151
|
Lazarevic V, Yang Y, Ivanova D, Fejtova A, Svenningsson P. Riluzole attenuates the efficacy of glutamatergic transmission by interfering with the size of the readily releasable neurotransmitter pool. Neuropharmacology 2018; 143:38-48. [PMID: 30222983 DOI: 10.1016/j.neuropharm.2018.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/11/2018] [Accepted: 09/12/2018] [Indexed: 01/02/2023]
Abstract
Riluzole is a potent neuroprotective agent which primarily inhibits excitatory neurotransmission interfering with presynaptic release, uptake and postsynaptic actions of glutamate by mechanisms that are not well understood. Riluzole and related prodrugs with improved blood brain barrier penetrance, are shown to be effective for the treatment of amyotrophic lateral sclerosis, ataxias, epilepsy and mood disorders. Our study was undertaken to decipher molecular and subcellular mechanisms of riluzole's antiglutamatergic effect, particularly focusing on presynaptic active zone structure and function. Applying multifarious live cell imaging techniques and amperometric glutamate recordings, we measured the impact of riluzole on presynaptic activity, synaptic vesicle recycling and glutamate release. Our in vitro and in vivo data revealed a unique mechanism whereby riluzole reduces the efficacy of glutamatergic transmission by selectively lowering the size of the readily releasable pool. This effect was correlated with the inhibition of protein kinase C-dependent Munc18-1 phosphorylation which is known to interfere with neurotransmitter release.
Collapse
Affiliation(s)
- Vesna Lazarevic
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Yunting Yang
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Daniela Ivanova
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anna Fejtova
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Per Svenningsson
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
152
|
White KI, Zhao M, Choi UB, Pfuetzner RA, Brunger AT. Structural principles of SNARE complex recognition by the AAA+ protein NSF. eLife 2018; 7:38888. [PMID: 30198481 PMCID: PMC6160233 DOI: 10.7554/elife.38888] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/26/2018] [Indexed: 12/13/2022] Open
Abstract
The recycling of SNARE proteins following complex formation and membrane fusion is an essential process in eukaryotic trafficking. A highly conserved AAA+ protein, NSF (N-ethylmaleimide sensitive factor) and an adaptor protein, SNAP (soluble NSF attachment protein), disassemble the SNARE complex. We report electron-cryomicroscopy structures of the complex of NSF, αSNAP, and the full-length soluble neuronal SNARE complex (composed of syntaxin-1A, synaptobrevin-2, SNAP-25A) in the presence of ATP under non-hydrolyzing conditions at ~3.9 Å resolution. These structures reveal electrostatic interactions by which two αSNAP molecules interface with a specific surface of the SNARE complex. This interaction positions the SNAREs such that the 15 N-terminal residues of SNAP-25A are loaded into the D1 ring pore of NSF via a spiral pattern of interactions between a conserved tyrosine NSF residue and SNAP-25A backbone atoms. This loading process likely precedes ATP hydrolysis. Subsequent ATP hydrolysis then drives complete disassembly.
Collapse
Affiliation(s)
- K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
153
|
SNARE zippering requires activation by SNARE-like peptides in Sec1/Munc18 proteins. Proc Natl Acad Sci U S A 2018; 115:E8421-E8429. [PMID: 30127032 DOI: 10.1073/pnas.1802645115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) catalyze membrane fusion by forming coiled-coil bundles between membrane bilayers. The SNARE bundle zippers progressively toward the membranes, pulling the lipid bilayers into close proximity to fuse. In this work, we found that the +1 and +2 layers in the C-terminal domains (CTDs) of SNAREs are dispensable for reconstituted SNARE-mediated fusion reactions. By contrast, all CTD layers are required for fusion reactions activated by the cognate Sec1/Munc18 (SM) protein or a synthetic Vc peptide derived from the vesicular (v-) SNARE, correlating with strong acceleration of fusion kinetics. These results suggest a similar mechanism underlying the stimulatory functions of SM proteins and Vc peptide in SNARE-dependent membrane fusion. Unexpectedly, we identified a conserved SNARE-like peptide (SLP) in SM proteins that structurally and functionally resembles Vc peptide. Like Vc peptide, SLP binds and activates target (t-) SNAREs, accelerating the fusion reaction. Disruption of the t-SNARE-SLP interaction inhibits exocytosis in vivo. Our findings demonstrated that a t-SNARE-SLP intermediate must form before SNAREs can drive efficient vesicle fusion.
Collapse
|
154
|
Nakamura T, Jimbo K, Nakajima K, Tsuboi T, Kato T. De novo UNC13B mutation identified in a bipolar disorder patient increases a rare exon-skipping variant. Neuropsychopharmacol Rep 2018; 38:210-213. [PMID: 30117296 PMCID: PMC7292303 DOI: 10.1002/npr2.12027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 12/13/2022] Open
Abstract
AIM We previously performed the first trio-based exome study for bipolar disorder and identified 71 de novo mutations. Among these mutations, the only mutation located at the splice donor site was in UNC13B. We focused on and analyzed the functions of the mutation. METHODS In order to analyze the functional alterations, due to the mutation, we performed a minigene splicing assay. KEY RESULTS We found that the mutation caused the loss of a wild-type splicing variant, which was consistent with the computational splice prediction, and that an exon-skipping variant increased significantly. The exon-skipping variant also existed in the wild-type minigene, although it was rare. Hence, we validated the expression of the exon-skipping variant using total RNAs derived from the human cerebral cortex. We showed the possibility that the exon-skipping variant was rare, but expressed even in those that do not carry the mutation. CONCLUSIONS Based on our results, we suggest that an abnormal splicing pattern of UNC13B occurred in the patient, which could be related to the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Kotori Jimbo
- Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Kazuo Nakajima
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
155
|
Gao J, Reggiori F, Ungermann C. A novel in vitro assay reveals SNARE topology and the role of Ykt6 in autophagosome fusion with vacuoles. J Cell Biol 2018; 217:3670-3682. [PMID: 30097515 PMCID: PMC6168247 DOI: 10.1083/jcb.201804039] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/13/2018] [Accepted: 07/06/2018] [Indexed: 11/22/2022] Open
Abstract
Autophagosome fusion with vacuoles requires a conserved fusion machinery, though the topology remained unclear. Two papers in this issue, Bas et al. and Gao et al., uncover Ykt6 as the required autophagosomal SNARE. Autophagy is a catabolic pathway that delivers intracellular material to the mammalian lysosomes or the yeast and plant vacuoles. The final step in this process is the fusion of autophagosomes with vacuoles, which requires SNARE proteins, the homotypic vacuole fusion and protein sorting tethering complex, the RAB7-like Ypt7 GTPase, and its guanine nucleotide exchange factor, Mon1-Ccz1. Where these different components are located and function during fusion, however, remains to be fully understood. Here, we present a novel in vitro assay to monitor fusion of intact and functional autophagosomes with vacuoles. This process requires ATP, physiological temperature, and the entire fusion machinery to tether and fuse autophagosomes with vacuoles. Importantly, we uncover Ykt6 as the autophagosomal SNARE. Our assay and findings thus provide the tools to dissect autophagosome completion and fusion in a test tube.
Collapse
Affiliation(s)
- Jieqiong Gao
- Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Christian Ungermann
- Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany .,Center of Cellular Nanoanalytics Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
156
|
Brunger AT, Leitz J, Zhou Q, Choi UB, Lai Y. Ca 2+-Triggered Synaptic Vesicle Fusion Initiated by Release of Inhibition. Trends Cell Biol 2018; 28:631-645. [PMID: 29706534 PMCID: PMC6056330 DOI: 10.1016/j.tcb.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/17/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
Recent structural and functional studies of the synaptic vesicle fusion machinery suggest an inhibited tripartite complex consisting of neuronal soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs), synaptotagmin, and complexin prior to Ca2+-triggered synaptic vesicle fusion. We speculate that Ca2+-triggered fusion commences with the release of inhibition by Ca2+ binding to synaptotagmin C2 domains. Subsequently, fusion is assisted by SNARE complex zippering and by active membrane remodeling properties of synaptotagmin. This additional, inhibitory role of synaptotagmin may be a general principle since other recent studies suggest that Ca2+ binding to extended synaptotagmin C2 domains enables lipid transport by releasing an inhibited state of the system, and that Munc13 may nominally be in an inhibited state, which is released upon Ca2+ binding to one of its C2 domains.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
157
|
Zhu YH, Hyun J, Pan YZ, Hopper JE, Rizo J, Wu JQ. Roles of the fission yeast UNC-13/Munc13 protein Ync13 in late stages of cytokinesis. Mol Biol Cell 2018; 29:2259-2279. [PMID: 30044717 PMCID: PMC6249806 DOI: 10.1091/mbc.e18-04-0225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cytokinesis is a complicated yet conserved step of the cell-division cycle that requires the coordination of multiple proteins and cellular processes. Here we describe a previously uncharacterized protein, Ync13, and its roles during fission yeast cytokinesis. Ync13 is a member of the UNC-13/Munc13 protein family, whose animal homologues are essential priming factors for soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex assembly during exocytosis in various cell types, but no roles in cytokinesis have been reported. We find that Ync13 binds to lipids in vitro and dynamically localizes to the plasma membrane at cell tips during interphase and at the division site during cytokinesis. Deletion of Ync13 leads to defective septation and exocytosis, uneven distribution of cell-wall enzymes and components of cell-wall integrity pathway along the division site and massive cell lysis during cell separation. Interestingly, loss of Ync13 compromises endocytic site selection at the division plane. Collectively, we find that Ync13 has a novel function as an UNC-13/Munc13 protein in coordinating exocytosis, endocytosis, and cell-wall integrity during fission yeast cytokinesis.
Collapse
Affiliation(s)
- Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Joanne Hyun
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - James E Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
158
|
He R, Zhang J, Yu Y, Jizi L, Wang W, Li M. New Insights Into Interactions of Presynaptic Calcium Channel Subtypes and SNARE Proteins in Neurotransmitter Release. Front Mol Neurosci 2018; 11:213. [PMID: 30061813 PMCID: PMC6054978 DOI: 10.3389/fnmol.2018.00213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Action potential (AP) induces presynaptic membrane depolarization and subsequent opening of Ca2+ channels, and then triggers neurotransmitter release at the active zone of presynaptic terminal. Presynaptic Ca2+ channels and SNARE proteins (SNAREs) interactions form a large signal transfer complex, which are core components for exocytosis. Ca2+ channels serve to regulate the activity of Ca2+ channels through direct binding and indirect activation of active zone proteins and SNAREs. The activation of Ca2+ channels promotes synaptic vesicle recruitment, docking, priming, fusion and neurotransmission release. Intracellular calcium increase is a key step for the initiation of vesicle fusion. Various voltage-gated calcium channel (VGCC) subtypes exert different physiological functions. Until now, it has not been clear how different subtypes of calcium channels integrally regulate the release of neurotransmitters within 200 μs of the AP arriving at the active zone of synaptic terminal. In this mini review, we provide a brief overview of the structure and physiological function of Ca2+ channel subtypes, interactions of Ca2+ channels and SNAREs in neurotransmitter release, and dynamic fine-tune Ca2+ channel activities by G proteins (Gβγ), multiple protein kinases and Ca2+ sensor (CaS) proteins.
Collapse
Affiliation(s)
- Rongfang He
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Infectious Disease Department, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Juan Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yiyan Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Laluo Jizi
- Department of Neurology, Liangshan Hospital of Integrated Traditional and Western Medicine, Xichang, China
| | - Weizhong Wang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
159
|
Rizo J. Mechanism of neurotransmitter release coming into focus. Protein Sci 2018; 27:1364-1391. [PMID: 29893445 DOI: 10.1002/pro.3445] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N-ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18-1 and Munc13-1 orchestrate SNARE complex formation in an NSF-SNAP-resistant manner by a mechanism whereby Munc18-1 binds to synaptobrevin and to a self-inhibited "closed" conformation of syntaxin-1, thus forming a template to assemble the SNARE complex, and Munc13-1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin-1. Synaptotagmin-1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
160
|
Choi UB, Zhao M, White KI, Pfuetzner RA, Esquivies L, Zhou Q, Brunger AT. NSF-mediated disassembly of on- and off-pathway SNARE complexes and inhibition by complexin. eLife 2018; 7:36497. [PMID: 29985126 PMCID: PMC6130971 DOI: 10.7554/elife.36497] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022] Open
Abstract
SNARE complex disassembly by the ATPase NSF is essential for neurotransmitter release and other membrane trafficking processes. We developed a single-molecule FRET assay to monitor repeated rounds of NSF-mediated disassembly and reassembly of individual SNARE complexes. For ternary neuronal SNARE complexes, disassembly proceeds in a single step within 100 msec. We observed short- (<0.32 s) and long-lived (≥0.32 s) disassembled states. The long-lived states represent fully disassembled SNARE complex, while the short-lived states correspond to failed disassembly or immediate reassembly. Either high ionic strength or decreased αSNAP concentration reduces the disassembly rate while increasing the frequency of short-lived states. NSF is also capable of disassembling anti-parallel ternary SNARE complexes, implicating it in quality control. Finally, complexin-1 competes with αSNAP binding to the SNARE complex; addition of complexin-1 has an effect similar to that of decreasing the αSNAP concentration, possibly differentially regulating cis and trans SNARE complexes disassembly.
Collapse
Affiliation(s)
- Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
161
|
Rodríguez Cruz PM, Palace J, Beeson D. The Neuromuscular Junction and Wide Heterogeneity of Congenital Myasthenic Syndromes. Int J Mol Sci 2018; 19:ijms19061677. [PMID: 29874875 PMCID: PMC6032286 DOI: 10.3390/ijms19061677] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are genetic disorders characterised by impaired neuromuscular transmission. This review provides an overview on CMS and highlights recent advances in the field, including novel CMS causative genes and improved therapeutic strategies. CMS due to mutations in SLC5A7 and SLC18A3, impairing the synthesis and recycling of acetylcholine, have recently been described. In addition, a novel group of CMS due to mutations in SNAP25B, SYT2, VAMP1, and UNC13A1 encoding molecules implicated in synaptic vesicles exocytosis has been characterised. The increasing number of presynaptic CMS exhibiting CNS manifestations along with neuromuscular weakness demonstrate that the myasthenia can be only a small part of a much more extensive disease phenotype. Moreover, the spectrum of glycosylation abnormalities has been increased with the report that GMPPB mutations can cause CMS, thus bridging myasthenic disorders with dystroglycanopathies. Finally, the discovery of COL13A1 mutations and laminin α5 deficiency has helped to draw attention to the role of extracellular matrix proteins for the formation and maintenance of muscle endplates. The benefit of β2-adrenergic agonists alone or combined with pyridostigmine or 3,4-Dyaminopiridine is increasingly being reported for different subtypes of CMS including AChR-deficiency and glycosylation abnormalities, thus expanding the therapeutic repertoire available.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
162
|
Abstract
This review summarizes current knowledge of synaptic proteins that are central to synaptic vesicle fusion in presynaptic active zones, including SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors), synaptotagmin, complexin, Munc18 (mammalian uncoordinated-18), and Munc13 (mammalian uncoordinated-13), and highlights recent insights in the cooperation of these proteins for neurotransmitter release. Structural and functional studies of the synaptic fusion machinery suggest new molecular models of synaptic vesicle priming and Ca2+-triggered fusion. These studies will be a stepping-stone toward answering the question of how the synaptic vesicle fusion machinery achieves such high speed and sensitivity.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
163
|
|
164
|
Liang B, Tamm LK. Solution NMR of SNAREs, complexin and α-synuclein in association with membrane-mimetics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:41-53. [PMID: 29548366 PMCID: PMC5863748 DOI: 10.1016/j.pnmrs.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
SNARE-mediated membrane fusion is a ubiquitous process responsible for intracellular vesicle trafficking, including membrane fusion in exocytosis that leads to hormone and neurotransmitter release. The proteins that facilitate this process are highly dynamic and adopt multiple conformations when they interact with other proteins and lipids as they form highly regulated molecular machines that operate on membranes. Solution NMR is an ideal method to capture high-resolution glimpses of the molecular transformations that take place when these proteins come together and work on membranes. Since solution NMR has limitations on the size of proteins and complexes that can be studied, lipid bilayer model membranes cannot be used in these approaches, so the relevant interactions are typically studied in various types of membrane-mimetics that are tractable by solution NMR methods. In this review we therefore first summarize different membrane-mimetic systems that are commonly used or that show promise for solution NMR studies of membrane-interacting proteins. We then summarize recent NMR studies on two SNARE proteins, syntaxin and synaptobrevin, and two related regulatory proteins, complexin and α-synuclein, and their interactions with membrane lipids. These studies provide a structural and dynamical framework for how these proteins might carry out their functions in the vicinity of lipid membranes. The common theme throughout these studies is that membrane interactions have major influences on the structural dynamics of these proteins that cannot be ignored when attempting to explain their functions in contemporary models of SNARE-mediated membrane fusion.
Collapse
Affiliation(s)
- Binyong Liang
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
165
|
Gutierrez BA, Chavez MA, Rodarte AI, Ramos MA, Dominguez A, Petrova Y, Davalos AJ, Costa RM, Elizondo R, Tuvim MJ, Dickey BF, Burns AR, Heidelberger R, Adachi R. Munc18-2, but not Munc18-1 or Munc18-3, controls compound and single-vesicle-regulated exocytosis in mast cells. J Biol Chem 2018; 293:7148-7159. [PMID: 29599294 DOI: 10.1074/jbc.ra118.002455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/20/2018] [Indexed: 11/06/2022] Open
Abstract
Mast cells (MCs) play pivotal roles in many inflammatory conditions including infections, anaphylaxis, and asthma. MCs store immunoregulatory compounds in their large cytoplasmic granules and, upon stimulation, secrete them via regulated exocytosis. Exocytosis in many cells requires the participation of Munc18 proteins (also known as syntaxin-binding proteins), and we found that mature MCs express all three mammalian isoforms: Munc18-1, -2, and -3. To study their functions in MC effector responses and test the role of MC degranulation in anaphylaxis, we used conditional knockout (cKO) mice in which each Munc18 protein was deleted exclusively in MCs. Using recordings of plasma membrane capacitance for high-resolution analysis of exocytosis in individual MCs, we observed an almost complete absence of exocytosis in Munc18-2-deficient MCs but intact exocytosis in MCs lacking Munc18-1 or Munc18-3. Stereological analysis of EM images of stimulated MCs revealed that the deletion of Munc18-2 also abolishes the homotypic membrane fusion required for compound exocytosis. We confirmed the severe defect in regulated exocytosis in the absence of Munc18-2 by measuring the secretion of mediators stored in MC granules. Munc18-2 cKO mice had normal morphology, development, and distribution of their MCs, indicating that Munc18-2 is not essential for the migration, retention, and maturation of MC-committed progenitors. Despite that, we found that Munc18-2 cKO mice were significantly protected from anaphylaxis. In conclusion, MC-regulated exocytosis is required for the anaphylactic response, and Munc18-2 is the sole Munc18 isoform that mediates membrane fusion during MC degranulation.
Collapse
Affiliation(s)
- Berenice A Gutierrez
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey NL 64849 México
| | - Miguel A Chavez
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey NL 64710 México
| | - Alejandro I Rodarte
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey NL 64710 México
| | - Marco A Ramos
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Andrea Dominguez
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey NL 64710 México
| | - Youlia Petrova
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Alfredo J Davalos
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Renan M Costa
- Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Ramon Elizondo
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey NL 64710 México
| | - Michael J Tuvim
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Burton F Dickey
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, Texas 77204
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| | - Roberto Adachi
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030.
| |
Collapse
|
166
|
Li Y, Wang S, Li T, Zhu L, Ma C. Tomosyn guides
SNARE
complex formation in coordination with Munc18 and Munc13. FEBS Lett 2018; 592:1161-1172. [DOI: 10.1002/1873-3468.13018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Yun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Tianzhi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Le Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
- The Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
167
|
Diverse exocytic pathways for mast cell mediators. Biochem Soc Trans 2018; 46:235-247. [PMID: 29472369 DOI: 10.1042/bst20170450] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/23/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
Abstract
Mast cells play pivotal roles in innate and adaptive immunities but are also culprits in allergy, autoimmunity, and cardiovascular diseases. Mast cells respond to environmental changes by initiating regulated exocytosis/secretion of various biologically active compounds called mediators (e.g. proteases, amines, and cytokines). Many of these mediators are stored in granules/lysosomes and rely on intricate degranulation processes for release. Mast cell stabilizers (e.g. sodium cromoglicate), which prevent such degranulation processes, have therefore been clinically employed to treat asthma and allergic rhinitis. However, it has become increasingly clear that different mast cell diseases often involve multiple mediators that rely on overlapping but distinct mechanisms for release. This review illustrates existing evidence that highlights the diverse exocytic pathways in mast cells. We also discuss strategies to delineate these pathways so as to identify unique molecular components which could serve as new drug targets for more effective and specific treatments against mast cell-related diseases.
Collapse
|
168
|
In Vivo Analysis of a Gain-of-Function Mutation Confirms Unc18/Munc18's Role in Priming. J Neurosci 2018; 38:1055-1057. [PMID: 29386300 DOI: 10.1523/jneurosci.3068-17.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
|
169
|
Walter AM, Böhme MA, Sigrist SJ. Vesicle release site organization at synaptic active zones. Neurosci Res 2017; 127:3-13. [PMID: 29275162 DOI: 10.1016/j.neures.2017.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Information transfer between nerve cells (neurons) forms the basis of behavior, emotion, and survival. Signal transduction from one neuron to another occurs at synapses, and relies on both electrical and chemical signal propagation. At chemical synapses, incoming electrical action potentials trigger the release of chemical neurotransmitters that are sensed by the connected cell and here reconverted to an electrical signal. The presynaptic conversion of an electrical to a chemical signal is an energy demanding, highly regulated process that relies on a complex, evolutionarily conserved molecular machinery. Here, we review the biophysical characteristics of this process, the current knowledge of the molecules operating in this reaction and genetic specializations that may have evolved to shape inter-neuronal signaling.
Collapse
Affiliation(s)
- Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.
| | - Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology/Genetics, Takustraße 6, 14195 Berlin, Germany; NeuroCure, Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
170
|
Rodarte EM, Ramos MA, Davalos AJ, Moreira DC, Moreno DS, Cardenas EI, Rodarte AI, Petrova Y, Molina S, Rendon LE, Sanchez E, Breaux K, Tortoriello A, Manllo J, Gonzalez EA, Tuvim MJ, Dickey BF, Burns AR, Heidelberger R, Adachi R. Munc13 proteins control regulated exocytosis in mast cells. J Biol Chem 2017; 293:345-358. [PMID: 29141910 DOI: 10.1074/jbc.m117.816884] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/02/2017] [Indexed: 01/01/2023] Open
Abstract
Mast cells (MCs) are involved in host defenses against pathogens and inflammation. Stimulated MCs release substances stored in their granules via regulated exocytosis. In other cell types, Munc13 (mammalian homolog of Caenorhabditis elegans uncoordinated gene 13) proteins play essential roles in regulated exocytosis. Here, we found that MCs express Munc13-2 and -4, and we studied their roles using global and conditional knock-out (KO) mice. In a model of systemic anaphylaxis, we found no difference between WT and Munc13-2 KO mice, but global and MC-specific Munc13-4 KO mice developed less hypothermia. This protection correlated with lower plasma histamine levels and with histological evidence of defective MC degranulation but not with changes in MC development, distribution, numbers, or morphology. In vitro assays revealed that the defective response in Munc13-4-deficient MCs was limited to regulated exocytosis, leaving other MC secretory effector responses intact. Single cell capacitance measurements in MCs from mouse mutants differing in Munc13-4 expression levels in their MCs revealed that as levels of Munc13-4 decrease, the rate of exocytosis declines first, and then the total amount of exocytosis decreases. A requirement for Munc13-2 in MC exocytosis was revealed only in the absence of Munc13-4. Electrophysiology and EM studies uncovered that the number of multigranular compound events (i.e. granule-to-granule homotypic fusion) was severely reduced in the absence of Munc13-4. We conclude that although Munc13-2 plays a minor role, Munc13-4 is essential for regulated exocytosis in MCs, and that this MC effector response is required for a full anaphylactic response.
Collapse
Affiliation(s)
- Elsa M Rodarte
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Marco A Ramos
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Alfredo J Davalos
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Daniel C Moreira
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - David S Moreno
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Eduardo I Cardenas
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Alejandro I Rodarte
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Youlia Petrova
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Sofia Molina
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Luis E Rendon
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Elizabeth Sanchez
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Keegan Breaux
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Alejandro Tortoriello
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - John Manllo
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Erika A Gonzalez
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Michael J Tuvim
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Burton F Dickey
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, Texas 77204
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Roberto Adachi
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030.
