151
|
|
152
|
Chiba T, Yamada M, Aiso S. Targeting the JAK2/STAT3 axis in Alzheimer's disease. Expert Opin Ther Targets 2009; 13:1155-67. [PMID: 19663649 DOI: 10.1517/14728220903213426] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Amyloid beta (Abeta) has long been implicated in the pathogenesis of Alzheimer's disease (AD). Little is known, however, about the intracellular events in neurons which lead to memory loss related to AD. Focusing on the fact that an AD-specific neuroprotective peptide named humanin (HN) inhibits AD-related neurotoxicity by activating the JAK2/STAT3 signaling axis, we recently found that age- and disease-dependent deterioration in the JAK2/STAT3 axis plays a critical role in the pathogenesis of AD. OBJECTIVE/METHODS Here we summarize the neuroprotective effect of HN and its derivative, named colivelin (CLN), and also review the roles of the JAK2/STAT3 axis in memory impairment related to AD. RESULTS/CONCLUSIONS The JAK2/STAT3 axis is a major transducer of HN-mediated neuroprotective activity. Abeta-dependent inactivation of the JAK2/STAT3 axis in hippocampal neurons causes cholinergic dysfunction via pre- and post-synaptic mechanisms, which leads to memory impairment related to AD. This provides not only a novel pathological hallmark of AD but also a novel target in AD therapy.
Collapse
Affiliation(s)
- Tomohiro Chiba
- Keio University School of Medicine, Department of Anatomy, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
153
|
Tabaton M, Zhu X, Perry G, Smith MA, Giliberto L. Signaling effect of amyloid-beta(42) on the processing of AbetaPP. Exp Neurol 2009; 221:18-25. [PMID: 19747481 DOI: 10.1016/j.expneurol.2009.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 12/28/2022]
Abstract
The effects of amyloid-beta are extremely complex. Current work in the field of Alzheimer disease is focusing on discerning the impact between the physiological signaling effects of soluble low molecular weight amyloid-beta species and the more global cellular damage that could derive from highly concentrated and/or aggregated amyloid. Being able to dissect the specific signaling events, to understand how soluble amyloid-beta induces its own production by up-regulating BACE1 expression, could lead to new tools to interrupt the distinctive feedback cycle with potential therapeutic consequences. Here we describe a positive loop that exists between the secretases that are responsible for the generation of the amyloid-beta component of Alzheimer disease. According to our hypothesis, in familial Alzheimer disease, the primary overproduction of amyloid-beta can induce BACE1 transcription and drive a further increase of amyloid-beta precursor protein processing and resultant amyloid-beta production. In sporadic Alzheimer disease, many factors, among them oxidative stress and inflammation, with consequent induction of presenilins and BACE1, would activate a loop and proceed with the generation of amyloid-beta and its signaling role onto BACE1 transcription. This concept of a signaling effect by and feedback on the amyloid-beta precursor protein will likely shed light on how amyloid-beta generation, oxidative stress, and secretase functions are intimately related in sporadic Alzheimer disease.
Collapse
Affiliation(s)
- Massimo Tabaton
- Departments of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova, Italy.
| | | | | | | | | |
Collapse
|
154
|
Lai KO, Ip NY. Recent advances in understanding the roles of Cdk5 in synaptic plasticity. Biochim Biophys Acta Mol Basis Dis 2009; 1792:741-5. [DOI: 10.1016/j.bbadis.2009.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 05/03/2009] [Accepted: 05/05/2009] [Indexed: 01/05/2023]
|
155
|
Tong Y, Xu Y, Scearce-Levie K, Ptácek LJ, Fu YH. COL25A1 triggers and promotes Alzheimer's disease-like pathology in vivo. Neurogenetics 2009; 11:41-52. [PMID: 19548013 PMCID: PMC2807601 DOI: 10.1007/s10048-009-0201-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/28/2009] [Indexed: 12/19/2022]
Abstract
Collagen XXV alpha 1 (COL25A1) is a collagenous type II transmembrane protein purified from senile plaques of Alzheimer's disease (AD) brains. COL25A1 alleles have been associated with increased risk for AD in a Swedish population. COL25A1 is specifically expressed in neurons and binds to aggregated Abeta in vitro. However, its contribution to the pathogenesis of AD and in vivo function are unknown. Here, we report that over-expression of COL25A1 in transgenic mice increases p35/p25 and beta-site APP-cleaving enzyme 1 (BACE1) levels, facilitates intracellular aggregation and extracellular matrix deposits of Abeta, and causes synaptophysin loss and astrocyte activation. COL25A1 mice displayed reduced anxiety-like behavior in elevated plus maze and open field tests and significantly slower swimming speed in Morris water maze. In stable cell lines, motifs in noncollagenous domains of COL25A1 were important for the induction of BACE1 expression. These findings demonstrate that COL25A1 leads to AD-like pathology in vivo. Modulation of COL25A1 function may represent an alternative therapeutic intervention for AD.
