151
|
Janko C, Filipović M, Munoz LE, Schorn C, Schett G, Ivanović-Burmazović I, Herrmann M. Redox modulation of HMGB1-related signaling. Antioxid Redox Signal 2014; 20:1075-85. [PMID: 23373897 PMCID: PMC3928832 DOI: 10.1089/ars.2013.5179] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE In the cells' nuclei, high-mobility group box protein 1 (HMGB1) is a nonhistone chromatin-binding protein involved in the regulation of transcription. Extracellularly, HMGB1 acts as a danger molecule with properties of a proinflammatory cytokine. It can be actively secreted from myeloid cells or passively leak from any type of injured, necrotic cell. Increased serum levels of active HMGB1 are often found in pathogenic inflammatory conditions and correlate with worse prognoses in cancer, sepsis, and autoimmunity. By damaging cells, superoxide and peroxynitrite promote leakage of HMGB1. RECENT ADVANCES The activity of HMGB1 strongly depends on its redox state: Inflammatory-active HMGB1 requires an intramolecular disulfide bond (Cys23 and Cys45) and a reduced Cys106. Oxidation of the latter blocks its stimulatory activity and promotes immune tolerance. CRITICAL ISSUES Reactive oxygen and nitrogen species create an oxidative environment and can be detoxified by superoxide dismutase (SOD), catalase, and peroxidases. Modifications of the oxidative environment influence HMGB1 activity. FUTURE DIRECTIONS In this review, we hypothesize that manipulations of an oxidative environment by SOD mimics or by hydrogen sulfide are prone to decrease tissue damage. Both the concomitant decreased HMGB1 release and its redox chemical modifications ameliorate inflammation and tissue damage.
Collapse
Affiliation(s)
- Christina Janko
- 1 Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University of Erlangen-Nuremberg , Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
152
|
Jankowski J, Westhof T, Vaziri ND, Ingrosso D, Perna AF. Gases as Uremic Toxins: Is There Something in the Air? Semin Nephrol 2014; 34:135-50. [DOI: 10.1016/j.semnephrol.2014.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
153
|
Moustafa A, Habara Y. Hydrogen sulfide regulates Ca(2+) homeostasis mediated by concomitantly produced nitric oxide via a novel synergistic pathway in exocrine pancreas. Antioxid Redox Signal 2014; 20:747-58. [PMID: 24138560 PMCID: PMC3910447 DOI: 10.1089/ars.2012.5108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM The present study was designed to explore the effects of hydrogen sulfide (H2S) on Ca(2+) homeostasis in rat pancreatic acini. RESULTS Sodium hydrosulfide (NaHS; an H2S donor) induced a biphasic increase in the intracellular Ca(2+) concentration ([Ca(2+)]i) in a dose-dependent manner. The NaHS-induced [Ca(2+)]i elevation persisted with an EC50 of 73.3 μM in the absence of extracellular Ca(2+) but was abolished by thapsigargin, indicating that both Ca(2+) entry and Ca(2+) release contributed to the increase. The [Ca(2+)]i increase was markedly inhibited in the presence of NG-monomethyl L-arginine or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), and diaminofluorescein-2/diaminofluorescein-2 triazole (DAF-2/DAF-2T) fluorometry demonstrated that nitric oxide (NO) was also produced by H2S in a dose-dependent manner with an EC50 of 64.8 μM, indicating that NO was involved in the H2S effect. The H2S-induced [Ca(2+)]i increase was inhibited by pretreatment with U73122, xestospongin C, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, KT5823, and GP2A, indicating that phospholipase C (PLC), the inositol 1,4,5-trisphosphate (IP3) receptor, soluble guanylate cyclase (sGC), protein kinase G (PKG), and Gq-protein play roles as intermediate components in the H2S-triggered intracellular signaling. INNOVATION To our knowledge, our study is the first one highlighting the effect of H2S on intracellular Ca(2+) dynamics in pancreatic acinar cells. Moreover, a novel cascade was presumed to function via the synergistic interaction between H2S and NO. CONCLUSION We conclude that H2S affects [Ca(2+)]i homeostasis that is mediated by H2S-evoked NO production via an endothelial nitric oxide synthase (eNOS)-NO-sGC-cyclic guanosine monophosphate-PKG-Gq-protein-PLC-IP3 pathway to induce Ca(2+) release, and this pathway is identical to the one we recently proposed for a sole effect of NO and the two gaseous molecules synergistically function to regulate Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Amira Moustafa
- 1 Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University , Sapporo, Japan
| | | |
Collapse
|
154
|
Vicente JB, Colaço HG, Mendes MIS, Sarti P, Leandro P, Giuffrè A. NO* binds human cystathionine β-synthase quickly and tightly. J Biol Chem 2014; 289:8579-87. [PMID: 24515102 DOI: 10.1074/jbc.m113.507533] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hexa-coordinate heme in the H2S-generating human enzyme cystathionine β-synthase (CBS) acts as a redox-sensitive regulator that impairs CBS activity upon binding of NO(•) or CO at the reduced iron. Despite the proposed physiological relevance of this inhibitory mechanism, unlike CO, NO(•) was reported to bind at the CBS heme with very low affinity (Kd = 30-281 μm). This discrepancy was herein reconciled by investigating the NO(•) reactivity of recombinant human CBS by static and stopped-flow UV-visible absorption spectroscopy. We found that NO(•) binds tightly to the ferrous CBS heme, with an apparent Kd ≤ 0.23 μm. In line with this result, at 25 °C, NO(•) binds quickly to CBS (k on ∼ 8 × 10(3) m(-1) s(-1)) and dissociates slowly from the enzyme (k off ∼ 0.003 s(-1)). The observed rate constants for NO(•) binding were found to be linearly dependent on [NO(•)] up to ∼ 800 μm NO(•), and >100-fold higher than those measured for CO, indicating that the reaction is not limited by the slow dissociation of Cys-52 from the heme iron, as reported for CO. For the first time the heme of human CBS is reported to bind NO(•) quickly and tightly, providing a mechanistic basis for the in vivo regulation of the enzyme by NO(•). The novel findings reported here shed new light on CBS regulation by NO(•) and its possible (patho)physiological relevance, enforcing the growing evidence for an interplay among the gasotransmitters NO(•), CO, and H2S in cell signaling.
