151
|
Frischknecht R, Gundelfinger ED. The brain's extracellular matrix and its role in synaptic plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:153-71. [PMID: 22351055 DOI: 10.1007/978-3-7091-0932-8_7] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The extracellular matrix (ECM) of the brain has important roles in regulating synaptic function and plasticity. A juvenile ECM supports the wiring of neuronal networks, synaptogenesis, and synaptic maturation. The closure of critical periods for experience-dependent shaping of neuronal circuits coincides with the implementation of a mature form of ECM that is characterized by highly elaborate hyaluronan-based structures, the perineuronal nets (PNN), and PNN-like perisynaptic ECM specializations. In this chapter, we will focus on some recently reported aspects of ECM functions in brain plasticity. These include (a) the discovery that the ECM can act as a passive diffusion barrier for cell surface molecules including neurotransmitter receptors and in this way compartmentalize cell surfaces, (b) the specific functions of ECM components in actively regulating synaptic plasticity and homeostasis, and (c) the shaping processes of the ECM by extracellular proteases and in turn the activation particular signaling pathways.
Collapse
Affiliation(s)
- Renato Frischknecht
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | |
Collapse
|
152
|
Hagenfeld D, Borkenhagen B, Schulz T, Schillers H, Schumacher U, Prehm P. Hyaluronan export through plasma membranes depends on concurrent K+ efflux by K(ir) channels. PLoS One 2012; 7:e39096. [PMID: 22701748 PMCID: PMC3372488 DOI: 10.1371/journal.pone.0039096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/18/2012] [Indexed: 12/15/2022] Open
Abstract
Hyaluronan is synthesized within the cytoplasm and exported into the extracellular matrix through the cell membrane of fibroblasts by the MRP5 transporter. In order to meet the law of electroneutrality, a cation is required to neutralize the emerging negative hyaluronan charges. As we previously observed an inhibiting of hyaluronan export by inhibitors of K+ channels, hyaluronan export was now analysed by simultaneously measuring membrane potential in the presence of drugs. This was done by both hyaluronan import into inside-out vesicles and by inhibition with antisense siRNA. Hyaluronan export from fibroblast was particularly inhibited by glibenclamide, ropivacain and BaCl2 which all belong to ATP-sensitive inwardly-rectifying Kir channel inhibitors. Import of hyaluronan into vesicles was activated by 150 mM KCl and this activation was abolished by ATP. siRNA for the K+ channels Kir3.4 and Kir6.2 inhibited hyaluronan export. Collectively, these results indicated that hyaluronan export depends on concurrent K+ efflux.
Collapse
Affiliation(s)
- Daniel Hagenfeld
- Münster University Hospital, Institute of Physiological Chemistry and Pathobiochemistry, Münster, Germany
- Section of Periodontology, Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Beatrice Borkenhagen
- Münster University Hospital, Institute of Physiological Chemistry and Pathobiochemistry, Münster, Germany
| | - Tobias Schulz
- Münster University Hospital, Institute of Physiological Chemistry and Pathobiochemistry, Münster, Germany
| | - Hermann Schillers
- Muenster University Hospital, Institute of Physiology II, Muenster, Germany
| | - Udo Schumacher
- Universitätsklinikum Hamburg-Eppendorf, Institut für Anatomie II: Experimentelle Morphologie, Hamburg, Germany
| | - Peter Prehm
- Münster University Hospital, Institute of Physiological Chemistry and Pathobiochemistry, Münster, Germany
- * E-mail:
| |
Collapse
|
153
|
Mukhina IV, Korotchenko SA, Dityatev AE. Extracellular matrix molecules, their receptors, and extracellular proteases as synaptic plasticity modulators. NEUROCHEM J+ 2012. [DOI: 10.1134/s1819712412020055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
154
|
5-HT7R/G12 signaling regulates neuronal morphology and function in an age-dependent manner. J Neurosci 2012; 32:2915-30. [PMID: 22378867 DOI: 10.1523/jneurosci.2765-11.2012] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The common neurotransmitter serotonin controls different aspects of early neuronal differentiation, although the underlying mechanisms are poorly understood. Here we report that activation of the serotonin 5-HT(7) receptor promotes synaptogenesis and enhances synaptic activity in hippocampal neurons at early postnatal stages. An analysis of Gα(12)-deficient mice reveals a critical role of G(12)-protein for 5-HT(7) receptor-mediated effects in neurons. In organotypic preparations from the hippocampus of juvenile mice, stimulation of 5-HT(7)R/G(12) signaling potentiates formation of dendritic spines, increases neuronal excitability, and modulates synaptic plasticity. In contrast, in older neuronal preparations, morphogenetic and synaptogenic effects of 5-HT(7)/G(12) signaling are abolished. Moreover, inhibition of 5-HT(7) receptor had no effect on synaptic plasticity in hippocampus of adult animals. Expression analysis reveals that the production of 5-HT(7) and Gα(12)-proteins in the hippocampus undergoes strong regulation with a pronounced transient increase during early postnatal stages. Thus, regulated expression of 5-HT(7) receptor and Gα(12)-protein may represent a molecular mechanism by which serotonin specifically modulates formation of initial neuronal networks during early postnatal development.
Collapse
|
155
|
The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 2012; 36:1667-707. [PMID: 22484475 DOI: 10.1016/j.neubiorev.2012.03.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022]
Abstract
Memory allows organisms to predict future events based on prior experiences. This requires encoded information to persist once important predictors are extracted, while also being modifiable in response to changes within the environment. Memory reconsolidation may allow stored information to be modified in response to related experience. However, there are many boundary conditions beyond which reconsolidation may not occur. One interpretation of these findings is that the event triggering memory retrieval must contain new information about a familiar stimulus in order to induce reconsolidation. Presently, the mechanisms that affect the likelihood of reconsolidation occurring under these conditions are not well understood. Here we speculate on a number of systems that may play a role in protecting memory from being destabilized during retrieval. We conclude that few memories may enter a state in which they cannot be modified. Rather, metaplasticity mechanisms may serve to alter the specific reactivation cues necessary to destabilize a memory. This might imply that destabilization mechanisms can differ depending on learning conditions.
Collapse
|
156
|
Shi J, Xing MMQ, Zhong W. Development of hydrogels and biomimetic regulators as tissue engineering scaffolds. MEMBRANES 2012; 2:70-90. [PMID: 24957963 PMCID: PMC4021879 DOI: 10.3390/membranes2010070] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/17/2012] [Accepted: 02/02/2012] [Indexed: 01/06/2023]
Abstract
This paper reviews major research and development issues relating to hydrogels as scaffolds for tissue engineering, the article starts with a brief introduction of tissue engineering and hydrogels as extracellular matrix mimics, followed by a description of the various types of hydrogels and preparation methods, before a discussion of the physical and chemical properties that are important to their application. There follows a short comment on the trends of future research and development. Throughout the discussion there is an emphasis on the genetic understanding of bone tissue engineering application.
Collapse
Affiliation(s)
- Junbin Shi
- Department of Textile Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Malcolm M Q Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Wen Zhong
- Department of Textile Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
157
|
Morawski M, Brückner G, Jäger C, Seeger G, Matthews RT, Arendt T. Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology. Brain Pathol 2012; 22:547-61. [PMID: 22126211 DOI: 10.1111/j.1750-3639.2011.00557.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain extracellular matrix (ECM) is organized in specific patterns assumed to mirror local features of neuronal activity and synaptic plasticity. Aggrecan-based perineuronal nets (PNs) and brevican-based perisynaptic axonal coats (ACs) form major structural phenotypes of ECM contributing to the laminar characteristics of cortical areas. In Alzheimer's disease (AD), the deposition of amyloid proteins and processes related to neurofibrillary degeneration may affect the integrity of the ECM scaffold. In this study we investigate ECM organization in primary sensory, secondary and associative areas of the temporal and occipital lobe. By detecting all major PN components we show that the distribution, structure and molecular properties of PNs remain unchanged in AD. Intact PNs occurred in close proximity to amyloid plaques and were even located within their territory. Counting of PNs revealed no significant alteration in AD. Moreover, neurofibrillary tangles never occurred in neurons associated with PNs. ACs were only lost in the core of amyloid plaques in parallel with the loss of synaptic profiles. In contrast, hyaluronan was enriched in the majority of plaques. We conclude that the loss of brevican is associated with the loss of synapses, whereas PNs and related matrix components resist disintegration and may protect neurons from degeneration.
