151
|
KOBAYASHI M, KABASHIMA K, NAKAMURA M, TOKURA Y. Effects of oral antibiotic roxithromycin on quality of life in acne patients. J Dermatol 2009; 36:383-91. [DOI: 10.1111/j.1346-8138.2009.00664.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
152
|
Hrvacić B, Bosnjak B, Bosnar M, Ferencić Z, Glojnarić I, Eraković Haber V. Clarithromycin suppresses airway hyperresponsiveness and inflammation in mouse models of asthma. Eur J Pharmacol 2009; 616:236-43. [PMID: 19560456 DOI: 10.1016/j.ejphar.2009.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 06/18/2009] [Indexed: 11/25/2022]
Abstract
Macrolide antibiotics, a class of potent antimicrobials, also possess immunomodulatory/anti-inflammatory properties. These properties are considered fundamental for the efficacy of macrolide antibiotics in the treatment of diffuse panbronchiolitis and cystic fibrosis. In patients with asthma, macrolide antibiotics have been reported to reduce airway hyperresponsiveness and improve pulmonary function. However, their beneficial actions in asthmatics possibly could be attributed to antimicrobial activity against atypical pathogens (e.g. Chlamydia pneumoniae), corticosteroid-sparing effect (inhibition of exogenous corticosteroid metabolism), and/or their anti-inflammatory/immunomodulatory effects. In order to investigate whether efficacy of macrolide antibiotics in asthma results from their immunomodulatory/anti-inflammatory activity, the influence of clarithromycin pretreatment (2 h before challenge) was examined on ovalbumin-induced airway hyperresponsiveness and airway inflammation in the mouse. Clarithromycin treatment (200 mg/kg intraperitoneally) decreased IL-4, IL-5, IL-13, CXCL2 and CCL2 concentrations in bronchoalveolar lavage fluid and markedly reduced inflammatory cell accumulation in bronchoalveolar lavage fluid and into the lungs, as revealed by histopathological examination. Furthermore, clarithromycin-induced reduction in inflammation was accompanied by normalization of airway hyperresponsiveness. In summary, in ovalbumin-induced mouse models, clarithromycin efficiently inhibited two important pathological characteristics of asthma, airway hyperresponsiveness and inflammation. These data suggest that the efficacy of clarithromycin, as well as of other macrolide antibiotics, in asthmatic patients could be attributed to their anti-inflammatory/immunomodulatory properties, and not only to their antimicrobial activity or exogenous corticosteroid-sparing effects.
Collapse
Affiliation(s)
- Boska Hrvacić
- GlaxoSmithKline Research Centre Zagreb Limited, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
153
|
Nakamura S, Yanagihara K, Izumikawa K, Seki M, Kakeya H, Yamamoto Y, Senjyu H, Saito A, Kohno S. The clinical efficacy of fluoroquinolone and macrolide combination therapy compared with single-agent therapy against community-acquired pneumonia caused by Legionella pneumophila. J Infect 2009; 59:222-4. [PMID: 19592113 DOI: 10.1016/j.jinf.2009.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 11/18/2022]
|
154
|
Ribeiro CMP, Hurd H, Wu Y, Martino MEB, Jones L, Brighton B, Boucher RC, O'Neal WK. Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia. PLoS One 2009; 4:e5806. [PMID: 19503797 PMCID: PMC2688381 DOI: 10.1371/journal.pone.0005806] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 05/02/2009] [Indexed: 02/07/2023] Open
Abstract
Prolonged macrolide antibiotic therapy at low doses improves clinical outcome in patients affected with diffuse panbronchiolitis and cystic fibrosis. Consensus is building that the therapeutic effects are due to anti-inflammatory, rather than anti-microbial activities, but the mode of action is likely complex. To gain insights into how the macrolide azithromycin (AZT) modulates inflammatory responses in airways, well-differentiated primary cultures of human airway epithelia were exposed to AZT alone, an inflammatory stimulus consisting of soluble factors from cystic fibrosis airways, or AZT followed by the inflammatory stimulus. RNA microarrays were conducted to identify global and specific gene expression changes. Analysis of gene expression changes revealed that the AZT treatment alone altered the gene profile of the cells, primarily by significantly increasing the expression of lipid/cholesterol genes and decreasing the expression of cell cycle/mitosis genes. The increase in cholesterol biosynthetic genes was confirmed by increased filipin staining, an index of free cholesterol, after AZT treatment. AZT also affected genes with inflammatory annotations, but the effect was variable (both up- and down-regulation) and gene specific. AZT pretreatment prevented the up-regulation of some genes, such as MUC5AC and MMP9, triggered by the inflammatory stimulus, but the up-regulation of other inflammatory genes, e.g., cytokines and chemokines, such as interleukin-8, was not affected. On the other hand, HLA genes were increased by AZT. Notably, secreted IL-8 protein levels did not reflect mRNA levels, and were, in fact, higher after AZT pretreatment in cultures exposed to the inflammatory stimulus, suggesting that AZT can affect inflammatory pathways other than by altering gene expression. These findings suggest that the specific effects of AZT on inflamed and non-inflamed airway epithelia are likely relevant to its clinical activity, and their apparent complexity may help explain the diverse immunomodulatory roles of macrolides.
