151
|
Abstract
To re-examine how the basal extracellular concentration of adenosine is regulated in acutely isolated cerebellar slices we have combined electrophysiological and microelectrode biosensor measurements. In almost all cases, synaptic transmission was tonically inhibited by adenosine acting via A1 receptors. By contrast, in most slices, the biosensors did not measure an adenosine tone but did record a spatially non-uniform extracellular tone of the downstream metabolites (inosine and hypoxanthine). Most of the extracellular hypoxanthine arose from the metabolism of inosine by ecto-purine nucleoside phosphorylase (PNP). Adenosine kinase was the major determinant of adenosine levels, as its inhibition increased both adenosine concentration and A1 receptor-mediated synaptic inhibition. Breakdown of adenosine by adenosine deaminase was the major source of the inosine/hypoxanthine tone. However adenosine deaminase played a minor role in determining the level of adenosine at synapses, suggesting a distal location. Blockade of adenosine transport (by NBTI/dipyridamole) had inconsistent effects on basal levels of adenosine and synaptic transmission. Unexpectedly, application of NBTI/dipyridamole prevented the efflux of adenosine resulting from block of adenosine kinase at only a subset of synapses. We conclude that there is spatial variation in the functional expression of NBTI/dipyridamole-sensitive transporters. The increased spatial and temporal resolution of the purine biosensor measurements has revealed the complexity of the control of adenosine and purine tone in the cerebellum.
Collapse
Affiliation(s)
- Mark J Wall
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | | | |
Collapse
|
152
|
Wall MJ, Dale N. Auto-inhibition of rat parallel fibre-Purkinje cell synapses by activity-dependent adenosine release. J Physiol 2007; 581:553-65. [PMID: 17347275 PMCID: PMC2075183 DOI: 10.1113/jphysiol.2006.126417] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an important signalling molecule involved in a large number of physiological functions. In the brain these processes are as diverse as sleep, memory, locomotion and neuroprotection during episodes of ischaemia and hypoxia. Although the actions of adenosine, through cell surface G-protein-coupled receptors, are well characterized, in many cases the sources of adenosine and mechanisms of release have not been defined. Here we demonstrate the activity-dependent release of adenosine in the cerebellum using a combination of electrophysiology and biosensors. Short trains of electrical stimuli delivered to the molecular layer in vitro, release adenosine via a process that is both TTX and Ca2+ sensitive. As ATP release cannot be detected, adenosine must either be released directly or rapidly produced by highly localized and efficient extracellular ATP breakdown. Since adenosine release can be modulated by receptors that act on parallel fibre–Purkinje cell synapses, we suggest that the parallel fibres release adenosine. This activity-dependent adenosine release exerts feedback inhibition of parallel fibre–Purkinje cell transmission. Spike-mediated adenosine release from parallel fibres will thus powerfully regulate cerebellar circuit output.
Collapse
Affiliation(s)
- Mark J Wall
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
153
|
Gu XQ, Kanaan A, Yao H, Haddad GG. Chronic High-Inspired CO2 Decreases Excitability of Mouse Hippocampal Neurons. J Neurophysiol 2007; 97:1833-8. [PMID: 17202241 DOI: 10.1152/jn.01174.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the effect of chronically elevated CO2 on excitability and function of neurons, we exposed mice to 8 and 12% CO2 for 4 wk (starting at 2 days of age), and examined the properties of freshly dissociated hippocampal neurons obtained from slices. Chronic CO2-treated neurons (CC) had a similar input resistance ( Rm) and resting membrane potential ( Vm) as control (CON). Although treatment with 8% CO2 did not change the rheobase (64 ± 11 pA, n = 9 vs. 47 ± 12 pA, n = 8 for CC 8% vs. CON; means ± SE), 12% CO2 treatment increased it significantly (73 ± 8 pA, n = 9, P = 0.05). Furthermore, the 12% CO2 but not the 8% CO2 treatment decreased the Na+ channel current density (244 ± 36 pA/pF, n = 17, vs. 436 ± 56 pA/pF, n = 18, for CC vs. CON, P = 0.005). Recovery from inactivation was also lowered by 12% but not 8% CO2. Other gating properties of Na+ current, such as voltage-conductance curve, steady-state inactivation, and time constant for deactivation, were not modified by either treatment. Western blot analysis showed that the expression of Na+ channel types I–III was not changed by 8% CO2 treatment, but their expression was significantly decreased by 20–30% ( P = 0.03) by the 12% treatment. We conclude from these data and others that neuronal excitability and Na+ channel expression depend on the duration and level of CO2 exposure and maturational changes occur in early life regarding neuronal responsiveness to CO2.
Collapse
Affiliation(s)
- Xiang Q Gu
- Department of Pediatrics, University of California-San Diego, 9500 Gilman Drive, San Diego, CA 92093-0735, USA
| | | | | | | |
Collapse
|
154
|
Boison D. Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 2006; 27:652-8. [PMID: 17056128 DOI: 10.1016/j.tips.2006.10.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 09/13/2006] [Accepted: 10/10/2006] [Indexed: 12/20/2022]
Abstract
Adenosine is an inhibitory modulator of brain activity with neuroprotective and anticonvulsant properties. Adenosine levels are regulated mainly by adenosine kinase (ADK), an enzyme that is responsible for the removal of adenosine via phosphorylation to AMP. Recent evidence indicates that expression of ADK undergoes rapid coordinated changes during brain development and following brain injury, such as after epileptic seizures and stroke. Thus, transient downregulation of ADK after acute brain injury protects the brain from seizures and cell death. Conversely, chronic overexpression of ADK causes seizures in epilepsy and promotes cell death in epilepsy and stroke. These findings have direct implications for the rational definition of ADK as a therapeutic target. In recent years, novel treatment strategies have been developed that make use of the intracerebral transplantation of cells that are ADK deficient and, thus, release adenosine. A new era of cell-based delivery of adenosine has begun, which holds great promise for novel therapies for epilepsy and stroke.
Collapse
Affiliation(s)
- Detlev Boison
- R.S. Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97202, USA.
| |
Collapse
|
155
|
Abstract
P2X receptors are membrane ion channels activated by the binding of extracellular adenosine triphosphate (ATP). For years their functional significance was consigned to distant regions of the autonomic nervous system, but recent work indicates several further key roles, such as afferent signalling, chronic pain, and in autocrine loops of endothelial and epithelial cells. P2X receptors have a molecular architecture distinct from other ion channel protein families, and have several unique functional properties.
Collapse
Affiliation(s)
- Baljit S Khakh
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
156
|
Filippov AK, Choi RCY, Simon J, Barnard EA, Brown DA. Activation of P2Y1 nucleotide receptors induces inhibition of the M-type K+ current in rat hippocampal pyramidal neurons. J Neurosci 2006; 26:9340-8. [PMID: 16957090 PMCID: PMC1855006 DOI: 10.1523/jneurosci.2635-06.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 07/31/2006] [Accepted: 08/03/2006] [Indexed: 01/30/2023] Open
Abstract
We have shown previously that stimulation of heterologously expressed P2Y1 nucleotide receptors inhibits M-type K+ currents in sympathetic neurons. We now report that activation of endogenous P2Y1 receptors induces inhibition of the M-current in rat CA1/CA3 hippocampal pyramidal cells in primary neuron cultures. The P2Y1 agonist adenosine 5'-[beta-thio]diphosphate trilithium salt (ADPbetaS) inhibited M-current by up to 52% with an IC50 of 84 nM. The hydrolyzable agonist ADP (10 microM) produced 32% inhibition, whereas the metabotropic glutamate receptor 1/5 agonist DHPG [(S)-3,5-dihydroxyphenylglycine] (10 microM) inhibited M-current by 44%. The M-channel blocker XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride] produced 73% inhibition at 3 microM; neither ADPbetaS nor ADP produced additional inhibition in the presence of XE991. The effect of ADPbetaS was prevented by a specific P2Y1 antagonist, MRS 2179 (2'-deoxy-N'-methyladenosine-3',5'-bisphosphate tetra-ammonium salt) (30 microM). Inhibition of the M-current by ADPbetaS was accompanied by increased neuronal firing in response to injected current pulses. The neurons responding to ADPbetaS were judged to be pyramidal cells on the basis of (1) morphology, (2) firing characteristics, and (3) their distinctive staining for the pyramidal cell marker neurogranin. Strong immunostaining for P2Y1 receptors was shown in most cells in these cultures: 74% of the cells were positive for both P2Y1 and neurogranin, whereas 16% were only P2Y1 positive. These results show the presence of functional M-current-inhibitory P2Y1 receptors on hippocampal pyramidal neurons, as predicted from their effects when expressed in sympathetic neurons. However, the mechanism of inhibition in the two cell types seems to differ because, unlike nucleotide-mediated M-current inhibition in sympathetic neurons, that in hippocampal neurons did not appear to result from raised intracellular calcium.