Collapse
Affiliation(s)
- Markus Morawski
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, Universität Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
158
|
Cargill R, Kohama SG, Struve J, Su W, Banine F, Witkowski E, Back SA, Sherman LS. Astrocytes in aged nonhuman primate brain gray matter synthesize excess hyaluronan. Neurobiol Aging 2011; 33:830.e13-24. [PMID: 21872361 DOI: 10.1016/j.neurobiolaging.2011.07.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/22/2011] [Accepted: 07/08/2011] [Indexed: 12/17/2022]
Abstract
The glycosaminoglycan hyaluronan (HA) accumulates in central nervous system lesions where it limits astrogliosis but also inhibits oligodendrocyte progenitor cell (OPC) maturation. The role of hyaluronan in normative brain aging has not been previously investigated. Here, we tested the hypothesis that HA accumulates in the aging nonhuman primate brain. We found that HA levels significantly increase with age in the gray matter of rhesus macaques. HA accumulation was linked to age-related increases in the transcription of HA synthase-1 (HAS1) expressed by reactive astrocytes but not changes in the expression of other HAS genes or hyaluronidases. HA accumulation was accompanied by increased expression of CD44, a transmembrane HA receptor. Areas of gray matter with elevated HA in older animals demonstrated increased numbers of olig2(+) OPCs, consistent with the notion that HA may influence OPC expansion or maturation. Collectively, these data indicate that HAS1 and CD44 are transcriptionally upregulated in astrocytes during normative aging and are linked to HA accumulation in gray matter.
Collapse
Affiliation(s)
- Robert Cargill
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Bartus K, James ND, Bosch KD, Bradbury EJ. Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol 2011; 235:5-17. [PMID: 21871887 DOI: 10.1016/j.expneurol.2011.08.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 07/15/2011] [Accepted: 08/08/2011] [Indexed: 01/08/2023]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are a family of inhibitory extracellular matrix molecules that are highly expressed during development, where they are involved in processes of pathfinding and guidance. CSPGs are present at lower levels in the mature CNS, but are highly concentrated in perineuronal nets where they play an important role in maintaining stability and restricting plasticity. Whilst important for maintaining stable connections, this can have an adverse effect following insult to the CNS, restricting the capacity for repair, where enhanced synapse formation leading to new connections could be functionally beneficial. CSPGs are also highly expressed at CNS injury sites, where they can restrict anatomical plasticity by inhibiting sprouting and reorganisation, curbing the extent to which spared systems may compensate for the loss function of injured pathways. Modification of CSPGs, usually involving enzymatic degradation of glycosaminoglycan chains from the CSPG molecule, has received much attention as a potential strategy for promoting repair following spinal cord and brain injury. Pre-clinical studies in animal models have demonstrated a number of reparative effects of CSPG modification, which are often associated with functional recovery. Here we discuss the potential of CSPG modification to stimulate restorative plasticity after injury, reviewing evidence from studies in the brain, the spinal cord and the periphery.