Collapse
Affiliation(s)
- João B Vicente
- From the Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
155
|
Takashima I, Kinoshita M, Kawagoe R, Nakagawa S, Sugimoto M, Hamachi I, Ojida A. Design of Ratiometric Fluorescent Probes Based on Arene-Metal-Ion Interactions and Their Application to CdIIand Hydrogen Sulfide Imaging in Living Cells. Chemistry 2014; 20:2184-92. [DOI: 10.1002/chem.201304181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Indexed: 01/23/2023]
|
156
|
Sparatore A, Santus G, Giustarini D, Rossi R, Del Soldato P. Therapeutic potential of new hydrogen sulfide-releasing hybrids. Expert Rev Clin Pharmacol 2014; 4:109-21. [DOI: 10.1586/ecp.10.122] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
157
|
Bodkin JV, Fernandes ES. TRPV1 and SP: key elements for sepsis outcome? Br J Pharmacol 2013; 170:1279-92. [PMID: 23145480 PMCID: PMC3838676 DOI: 10.1111/bph.12056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/10/2012] [Accepted: 11/04/2012] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Sensory neurons play important roles in many disorders, including inflammatory diseases, such as sepsis. Sepsis is a potentially lethal systemic inflammatory reaction to a local bacterial infection, affecting thousands of patients annually. Although associated with a high mortality rate, sepsis outcome depends on the severity of systemic inflammation, which can be directly influenced by several factors, including the immune response of the patient. Currently, there is a lack of effective drugs to treat sepsis, and thus there is a need to develop new drugs to improve sepsis outcome. Several mediators involved in the formation of sepsis have now been identified, but the mechanisms underlying the pathology remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) receptor and the neuropeptide substance P (SP) have recently been demonstrated as important targets for sepsis and are located on sensory neurones and non-neuronal cells. Herein, we highlight and review the importance of sensory neurones for the modulation of sepsis, with specific focus on recent findings relating to TRPV1 and SP, with their distinct abilities to alter the transition from local to systemic inflammation and also modify the overall sepsis outcome. We also emphasize the protective role of TRPV1 in this context. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
|
158
|
Hakalla R, Zachwieja M, Szajna W. First analysis of the 1-v″ progression of the Ångström (B1Σ+-A1Π) band system in the rare 13C17O isotopologue. J Phys Chem A 2013; 117:12299-312. [PMID: 24138166 DOI: 10.1021/jp4077239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The 1-v″ progression of the Ångström band system, so far unobserved in the rare (13)C(17)O isotopologue, was obtained under high resolution as an emission spectrum using a high accuracy dispersive optical spectroscopy. In the studied region 22,700-24,500 cm(-1), 146 spectral lines were observed, among which 118 were interpreted as belonging to the 1-0 and 1-1 bands of B-A system, and the next 28 were interpreted as extra lines belonging to the 1-1 band of B(1)Σ(+)-e(3)Σ(-) intercombination system, also unobserved in the (13)C(17)O molecule so far. All those lines were precisely measured with an estimated accuracy better than 0.0025 cm(-1), and rotationally analyzed. As a result the following in the (13)C(17)O molecule were calculated for the first time: the merged rotational constants B1 = 1.790227(23) cm(-1), D1 = 6.233(47) × 10(-6) cm(-1), and ΔG1/2 = 2010.9622 (69) cm(-1) and the equilibrium constants, ωe = 2076.04(57) cm(-1), ωexe = 32.54(28) cm(-1), Be = 1.824678(15) cm(-1), αe = 2.2967(24) × 10(-2) cm(-1), De = 5.226(25) × 10(-6) cm(-1), and βe = 6.71(48) × 10(-7) cm(-1) for the B(1)Σ(+) Rydberg state, as well as the individual rotational constant B0 = 1.50485(78) cm(-1), and the equilibrium constants ωe = 1463.340(21) cm(-1), Be = 1.49902(12) cm(-1), αe = 1.7782(49) × 10(-2) cm(-1), De = 7.36(56) × 10(-6) cm(-1) for the A(1)Π state, and σe = 21,854.015(51) cm(-1), RKR turning points, Franck-Condon factors (FCF), relative intensities, and r centroids for the Ångström band system. With the help of the strong and vast A(1)Π (v = 0) ∼ e(3)Σ(-) (v = 1) interaction, the experimental parameters of the e(3)Σ(-) (v = 1) perturbing state were established in the (13)C(17)O molecule for the first time.
Collapse
Affiliation(s)
- Rafał Hakalla
- Materials Spectroscopy Laboratory, Center for Innovation and Transfer of Engineering and Natural Science Knowledge, University of Rzeszów , 35-959 Rzeszów, Poland
| | | | | |
Collapse
|
159
|
Abramochkin DV. Modulation of sinoatrial node pacemaker activity by carbon monoxide and hydrogen sulfide. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2013; 453:338-341. [PMID: 24385165 DOI: 10.1134/s0012496613060094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Indexed: 06/03/2023]
|
160
|
Abstract
Hydrogen sulfide (H2S) along with carbon monoxide and nitric oxide is an important signaling molecule that has undergone large numbers of fundamental investigations. H2S is involved in various physiological activities associated with the regulation of homeostasis, vascular contractility, pro- and anti-inflammatory activities, as well as pro- and anti-apoptotic activities etc. However, the actions of H2S are influenced by its concentration, reaction time, and cell/disease types. Therefore, H2S is a signaling molecule without definite effect. The use of existing H2S donors is limited because of the instant release and short lifetime of H2S. Thus, translational medicine involving the sustained and controlled release of H2S is of great value for both scientific and clinical uses. H2S donation can be manipulated by different ways, including where H2S is given, how H2S is donated, or the specific structures of H2S-releasing drugs and H2S donor molecules. This review briefly summarizes recent progress in research on the physiological and pathological functions of H2S and H2S-releasing drugs, and suggests hope for future investigations.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pharmacology, School of Pharmacy, Shanghai 201203, China
| | - Ze-yu Cheng
- Department of Pharmacology, School of Pharmacy, Shanghai 201203, China
| | - Yi-zhun Zhu
- Department of Pharmacology, School of Pharmacy, Shanghai 201203, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 201203, China
- Department of Pharmacology, National University of Singapore, Singapore
| |
Collapse
|
161
|
Miljkovic JL, Kenkel I, Ivanović-Burmazović I, Filipovic MR. Generation of HNO and HSNO from Nitrite by Heme-Iron-Catalyzed Metabolism with H2S. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305669] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
162
|
Miljkovic JL, Kenkel I, Ivanović-Burmazović I, Filipovic MR. Generation of HNO and HSNO from Nitrite by Heme-Iron-Catalyzed Metabolism with H2S. Angew Chem Int Ed Engl 2013; 52:12061-4. [DOI: 10.1002/anie.201305669] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Indexed: 01/30/2023]
|
163
|
Zanellato I, Bonarrigo I, Ravera M, Gabano E, Gust R, Osella D. The hexacarbonyldicobalt derivative of aspirin acts as a CO-releasing NSAID on malignant mesothelioma cells. Metallomics 2013; 5:1604-13. [PMID: 24057048 DOI: 10.1039/c3mt00117b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The antiproliferative activity of the aspirin derivative [2-acetoxy-(2-propynyl)benzoate]hexacarbonyldicobalt (Co-ASS) and its analogue hexacarbonyl[μ-(2-ethylphenyl)methanol]dicobalt (Co-EPM) was investigated on malignant pleural mesothelioma (MPM) cell lines, having an epithelioid or a sarcomatoid phenotype. In sarcomatoid cell lines Co-ASS was more potent than Co-EPM and the prototypal metallo-drug cisplatin, and induced cell death through the intrinsic apoptotic pathway, associated with a strong NF-κB inhibition. In contrast, both Co-ASS and Co-EPM showed only a modest cytostatic activity against epithelioid MPM cells. Co-EPM induced an increase of senescent cells, while Co-ASS did not; the different outcomes were traced back to the organic (aspirin-like) portion of the molecule. Both Co-EPM and Co-ASS significantly reduced reactive oxygen/nitrogen species (ROS/RNS), and in turn nitrites, suggesting that the hexacarbonyldicobalt moiety may deliver CO within the cell, acting as a CO-releasing molecule (CO-RM). In perspective, Co-ASS would be better considered as a CO-NSAID agent (a CO-releasing molecule retaining the NSAID properties similar to NO- and H2S-NSAIDs) than as an antitumor drug candidate.
Collapse
Affiliation(s)
- Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), Sezione Ambiente-Vita, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | |
Collapse
|
164
|
Olabe JA, Amorebieta VT. P38 Mechanism of the reactions of the nitroprusside ion, Fe (CN)5NO2−, with sulfides. Nitric Oxide 2013. [DOI: 10.1016/j.niox.2013.06.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
165
|
Holwerda KM, Faas MM, van Goor H, Lely AT. Gasotransmitters: a solution for the therapeutic dilemma in preeclampsia? Hypertension 2013; 62:653-9. [PMID: 23959552 DOI: 10.1161/hypertensionaha.113.01625] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kim M Holwerda
- Department of Obstetrics and Gynecology, Hanzeplein 1, PO Box 30001, 9713 GZ Groningen, The Netherlands.
| | | | | | | |
Collapse
|
166
|
Hu H, Shen W, Li P. Effects of hydrogen sulphide on quality and antioxidant capacity of mulberry fruit. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12313] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Huali Hu
- College of Life Sciences; Nanjing Agricultural University; Nanjing 210095 China
- Institute of Agricultural Products Processing; Jiangsu Academy of Agricultural Sciences; Nanjing 210014 China
| | - Wenbiao Shen
- College of Life Sciences; Nanjing Agricultural University; Nanjing 210095 China
| | - Pengxia Li
- Institute of Agricultural Products Processing; Jiangsu Academy of Agricultural Sciences; Nanjing 210014 China
| |
Collapse
|
167
|
Tinajero-Trejo M, Jesse HE, Poole RK. Gasotransmitters, poisons, and antimicrobials: it's a gas, gas, gas! F1000PRIME REPORTS 2013; 5:28. [PMID: 23967379 PMCID: PMC3732073 DOI: 10.12703/p5-28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We review recent examples of the burgeoning literature on three gases that have major impacts in biology and microbiology. NO, CO and H2S are now co-classified as endogenous gasotransmitters with profound effects on mammalian physiology and, potentially, major implications in therapeutic applications. All are well known to be toxic yet, at tiny concentrations in human and cell biology, play key signalling and regulatory functions. All may also be endogenously generated in microbes. NO and H2S share the property of being biochemically detoxified, yet are beneficial in resisting the bactericidal properties of antibiotics. The mechanism underlying this protection is currently under debate. CO, in contrast, is not readily removed; mounting evidence shows that CO, and especially organic donor compounds that release the gas in biological environments, are themselves effective, novel antimicrobial agents.