Collapse
Affiliation(s)
- Ying Tong
- Department of Neurology, University of California San Francisco, 1550 Fourth Street, Rock Hall Rm548, San Francisco, CA, 94158, USA
| | | | | | | | | |
Collapse
|
156
|
Abstract
p25/Cdk5 dysregulation may contribute to neurodegeneration. In this issue of Neuron, Kim et al. show that cdk5 inactivates HDAC-1, leading to cell cycle deregulation and DNA damage accumulation. This study provides further insights into the function of p25/Cdk5 in neurons and points to HDAC-1 as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Burcin Ikiz
- Department of Neurology, Pathology, and Cell Biology and Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
157
|
O'Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, Hébert SS, De Strooper B, Haass C, Bennett DA, Vassar R. Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 2009; 60:988-1009. [PMID: 19109907 DOI: 10.1016/j.neuron.2008.10.047] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 09/16/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
beta-site APP cleaving enzyme-1 (BACE1), the rate-limiting enzyme for beta-amyloid (Abeta) production, is elevated in Alzheimer's disease (AD). Here, we show that energy deprivation induces phosphorylation of the translation initiation factor eIF2alpha (eIF2alpha-P), which increases the translation of BACE1. Salubrinal, an inhibitor of eIF2alpha-P phosphatase PP1c, directly increases BACE1 and elevates Abeta production in primary neurons. Preventing eIF2alpha phosphorylation by transfection with constitutively active PP1c regulatory subunit, dominant-negative eIF2alpha kinase PERK, or PERK inhibitor P58(IPK) blocks the energy-deprivation-induced BACE1 increase. Furthermore, chronic treatment of aged Tg2576 mice with energy inhibitors increases levels of eIF2alpha-P, BACE1, Abeta, and amyloid plaques. Importantly, eIF2alpha-P and BACE1 are elevated in aggressive plaque-forming 5XFAD transgenic mice, and BACE1, eIF2alpha-P, and amyloid load are correlated in humans with AD. These results strongly suggest that eIF2alpha phosphorylation increases BACE1 levels and causes Abeta overproduction, which could be an early, initiating molecular mechanism in sporadic AD.
Collapse
Affiliation(s)
- Tracy O'Connor
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
Our understanding of the mechanisms whereby BACE1, the aspartyl protease required for the initial cleavage of APP to generate amyloid-beta (Abeta), is regulated in Alzheimer's disease (AD) remains incomplete. In this issue of Neuron, O'Connor and coworkers show how energy deprivation, a potential risk factor in AD, triggers the phosphorylation of the translation initiation factor eIF2alpha to elevate the translation efficiency of a set of stress-related transcripts, including that of BACE1, and increases the level of BACE1, thereby accelerating amyloidogenesis.
Collapse
Affiliation(s)
- Philip C Wong
- Department of Pathology and Neuroscience and the Division of Neuropathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA.