Collapse
Affiliation(s)
- Carla Maria P Ribeiro
- Cystic Fibrosis Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Zídek Z, Anzenbacher P, Kmonícková E. Current status and challenges of cytokine pharmacology. Br J Pharmacol 2009; 157:342-61. [PMID: 19371342 PMCID: PMC2707982 DOI: 10.1111/j.1476-5381.2009.00206.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 01/13/2009] [Accepted: 01/19/2009] [Indexed: 12/12/2022] Open
Abstract
The major concern of pharmacology about cytokines has originated from plentiful data showing association between gross changes in their production and pathophysiological processes. Despite the enigmatic role of cytokines in diseases, a number of them have become a subject of cytokine and anti-cytokine immunotherapies. Production of cytokines can be influenced by many endogenous and exogenous stimuli including drugs. Cells of the immune system, such as macrophages and lymphocytes, are richly endowed with receptors for the mediators of physiological functions, such as biogenic amines, adenosine, prostanoids, steroids, etc. Drugs, agonists or antagonists of these receptors can directly or indirectly up- and down-regulate secretion of cytokines and expression of cytokine receptors. Vice versa, cytokines interfere with drug pharmacokinetics and pharmacodynamics through the interactions with cytochrome P450 and multiple drug resistance proteins. The aim of the review is to encourage more intensive studies in these fields of cytokine pharmacology. It also outlines major areas of searching promising candidates for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Z Zídek
- Department of Pharmacology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | |
Collapse
|
156
|
Srivastava P, Jha HC, Salhan S, Mittal A. Azithromycin Treatment Modulates Cytokine Production inChlamydia trachomatisInfected Women. Basic Clin Pharmacol Toxicol 2009; 104:478-82. [DOI: 10.1111/j.1742-7843.2009.00395.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
157
|
Ren W, Blasier R, Peng X, Shi T, Wooley PH, Markel D. Effect of oral erythromycin therapy in patients with aseptic loosening of joint prostheses. Bone 2009; 44:671-7. [PMID: 19154802 DOI: 10.1016/j.bone.2008.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/10/2008] [Accepted: 12/12/2008] [Indexed: 12/28/2022]
Abstract
There is currently no cure for aseptic loosening (AL) of total joint replacement (TJR) except surgical revision. The purpose of this study was to determine whether oral EM could improve the periprosthetic tissue profiles and reduce serum cytokine production in AL patients who are candidates for surgical revision. We recruited 32 AL patients. AL patients were treated with either EM (600 mg/day, n=18) or placebo (n=14) daily, started one month before surgery and ending on the day of surgery. Blood samples were obtained before EM treatment and during surgery. Periprosthetic tissues and joint fluids were collected during surgery. Our results demonstrate that oral EM reduces the inflammation of periprosthetic tissues, as manifested by the reduction of the numbers of infiltrating cells, CD68+ macrophages, RANKL+ cells, and TRAP+ cells. Remarkable decreases of TNFalpha (9.6-fold), IL-1beta (21.2-fold), and RANKL (76-fold) gene transcripts were observed in periprosthetic tissues of patients treated with oral EM. Serum levels of both TNFalpha and (to a lesser extent) IL-1beta were significantly reduced following EM treatment (p<0.05). Our results suggest that EM represents a biological cure or prevention for those patients who might need repeated revision surgeries and/or show the early signs of progressive osteolysis after TJR.