Collapse
Affiliation(s)
- K Bartus
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, SE1 1UL, UK.
| | | | | | | |
Collapse
|
160
|
Dityatev A, Rusakov DA. Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol 2011; 21:353-9. [PMID: 21277196 PMCID: PMC3368316 DOI: 10.1016/j.conb.2010.12.006] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/24/2010] [Accepted: 12/27/2010] [Indexed: 01/19/2023]
Abstract
The emergence of astroglia as an important participant of the synaptic machinery has led to the 'tripartite synapse' hypothesis. Recent findings suggest that synaptic signaling also involves the surrounding extracellular matrix (ECM). The ECM can incorporate and store molecular traces of both neuronal and glial activities. It can also modulate function of local receptors or ion channels and send diffuse molecular signals using products of its use-dependent proteolytic cleavage. Recent experimental findings implicate the ECM in mechanisms of synaptic plasticity and glial remodeling, thus lending support to the 'tetrapartite synapse' concept. This inclusive view might help to understand better the mechanisms underlying signal integration and novel forms of long-term homeostatic regulation in the brain.
Collapse
Affiliation(s)
- Alexander Dityatev
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, via Morego 30, Genova 16163, Italy.
| | | |
Collapse
|
161
|
Ghosh B, Li Y, Thayer SA. Inhibition of the plasma membrane Ca2+ pump by CD44 receptor activation of tyrosine kinases increases the action potential afterhyperpolarization in sensory neurons. J Neurosci 2011; 31:2361-70. [PMID: 21325503 PMCID: PMC3565434 DOI: 10.1523/jneurosci.5764-10.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/06/2010] [Accepted: 12/14/2010] [Indexed: 11/21/2022] Open
Abstract
The cytoplasmic Ca(2+) clearance rate affects neuronal excitability, plasticity, and synaptic transmission. Here, we examined the modulation of the plasma membrane Ca(2+) ATPase (PMCA) by tyrosine kinases. In rat sensory neurons grown in culture, the PMCA was under tonic inhibition by a member of the Src family of tyrosine kinases (SFKs). Ca(2+) clearance accelerated in the presence of selective tyrosine kinase inhibitors. Tonic inhibition of the PMCA was attenuated in cells expressing a dominant-negative construct or shRNA directed to message for the SFKs Lck or Fyn, but not Src. SFKs did not appear to phosphorylate the PMCA directly but instead activated focal adhesion kinase (FAK). Expression of constitutively active FAK enhanced and dominant-negative or shRNA knockdown of FAK attenuated tonic inhibition. Antisense knockdown of PMCA isoform 4 removed tonic inhibition of Ca(2+) clearance, indicating that FAK acts on PMCA4. The hyaluronan receptor CD44 activates SFK-FAK signaling cascades and is expressed in sensory neurons. Treating neurons with a CD44-blocking antibody or short hyaluronan oligosaccharides, which are produced during injury and displace macromolecular hyaluronan from CD44, attenuated tonic PMCA inhibition. Ca(2+)-activated K(+) channels mediate a slow afterhyperpolarization in sensory neurons that was inhibited by tyrosine kinase inhibitors and enhanced by knockdown of PMCA4. Thus, we describe a novel kinase cascade in sensory neurons that enables the extracellular matrix to alter Ca(2+) signals by modulating PMCA-mediated Ca(2+) clearance. This signaling pathway may influence the excitability of sensory neurons following injury.
Collapse
Affiliation(s)
- Biswarup Ghosh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Yan Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Stanley A. Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| |
Collapse
|
162
|
Dityatev A, Seidenbecher CI, Schachner M. Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 2011; 33:503-12. [PMID: 20832873 DOI: 10.1016/j.tins.2010.08.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/13/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
The extracellular matrix (ECM) of the central nervous system is well recognized as a migration and diffusion barrier that allows for the trapping and presentation of growth factors to their receptors at the cell surface. Recent data highlight the importance of ECM molecules as synaptic and perisynaptic scaffolds that direct the clustering of neurotransmitter receptors in the postsynaptic compartment and that present barriers to reduce the lateral diffusion of membrane proteins away from synapses. The ECM also contributes to the migration and differentiation of stem cells in the neurogenic niche and organizes the polarized localization of ion channels and transporters at contacts between astrocytic processes and blood vessels. Thus, the ECM contributes to functional compartmentalization in the brain.
