151
|
Myers RR, Shubayev VI. The ology of neuropathy: an integrative review of the role of neuroinflammation and TNF-α axonal transport in neuropathic pain. J Peripher Nerv Syst 2012; 16:277-86. [PMID: 22176142 DOI: 10.1111/j.1529-8027.2011.00362.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This 2011 Peripheral Nerve Society plenary lecture reviews the role of axonal transport in neuroimmune communication following peripheral nerve injury, linking focal changes in Schwann cell activation and release of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α) with subsequent activation and sensitization of ascending sensory neurons and glia which culminate in the neuropathic pain state. New data demonstrate that axonally transported (biotinylated) TNF-α activates and localizes with dorsal horn astrocytes within 96 h after injection into sciatic nerve, and that glial fibrillary acidic protein (GFAP) activation in these glial cells is diminished in TNF receptor 1 knockout mice. The pathophysiology, neuropathology and molecular biology of Wallerian degeneration are also reviewed from a perspective that links it to upregulation of proinflammatory cytokines and the development of neuropathic pain states. Finally, insights into neuroimmune communication provide rationale for new therapy based on interference with the processes of Wallerian degeneration, cytokine signaling and TNF-α protein sequestration.
Collapse
Affiliation(s)
- Robert R Myers
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093-0629, USA.
| | | |
Collapse
|
152
|
Ganz PA. “Doctor, Will the Treatment You Are Recommending Cause Chemobrain?”. J Clin Oncol 2012; 30:229-31. [DOI: 10.1200/jco.2011.39.4288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Patricia A. Ganz
- Jonsson Comprehensive Cancer Center at the University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
153
|
Lane RF, Shineman DW, Steele JW, Lee LBH, Fillit HM. Beyond amyloid: the future of therapeutics for Alzheimer's disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:213-71. [PMID: 22840749 DOI: 10.1016/b978-0-12-394816-8.00007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, the field is awaiting the results of several pivotal Phase III clinical Alzheimer's disease (AD) trials that target amyloid-β (Aβ). In light of the recent biomarker studies that indicate Aβ levels are at their most dynamic 5-10 years before the onset of clinical symptoms, it is becoming uncertain whether direct approaches to target Aβ will achieve desired clinical efficacy. AD is a complex neurodegenerative disease caused by dysregulation of numerous neurobiological networks and cellular functions, resulting in synaptic loss, neuronal loss, and ultimately impaired memory. While it is clear that Aβ plays a key role in the pathogenesis of AD, it may be a challenging and inefficient target for mid-to-late stage AD intervention. Throughout the course of AD, multiple pathways become perturbed, presenting a multitude of possible therapeutic avenues for design of AD intervention and prophylactic therapies. In this chapter, we sought to first provide an overview of Aβ-directed strategies that are currently in development, and the pivotal Aβ-targeted trials that are currently underway. Next, we delve into the biology and therapeutic designs associated with other key areas of research in the field including tau, protein trafficking and degradation pathways, ApoE, synaptic function, neurotrophic/neuroprotective strategies, and inflammation and energy utilization. For each area we have provided a comprehensive and balanced overview of the therapeutic strategies currently in preclinical and clinical development, which will shape the future therapeutic landscape of AD.
Collapse
Affiliation(s)
- Rachel F Lane
- Alzheimer's Drug Discovery Foundation, New York, NY, USA
| | | | | | | | | |
Collapse
|
154
|
Treatment response and cognitive impairment in major depression: association with C-reactive protein. Brain Behav Immun 2012; 26:90-5. [PMID: 21839826 DOI: 10.1016/j.bbi.2011.07.239] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/16/2022] Open
Abstract
Levels of inflammatory markers have been found to be significantly associated with major depressive disorder (MDD) and cognitive impairment. The aim of this study was to investigate whether the level of C-reactive protein (CRP) is correlated with depressive mood and cognitive impairment in MDD patients. In 149 subjects with MDD, the 21-item Hamilton Rating Scale for Depression (HAM-D), Continuous Performance Test (CPT), Finger-Tapping Test (FTT), and Wisconsin Card-Sorting Test (WCST) were administered before and after antidepressant treatment. Besides, the level of CRP was measured. After 6weeks of treatment, the total HAM-D scores decreased significantly. In addition, the subjects' performance in the masked CPT and the WCST with completed categories significantly improved (p<0.001 and p=0.027, respectively) after the reliable change indices were corrected for practice effects. The CRP levels had increased significantly after six weeks of treatment after adjustment for age and gender (p<0.001). In addition, the CRP levels remained significantly high after six weeks of treatment in patients with a higher baseline level (r=0.657, p<0.001). Although the association between baseline CRP level and HAM-D score was not significant, the baseline CRP level was significantly correlated with treatment response at week 2 (r=0.327, p=0.020). The baseline CRP level was also negatively correlated with performance in the FTT before treatment (r=-0.580, p=0.006). Moreover, the baseline CRP level was significantly correlated with performance in the FTT (r=-0.501, p=0.021) and WCST with completed categories (r=-0.521, p=0.015) at week 6. The cognitive function of patients with high baseline CRP levels might remain impaired even if their mood symptoms improve after antidepressant treatment. Whether adjunctive anti-inflammatory medication may help to preserve cognitive function merits further investigation.