Collapse
Affiliation(s)
- Weiping Ren
- Department of Biomedical Engineering, Wayne State University, 818 W. Hancock, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
158
|
Markel DC, Zhang R, Shi T, Hawkins M, Ren W. Inhibitory effects of erythromycin on wear debris-induced VEGF/Flt-1 gene production and osteolysis. Inflamm Res 2009; 58:413-21. [PMID: 19262986 DOI: 10.1007/s00011-009-0007-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES A highly vascularized and inflammatory periprosthetic tissue augments the progress of aseptic loosening, a major clinical problem after total joint replacement. The purpose of this study is to investigate the effect of erythromycin (EM) on ultra high molecular weight polyethylene (UHMWPE) particle-induced VEGF/VEGF receptor 1 (Flt-1) gene production and inflammatory osteolysis in a mouse model. METHODS UHMWPE particles were introduced into established air pouches on BALB/c mice, followed by implantation of calvaria bone from syngeneic littermates. EM treatment started 2 weeks after bone implantation (5 mg/kg day, i.p. injection). Mice without drug treatment as well as mice injected with saline alone were included. Pouch tissues were harvested 2 weeks after bone implantation. Expression of VEGF, Flt-1, RANKL, IL-1, TNF and CD68 was measured by immunostain and RT-PCR, and implanted bone resorption was analyzed by micro-CT (muCT). RESULTS Exposure to UHMWPE induced pouch tissue inflammation, increase of VEGF/Flt-1 proteins, and increased bone resorption. EM treatment significantly improved UHMWPE particle-induced tissue inflammation, reduced VEGF/Flt-1 protein expression, and diminished the number of TRAP(+) cells, as well as the implanted bone resorption. CONCLUSION This study demonstrated that EM inhibited VEGF and Flt-1 gene expression. The molecular mechanism of EM action on VEGF/Flt-1 signaling-mediated osteoclastogenesis warrants further investigation.
Collapse
Affiliation(s)
- David C Markel
- Department of Orthopaedic Surgery, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
159
|
Nazir SA, Erbland ML. Chronic obstructive pulmonary disease: an update on diagnosis and management issues in older adults. Drugs Aging 2009; 26:813-31. [PMID: 19761275 DOI: 10.2165/11316760-000000000-00000] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating disease of the elderly that causes significant morbidity and mortality. Despite being a treatable and preventable disease, the prevalence continues to rise because of the worldwide epidemic of smoking. COPD is associated with enormous healthcare costs. It has systemic effects, and common co-morbid conditions such as cardiovascular disease, muscle wasting and osteoporosis may all be linked through a common systemic inflammatory cascade. Depression, anxiety and malnutrition are also common in elderly COPD patients. These factors not only affect quality of life (QOL) but also compliance with therapy. Malnutrition is an independent predictor of mortality and poor outcome. Spirometry is essential for the diagnosis of COPD, but the criteria defining airflow limitation are not clear cut for elderly patients and could result in over-diagnosis. However, older patients perceive their symptoms differently, and COPD could also be under-diagnosed in this population. Acute exacerbations result in worsening symptoms that necessitate additional treatment, and may cause a more rapid decline in lung function and QOL. The management of elderly patients with COPD should encompass a multidisciplinary approach. An evaluation of patients' nutritional status and mental health should be undertaken, in addition to assessing their lung function and functional impairment. Significant underlying co-morbidities should be evaluated and treated to derive the maximal benefit of therapy. Specific therapy for COPD should start with cessation of exposure to the most important risk factor, tobacco smoke. Smoking cessation rates in the elderly have not declined, and this may reflect an underlying reluctance by physicians to counsel and offer smoking cessation therapies to the elderly. Unlike oxygen therapy in hypoxaemic patients, bronchodilators and corticosteroids do not decrease mortality in COPD patients and they are primarily directed towards symptom relief. However, they do have a positive effect on QOL and exacerbation rates. The choice of delivery devices for inhaled medications is important in the elderly, and patients' inhaler technique and manual dexterity should be frequently assessed. Pulmonary rehabilitation and nutritional supplementation are other important components of care. End-of-life issues should be adequately addressed in the elderly with COPD, and an approach integrating curative and palliative interventions is recommended.
