
|
194
|
Wilkinson OJ, Martín-González A, Kang H, Northall SJ, Wigley DB, Moreno-Herrero F, Dillingham MS. CtIP forms a tetrameric dumbbell-shaped particle which bridges complex DNA end structures for double-strand break repair. eLife 2019; 8:42129. [PMID: 30601117 PMCID: PMC6344080 DOI: 10.7554/elife.42129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/01/2019] [Indexed: 12/16/2022] Open
Abstract
CtIP is involved in the resection of broken DNA during the S and G2 phases of the cell cycle for repair by recombination. Acting with the MRN complex, it plays a particularly important role in handling complex DNA end structures by localised nucleolytic processing of DNA termini in preparation for longer range resection. Here we show that human CtIP is a tetrameric protein adopting a dumbbell architecture in which DNA binding domains are connected by long coiled-coils. The protein complex binds two short DNA duplexes with high affinity and bridges DNA molecules in trans. DNA binding is potentiated by dephosphorylation and is not specific for DNA end structures per se. However, the affinity for linear DNA molecules is increased if the DNA terminates with complex structures including forked ssDNA overhangs and nucleoprotein conjugates. This work provides a biochemical and structural basis for the function of CtIP at complex DNA breaks.
Collapse
Affiliation(s)
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Haejoo Kang
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Sarah J Northall
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Dale B Wigley
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | |
Collapse
|
195
|
Myler LR, Soniat MM, Zhang X, Deshpande RA, Paull TT, Finkelstein IJ. Purification and Biophysical Characterization of the Mre11-Rad50-Nbs1 Complex. Methods Mol Biol 2019; 2004:269-287. [PMID: 31147924 PMCID: PMC6667175 DOI: 10.1007/978-1-4939-9520-2_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex coordinates the repair of DNA double-strand breaks, replication fork restart, meiosis, class-switch recombination, and telomere maintenance. As such, MRN is an essential molecular machine that has homologs in all organisms of life, from bacteriophage to humans. In human cells, MRN is a >500 kDa multifunctional complex that encodes DNA binding, ATPase, and both endonuclease and exonuclease activities. MRN also forms larger assemblies and interacts with multiple DNA repair and replication factors. The enzymatic properties of MRN have been the subject of intense research for over 20 years, and more recently, single-molecule biophysics studies are beginning to probe its many biochemical activities. Here, we describe the methods used to overexpress, fluorescently label, and visualize MRN and its activities on single molecules of DNA.
Collapse
Affiliation(s)
- Logan R Myler
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Michael M Soniat
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Xiaoming Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- The Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| | - Rajashree A Deshpande
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- The Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T Paull
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- The Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
196
|
Abstract
DNA double-strand breaks (DSBs) are a potentially lethal DNA lesions that disrupt both the physical and genetic continuity of the DNA duplex. Homologous recombination (HR) is a universally conserved genome maintenance pathway that initiates via nucleolytic processing of the broken DNA ends (resection). Eukaryotic DNA resection is catalyzed by the resectosome-a multicomponent molecular machine consisting of the nucleases DNA2 or Exonuclease 1 (EXO1), Bloom's helicase (BLM), the MRE11-RAD50-NBS1 (MRN) complex, and additional regulatory factors. Here, we describe methods for purification and single-molecule imaging and analysis of EXO1, DNA2, and BLM. We also describe how to adapt resection assays to the high-throughput single-molecule DNA curtain assay. By organizing hundreds of individual molecules on the surface of a microfluidic flowcell, DNA curtains visualize protein complexes with the required spatial and temporal resolution to resolve the molecular choreography during critical DNA-processing reactions.
Collapse
|
197
|
Jimeno S, Mejías-Navarro F, Prados-Carvajal R, Huertas P. Controlling the balance between chromosome break repair pathways. DNA Repair (Amst) 2019; 115:95-134. [DOI: 10.1016/bs.apcsb.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
198
|
Localized protein biotinylation at DNA damage sites identifies ZPET, a repressor of homologous recombination. Genes Dev 2018; 33:75-89. [PMID: 30567999 PMCID: PMC6317314 DOI: 10.1101/gad.315978.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Here, Moquin et al. show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites and identify ZPET/ZNF280C as a potential DNA damage response protein. Their findings show that ZPET is an HR repressor and also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins. Numerous DNA repair and signaling proteins function at DNA damage sites to protect the genome. Here, we show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites, allowing identification of ZPET (zinc finger protein proximal to RAD eighteen)/ZNF280C as a potential DNA damage response (DDR) protein. ZPET binds ssDNA and localizes to DNA double-strand breaks (DSBs) and stalled replication forks. In vitro, ZPET inhibits MRE11 binding to ssDNA. In cells, ZPET delays MRE11 binding to chromatin after DSB formation and slows DNA end resection through binding ssDNA. ZPET hinders resection independently of 53BP1 and HELB. Cells lacking ZPET displayed enhanced homologous recombination (HR), accelerated replication forks under stress, and increased resistance to DSBs and PARP inhibition. These results not only reveal ZPET as an HR repressor but also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins.