| |
Collapse
|
159
|
Giliberto L, Borghi R, Piccini A, Mangerini R, Sorbi S, Cirmena G, Garuti A, Ghetti B, Tagliavini F, Mughal MR, Mattson MP, Zhu X, Wang X, Guglielmotto M, Tamagno E, Tabaton M. Mutant presenilin 1 increases the expression and activity of BACE1. J Biol Chem 2009; 284:9027-38. [PMID: 19196715 PMCID: PMC2666551 DOI: 10.1074/jbc.m805685200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 12/30/2008] [Indexed: 12/23/2022] Open
Abstract
Mutations of the presenilin 1 (PS1) gene are the most common cause of early onset familial Alzheimer disease (FAD). PS1 mutations alter the activity of the gamma-secretase on the beta-amyloid precursor protein (APP), leading to selective overproduction of beta-amyloid (Abeta) 42 peptides, the species that forms oligomers that may exert toxic effects on neurons. Here we show that PS1 mutations, expressed both transiently and stably, in non-neuronal and neuronal cell lines increase the expression and the activity of the beta-secretase (BACE1), the rate-limiting step of Abeta production. Also, BACE1 expression and activity are elevated in brains of PS1 mutant knock-in mice compared with wild type littermates as well as in cerebral cortex of FAD cases bearing various PS1 mutations compared with in sporadic AD cases and controls. The up-regulation of BACE1 by PS1 mutations requires the gamma-secretase cleavage of APP and is proportional to the amount of secreted Abeta42. Abeta42, and not AICD (APP intracellular domain), is indeed the APP derivative that mediates the overexpression of BACE1. The effect of PS1 mutations on BACE1 may contribute to determine the wide clinical and pathological phenotype of early onset FAD.
Collapse
Affiliation(s)
- Luca Giliberto
- Department of Neuroscience, Ophthalmology, and Genetics and Internal Medicine and Medical Specialties, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
|
161
|
Simpkins JW, Gatson JW, Wigginton JG. Commentary on "a roadmap for the prevention of dementia II. Leon Thal Symposium 2008." Rationale and recommendations for first evaluating anti-Alzheimer's disease medications in acute brain injury patients. Alzheimers Dement 2009; 5:143-6. [PMID: 19328446 PMCID: PMC5008237 DOI: 10.1016/j.jalz.2009.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- James W Simpkins
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | | | | |
Collapse
|
162
|
Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 2009; 15:112-9. [DOI: 10.1016/j.molmed.2009.01.003] [Citation(s) in RCA: 540] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/09/2009] [Accepted: 01/09/2009] [Indexed: 01/22/2023]
|
163
|
Willem M, Lammich S, Haass C. Function, regulation and therapeutic properties of beta-secretase (BACE1). Semin Cell Dev Biol 2009; 20:175-82. [PMID: 19429494 DOI: 10.1016/j.semcdb.2009.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/10/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
beta-Secretase (beta-site amyloid precursor protein cleaving enzyme 1; BACE1) has been identified as the rate limiting enzyme for amyloid-beta-peptide (Abeta) production. Abeta is the major component of amyloid plaques and vascular deposits in Alzheimer's disease (AD) brains and believed to initiate the deadly amyloid cascade. BACE1 is the principle beta-secretase, since its knock-out completely prevents Abeta generation. BACE1 is likely to process a number of different substrates and consequently several independent physiological functions may be exerted by BACE1. Currently the function of BACE1 in myelination is best understood. BACE1 cleaves and activates Neuregulin-1 and is thus directly involved in myelination of the peripheral nervous system during early postnatal development. However, additional physiological functions specifically within the central nervous system are so far less understood. BACE1 is upregulated in at least some AD brains. Multiple cellular mechanisms for BACE1 regulation are known including post-transcriptional regulation via its 5'-untranslated region, microRNA and non-coding anti-sense RNA. BACE1 is a primary target for Abeta lowering therapies, however the development of high affinity bio-available inhibitors has been a major challenge so far.
Collapse
Affiliation(s)
- Michael Willem
- Center for Integrated Protein Science Munich, Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Neurodegenerative Disease Research, Ludwig-Maximilians-University, 80336 Munich, Germany.
| | | | | |
Collapse
|
164
|
Upregulation of BACE1 and beta-amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer's disease. Neurochem Res 2009; 34:1226-35. [PMID: 19123057 DOI: 10.1007/s11064-008-9899-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) increases the risk of Alzheimer disease (AD) through several biologically plausible pathways, but the relationship between CCH and the development of AD remains uncertain. To investigate expression of APP, BACE1 and A beta in the hippocampus of BCCAO rats and study pathophysiological mechanism of AD from CCH. CCH rat model was established by chronic bilateral common carotid artery occlusion (BCCAO). Behavior was evaluated after BCCAO with Morris water maze and open-field task. Expression of A beta was measured by enzyme linked immunosorbent assay (ELISA). beta-Amyloid precursor protein cleavage enzyme 1 (BACE1) and beta-amyloid precursor protein (APP) were tested by ELISA, Western blotting and RT-PCR. Cognitive impairment occurred with CCH by Morris water maze test and open-field task. The BACE1 and A beta level in BCCAO rats was more increased than sham-operation control rats (P < 0.01) but APP had no difference(P > 0.05). The expression of BACE1 and A beta has no inter-group difference in BCCAO rats (P > 0.05). The level of BACE1 and A beta had positive correlation with cognitive impairment (P < 0.01) while no correlation was observed between APP and cognitive impairment. Chronic cerebral ischemia contributes to cognitive impairment and vascular pathogenesis of Alzheimer's disease that chronic cerebral hypoperfusion increases BACE1 and A beta level in brain.
Collapse
|
165
|
Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model. J Neurosci 2008; 28:11622-34. [PMID: 18987198 DOI: 10.1523/jneurosci.3153-08.2008] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies have revealed that disruption of vitamin A signaling observed in Alzheimer's disease (AD) leads to beta-amyloid (Abeta) accumulation and memory deficits in rodents. The aim of the present study was to evaluate the therapeutic effect of all-trans retinoic acid (ATRA), an active metabolite of vitamin A, on the neuropathology and deficits of spatial learning and memory in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic mice, a well established AD mouse model. Here we report a robust decrease in brain Abeta deposition and tau phosphorylation in the blinded study of APP/PS1 transgenic mice treated intraperitoneally for 8 weeks with ATRA (20 mg/kg, three times weekly, initiated when the mice were 5 months old). This was accompanied by a significant decrease in the APP phosphorylation and processing. The activity of cyclin-dependent kinase 5, a major kinase involved in both APP and tau phosphorylation, was markedly downregulated by ATRA treatment. The ATRA-treated APP/PS1 mice showed decreased activation of microglia and astrocytes, attenuated neuronal degeneration, and improved spatial learning and memory compared with the vehicle-treated APP/PS1 mice. These results support ATRA as an effective therapeutic agent for the prevention and treatment of AD.
Collapse
|
166
|
Sakurai T, Kaneko K, Okuno M, Wada K, Kashiyama T, Shimizu H, Akagi T, Hashikawa T, Nukina N. Membrane microdomain switching: a regulatory mechanism of amyloid precursor protein processing. ACTA ACUST UNITED AC 2008; 183:339-52. [PMID: 18936252 PMCID: PMC2568028 DOI: 10.1083/jcb.200804075] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuronal activity has an impact on β cleavage of amyloid precursor protein (APP) by BACE1 to generate amyloid-β peptide (Aβ). However, the molecular mechanisms underlying this effect remain to be elucidated. Cholesterol dependency of β cleavage prompted us to analyze immunoisolated APP-containing detergent-resistant membranes from rodent brains. We found syntaxin 1 as a key molecule for activity-dependent regulation of APP processing in cholesterol-dependent microdomains. In living cells, APP associates with syntaxin 1–containing microdomains through X11–Munc18, which inhibits the APP–BACE1 interaction and β cleavage via microdomain segregation. Phosphorylation of Munc18 by cdk5 causes a shift of APP to BACE1-containing microdomains. Neuronal hyperactivity, implicated in Aβ overproduction, promotes the switching of APP microdomain association as well as β cleavage in a partially cdk5-dependent manner. We propose that microdomain switching is a mechanism of cholesterol- and activity-dependent regulation of APP processing in neurons.
Collapse
Affiliation(s)
- Takashi Sakurai
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
|
168
|
Hernández F, Avila J. The role of glycogen synthase kinase 3 in the early stages of Alzheimers’ disease. FEBS Lett 2008; 582:3848-54. [DOI: 10.1016/j.febslet.2008.10.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 10/17/2008] [Accepted: 10/18/2008] [Indexed: 12/14/2022]
|
169
|
|