Collapse
Affiliation(s)
- Shoab A Nazir
- Division of Pulmonary and Critical Care Medicine, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Health Care System, Little Rock, Arkansas, USA.
| | | |
Collapse
|
160
|
Bogaert P, Tournoy KG, Naessens T, Grooten J. Where asthma and hypersensitivity pneumonitis meet and differ: noneosinophilic severe asthma. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:3-13. [PMID: 19074616 PMCID: PMC2631313 DOI: 10.2353/ajpath.2009.071151] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/17/2008] [Indexed: 11/20/2022]
Abstract
Asthma is a type-I allergic airway disease characterized by Th(2) cells and IgE. Episodes of bronchial inflammation, eosinophilic in nature and promoting bronchoconstriction, may become chronic and lead to persistent respiratory symptoms and irreversible structural airway changes. Representative mostly of mild to moderate asthma, this clinical definition fails to account for the atypical and often more severe phenotype found in a considerable proportion of asthmatics who have increased neutrophil cell counts in the airways as a distinguishing trait. Neutrophilic inflammation is a hallmark of another type of allergic airway pathology, hypersensitivity pneumonitis. Considered as an immune counterpart of asthma, hypersensitivity pneumonitis is a prototypical type-III allergic inflammatory reaction involving the alveoli and lung interstitium, steered by Th(1) cells and IgG and, in its chronic form, accompanied by fibrosis. Although pathologically very different and commonly approached as separate disorders, as discussed in this review, clinical studies as well as data from animal models reveal undeniable parallels between both airway diseases. Danger signaling elicited by the allergenic agent or by accompanying microbial patterns emerges as critical in enabling immune sensitization and in determining the type of sensitization and ensuing allergic disease. On this basis, we propose that asthma allergens cause severe noneosinophilic asthma because of sensitization in the presence of hypersensitivity pneumonitis-promoting danger signaling.
Collapse
Affiliation(s)
- Pieter Bogaert
- Department of Molecular Biomedical Research, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
161
|
Kunisaki KM, Niewoehner DE. Antibiotic prophylaxis for chronic obstructive pulmonary disease: resurrecting an old idea. Am J Respir Crit Care Med 2008; 178:1098-9. [PMID: 19023036 DOI: 10.1164/rccm.200808-1315ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
162
|
Banner KH, De Jonge H, Elborn S, Growcott E, Gulbins E, Konstan M, Moss R, Poll C, Randell SH, Rossi AG, Thomas L, Waltz D. Highlights of a workshop to discuss targeting inflammation in cystic fibrosis. J Cyst Fibros 2008; 8:1-8. [PMID: 19022708 DOI: 10.1016/j.jcf.2008.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/08/2008] [Accepted: 10/09/2008] [Indexed: 12/17/2022]
Abstract
A workshop to discuss anti-inflammatory approaches in the treatment of CF was held at Novartis Institutes for Biomedical Research (NIBR, Horsham, UK) in March 2008. Key opinion leaders in the field (Hugo De Jonge, Stuart Elborn, Erich Gulbins, Mike Konstan, Rick Moss, Scott Randell and Adriano Rossi), and NIBR scientists were brought together to collectively address three main aims: (i) to identify anti-inflammatory targets in CF, (ii) to evaluate the pros and cons of targeting specific cell types and (iii) to discuss model systems to profile potential therapeutic agents. The highlights of the workshop are captured in this review.
Collapse
Affiliation(s)
- Katharine H Banner
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex, RH12 5AB, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Glansdorp FG, Spandl RJ, Swatton JE, Loiseleur O, Welch M, Spring DR. Using chemical probes to investigate the sub-inhibitory effects of azithromycin. Org Biomol Chem 2008; 6:4120-4. [DOI: 10.1039/b813157k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|