Collapse
Affiliation(s)
- Alexander K Filippov
- Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | |
Collapse
|
157
|
Mulkey DK, Mistry AM, Guyenet PG, Bayliss DA. Purinergic P2 receptors modulate excitability but do not mediate pH sensitivity of RTN respiratory chemoreceptors. J Neurosci 2006; 26:7230-3. [PMID: 16822980 PMCID: PMC6673944 DOI: 10.1523/jneurosci.1696-06.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellular mechanism(s) by which the brain senses changes in pH to regulate breathing (i.e., central chemoreception) have remained incompletely understood, in large part because the central respiratory chemoreceptors have themselves eluded detection. Here, we recorded from a newly identified population of central chemoreceptors located in the retrotrapezoid nucleus (RTN) on the ventral surface of the brainstem to test a recently proposed role for purinergic P2 receptor signaling in central respiratory chemoreception (Gourine et al., 2005). Using loose-patch current-clamp recordings in brainstem slices from rat pups (postnatal day 7-12), we indeed show purinergic modulation of pH-sensitive RTN neurons: activation of P2X receptors indirectly inhibited RTN firing by increasing inhibitory input, whereas P2Y receptor stimulation caused direct excitation of RTN chemoreceptors. However, after blocking P2 receptors with the broad-spectrum antagonists PPADS (pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate) or RB2 (reactive blue 2), the pH sensitivity of RTN neurons remained intact. Therefore, we conclude that purinergic signaling can modulate RTN neuron activity but does not mediate the pH sensing intrinsic to these central respiratory chemoreceptors.
Collapse
Affiliation(s)
- Daniel K Mulkey
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
158
|
Studer FE, Fedele DE, Marowsky A, Schwerdel C, Wernli K, Vogt K, Fritschy JM, Boison D. Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 2006; 142:125-37. [PMID: 16859834 DOI: 10.1016/j.neuroscience.2006.06.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
Adenosine is a potent modulator of excitatory neurotransmission, especially in seizure-prone regions such as the hippocampal formation. In adult brain ambient levels of adenosine are controlled by adenosine kinase (ADK), the major adenosine-metabolizing enzyme, expressed most strongly in astrocytes. Since ontogeny of the adenosine system is largely unknown, we investigated ADK expression and cellular localization during postnatal development of the mouse brain, using immunofluorescence staining with cell-type specific markers. At early postnatal stages ADK immunoreactivity was prominent in neurons, notably in cerebral cortex and hippocampus. Thereafter, as seen best in hippocampus, ADK gradually disappeared from neurons and appeared in newly developed nestin- and glial fibrillary acidic protein (GFAP)-positive astrocytes. Furthermore, the region-specific downregulation of neuronal ADK coincided with the onset of myelination, as visualized by myelin basic protein staining. After postnatal day 14 (P14), the transition from neuronal to astrocytic ADK expression was complete, except in a subset of neurons that retained ADK until adulthood in specific regions, such as striatum. Moreover, neuronal progenitors in the adult dentate gyrus lacked ADK. Finally, recordings of excitatory field potentials in acute slice preparations revealed a reduced adenosinergic inhibition in P14 hippocampus compared with adult. These findings suggest distinct roles for adenosine in the developing and adult brain. First, ADK expression in young neurons may provide a salvage pathway to utilize adenosine in nucleic acid synthesis, thus supporting differentiation and plasticity and influencing myelination; and second, adult ADK expression in astrocytes may offer a mechanism to regulate adenosine levels as a function of metabolic needs and synaptic activity, thus contributing to the differential resistance of young and adult animals to seizures.