Collapse
Affiliation(s)
- Alexander Dityatev
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, via Morego 30, Genova, Italy.
| | | | | |
Collapse
|
163
|
Lin L, Sun W, Kung F, Dell'Acqua ML, Hoffman DA. AKAP79/150 impacts intrinsic excitability of hippocampal neurons through phospho-regulation of A-type K+ channel trafficking. J Neurosci 2011; 31:1323-32. [PMID: 21273417 PMCID: PMC3035425 DOI: 10.1523/jneurosci.5383-10.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/15/2010] [Accepted: 11/23/2010] [Indexed: 01/06/2023] Open
Abstract
Kv4.2, as the primary α-subunit of rapidly inactivating, A-type voltage-gated K(+) (Kv) channels expressed in hippocampal CA1 pyramidal dendrites, plays a critical role in regulating their excitability. Activity-dependent trafficking of Kv4.2 relies on C-terminal protein kinase A (PKA) phosphorylation. A-kinase-anchoring proteins (AKAPs) target PKA to glutamate receptor and ion channel complexes to allow for discrete, local signaling. As part of a previous study, we showed that AKAP79/150 interacts with Kv4.2 complexes and that the two proteins colocalize in hippocampal neurons. However, the nature and functional consequence of their interaction has not been previously explored. Here, we report that the C-terminal domain of Kv4.2 interacts with an internal region of AKAP79/150 that overlaps with its MAGUK (membrane-associated guanylate kinase)-binding domain. We show that AKAP79/150-anchored PKA activity controls Kv4.2 surface expression in heterologous cells and hippocampal neurons. Consistent with these findings, disrupting PKA anchoring led to a decrease in neuronal excitability, while preventing dephosphorylation by the phosphatase calcineurin resulted in increased excitability. These results demonstrate that AKAP79/150 provides a platform for dynamic PKA regulation of Kv4.2 expression, fundamentally impacting CA1 excitability.
Collapse
Affiliation(s)
- Lin Lin
- Molecular Neurophysiology and Biophysics Unit, Laboratory of Cellular and Synaptic Neurophysiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei Sun
- Molecular Neurophysiology and Biophysics Unit, Laboratory of Cellular and Synaptic Neurophysiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
- Neuroscience Research Institute and Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China, and
| | - Faith Kung
- Molecular Neurophysiology and Biophysics Unit, Laboratory of Cellular and Synaptic Neurophysiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Mark L. Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Dax A. Hoffman
- Molecular Neurophysiology and Biophysics Unit, Laboratory of Cellular and Synaptic Neurophysiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
164
|
Miyata S, Kitagawa H. Chondroitin Sulfate Proteoglycans Regulate Experience-Dependent Neuronal Plasticity. TRENDS GLYCOSCI GLYC 2011. [DOI: 10.4052/tigg.23.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
165
|
Abstract
Many mental disorders and neurodegenerative and neurodevelopmental diseases involve cognitive deficits. Remarkable advances and new technologies are providing a clearer picture of the molecular basis of cognition. In conjunction with an SFN2010 symposium, we provided here a brief overview of the molecular mechanisms of cognition, with emphasis on the development of treatments for cognitive disorders. Activity-dependent changes in gene expression and protein synthesis integrate with synapse selection to form memory circuits. A neuronal activity-dependent molecular tagging system that uses the gene expression program to record memory circuit formation represents one new tool to study cognition. Regulation of protein translation, protein degradation, cytoskeletal dynamics, extracellular matrix interactions, second messenger signaling, and neurotransmitter receptor trafficking and function are all components of synaptic remodeling essential for cognition. Selective targeting of specific effectors in these processes, such as NMDA receptors, may serve as an effective strategy to treat cognitive deficits.
Collapse
|
166
|
Dityatev A, Schachner M, Sonderegger P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 2010; 11:735-46. [DOI: 10.1038/nrn2898] [Citation(s) in RCA: 407] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|