Collapse
|
168
|
Praschberger M, Hermann M, Laggner C, Jirovetz L, Exner M, Kapiotis S, Gmeiner BMK, Laggner H. Carbamoylation abrogates the antioxidant potential of hydrogen sulfide. Biochimie 2013; 95:2069-75. [PMID: 23896375 DOI: 10.1016/j.biochi.2013.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/18/2013] [Indexed: 02/02/2023]
Abstract
Hydrogen sulfide (H2S) has been identified as the third gasotransmitter. Beside its role as signaling molecule in the cardiovascular and nervous system the antioxidant and cyto-protective properties of H2S have gained much attention. In the present study we show that cyanate, an uremic toxin which is found in abundant concentration in sera of patients suffering from chronic kidney disease (CKD), can abrogate the antioxidant and cytoprotective activity of H2S via S-carbamoylation reaction, a reaction that previously has only been shown to have a physiological effect on cysteine groups, but not on H2S. Carbamoylation strongly inhibited the free radical scavenging (ABTS(+·) and alkylperoxyl ROO(·)) properties of H2S. The extent of intracellular ROS formation induced by ROO(·) was diminished by H2S whereas carbamoylation counteracted the protective effect. Reagent HOCl was rapidly inactivated by H2S in contrast to the carbamoylated compound. Protein modification by HOCl was inhibited by H2S but carbamoylation significantly reduced the effect. Thus, S-carbamoylation of low molecular weight thiols by abrogating their antioxidant potential may contribute to the higher oxidative stress observed in CKD.
Collapse
Affiliation(s)
- Monika Praschberger
- Center of Pathobiochemistry and Genetics, Department of Medical Chemistry and Pathobiochemistry, Medical University of Vienna, Waehringerstr. 10, 1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Pan LL, Liu XH, Shen YQ, Wang NZ, Xu J, Wu D, Xiong QH, Deng HY, Huang GY, Zhu YZ. Inhibition of NADPH oxidase 4-related signaling by sodium hydrosulfide attenuates myocardial fibrotic response. Int J Cardiol 2013; 168:3770-8. [PMID: 23830348 DOI: 10.1016/j.ijcard.2013.06.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 04/29/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Myocardial fibrosis plays a pivotal role in the development of heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter with potent cardioprotective properties; however, whether H2S is involved in fibrotic process remains unknown. This study aimed to explore the role of H2S in the process of cardiac fibrosis and the underlying mechanisms. METHODS Myocardial infarction (MI) was established in rats by ligation of coronary artery. Activation of rat neonatal cardiac fibroblasts was induced by angiotensin II (Ang II). Fibrotic responses in ischemic myocardium and in Ang II-stimulated cardiac fibroblasts were examined. The effects of sodium hydrosulfide (NaHS, an exogenous H2S donor) on NADPH oxidase 4 (Nox4), reactive oxygen species (ROS) production, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, heme oxygenase-1 (HO-1), and cystathionine γ-lyase (CSE) were tested to elucidate the protective mechanisms of H2S on fibrotic response. RESULTS NaHS treatment inhibited Ang II-induced expression of α-smooth muscle actin, connective tissue growth factor (CTGF), and type I collagen and upregulated expression of HO-1 in cardiac fibroblasts. Ang II-induced Nox4 expression in cardiac fibroblasts was quenched by NaHS and this was associated with a decreased ROS production and reduced ERK1/2 phosphorylation and CTGF expression. In vivo studies using MI model indicated that NaHS administration attenuated Nox4 expression and fibrotic response. Moreover, NaHS therapy also prevented cardiac inflammatory response accompanied by increases in HO-1 and CSE expression. CONCLUSIONS The beneficial effect of H2S, at least in part, was associated with a decrease of Nox4-ROS-ERK1/2 signaling axis and an increase in HO-1 expression.
Collapse
Affiliation(s)
- Li-Long Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Affiliation(s)
- Shyamal C. Bir
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, LA
| | - Christopher G. Kevil
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, LA
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport, Shreveport, LA
- Department of Cell Biology and Anatomy, LSU Health Sciences Center-Shreveport, Shreveport, LA
| |
Collapse
|
171
|
Guettler C, Kubes P. Hydrogen sulfide, another simple gas with complex biology. Am J Physiol Gastrointest Liver Physiol 2013; 304:G1066-9. [PMID: 23639806 DOI: 10.1152/ajpgi.00125.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Christopher Guettler
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
172
|
Abstract
Reactive oxygen and nitrogen species (ROS-RNS) and other redox active molecules fulfill key functions in immunity. Beside the initiation of cytocidal reactions within the pathogen defense strategy, redox reactions trigger and shape the immune response and are further involved in termination and initialization of cellular restorative processes. Regulatory mechanisms provided by redox-activated signaling events guarantee the correct spatial and temporal proceeding of immunological processes, and continued imbalances in redox homeostasis lead to crucial failures of control mechanisms, thus promoting the development of pathological conditions. Interferon-gamma is the most potent inducer of ROS-RNS formation in target cells like macrophages. Immune-regulatory pathways such as tryptophan breakdown via indoleamine 2,3-dioxygenase and neopterin production by GTP-cyclohydrolase-I are initiated during T helper cell type 1 (Th1-type) immune response concomitant to the production of ROS-RNS by immunocompetent cells. Therefore, increased neopterin production and tryptophan breakdown is representative of an activated cellular immune system and can be used for the in vivo and in vitro monitoring of oxidative stress. In parallel, the activation of the redox-sensitive transcription factor nuclear factor-kappa B is a central element in immunity leading to cell type and stimulus-specific expression of responsive genes. Furthermore, T cell activation and proliferation are strongly dependent on the redox potential of the extracellular microenvironment. T cell commitment to Th1, Th2, regulatory T cell, and other phenotypes appears to crucially depend on the activation of redox-sensitive signaling cascades, where oxidative conditions support Th1 development while 'antioxidative' stress leads to a shift to allergic Th2-type immune responses.
Collapse
Affiliation(s)
- Johanna M Gostner
- Division of Medical Biochemistry, Biocenter, Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
173
|
Abstract
We studied the effects of carbon monoxide and sodium hydrosulfide, hydrogen sulfide donor, on contractile activity of the left ventricle in Langendorf-perfused isolated rat heart. Carbon monoxide 5×10(-5) M significantly accelerated sinus rhythm and left-ventricular pressure wave growth and decay. To the contrary, negative inotropic and chronotropic effects were observed at higher concentrations of carbon monoxide (10(-4), 3×10(-4) M). Sodium hydrosulfide (10(-4)-4×10(-4) M) decreased all the parameters of left-ventricular contractive activity and reduced contraction rate. Carbon monoxide and hydrogen sulfide, which together with nitrogen oxide are qualified as a new class of gaseous signal compounds, may substantially modulate pumping function of the heart.
Collapse
|
174
|
Hydrogen sulfide inhibits Ca(2+)-induced mitochondrial permeability transition pore opening in spontaneously hypertensive rats. ACTA ACUST UNITED AC 2013. [DOI: 10.15407/fz59.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
175
|
You R, Long W, Lai Z, Sha L, Wu K, Yu X, Lai Y, Ji H, Huang Z, Zhang Y. Discovery of a potential anti-inflammatory agent: 3-oxo-29-noroleana-1,9(11),12-trien-2,20-dicarbonitrile. J Med Chem 2013; 56:1984-95. [PMID: 23373965 DOI: 10.1021/jm301652t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fifteen novel derivatives of glycyrrhetinic acid (GA) were synthesized and evaluated for anti-inflammatory activities. It was found that the introduction of 1-en-3-one and 9(11),12-diene and 2,20-dinitrile functionalities into the scaffold of GA led to the discovery of potent compound 19 for inhibition of LPS-induced NO production. Furthermore, 19 effectively inhibited the protein and mRNA expression of inducible NO synthase (iNOS) and the mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW 264.7 macrophages. Mechanistically, 19 exerted inhibitory effects on the activation of the three main MAPKs and phosphorylation and degradation of IκB-α, as well as the ratio of nuclear/cytosolic content of p65. Importantly, 19 significantly decreased the mortality rate in the mouse model of LPS-induced sepsis shock. It is noteworthy that inhibitory effect of 19 on NO production was not blocked by the glucocorticoid receptor antagonist mifepristone, indicating that it does not act through the glucocorticoid receptor.
Collapse
Affiliation(s)
- Ran You
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Filipovic MR, Eberhardt M, Prokopovic V, Mijuskovic A, Orescanin-Dusic Z, Reeh P, Ivanovic-Burmazovic I. Beyond H2S and NO Interplay: Hydrogen Sulfide and Nitroprusside React Directly to Give Nitroxyl (HNO). A New Pharmacological Source of HNO. J Med Chem 2013; 56:1499-508. [DOI: 10.1021/jm3012036] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | - Ana Mijuskovic
- Institute
for Biological Research Sinisa Stankovic, University of Belgrade,
Belgrade, Serbia
| | - Zorana Orescanin-Dusic
- Institute
for Biological Research Sinisa Stankovic, University of Belgrade,
Belgrade, Serbia
| | | | | |
Collapse
|
177
|
Munaron L, Avanzato D, Moccia F, Mancardi D. Hydrogen sulfide as a regulator of calcium channels. Cell Calcium 2013; 53:77-84. [DOI: 10.1016/j.ceca.2012.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/30/2012] [Accepted: 07/05/2012] [Indexed: 12/18/2022]
|
178
|
Bruce King S. Potential biological chemistry of hydrogen sulfide (H2S) with the nitrogen oxides. Free Radic Biol Med 2013; 55:1-7. [PMID: 23165065 PMCID: PMC3798156 DOI: 10.1016/j.freeradbiomed.2012.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/24/2012] [Accepted: 11/08/2012] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide, an important gaseous signaling agent generated in numerous biological tissues, influences many physiological processes. This biological profile seems reminiscent of nitric oxide, another important endogenously synthesized gaseous signaling molecule. Hydrogen sulfide reacts with nitric oxide or oxidized forms of nitric oxide and nitric oxide donors in vitro to form species that display distinct biology compared to both hydrogen sulfide and NO. The products of these interesting reactions may include small-molecule S-nitrosothiols or nitroxyl, the one-electron-reduced form of nitric oxide. In addition, thionitrous acid or thionitrite, compounds structurally analogous to nitrous acid and nitrite, may constitute a portion of the reaction products. Both the chemistry and the biology of thionitrous acid and thionitrite, compared to nitric oxide or hydrogen sulfide, remain poorly defined. General mechanisms for the formation of S-nitrosothiols, nitroxyl, and thionitrous acid based upon the ability of hydrogen sulfide to act as a nucleophile and a reducing agent with reactive nitric oxide-based intermediates are proposed. Hydrogen sulfide reactivity seems extensive and could have an impact on numerous areas of redox-controlled biology and chemistry, warranting more work in this exciting and developing area.
Collapse
Affiliation(s)
- S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA.
| |
Collapse
|
179
|
Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Zaid A, Giannogonas P, Cantalupo A, Dhayade S, Karalis KP, Wang R, Feil R, Cirino G. cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation. PLoS One 2012; 7:e53319. [PMID: 23285278 PMCID: PMC3532056 DOI: 10.1371/journal.pone.0053319] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 11/30/2012] [Indexed: 01/18/2023] Open
Abstract
A growing body of evidence suggests that hydrogen sulfide (H2S) is a signaling molecule in mammalian cells. In the cardiovascular system, H2S enhances vasodilation and angiogenesis. H2S-induced vasodilation is hypothesized to occur through ATP-sensitive potassium channels (KATP); however, we recently demonstrated that it also increases cGMP levels in tissues. Herein, we studied the involvement of cGMP-dependent protein kinase-I in H2S-induced vasorelaxation. The effect of H2S on vessel tone was studied in phenylephrine-contracted aortic rings with or without endothelium. cGMP levels were determined in cultured cells or isolated vessel by enzyme immunoassay. Pretreatment of aortic rings with sildenafil attenuated NaHS-induced relaxation, confirming previous findings that H2S is a phosphodiesterase inhibitor. In addition, vascular tissue levels of cGMP in cystathionine gamma lyase knockouts were lower than those in wild-type control mice. Treatment of aortic rings with NaHS, a fast releasing H2S donor, enhanced phosphorylation of vasodilator-stimulated phosphoprotein in a time-dependent manner, suggesting that cGMP-dependent protein kinase (PKG) is activated after exposure to H2S. Incubation of aortic rings with a PKG-I inhibitor (DT-2) attenuated NaHS-stimulated relaxation. Interestingly, vasodilatory responses to a slowly releasing H2S donor (GYY 4137) were unaffected by DT-2, suggesting that this donor dilates mouse aorta through PKG-independent pathways. Dilatory responses to NaHS and L-cysteine (a substrate for H2S production) were reduced in vessels of PKG-I knockout mice (PKG-I−/−). Moreover, glibenclamide inhibited NaHS-induced vasorelaxation in vessels from wild-type animals, but not PKG-I−/−, suggesting that there is a cross-talk between KATP and PKG. Our results confirm the role of cGMP in the vascular responses to NaHS and demonstrate that genetic deletion of PKG-I attenuates NaHS and L-cysteine-stimulated vasodilation.
Collapse
Affiliation(s)
- Mariarosaria Bucci
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of Naples–Federico II, Naples, Italy
| | - Andreas Papapetropoulos
- Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, Patras, Greece
- Developmental Biology Section, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- * E-mail:
| | - Valentina Vellecco
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of Naples–Federico II, Naples, Italy
| | - Zongmin Zhou
- “G.P. Livanos” Laboratory, First Department of Critical Care and Pulmonary Services, University of Athens School of Medicine, Athens, Greece
| | - Altaany Zaid
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Panagiotis Giannogonas
- Developmental Biology Section, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anna Cantalupo
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of Naples–Federico II, Naples, Italy
| | - Sandeep Dhayade
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Katia P. Karalis
- Developmental Biology Section, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Robert Feil
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Giuseppe Cirino
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of Naples–Federico II, Naples, Italy
| |
Collapse
|
180
|
Merighi S, Gessi S, Varani K, Fazzi D, Borea PA. Hydrogen sulfide modulates the release of nitric oxide and VEGF in human keratinocytes. Pharmacol Res 2012; 66:428-36. [DOI: 10.1016/j.phrs.2012.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
|
181
|
Bhatia M. Role of hydrogen sulfide in the pathology of inflammation. SCIENTIFICA 2012; 2012:159680. [PMID: 24278674 PMCID: PMC3820548 DOI: 10.6064/2012/159680] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/03/2012] [Indexed: 06/02/2023]
Abstract
Hydrogen sulfide (H2S) is a well-known toxic gas that is synthesized in the human body from the amino acids cystathionine, homocysteine, and cysteine by the action of at least two distinct enzymes: cystathionine-γ-lyase and cystathionine-β-synthase. In the past few years, H2S has emerged as a novel and increasingly important biological mediator. Imbalances in H2S have also been shown to be associated with various disease conditions. However, defining the precise pathophysiology of H2S is proving to be a complex challenge. Recent research in our laboratory has shown H2S as a novel mediator of inflammation and work in several groups worldwide is currently focused on determining the role of H2S in inflammation. H2S has been implicated in different inflammatory conditions, such as acute pancreatitis, sepsis, joint inflammation, and chronic obstructive pulmonary disease (COPD). Active research on the role of H2S in inflammation will unravel the pathophysiology of its actions in inflammatory conditions and may help develop novel therapeutic approaches for several, as yet incurable, disease conditions.
Collapse
Affiliation(s)
- Madhav Bhatia
- Department of Pathology, University of Otago, P.O. Box 4345, Christchurch 8140, New Zealand
| |
Collapse
|
182
|
Perna AF, Ingrosso D. Low hydrogen sulphide and chronic kidney disease: a dangerous liaison. Nephrol Dial Transplant 2012; 27:486-93. [PMID: 22323660 DOI: 10.1093/ndt/gfr737] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulphide, H(2)S, is a gaseous compound involved in a number of biological responses, e.g. blood pressure, vascular function and energy metabolism. In particular, H(2)S is able to lower blood pressure, protect from injury in models of ischaemia-reperfusion and induce a hypometabolic state. In chronic kidney disease (CKD), low plasma hydrogen sulphide levels have been established in humans and in animal models. The enzymes involved in its production are cystathionine β-synthase, cystathionine γ-lyase and 3-mercaptopyruvate sulphurtransferase. The mechanisms for H(2)S decrease in CKD are related to the reduced gene expression (demonstrated in uraemic patient blood cells) and decreased protein levels (in tissues such as liver, kidney, brain in a CKD rat model). In the present Nephrol Dial Transplant issue, in fact, Aminzadeh and Vaziri document that the alterations in this pathway complicate the uraemic state and are linked to CKD progression. They furnish a time frame in CKD and record enzyme tissue distribution. It remains to be established if low H(2)S is causally linked to CKD progression and if interventions aimed to restore the status quo ante are able to modify this picture.
Collapse
|
183
|
Morel A, Malinowska J, Olas B. Antioxidative properties of hydrogen sulfide may involve in its antiadhesive action on blood platelets. Clin Biochem 2012; 45:1678-82. [PMID: 22981831 DOI: 10.1016/j.clinbiochem.2012.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND Hydrogen sulfide (H(2)S) is a signaling molecule in different systems, including the cardiovascular system. However, mechanisms involved in the relationship between the action of H(2)S and hemostasis process are still unclear. OBJECTIVE AND METHODS The present work was designed to study the effects of hydrogen sulfide on adhesion of blood platelets in vitro. Platelet suspensions were preincubated (5-30 min) with NaHS as a hydrogen sulfide donor at the final concentrations of 0.00001-10 mM. Then, for platelet activation thrombin (0.1 U/mL) or TRAP, peptide with the sequence Ser-Phe-Leu-Leu-Arg-Asn (SFLLRN; 20 μM) was used. We also measured the effects of H(2)S on superoxide anion radicals (O(2)(-•)) production in blood platelets. RESULTS We observed that adhesion to collagen and to fibrinogen of resting platelets preincubated with NaHS was changed, and this process was statistically significant (for 0.00001-5mM NaHS, p<0.05; 10 mM, p<0.01). The inhibitory effect of NaHS on adhesion of thrombin - or TRAP - stimulated platelets to collagen was found (for 0.00001 and 0.0001 mM NaHS, p<0.05; 0.001-1 mM NaHS, p<0.01; 5 and 10 mM NaHS, p<0.001). Hydrogen sulfide reduced also the thrombin- or TRAP-induced platelet adhesion to fibrinogen (for 0.00001 and 0.0001 mM NaHS, p<0.05; 0.001-1 mM NaHS, p<0.01; 5 and 10 mM NaHS, p<0.001). Moreover, H(2)S caused a dose-dependent reduction of O(2)(-•) produced in platelets (p<0.05). CONCLUSION The results obtained that the antioxidative activity of H(2)S may involve in its antiadhesive properties on blood platelets.
Collapse
Affiliation(s)
- Agnieszka Morel
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| | | | | |
Collapse
|
184
|
Whiteman M, Winyard PG. Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 2012; 4:13-32. [PMID: 22115346 DOI: 10.1586/ecp.10.134] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hydrogen sulfide is rapidly gaining ground as a physiological mediator of inflammation, but there is no clear consensus as to its precise role in inflammatory signaling. This article discusses the disparate anti-inflammatory ('the good') and proinflammatory ('the bad') effects of endogenous and pharmacological H(2)S in disparate animal model and cell culture systems. We also discuss 'the ugly', such as problems of using wholly specific inhibitors of enzymatic H(2)S synthesis, and the use of pharmacological donor compounds, which release H(2)S too quickly to be physiologically representative of endogenous H(2)S synthesis. Furthermore, recently developed slow-release H(2)S donors, which offer a more physiological approach to understanding the complex role of H(2)S in acute and chronic inflammation ('the promising') are discussed.
Collapse
Affiliation(s)
- Matthew Whiteman
- Peninsula Medical School, University of Exeter, St Luke's Campus, Magdalen Road, Exeter, Devon, EX1 2LU, UK.
| | | |
Collapse
|
185
|
Louis XL, Murphy R, Thandapilly SJ, Yu L, Netticadan T. Garlic extracts prevent oxidative stress, hypertrophy and apoptosis in cardiomyocytes: a role for nitric oxide and hydrogen sulfide. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:140. [PMID: 22931510 PMCID: PMC3519616 DOI: 10.1186/1472-6882-12-140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 08/23/2012] [Indexed: 01/20/2023]
Abstract
Background In ancient times, plants were recognized for their medicinal properties. Later, the arrival of synthetic drugs pushed it to the backstage. However, from being merely used for food, plants are now been widely explored for their therapeutic value. The current study explores the potential of skin and flesh extracts from a hard-necked Rocambole variety of purple garlic in preventing cardiomyocyte hypertrophy and cell death. Methods Norepinephrine (NE) was used to induce hypertrophy in adult rat cardiomyocytes pretreated with garlic skin and flesh extracts. Cell death was measured as ratio of rod to round shaped cardiomyocytes. Fluorescent probes were used to measure apoptosis and oxidative stress in cardiomyocytes treated with and without extracts and NE. Pharmacological blockade of nitric oxide (NO) and hydrogen sulfide (H2S) were used to elucidate the mechanism of action of garlic extracts. Garlic extract samples were also tested for alliin and allicin concentrations. Results Exposure of cardiomyocytes to NE induced an increase in cell size and cell death; this increase was significantly prevented upon treatment with garlic skin and flesh extracts. Norepinephrine increased apoptosis and oxidative stress in cardiomyocytes which was prevented upon pretreatment with skin and flesh extracts; NO, and H2S blockers significantly inhibited this beneficial effect. Allicin and alliin concentration were significantly higher in garlic flesh extract when compared to the skin extract. Conclusion These results suggest that both skin and flesh garlic extracts are effective in preventing NE induced cardiomyocyte hypertrophy and cell death. Reduction in oxidative stress may also play an important role in the anti-hypertrophic and anti-apoptotic properties of garlic extracts. These beneficial effects may in part be mediated by NO and H2S.
Collapse
|
186
|
Filipovic MR, Miljkovic JL, Nauser T, Royzen M, Klos K, Shubina T, Koppenol WH, Lippard SJ, Ivanović-Burmazović I. Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols. J Am Chem Soc 2012; 134:12016-27. [PMID: 22741609 PMCID: PMC3408084 DOI: 10.1021/ja3009693] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 01/20/2023]
Abstract
Dihydrogen sulfide recently emerged as a biological signaling molecule with important physiological roles and significant pharmacological potential. Chemically plausible explanations for its mechanisms of action have remained elusive, however. Here, we report that H(2)S reacts with S-nitrosothiols to form thionitrous acid (HSNO), the smallest S-nitrosothiol. These results demonstrate that, at the cellular level, HSNO can be metabolized to afford NO(+), NO, and NO(-) species, all of which have distinct physiological consequences of their own. We further show that HSNO can freely diffuse through membranes, facilitating transnitrosation of proteins such as hemoglobin. The data presented in this study explain some of the physiological effects ascribed to H(2)S, but, more broadly, introduce a new signaling molecule, HSNO, and suggest that it may play a key role in cellular redox regulation.
Collapse
Affiliation(s)
- Milos R Filipovic
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, 91058 Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Frantzias J, Logan JG, Mollat P, Sparatore A, Del Soldato P, Ralston SH, Idris AI. Hydrogen sulphide-releasing diclofenac derivatives inhibit breast cancer-induced osteoclastogenesis in vitro and prevent osteolysis ex vivo. Br J Pharmacol 2012; 165:1914-1925. [PMID: 21955294 DOI: 10.1111/j.1476-5381.2011.01704.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulphide (H(2)S) and prostaglandins are both involved in inflammation, cancer and bone turnover, and non-steroidal anti-inflammatory drugs (NSAIDs) and H(2)S donors exhibit anti-inflammatory and anti-tumour properties. H(2)S-releasing diclofenac (S-DCF) derivatives are a novel class of NSAIDs combining the properties of a H(2)S donor with those of a conventional NSAID. EXPERIMENTAL APPROACH We studied the effects of the S-DCF derivatives ACS15 and ACS32 on osteoclast and osteoblast differentiation and activity in vitro, human and mouse breast cancer cells support for osteoclast formation and signalling in vitro, and osteolysis ex vivo. KEY RESULTS The S-diclofenac derivatives ACS15 and ACS32 inhibited the increase in osteoclast formation induced by human MDA-MB-231 and MCF-7 and mouse 4T1 breast cancer cells without affecting breast cancer cell viability. Conditioned media from human MDA-MB-231 cells enhanced IκB phosphorylation and osteoclast formation and these effects were significantly inhibited following treatment by ACS15 and ACS32, whereas the parent compound diclofenac had no effects. ACS15 and ACS32 inhibited receptor activator of NFκB ligand-induced osteoclast formation and resorption, and caused caspase-3 activation and apoptosis in mature osteoclasts via a mechanism dependent on IKK/NFκB inhibition. In calvaria organ culture, human MDA-MB-231 cells caused osteolysis, and this effect was completely prevented following treatment with ACS15 and ACS32. CONCLUSIONS AND IMPLICATIONS S-diclofenac derivatives inhibit osteoclast formation and activity, suppress breast cancer cell support for osteoclastogenesis and prevent osteolysis. This suggests that H(2)S-releasing diclofenac derivatives exhibit anti-resorptive properties, which might be of clinical value in the treatment of osteolytic bone disease.
Collapse
Affiliation(s)
- J Frantzias
- The Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKEdinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKGalapagos SASU, Romainville, FranceDepartment of Pharmaceutical Sciences 'P. Pratesi', Università degli Studi di Milano, Milan, ItalyCTG Pharma S.r.l., Milan, Italy
| | - J G Logan
- The Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKEdinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKGalapagos SASU, Romainville, FranceDepartment of Pharmaceutical Sciences 'P. Pratesi', Università degli Studi di Milano, Milan, ItalyCTG Pharma S.r.l., Milan, Italy
| | - P Mollat
- The Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKEdinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKGalapagos SASU, Romainville, FranceDepartment of Pharmaceutical Sciences 'P. Pratesi', Università degli Studi di Milano, Milan, ItalyCTG Pharma S.r.l., Milan, Italy
| | - A Sparatore
- The Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKEdinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKGalapagos SASU, Romainville, FranceDepartment of Pharmaceutical Sciences 'P. Pratesi', Università degli Studi di Milano, Milan, ItalyCTG Pharma S.r.l., Milan, Italy
| | - P Del Soldato
- The Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKEdinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKGalapagos SASU, Romainville, FranceDepartment of Pharmaceutical Sciences 'P. Pratesi', Università degli Studi di Milano, Milan, ItalyCTG Pharma S.r.l., Milan, Italy
| | - S H Ralston
- The Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKEdinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKGalapagos SASU, Romainville, FranceDepartment of Pharmaceutical Sciences 'P. Pratesi', Università degli Studi di Milano, Milan, ItalyCTG Pharma S.r.l., Milan, Italy
| | - A I Idris
- The Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKEdinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UKGalapagos SASU, Romainville, FranceDepartment of Pharmaceutical Sciences 'P. Pratesi', Università degli Studi di Milano, Milan, ItalyCTG Pharma S.r.l., Milan, Italy
| |
Collapse
|
188
|
Liu YH, Lu M, Hu LF, Wong PTH, Webb GD, Bian JS. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 2012; 17:141-85. [PMID: 22304473 DOI: 10.1089/ars.2011.4005] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For more than a century, hydrogen sulfide (H(2)S) has been regarded as a toxic gas. This review surveys the growing recognition of the role of H(2)S as an endogenous signaling molecule in mammals, with emphasis on its physiological and pathological pathways in the cardiovascular system. In biological fluids, H(2)S gas is a weak acid that exists as about 15% H(2)S, 85% HS(-), and a trace of S(2-). Here, we use "H(2)S" to refer to this mixture. H(2)S has been found to influence heart contractile functions and may serve as a cardioprotectant for treating ischemic heart diseases and heart failure. Alterations of the endogenous H(2)S level have been found in animal models with various pathological conditions such as myocardial ischemia, spontaneous hypertension, and hypoxic pulmonary hypertension. In the vascular system, H(2)S exerts biphasic regulation of a vascular tone with varying effects based on its concentration and in the presence of nitric oxide. Over the past decade, several H(2)S-releasing compounds (NaHS, Na(2)S, GYY4137, etc.) have been utilized to test the effect of exogenous H(2)S under different physiological and pathological situations in vivo and in vitro. H(2)S has been found to promote angiogenesis and to protect against atherosclerosis and hypertension, while excess H(2)S may promote inflammation in septic or hemorrhagic shock. H(2)S-releasing compounds and inhibitors of H(2)S synthesis hold promise in alleviating specific disease conditions. This comprehensive review covers in detail the effects of H(2)S on the cardiovascular system, especially in disease situations, and also the various underlying mechanisms.
Collapse
Affiliation(s)
- Yi-Hong Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
189
|
Faccenda A, Wang J, Mutus B. Polydimethylsiloxane permeability-based method for the continuous and specific detection of hydrogen sulfide. Anal Chem 2012; 84:5243-9. [PMID: 22680986 DOI: 10.1021/ac3008863] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hydrogen sulfide (H(2)S) is known to play a physiological role in processes as diverse as vasodilation, maintenance of vascular tone, neurotransmission, and immune response. The multitude of physiological functions in which H(2)S is involved warrants the development of useful methods for its detection. Here, we introduce a simple and continuous H(2)S detection method that exploits the relatively high polydimethylsiloxane (PDMS) permeability of H(2)S in comparison to other thiols typically encountered in the cellular milieu. In this method, 96-well inserts constructed of PDMS act as an H(2)S-permeable membrane, eliminating nonspecific thiol detection. This design also makes it possible to use virtually any available thiol-specific probe such as Ellman's reagent which was used here to detect H(2)S once it crossed the PDMS membrane. Utilizing this method, a detection limit of 9.2 ± 1.9 ppb(m) (parts per billion (by mole) or ~0.51 μM in 1.6 mL of buffer) free H(2)S (detected as solution sulfide) was achieved. In addition, the assay was used to determine K(M) and V(max) for natural substrates of cystathionine γ-lyase (CSE), the main enzyme responsible for H(2)S production in peripheral tissues. The K(M) and V(max) of CSE for cysteine were 3.79 ± 2.07 mM and 0.37 ± 0.02 nmol H(2)S/min, respectively. K(M) and V(max) for homocysteine were 6.90 ± 1.78 mM and 1.10 ± 0.19 nmol H(2)S/min, respectively. In addition, the assay was used to examine the potential for a direct interaction of H(2)S and NO. The levels of detected H(2)S decreased in the presence of NO under normoxia but not under anoxia indicating that H(2)S does not react with NO but with N(2)O(3) likely formed in the hydrophobic environment of PDMS.
Collapse
Affiliation(s)
- Adam Faccenda
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | | | | |
Collapse
|
190
|
Liang GH, Xi Q, Leffler CW, Jaggar JH. Hydrogen sulfide activates Ca²⁺ sparks to induce cerebral arteriole dilatation. J Physiol 2012; 590:2709-20. [PMID: 22508960 DOI: 10.1113/jphysiol.2011.225128] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hydrogen sulfide (H₂S) is a gaseous vasodilator produced by endothelial cells. Mechanisms by which H₂S induces vasodilatation are unclear. We tested the hypothesis that H₂S dilates cerebral arterioles by modulating local and global intracellular Ca²⁺ signals in smooth muscle cells. High-speed confocal imaging revealed that Na₂S, an H₂S donor, increased Ca²⁺ spark frequency ∼1.43-fold and decreased global intracellular Ca²⁺ concentration ([Ca²⁺]i) by ∼37 nM in smooth muscle cells of intact piglet cerebral arterioles. In contrast, H₂S did not alter Ca²⁺ wave frequency. In voltage-clamped (-40 mV) cells, H₂S increased the frequency of iberiotoxin-sensitive, Ca²⁺ spark-induced transient Ca²⁺-activated K⁺ (KCa) currents ∼1.83-fold, but did not alter the amplitude of these events. H₂S did not alter the activity of single KCa channels recorded in the absence of Ca²⁺ sparks in arteriole smooth muscle cells. H₂S increased SR Ca²⁺ load ([Ca²⁺]SR), measured as caffeine (10 and 20mM)-induced [Ca²⁺]i transients, ∼1.5-fold. H₂S hyperpolarized (by ∼18 mV) and dilated pressurized (40 mmHg) cerebral arterioles. Iberiotoxin, a KCa channel blocker, reduced H₂S-induced hyperpolarization by ∼51%. Iberiotoxin and ryanodine, a ryanodine receptor channel inhibitor, reduced H₂S-induced vasodilatation by ∼38 and ∼37%, respectively. In summary, our data indicate that H₂S elevates [Ca²⁺]SR, leading to Ca²⁺ spark activation in cerebral arteriole smooth muscle cells. The subsequent elevation in transient KCa current frequency leads to membrane hyperpolarization, a reduction in global [Ca²⁺]i and vasodilatation.
Collapse
Affiliation(s)
- Guo Hua Liang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
191
|
Chen Y, Wang R. The message in the air: hydrogen sulfide metabolism in chronic respiratory diseases. Respir Physiol Neurobiol 2012; 184:130-8. [PMID: 22476058 DOI: 10.1016/j.resp.2012.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/11/2012] [Accepted: 03/12/2012] [Indexed: 12/20/2022]
Abstract
Hydrogen sulfide (H(2)S) is an important gasotransmitter in the mammalian respiratory system. The enzymes that produce H(2)S - mainly cystathionine-β-synthase and cystathionine-γ-lyase - are expressed in pulmonary and airway tissues. Endogenous H(2)S participates in the regulation of the respiratory system's physiological functions and pathophysiological alterations, such as chronic obstructive pulmonary disease, asthma, pulmonary fibrosis and hypoxia-induced pulmonary hypertension, to name a few. The cellular targets of H(2)S in the respiratory system are diverse, including airway smooth muscle cells, epithelial cells, fibroblasts, and pulmonary artery smooth muscle cells. H(2)S also regulates respiratory functions such as airway constriction, pulmonary circulation, cell proliferation or apoptosis, fibrosis, oxidative stress, and neurogenic inflammation. Cross-talk between H(2)S and other gasotransmitters also affects the net outcome of lung function. The metabolism of H(2)S in the lungs and airway may serve as a biomarker for specific respiratory diseases. It is expected that strategies targeted at the metabolism and function of H(2)S will prove useful for the prevention and treatment of selective chronic respiratory diseases.
Collapse
Affiliation(s)
- Yahong Chen
- Respiratory Department, Peking University Third Hospital, Beijing, China
| | | |
Collapse
|
192
|
Allan PK, Wheatley PS, Aldous D, Mohideen MI, Tang C, Hriljac JA, Megson IL, Chapman KW, De Weireld G, Vaesen S, Morris RE. Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide. Dalton Trans 2012; 41:4060-6. [PMID: 22378060 DOI: 10.1039/c2dt12069k] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.
Collapse
Affiliation(s)
- Phoebe K Allan
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Peers C, Steele DS. Carbon monoxide: a vital signalling molecule and potent toxin in the myocardium. J Mol Cell Cardiol 2012; 52:359-65. [PMID: 21640728 DOI: 10.1016/j.yjmcc.2011.05.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 11/20/2022]
Abstract
Endogenous carbon monoxide (CO) is generated through the heme oxygenase-catalysed degradation of heme and is now established as an important, biologically active molecule capable of modulating a number of signalling pathways. Such pathways include those involving nitric oxide/guanylate cyclase, reactive oxygen species (ROS) and MAP kinases. In the heart, up-regulation of the inducible form of heme oxygenase (HO-1) following stresses such as ischemia/reperfusion provides cardioprotection, and much evidence indicates that CO accounts for many of these beneficial effects. One target of CO appears to be the L-type Ca(2+) channel; CO inhibits recombinant and native forms of this cardiac channel via mitochondria-derived ROS, which likely contributes to the protective effects of CO. In stark contrast, exposure to exogenous CO is toxic: chronic, low-level exposure can lead to myocardial injury and fibrosis, whereas acute exposure is associated with life-threatening arrhythmias. The molecular mechanisms accounting for such effects remain to be elucidated, but require future study before the potentially beneficial effects of CO therapy can be safely exploited. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- Chris Peers
- Faculties of Medicine and Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
194
|
Strutyns'ka NA, Semenykhina OM, Chorna SV, Vavilova HL, Sahach VF. Hydrogen sulfide inhibits Ca(2+)-induced mitochondrial permeability transition pore opening in adult and old rat heart. ACTA ACUST UNITED AC 2012. [DOI: 10.15407/fz57.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
195
|
Fazekas AS, Wewalka M, Zauner C, Funk GC. Carboxyhemoglobin levels in medical intensive care patients: a retrospective, observational study. Crit Care 2012; 16:R6. [PMID: 22236404 PMCID: PMC3396235 DOI: 10.1186/cc11138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 08/24/2011] [Accepted: 01/11/2012] [Indexed: 11/10/2022] Open
Abstract
Introduction Critical illness leads to increased endogenous production of carbon monoxide (CO) due to the induction of the stress-response enzyme, heme oxygenase-1 (HO-1). There is evidence for the cytoprotective and anti-inflammatory effects of CO based on animal studies. In critically ill patients after cardiothoracic surgery, low minimum and high maximum carboxyhemoglobin (COHb) levels were shown to be associated with increased mortality, which suggests that there is an 'optimal range' for HO-1 activity. Our study aimed to test whether this relationship between COHb and outcome exists in non-surgical ICU patients. Methods We conducted a retrospective, observational study in a medical ICU at a university hospital in Vienna, Austria involving 868 critically ill patients. No interventions were undertaken. Arterial COHb was measured on admission and during the course of treatment in the ICU. The association between arterial COHb levels and ICU mortality was evaluated using bivariate tests and a logistic regression model. Results Minimum COHb levels were slightly lower in non-survivors compared to survivors (0.9%, 0.7% to 1.2% versus 1.2%, 0.9% to 1.5%; P = 0.0001), and the average COHb levels were marginally lower in non-survivors compared to survivors (1.5%, 1.2% to 1.8% versus 1.6%, 1.4% to 1.9%, P = 0.003). The multivariate logistic regression analysis revealed that the association between a low minimum COHb level and increased mortality was independent of the severity of illness and the type of organ failure. Conclusions Critically ill patients surviving the admission to a medical ICU had slightly higher minimum and marginally higher average COHb levels when compared to non-survivors. Even though the observed differences are statistically significant, the minute margins would not qualify COHb as a predictive marker for ICU mortality.