Collapse
Affiliation(s)
- F E Studer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Affiliation(s)
- Nicholas Dale
- Department of Biological Sciences, University of Warick, UK.
| |
Collapse
|
160
|
Otsuguro KI, Yamaji Y, Ban M, Ohta T, Ito S. Involvement of adenosine in depression of synaptic transmission during hypercapnia in isolated spinal cord of neonatal rats. J Physiol 2006; 574:835-47. [PMID: 16740614 PMCID: PMC1817731 DOI: 10.1113/jphysiol.2006.109660] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adenosine is one of the most important neuromodulators in the CNS, both under physiological and pathological conditions. In the isolated spinal cord of the neonatal rat in vitro, acute hypercapnic acidosis (20% CO2, pH 6.7) reversibly depressed electrically evoked spinal reflex potentials. This depression was partially reversed by 8-cyclopentlyl-1,3-dimethylxanthine (CPT), a selective A1 adenosine receptor antagonist. Isohydric hypercapnia (20% CO2, pH 7.3), but not isocapnic acidosis (5% CO2, pH 6.7), depressed the reflex potentials, which were also reversed by CPT. An ecto-5'-nucleotidase inhibitor did not affect the hypercapnic acidosis-evoked depression. An inhibitor of adenosine kinase, but not deaminase, mimicked the inhibitory effect of hypercapnic acidosis on the spinal reflex potentials. Accumulation of extracellular adenosine and inhibition of adenosine kinase activity were caused by hypercapnic acidosis and isohydric hypercapnia, but not isohydric acidosis. These results indicate that the activation of adenosine A1 receptors is involved in the hypercapnia-evoked depression of reflex potentials in the isolated spinal cord of the neonatal rat. The inhibition of adenosine kinase activity is suggested to cause the accumulation of extracellular adenosine during hypercapnia.
Collapse
Affiliation(s)
- Ken-ichi Otsuguro
- Laboratory of Pharmacology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | | | | | | | | |
Collapse
|
161
|
Zamzow CR, Bose R, Parkinson FE. The effect of acidosis on adenosine release from cultured rat forebrain neurons. Brain Res 2006; 1082:23-31. [PMID: 16516170 DOI: 10.1016/j.brainres.2006.01.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/09/2006] [Accepted: 01/22/2006] [Indexed: 12/11/2022]
Abstract
During cerebral ischemia, dysregulated glutamate release activates N-methyl-d-aspartate (NMDA) receptors which promotes excitotoxicity and intracellular acidosis. Ischemia also induces cellular adenosine (ADO) release, which activates ADO receptors and reduces neuronal injury. The aim of this research was to determine if decreasing intracellular pH (pH(i)) enhances ADO release from neurons. Rat forebrain neurons were incubated with NMDA, acetate, propionate, 5-(N)-ethyl-N-isopropyl amiloride (EIPA) or low pH buffer. pH(i) was determined with the fluorescent dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and cellular release of ADO was assayed. NMDA decreased pH(i) and increased ADO release from neurons. Acetate and propionate decreased pH(i) and evoked ADO release from neurons. EIPA, an inhibitor of sodium hydrogen exchanger 1 (NHE1), enhanced the acidosis in neurons but did not enhance ADO release. Decreasing extracellular pH (pH(e)) to 6.8 or 6.45 significantly decreased pH(i) in neurons, but was not consistently associated with increased ADO release. The main finding of this study was that acidosis per se did not enhance ADO release from neurons.
Collapse
Affiliation(s)
- Christina R Zamzow
- Department of Pharmacology and Therapeutics, University of Manitoba, A203-753 McDermot Avenue, Winnipeg, MB, Canada R3E 0T6
| | | | | |
Collapse
|