Collapse
|
199
|
Lamarche BJ, Orazio NI, Goben B, Meisenhelder J, You Z, Weitzman MD, Hunter T. Repair of protein-linked DNA double strand breaks: Using the adenovirus genome as a model substrate in cell-based assays. DNA Repair (Amst) 2018; 74:80-90. [PMID: 30583959 DOI: 10.1016/j.dnarep.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022]
Abstract
The DNA double strand breaks (DSBs) created during meiotic recombination and during some types of chemotherapy contain protein covalently attached to their 5' termini. Removal of the end-blocking protein is a prerequisite to DSB processing by non-homologous end-joining or homologous recombination. One mechanism for removing the protein involves CtIP-stimulated Mre11-catalyzed nicking of the protein-linked strand distal to the DSB terminus, releasing the end-blocking protein while it remains covalently attached to an oligonucleotide. Much of what is known about this repair process has recently been deciphered through in vitro reconstitution studies. We present here a novel model system based on adenovirus (Ad), which contains the Ad terminal protein covalently linked to the 5' terminus of its dsDNA genome, for studying the repair of 5' protein-linked DSBs in vivo. It was previously shown that the genome of Ad mutants that lack early region 4 (E4) can be joined into concatemers in vivo, suggesting that the Ad terminal protein had been removed from the genome termini prior to ligation. Here we show that during infection with the E4-deleted Ad mutant dl1004, the Ad terminal protein is removed in a manner that recapitulates removal of end-blocking proteins from cellular DSBs. In addition to displaying a dependence on CtIP, and Mre11 acting as the endonuclease, the protein-linked oligonucleotides that are released from the viral genome are similar in size to the oligos that remain attached to Spo11 and Top2 after they are removed from the 5' termini of DSBs during meiotic recombination and etoposide chemotherapy, respectively. The single nucleotide resolution that is possible with this assay, combined with the single sequence context in which the lesion is presented, make it a useful tool for further refining our mechanistic understanding of how blocking proteins are removed from the 5' termini of DSBs.
Collapse
Affiliation(s)
- Brandon J Lamarche
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA; Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Nicole I Orazio
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Brittany Goben
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Matthew D Weitzman
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA.
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA.
| |
Collapse
|
200
|
Sae2 antagonizes Rad9 accumulation at DNA double-strand breaks to attenuate checkpoint signaling and facilitate end resection. Proc Natl Acad Sci U S A 2018; 115:E11961-E11969. [PMID: 30510002 DOI: 10.1073/pnas.1816539115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Mre11-Rad50-Xrs2NBS1 complex plays important roles in the DNA damage response by activating the Tel1ATM kinase and catalyzing 5'-3' resection at DNA double-strand breaks (DSBs). To initiate resection, Mre11 endonuclease nicks the 5' strands at DSB ends in a reaction stimulated by Sae2CtIP Accordingly, Mre11-nuclease deficient (mre11-nd) and sae2Δ mutants are expected to exhibit similar phenotypes; however, we found several notable differences. First, sae2Δ cells exhibit greater sensitivity to genotoxins than mre11-nd cells. Second, sae2Δ is synthetic lethal with sgs1Δ, whereas the mre11-nd sgs1Δ mutant is viable. Third, Sae2 attenuates the Tel1-Rad53CHK2 checkpoint and antagonizes Rad953BP1 accumulation at DSBs independent of Mre11 nuclease. We show that Sae2 competes with other Tel1 substrates, thus reducing Rad9 binding to chromatin and to Rad53. We suggest that persistent Sae2 binding at DSBs in the mre11-nd mutant counteracts the inhibitory effects of Rad9 and Rad53 on Exo1 and Dna2-Sgs1-mediated resection, accounting for the different phenotypes conferred by mre11-nd and sae2Δ mutations. Collectively, these data show a resection initiation independent role for Sae2 at DSBs by modulating the DNA damage checkpoint.
Collapse
|