Collapse
Affiliation(s)
- Andreas S Fazekas
- Department of Respiratory and Critical Care Medicine, Otto Wagner Hospital, Sanatoriumstrasse 2, A-1140 Vienna, Austria
| | | | | | | |
Collapse
|
196
|
Gullotta F, di Masi A, Coletta M, Ascenzi P. CO metabolism, sensing, and signaling. Biofactors 2012; 38:1-13. [PMID: 22213392 DOI: 10.1002/biof.192] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/19/2011] [Indexed: 12/16/2022]
Abstract
CO is a colorless and odorless gas produced by the incomplete combustion of hydrocarbons, both of natural and anthropogenic origin. Several microorganisms, including aerobic and anaerobic bacteria and anaerobic archaea, use exogenous CO as a source of carbon and energy for growth. On the other hand, eukaryotic organisms use endogenous CO, produced during heme degradation, as a neurotransmitter and as a signal molecule. CO sensors act as signal transducers by coupling a "regulatory" heme-binding domain to a "functional" signal transmitter. Although high CO concentrations inhibit generally heme-protein actions, low CO levels can influence several signaling pathways, including those regulated by soluble guanylate cyclase and/or mitogen-activated protein kinases. This review summarizes recent insights into CO metabolism, sensing, and signaling.
Collapse
Affiliation(s)
- Francesca Gullotta
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Via Montpellier 1, I-00133 Roma, Italy
| | | | | | | |
Collapse
|
197
|
El-Mas MM, Omar AG, Helmy MM, Mohy El-Din MM. Crosstalk between central pathways of nitric oxide and carbon monoxide in the hypertensive action of cyclosporine. Neuropharmacology 2011; 62:1890-6. [PMID: 22226938 DOI: 10.1016/j.neuropharm.2011.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/22/2011] [Accepted: 12/18/2011] [Indexed: 12/26/2022]
Abstract
Although the intermediary role of central neurons in the hypertensive and sympathoexcitatory actions of cyclosporine (CSA) has been recognized in previous studies including our own, the underlying mechanism remains obscure. In this study, we tested the hypothesis that central pathways of nitric oxide (NO) and carbon monoxide (CO) modulate the blood pressure (BP) response elicited by CSA in conscious rats. Hemodynamic effects of CSA were evaluated in absence and presence of maneuvers that inhibit or facilitate biosynthesizing enzymes of NO (NOS) or CO (heme oxygenase, HO). CSA (20mg/kg i.v.) produced abrupt increases in BP that peaked in 5min and maintained for at least 45min. The hypertensive effect of CSA disappeared in rats pretreated intracisternally (i.c.) with N(ω)-nitro-l-arginine methyl ester (L-NAME, nonselective NOS inhibitor), N(5)-(1-iminoethyl)-l-ornithine (L-NIO, selective eNOS inhibitor), N(ω)-propyl-l-arginine (NPLA, selective nNOS inhibitor), or 1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one (ODQ, guanylate cyclase inhibitor), suggesting the importance of central eNOS/nNOS/GC cascade in CSA-induced hypertension. L-NAME also abolished the hypotension caused by the sympatholytic drug moxonidine, indicating a tonic sympathoinhibitory action for NO. The inhibition of HO activity by zinc protoporphyrin IX (ZnPP) abrogated the hypertensive action of CSA. The abolition by L-NAME or ZnPP of CSA hypertension was compromised upon simultaneous i.c. exposure to hemin (HO substrate) and l-arginine (NOS substrate), respectively. Together, the interruption of the mutually facilitated NOS/NO and HO/CO pathways and coupled GC/cGMP in central neuronal pools accounts, at least partly, for the hypertensive and perhaps sympathoexcitatory actions of CSA.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Champlion Street, Alexandria 21521, Egypt.
| | | | | | | |
Collapse
|
198
|
Chattopadhyay M, Kodela R, Nath N, Dastagirzada YM, Velázquez-Martínez CA, Boring D, Kashfi K. Hydrogen sulfide-releasing NSAIDs inhibit the growth of human cancer cells: a general property and evidence of a tissue type-independent effect. Biochem Pharmacol 2011; 83:715-22. [PMID: 22222427 DOI: 10.1016/j.bcp.2011.12.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide-releasing non-steroidal anti-inflammatory drugs (HS-NSAIDs) are an emerging novel class of compounds with significant anti-inflammatory properties. They consist of a traditional NSAID to which an H(2)S-releasing moiety is covalently attached. We examined the effects of four different HS-NSAIDs on the growth properties of eleven different human cancer cell lines of six different tissue origins. Human colon, breast, pancreatic, prostate, lung, and leukemia cancer cell lines were treated with HS-aspirin, -sulindac, -iburofen, -naproxen, and their traditional counterparts. HS-NSAIDs inhibited the growth of all cancer cell lines studied, with potencies of 28- to >3000-fold greater than that of their traditional counterparts. HS-aspirin (HS-ASA) was consistently the most potent. HS-NSAIDs inhibited cell proliferation, induced apoptosis, and caused G(0)/G(1) cell cycle block. Metabolism of HS-ASA by colon cells showed that the acetyl group of ASA was hydrolyzed rapidly, followed by hydrolysis of the ester bond linking the salicylate anion to the H(2)S releasing moiety, producing salicylic acid and ADT-OH from which H(2)S is released. In reconstitution studies, ASA and ADT-OH were individually less active than the intact HS-ASA towards cell growth inhibition. Additionally, the combination of these two components representing a fairly close approximation to the intact HS-ASA, was 95-fold less active than the intact HS-ASA for growth inhibition. Taken together, these results demonstrate that HS-NSAIDs have potential anti-growth activity against a wide variety of human cancer cells.
Collapse
Affiliation(s)
- Mitali Chattopadhyay
- Department of Physiology and Pharmacology, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY 10031, United States
| | | | | | | | | | | | | |
Collapse
|
199
|
Biochemical insight into physiological effects of H2S: reaction with peroxynitrite and formation of a new nitric oxide donor, sulfinyl nitrite. Biochem J 2011; 441:609-21. [DOI: 10.1042/bj20111389] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The reaction of hydrogen sulfide (H2S) with peroxynitrite (a key mediator in numerous pathological states) was studied in vitro and in different cellular models. The results show that H2S can scavenge peroxynitrite with a corresponding second order rate constant of 3.3±0.4×103 M−1·s−1 at 23°C (8±2×103 M−1·s−1 at 37°C). Activation parameters for the reaction (ΔH‡, ΔS‡ and ΔV‡) revealed that the mechanism is rather associative than multi-step free-radical as expected for other thiols. This is in agreement with a primary formation of a new reaction product characterized by spectral and computational studies as HSNO2 (thionitrate), predominantly present as sulfinyl nitrite, HS(O)NO. This is the first time a thionitrate has been shown to be generated under biologically relevant conditions. The potential of HS(O)NO to serve as a NO donor in a pH-dependent manner and its ability to release NO inside the cells has been demonstrated. Thus sulfide modulates the chemistry and biological effects of peroxynitrite by its scavenging and formation of a new chemical entity (HSNO2) with the potential to release NO, suppressing the pro-apoptotic, oxidative and nitrative properties of peroxynitrite. Physiological concentrations of H2S abrogated peroxynitrite-induced cell damage as demonstrated by the: (i) inhibition of apoptosis and necrosis caused by peroxynitrite; (ii) prevention of protein nitration; and (iii) inhibition of PARP-1 [poly(ADP-ribose) polymerase 1] activation in cellular models, implying that a major part of the cytoprotective effects of hydrogen sulfide may be mediated by modulation of peroxynitrite chemistry, in particular under inflammatory conditions.
Collapse
|
200
|
Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C. Metal–Organic Frameworks in Biomedicine. Chem Rev 2011; 112:1232-68. [PMID: 22168547 DOI: 10.1021/cr200256v] [Citation(s) in RCA: 2729] [Impact Index Per Article: 194.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Patricia Horcajada
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Ruxandra Gref
- Faculté de Pharmacie, UMR CNRS 8612, Université Paris-Sud, 92296 Châtenay-Malabry Cedex, France
| | - Tarek Baati
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Phoebe K. Allan
- EaStChem School of Chemistry, University of St. Andrews Purdie Building, St Andrews, KY16 9ST U.K
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Université Montpellier 2, 34095 Montpellier cedex 05, France
| | - Patrick Couvreur
- Faculté de Pharmacie, UMR CNRS 8612, Université Paris-Sud, 92296 Châtenay-Malabry Cedex, France
| | - Gérard Férey
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Russell E. Morris
- EaStChem School of Chemistry, University of St. Andrews Purdie Building, St Andrews, KY16 9ST U.K
| | - Christian Serre
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| |
Collapse
|