Collapse
|
155
|
Pineda D, AmpurdanÉS C, Medina MG, Serratosa J, Tusell JM, Saura J, Planas AM, Navarro P. Tissue plasminogen activator induces microglial inflammation via a noncatalytic molecular mechanism involving activation of mitogen-activated protein kinases and Akt signaling pathways and AnnexinA2 and Galectin-1 receptors. Glia 2011; 60:526-40. [DOI: 10.1002/glia.22284] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 11/22/2011] [Indexed: 01/03/2023]
|
156
|
Moridi Farimani M, Namazi Sarvestani N, Ansari N, Khodagholi F. Calycopterin Promotes Survival and Outgrowth of Neuron-Like PC12 Cells by Attenuation of Oxidative- and ER-Stress-Induced Apoptosis along with Inflammatory Response. Chem Res Toxicol 2011; 24:2280-92. [DOI: 10.1021/tx200420a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mahdi Moridi Farimani
- Department of Phytochemistry,
Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| | | | - Niloufar Ansari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| |
Collapse
|
157
|
Cavanagh C, Colby-Milley J, Farso M, Krantic S, Quirion R. Early molecular and synaptic dysfunctions in the prodromal stages of Alzheimer’s disease: focus on TNF-α and IL-1β. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alterations in cytokine expression as well as deficits in synaptic activity are two features observed in early, prodromal stages of Alzheimer’s disease (AD). The cytokines TNF-α and IL-1β are not only mediators of immune responses, but are also involved in regulating synaptic activity through their effects on neuronal excitability and Hebbian plasticity. We propose that early changes occurring in the AD brain, such as increases in soluble amyloid-β oligomers, may increase the expression of certain cytokines and subsequently cause alterations in cytokine-mediated synaptic activity. A shift of focus towards the prodromal stages of AD, which incorporate the earliest detectable molecular, electrophysiological and behavioral alterations, may provide novel therapeutic targets and potential biomarkers for this currently incurable neurodegenerative disease.
Collapse
Affiliation(s)
- Chelsea Cavanagh
- Douglas Mental Health University Institute, Dept of Psychiatry, McGill University, 6875 Boul. Lasalle, Montreal, Quebec H4H 1R3, Canada
- McGill University, 845 Sherbrooke St. West. Montreal, Quebec H3A 2T5, Canada
| | - Jessica Colby-Milley
- Douglas Mental Health University Institute, Dept of Psychiatry, McGill University, 6875 Boul. Lasalle, Montreal, Quebec H4H 1R3, Canada
- McGill University, 845 Sherbrooke St. West. Montreal, Quebec H3A 2T5, Canada
| | - Mark Farso
- Douglas Mental Health University Institute, Dept of Psychiatry, McGill University, 6875 Boul. Lasalle, Montreal, Quebec H4H 1R3, Canada
- McGill University, 845 Sherbrooke St. West. Montreal, Quebec H3A 2T5, Canada
| | - Slavica Krantic
- Douglas Mental Health University Institute, Dept of Psychiatry, McGill University, 6875 Boul. Lasalle, Montreal, Quebec H4H 1R3, Canada
- McGill University, 845 Sherbrooke St. West. Montreal, Quebec H3A 2T5, Canada
| | | |
Collapse
|
158
|
Calderón-Garcidueñas L, Engle R, Mora-Tiscareño A, Styner M, Gómez-Garza G, Zhu H, Jewells V, Torres-Jardón R, Romero L, Monroy-Acosta ME, Bryant C, González-González LO, Medina-Cortina H, D'Angiulli A. Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain Cogn 2011; 77:345-55. [PMID: 22032805 DOI: 10.1016/j.bandc.2011.09.006] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 12/31/2022]
Abstract
Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes, cognitive abilities (Wechsler Intelligence Scale for Children-Revised, WISC-R), and serum inflammatory mediators were collected in 20 Mexico City (MC) children (10 with white matter hyperintensities, WMH(+), and 10 without, WMH(-)) and 10 matched controls (CTL) from a low polluted city. There were significant differences in white matter volumes between CTL and MC children - both WMH(+) and WMH(-) - in right parietal and bilateral temporal areas. Both WMH(-) and WMH(+) MC children showed progressive deficits, compared to CTL children, on the WISC-R Vocabulary and Digit Span subtests. The cognitive deficits in highly exposed children match the localization of the volumetric differences detected over the 1 year follow-up, since the deficits observed are consistent with impairment of parietal and temporal lobe functions. