151
|
Perineuronal and perisynaptic extracellular matrix in the human spinal cord. Neuroscience 2013; 238:168-84. [PMID: 23428622 DOI: 10.1016/j.neuroscience.2013.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 12/20/2022]
Abstract
Extracellular matrix (ECM) forms an active interface around neurons of the central nervous system (CNS). Whilst the components, chemical heterogeneity and cellular recruitment of this intercellular assembly in various parts of the brain have been discussed in detail, the spinal cord received limited attention in this context. This is in sharp contrast to its clinical relevance since the overall role of ECM especially that of its chondroitin sulphate-based proteoglycan components (CSPGs) was repeatedly addressed in neuropathology, regeneration, CNS repair and therapy models. Based on two post-mortem human specimen, this study gives the first and detailed description of major ECM components of the human spinal cord. Immunohistochemical investigations were restricted to the systematic mapping of aggrecan, brevican, proteoglycan link-protein as well as tenascin-R and hyaluronan containing matrices in the whole cranio-caudal dimension of the human spinal cord. Other proteoglycans like versican, neurocan and NG2 were exemplarily investigated in restricted areas. We show the overall presence of tenascin-R and hyaluronan in both white and grey matters whereas aggrecan, proteoglycan link-protein and brevican were restricted to the grey matter. In the grey matter, the ECM formed aggrecan-based perineuronal nets in the ventral and lateral horns but established single perisynaptic assemblies, axonal coats (ACs), containing link-protein and brevican in all regions except of the Lissauer's zone. Intersegmental differences were reflected in the appearance of segment-specific nuclei but not in overall matrix distribution pattern or chemical heterogeneity. Perineuronal nets were typically associated with long-range projection neurons including cholinergic ventral horn motorneurons or dorsal spinocerebellar tract neurons of the Clarke-Stilling nuclei. Multiple immunolabelling revealed that nociceptive afferents were devoid of individual matrix assemblies unlike glycinergic or GABAergic synapses. The detailed description of ECM distribution in the human spinal cord shall support clinical approaches in injury and regenerative therapy.
Collapse
|
152
|
Wade A, Robinson AE, Engler JR, Petritsch C, James CD, Phillips JJ. Proteoglycans and their roles in brain cancer. FEBS J 2013; 280:2399-417. [PMID: 23281850 DOI: 10.1111/febs.12109] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/13/2022]
Abstract
Glioblastoma, a malignant brain cancer, is characterized by abnormal activation of receptor tyrosine kinase signalling pathways and a poor prognosis. Extracellular proteoglycans, including heparan sulfate and chondroitin sulfate, play critical roles in the regulation of cell signalling and migration via interactions with extracellular ligands, growth factor receptors and extracellular matrix components, as well as intracellular enzymes and structural proteins. In cancer, proteoglycans help drive multiple oncogenic pathways in tumour cells and promote critical tumour-microenvironment interactions. In the present review, we summarize the evidence for proteoglycan function in gliomagenesis and examine the expression of proteoglycans and their modifying enzymes in human glioblastoma using data obtained from The Cancer Genome Atlas (http://cancergenome.nih.gov/). Furthermore, we demonstrate an association between specific proteoglycan alterations and changes in receptor tyrosine kinases. Based on these data, we propose a model in which proteoglycans and their modifying enzymes promote receptor tyrosine kinase signalling and progression in glioblastoma, and we suggest that cancer-associated proteoglycans are promising biomarkers for disease and therapeutic targets.
Collapse
Affiliation(s)
- Anna Wade
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
153
|
Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer's disease. Acta Neuropathol 2013; 125:215-29. [PMID: 22961619 DOI: 10.1007/s00401-012-1042-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 12/16/2022]
Abstract
Perineuronal matrix is an extracellular protein scaffold to shape neuronal responsiveness and survival. Whilst perineuronal nets engulf the somatodendritic axis of neurons, axonal coats are focal extracellular protein aggregates surrounding individual synapses. Here, we addressed the chemical identity and subcellular localization of both perineuronal and perisynaptic matrices in the human hippocampus, whose neuronal circuitry is progressively compromised in Alzheimer's disease. We hypothesized that (1) the cellular expression sites of chondroitin sulphate proteoglycan-containing extracellular matrix associate with specific neuronal identities, reflecting network dynamics, and (2) the regional distribution and molecular composition of axonal coats must withstand Alzheimer's disease-related modifications to protect functional synapses. We show by epitope-specific antibodies that the perineuronal protomap of the human hippocampus is distinct from other mammals since pyramidal cells but not calretinin(+) and calbindin(+) interneurons, neurochemically classified as novel neuronal subtypes, lack perineuronal nets. We find that cartilage link protein-1 and brevican-containing matrices form isolated perisynaptic coats, engulfing both inhibitory and excitatory terminals in the dentate gyrus and entorhinal cortex. Ultrastructural analysis revealed that presynaptic neurons contribute components of perisynaptic coats via axonal transport. We demonstrate, by combining biochemical profiling and neuroanatomy in Alzheimer's patients and transgenic (APdE9) mice, the preserved turnover and distribution of axonal coats around functional synapses along dendrite segments containing hyperphosphorylated tau and in amyloid-β-laden hippocampal microdomains. We conclude that the presynapse-driven formation of axonal coats is a candidate mechanism to maintain synapse integrity under neurodegenerative conditions.
Collapse
|
154
|
Munc13 genotype regulates secretory amyloid precursor protein processing via postsynaptic glutamate receptors. Int J Dev Neurosci 2012; 31:36-45. [PMID: 23070049 DOI: 10.1016/j.ijdevneu.2012.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/31/2022] Open
Abstract
The amyloid precursor protein (APP) can be proteolytically degraded via non-amyloidogenic α-secretase and amyloidogenic β-secretase pathways. Previously, we have identified the presynaptic protein Munc13-1 as a diacylglycerol/phorbolester (DAG/PE) receptor that contributes to secretory, non-amyloidogenic APP processing after PE stimulation. Here, we used organotypic brain slice cultures from wild-type mice and from Munc13-1 knock-out (KO), Munc13-2 KO and Munc13-1/2 double KO (DKO) mice for pharmacological stimulation experiments. First, we demonstrate that neuronal populations and synaptic components important for secretory APP processing develop normally in organotypic brain slice cultures of all genotypes analyzed. Blockade of voltage-gated Na(+) channels by tetrodotoxin reduced the PE-stimulated secretory APP processing, whereas depolarization by high extracellular K(+) concentration evoked APP secretion. Additionally, the PE-stimulated APP secretion from Munc13-1 KO brain slices was significantly lower than that from wild-type brain slices. This effect was not observed in brain slices from Munc13-2 KO mice, which is consistent with the lower abundance and subpopulation-specific distribution of Munc13-2 in presynaptic elements. In Munc13-1/2 DKO brain slices, the deficiency of Munc13-1 dominated the effect of APP processing. The Munc13-1 KO effect on APP processing could be rescued by the stimulation of postsynaptic glutamatergic receptors. This indicates that lack of postsynaptic glutamate receptor stimulation in Munc13-1 KO brain slice cultures but not presynaptic mechanisms account for compromised APP processing. We conclude that organotypic brain slices cultures are a valuable tool for studying APP processing pathways in intact neuronal circuits and that neuronal activity is important for maintenance of the non-amyloidogenic APP processing.
Collapse
|
155
|
Blosa M, Sonntag M, Brückner G, Jäger C, Seeger G, Matthews RT, Rübsamen R, Arendt T, Morawski M. Unique features of extracellular matrix in the mouse medial nucleus of trapezoid body--implications for physiological functions. Neuroscience 2012; 228:215-34. [PMID: 23069754 DOI: 10.1016/j.neuroscience.2012.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 12/12/2022]
Abstract
The medial nucleus of the trapezoid body (MNTB) is a vital structure of sound localization circuits in the auditory brainstem. Each principal cell of MNTB is contacted by a very large presynaptic glutamatergic terminal, the calyx of Held. The MNTB principal cells themselves are surrounded by extracellular matrix components forming prominent perineuronal nets (PNs). Throughout the CNS, PNs, which form lattice-like structures around the somata and proximal dendrites, are associated with distinct types of neurons. PNs are highly enriched in hyaluronan and chondroitin sulfate proteoglycans therefore providing a charged surface structure surrounding the cell body and proximal neurites of these neurons. The localization and composition of PNs have lead investigators to a number of hypotheses about their functions including: creating a specific extracellular ionic milieu around these neurons, stabilizing synapses, and influencing the outgrowth of axons. However, presently the precise functions of PNs are still quite unclear primarily due to the lack of an ideal experimental model system that is highly enriched in PNs and in which the synaptic transmission properties can be precisely measured. The MNTB principal cells could offer such a model, since they have been extensively characterized electrophysiologically. However, extracellular matrix (ECM) in these neurons has not yet been precisely detailed. The present study gives a detailed examination of the ECM organization and structural differences in PNs of the mouse MNTB. The different PN components and their distribution pattern are scrutinized throughout the MNTB. The data are complemented by electron microscopic investigations of the unique ultrastructural localization of PN-components and their interrelation with distinct pre- and postsynaptic MNTB cell structures. Therefore, we believe this work identifies the MNTB as an ideal system for studying PN function.
Collapse
Affiliation(s)
- M Blosa
- Paul Flechsig Institute of Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
McRae PA, Baranov E, Rogers SL, Porter BE. Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur J Neurosci 2012; 36:3471-82. [PMID: 22934955 DOI: 10.1111/j.1460-9568.2012.08268.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the rodent model of temporal lobe epilepsy, there is extensive synaptic reorganization within the hippocampus following a single prolonged seizure event, after which animals eventually develop epilepsy. The perineuronal net (PN), a component of the neural extracellular matrix (ECM), primarily surrounds inhibitory interneurons and, under normal conditions, restricts synaptic reorganization. The objective of the current study was to explore the effects of status epilepticus (SE) on PNs in the adult hippocampus. The aggrecan component of the PN was studied, acutely (48 h post-SE), sub-acutely (1 week post-SE) and during the chronic period (2 months post-SE). Aggrecan expressing PNs decreased by 1 week, likely contributing to a permissive environment for neuronal reorganization, and remained attenuated at 2 months. The SE-exposed hippocampus showed many PNs with poor structural integrity, a condition rarely seen in controls. Additionally, the decrease in the aggrecan component of the PN was preceded by a decrease in hyaluronan and proteoglycan link protein 1 (HAPLN1) and hyaluronan synthase 3 (HAS3), which are components of the PN known to stabilize the connection between aggrecan and hyaluronan, a major constituent of the ECM. These results were replicated in vitro with the addition of excess KCl to hippocampal cultures. Enhanced neuronal activity caused a decrease in aggrecan, HAPLN1 and HAS3 around hippocampal cells in vivo and in vitro, leaving inhibitory interneurons susceptible to increased synaptic reorganization. These studies are the foundation for future experiments to explore how loss of the PN following SE contributes to the development of epilepsy.
Collapse
Affiliation(s)
- Paulette A McRae
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
157
|
McRae PA, Porter BE. The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem Int 2012; 61:963-72. [PMID: 22954428 DOI: 10.1016/j.neuint.2012.08.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 12/20/2022]
Abstract
During development the extracellular matrix (ECM) of the central nervous system (CNS) facilitates proliferation, migration, and synaptogenesis. In the mature nervous system due to changes in the ECM it provides structural stability and impedes proliferation, migration, and synaptogensis. The perineuronal net (PN) is a specialized ECM structure found primarily surrounding inhibitory interneurons where it forms a mesh-like structure around points of synaptic contact. The PN organizes the extracellular space by binding multiple components of the ECM and bringing them into close proximity to the cell membrane, forming dense aggregates surrounding synapses. The PN is expressed late in postnatal development when the nervous system is in the final stages of maturation and the critical periods are closing. Once fully expressed the PN envelopes synapses and leads to decreased plasticity and increases synaptic stability in the CNS. Disruptions in the PN have been studied in a number of disease states including epilepsy. Epilepsy is one of the most common neurologic disorders characterized by excessive neuronal activity which results in recurrent spontaneous seizures. A shift in the delicate balance between excitation and inhibition is believed to be one of the underlying mechanisms in the development of epilepsy. During epileptogenesis, the brain undergoes numerous changes including synaptic rearrangement and axonal sprouting, which require structural plasticity. Because of the PNs location around inhibitory cells and its role in limiting plasticity, the PN is an important candidate for altering the progression of epilepsy. In this review, an overview of the ECM and PN in the CNS will be presented with special emphasis on potential roles in epileptogenesis.
Collapse
Affiliation(s)
- Paulette A McRae
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | |
Collapse
|
158
|
Bekku Y, Saito M, Moser M, Fuchigami M, Maehara A, Nakayama M, Kusachi S, Ninomiya Y, Oohashi T. Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum. J Comp Neurol 2012; 520:1721-36. [PMID: 22121037 DOI: 10.1002/cne.23009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Perineuronal nets (PNNs) are pericellular coats of condensed matrix that enwrap the cell bodies and dendrites of many adult central nervous system (CNS) neurons. These extracellular matrices (ECMs) play a structural role as well as instructive roles in the control of CNS plasticity and the termination of critical periods. The cartilage link protein Crtl1/Hapln1 was reported to be a trigger for the formation of PNNs in the visual cortex. Bral2/Hapln4 is another link protein that is expressed in PNNs, mainly in the brainstem and cerebellum. To assess the role of Bral2 in PNN formation, we examined the expression of PNN components in targeted mouse mutants lacking Bral2. We show here that Bral2-deficient mice have attenuated PNNs, but the overall levels of chondroitin sulfate proteoglycans, lecticans, are unchanged with the exception of neurocan. Bral2 deficiency markedly affected the localization of brevican in all of the nuclei tested, and neurocan concomitant with Crtl1 in some of the nuclei, whereas no effect was seen on aggrecan even with the attenuation of Crtl1. Bral2 may have a role in the organization of the PNN, in association with brevican, that is independent of aggrecan binding. There was a heterogenous attenuation of PNN components, including glycosaminoglycans, indicating the elaborate molecular organization of the PNN components. Strikingly, a slight decrease in the number of synapses in deep cerebellar nuclei neurons was found. Taken together, these results imply that Bral2-brevican interaction may play a key role in synaptic stabilization and the structural integrity of the PNN.
Collapse
Affiliation(s)
- Yoko Bekku
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Inflammation modulates expression of laminin in the central nervous system following ischemic injury. J Neuroinflammation 2012; 9:159. [PMID: 22759265 PMCID: PMC3414761 DOI: 10.1186/1742-2094-9-159] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/03/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Ischemic stroke induces neuronal death in the core of the infarct within a few hours and the secondary damage in the surrounding regions over a long period of time. Reduction of inflammation using pharmacological reagents has become a target of research for the treatment of stroke. Cyclooxygenase 2 (COX-2), a marker of inflammation, is induced during stroke and enhances inflammatory reactions through the release of enzymatic products, such as prostaglandin (PG) E2. METHODS Wild-type (WT) and COX-2 knockout (COX-2KO) mice were subjected to middle cerebral artery occlusion (MCAO). Additionally, brain slices derived from these mice or brain microvascular endothelial cells (BMECs) were exposed to oxygen-glucose deprivation (OGD) conditions. The expression levels of extracellular matrix (ECM) proteins were assessed and correlated with the state of inflammation. RESULTS We found that components of the ECM, and specifically laminin, are transiently highly upregulated on endothelial cells after MCAO or OGD. This upregulation is not observed in COX-2KO mice or WT mice treated with COX-2 inhibitor, celecoxib, suggesting that COX-2 is associated with changes in the levels of laminins. CONCLUSIONS Taken together, we report that transient ECM remodeling takes place early after stroke and suggest that this increase in ECM protein expression may constitute an effort to revascularize and oxygenate the tissue.
Collapse
|
160
|
Myers AK, Ray J, Kulesza RJ. Neonatal conductive hearing loss disrupts the development of the Cat-315 epitope on perineuronal nets in the rat superior olivary complex. Brain Res 2012; 1465:34-47. [DOI: 10.1016/j.brainres.2012.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/08/2012] [Accepted: 05/13/2012] [Indexed: 01/22/2023]
|
161
|
Frischknecht R, Gundelfinger ED. The brain's extracellular matrix and its role in synaptic plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:153-71. [PMID: 22351055 DOI: 10.1007/978-3-7091-0932-8_7] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The extracellular matrix (ECM) of the brain has important roles in regulating synaptic function and plasticity. A juvenile ECM supports the wiring of neuronal networks, synaptogenesis, and synaptic maturation. The closure of critical periods for experience-dependent shaping of neuronal circuits coincides with the implementation of a mature form of ECM that is characterized by highly elaborate hyaluronan-based structures, the perineuronal nets (PNN), and PNN-like perisynaptic ECM specializations. In this chapter, we will focus on some recently reported aspects of ECM functions in brain plasticity. These include (a) the discovery that the ECM can act as a passive diffusion barrier for cell surface molecules including neurotransmitter receptors and in this way compartmentalize cell surfaces, (b) the specific functions of ECM components in actively regulating synaptic plasticity and homeostasis, and (c) the shaping processes of the ECM by extracellular proteases and in turn the activation particular signaling pathways.
Collapse
Affiliation(s)
- Renato Frischknecht
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | |
Collapse
|
162
|
Giamanco KA, Matthews RT. Deconstructing the perineuronal net: cellular contributions and molecular composition of the neuronal extracellular matrix. Neuroscience 2012; 218:367-84. [PMID: 22659016 DOI: 10.1016/j.neuroscience.2012.05.055] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 11/28/2022]
Abstract
Perineuronal nets (PNNs) are lattice-like substructures of the neural extracellular matrix that enwrap particular populations of neurons throughout the central nervous system. Previous work suggests that this structure plays a major role in modulating developmental neural plasticity and brain maturation. Understanding the precise role of these structures has been hampered by incomplete comprehension of their molecular composition and cellular contributions to their formation, which is studied herein using primary cortical cell cultures. By defining culture conditions to reduce (cytosine-β-d-arabinofuranoside/AraC addition) or virtually eliminate (elevated potassium chloride (KCl) and AraC application) glia, PNN components impacted by this cell type were identified. Effects of depolarizing KCl concentrations alone were also assessed. Our work identified aggrecan as the primary neuronal component of the PNN and its expression was dramatically up-regulated by both depolarization and glial cell inhibition and additionally, the development of aggrecan-positive PNNs was accelerated. Surprisingly, most of the other PNN components tested were made in a glial-dependent manner in our culture system. Interestingly, in the absence of these glial-derived components, an aggrecan- and hyaluronan-reactive PNN developed, demonstrating that these two components are sufficient for base PNN assembly. Other components were expressed in a glial-dependent manner. Overall, this work provides deeper insight into the complex interplay between neurons and glia in the formation of the PNN and improves our understanding of the molecular composition of these structures.
Collapse
Affiliation(s)
- K A Giamanco
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
163
|
Morawski M, Brückner G, Arendt T, Matthews R. Aggrecan: Beyond cartilage and into the brain. Int J Biochem Cell Biol 2012; 44:690-3. [DOI: 10.1016/j.biocel.2012.01.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/14/2012] [Accepted: 01/17/2012] [Indexed: 12/18/2022]
|
164
|
Bartolini B, Thelin MA, Rauch U, Feinstein R, Oldberg A, Malmstrom A, Maccarana M. Mouse development is not obviously affected by the absence of dermatan sulfate epimerase 2 in spite of a modified brain dermatan sulfate composition. Glycobiology 2012; 22:1007-16. [DOI: 10.1093/glycob/cws065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
165
|
Kwok J, Warren P, Fawcett J. Chondroitin sulfate: A key molecule in the brain matrix. Int J Biochem Cell Biol 2012; 44:582-6. [DOI: 10.1016/j.biocel.2012.01.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/01/2012] [Accepted: 01/05/2012] [Indexed: 11/27/2022]
|
166
|
Wang D, Fawcett J. The perineuronal net and the control of CNS plasticity. Cell Tissue Res 2012; 349:147-60. [PMID: 22437874 DOI: 10.1007/s00441-012-1375-y] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
Perineuronal nets (PNNs) are reticular structures that surround the cell body of many neurones, and extend along their dendrites. They are considered to be a specialized extracellular matrix in the central nervous system (CNS). PNN formation is first detected relatively late in development, as the mature synaptic circuitry of the CNS is established and stabilized. Its unique distribution in different CNS regions, the timing of its establishment, and the changes it undergoes after injury all point toward diverse and important functions that it may be performing. The involvement of PNNs in neuronal plasticity has been extensively studied over recent years, with developmental, behavioural, and functional correlations. In this review, we will first briefly detail the structure and organization of PNNs, before focusing our discussion on their unique roles in neuronal development and plasticity. The PNN is an important regulator of CNS plasticity, both during development and into adulthood. Production of critical PNN components is often triggered by appropriate sensory experiences during early postnatal development. PNN deposition around neurones helps to stabilize the established neuronal connections, and to restrict the plastic changes due to future experiences within the CNS. Disruption of PNNs can reactivate plasticity in many CNSs, allowing activity-dependent changes to once again modify neuronal connections. The mechanisms through which PNNs restrict CNS plasticity remain unclear, although recent advances promise to shed additional light on this important subject.
Collapse
Affiliation(s)
- Difei Wang
- Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | | |
Collapse
|
167
|
Morawski M, Brückner G, Jäger C, Seeger G, Matthews RT, Arendt T. Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology. Brain Pathol 2012; 22:547-61. [PMID: 22126211 DOI: 10.1111/j.1750-3639.2011.00557.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain extracellular matrix (ECM) is organized in specific patterns assumed to mirror local features of neuronal activity and synaptic plasticity. Aggrecan-based perineuronal nets (PNs) and brevican-based perisynaptic axonal coats (ACs) form major structural phenotypes of ECM contributing to the laminar characteristics of cortical areas. In Alzheimer's disease (AD), the deposition of amyloid proteins and processes related to neurofibrillary degeneration may affect the integrity of the ECM scaffold. In this study we investigate ECM organization in primary sensory, secondary and associative areas of the temporal and occipital lobe. By detecting all major PN components we show that the distribution, structure and molecular properties of PNs remain unchanged in AD. Intact PNs occurred in close proximity to amyloid plaques and were even located within their territory. Counting of PNs revealed no significant alteration in AD. Moreover, neurofibrillary tangles never occurred in neurons associated with PNs. ACs were only lost in the core of amyloid plaques in parallel with the loss of synaptic profiles. In contrast, hyaluronan was enriched in the majority of plaques. We conclude that the loss of brevican is associated with the loss of synapses, whereas PNs and related matrix components resist disintegration and may protect neurons from degeneration.
Collapse
Affiliation(s)
- Markus Morawski
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, Universität Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
168
|
Abstract
AbstractCentral nervous system (CNS) injuries affect all levels of society indiscriminately, resulting in functional and behavioral deficits with devastating impacts on life expectancies, physical and emotional wellbeing. Considerable literature exists describing the pathophysiology of CNS injuries as well as the cellular and molecular factors that inhibit regrowth and regeneration of damaged connections. Based on these data, numerous therapeutic strategies targeting the various factors of repair inhibition have been proposed and on-going assessment has demonstrated some promising results in the laboratory environ. However, several of these treatment strategies have subsequently been taken into clinical trials but demonstrated little to no improvement in patient outcomes. As a result, options for clinical interventions following CNS injuries remain limited and effective restorative treatment strategies do not as yet exist. This review discusses some of the current animal models, with focus on nonhuman primates, which are currently being modeled in the laboratory for the study of CNS injuries. Last, we review the current understanding of the mechanisms underlying repair/regrowth inhibition and the current trends in experimental treatment strategies that are being assessed for potential translation to clinical applications.
Collapse
|
169
|
Kwok JC, Dick G, Wang D, Fawcett JW. Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol 2011; 71:1073-89. [DOI: 10.1002/dneu.20974] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
170
|
Andrews EM, Richards RJ, Yin FQ, Viapiano MS, Jakeman LB. Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury. Exp Neurol 2011; 235:174-87. [PMID: 21952042 DOI: 10.1016/j.expneurol.2011.09.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/29/2011] [Accepted: 09/09/2011] [Indexed: 12/24/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) present an inhibitory barrier to axonal growth and plasticity after trauma to the central nervous system. These extracellular and membrane bound molecules are altered after spinal cord injuries, but the magnitude, time course, and patterns of expression following contusion injury have not been fully described. Western blots and immunohistochemistry were combined to assess the expression of four classically inhibitory CSPGs, aggrecan, neurocan, brevican and NG2, at the lesion site and in distal segments of cervical and thoracic spinal cord at 3, 7, 14 and 28 days following a severe mid-thoracic spinal contusion. Total neurocan and the full-length (250 kDa) isoform were strongly upregulated both at the lesion epicenter and in cervical and lumbar segments. In contrast, aggrecan and brevican were sharply reduced at the injury site and were unchanged in distal segments. Total NG2 protein was unchanged across the injury site, while NG2+ profiles were distributed throughout the lesion site by 14 days post-injury (dpi). Far from the lesion, NG2 expression was increased at lumbar, but not cervical spinal cord levels. To determine if the robust increase in neurocan at the distal spinal cord levels corresponded to regions of increased astrogliosis, neurocan and GFAP immunoreactivity were measured in gray and white matter regions of the spinal enlargements. GFAP antibodies revealed a transient increase in reactive astrocyte staining in cervical and lumbar cord, peaking at 14 dpi. In contrast, neurocan immunoreactivity was specifically elevated in the cervical dorsal columns and in the lumbar ventral horn and remained high through 28 dpi. The long lasting increase of neurocan in gray matter regions at distal levels of the spinal cord may contribute to the restriction of plasticity in the chronic phase after SCI. Thus, therapies targeted at altering this CSPG both at and far from the lesion site may represent a reasonable addition to combined strategies to improve recovery after SCI.
Collapse
Affiliation(s)
- Ellen M Andrews
- Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
171
|
Karetko-Sysa M, Skangiel-Kramska J, Nowicka D. Disturbance of perineuronal nets in the perilesional area after photothrombosis is not associated with neuronal death. Exp Neurol 2011; 231:113-26. [PMID: 21683696 DOI: 10.1016/j.expneurol.2011.05.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/26/2011] [Accepted: 05/22/2011] [Indexed: 11/28/2022]
Abstract
Perineuronal nets (PNNs) are a condensed form of extracellular matrix that covers the surface of a subset of neurons. Their presence limits neuronal plasticity and may protect neurons against harmful agents. Here we analyzed the relationship between spatiotemporal changes in PNN expression and cell death markers after focal cortical photothrombotic stroke in rats. We registered a substantial decrease in PNN density using Wisteria floribunda agglutinin staining and CAT-315 and brevican immunoreactivity; the decrease occurred not only in the lesion core but also in the perilesional and remote cortex as well as in homotopic contralateral cortical regions. Fluoro Jade C and TUNEL staining in perilesional and remote areas, however, showed a low density of dying cells. Our results suggest that the PNN reduction was not a result of cellular death and could be considered an attempt to create conditions favorable for synaptic remodeling.
Collapse
Affiliation(s)
- Magdalena Karetko-Sysa
- Department of Molecular and Cellular Neurobiology, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|
172
|
Miyata S, Kitagawa H. Chondroitin Sulfate Proteoglycans Regulate Experience-Dependent Neuronal Plasticity. TRENDS GLYCOSCI GLYC 2011. [DOI: 10.4052/tigg.23.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|