| |
Collapse
|
171
|
Rothman JE, Krishnakumar SS, Grushin K, Pincet F. Hypothesis - buttressed rings assemble, clamp, and release SNAREpins for synaptic transmission. FEBS Lett 2017; 591:3459-3480. [PMID: 28983915 PMCID: PMC5698743 DOI: 10.1002/1873-3468.12874] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022]
Abstract
Neural networks are optimized to detect temporal coincidence on the millisecond timescale. Here, we offer a synthetic hypothesis based on recent structural insights into SNAREs and the C2 domain proteins to explain how synaptic transmission can keep this pace. We suggest that an outer ring of up to six curved Munc13 ‘MUN’ domains transiently anchored to the plasma membrane via its flanking domains surrounds a stable inner ring comprised of synaptotagmin C2 domains to serve as a work‐bench on which SNAREpins are templated. This ‘buttressed‐ring hypothesis’ affords straightforward answers to many principal and long‐standing questions concerning how SNAREpins can be assembled, clamped, and then released synchronously with an action potential.
Collapse
Affiliation(s)
- James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Kirill Grushin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Frederic Pincet
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ, CNRS, Paris, France
| |
Collapse
|
172
|
Munc18a clusters SNARE-bearing liposomes prior to trans-SNARE zippering. Biochem J 2017; 474:3339-3354. [PMID: 28827281 DOI: 10.1042/bcj20170494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
Abstract
Sec1-Munc18 (SM) proteins co-operate with SNAREs {SNAP [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein] receptors} to mediate membrane fusion in eukaryotic cells. Studies of Munc18a/Munc18-1/Stxbp1 in neurotransmission suggest that SM proteins accelerate fusion kinetics primarily by activating the partially zippered trans-SNARE complex. However, accumulating evidence has argued for additional roles for SM proteins in earlier steps in the fusion cascade. Here, we investigate the function of Munc18a in reconstituted exocytic reactions mediated by neuronal and non-neuronal SNAREs. We show that Munc18a plays a direct role in promoting proteoliposome clustering, underlying vesicle docking during exocytosis. In the three different fusion reactions examined, Munc18a-dependent clustering requires an intact N-terminal peptide (N-peptide) motif in syntaxin that mediates the binary interaction between syntaxin and Munc18a. Importantly, clustering is preserved under inhibitory conditions that abolish both trans-SNARE complex formation and lipid mixing, indicating that Munc18a promotes membrane clustering in a step that is independent of trans-SNARE zippering and activation.
Collapse
|
173
|
Abstract
Unc13 proteins are required for vesicle docking and priming during exocytosis. In this issue of Neuron, Lai et al. (2017) demonstrate that Unc13 ensures that the SNAREs assemble into functional subcomplexes. In a second manuscript, Michelassi et al. (2017) identify a previously unknown autoinhibited state for Unc13 mediated by the tandem C1 and C2 domains.
Collapse
|
174
|
Gipson P, Fukuda Y, Danev R, Lai Y, Chen DH, Baumeister W, Brunger AT. Morphologies of synaptic protein membrane fusion interfaces. Proc Natl Acad Sci U S A 2017; 114:9110-9115. [PMID: 28739947 PMCID: PMC5576828 DOI: 10.1073/pnas.1708492114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotransmitter release is orchestrated by synaptic proteins, such as SNAREs, synaptotagmin, and complexin, but the molecular mechanisms remain unclear. We visualized functionally active synaptic proteins reconstituted into proteoliposomes and their interactions in a native membrane environment by electron cryotomography with a Volta phase plate for improved resolvability. The images revealed individual synaptic proteins and synaptic protein complex densities at prefusion contact sites between membranes. We observed distinct morphologies of individual synaptic proteins and their complexes. The minimal system, consisting of neuronal SNAREs and synaptotagmin-1, produced point and long-contact prefusion states. Morphologies and populations of these states changed as the regulatory factors complexin and Munc13 were added. Complexin increased the membrane separation, along with a higher propensity of point contacts. Further inclusion of the priming factor Munc13 exclusively restricted prefusion states to point contacts, all of which efficiently fused upon Ca2+ triggering. We conclude that synaptic proteins have evolved to limit possible contact site assemblies and morphologies to those that promote fast Ca2+-triggered release.
Collapse
Affiliation(s)
- Preeti Gipson
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Yoshiyuki Fukuda
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Radostin Danev
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - Dong-Hua Chen
- Department of Structural Biology, Stanford University, Stanford, CA 94305
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305;
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|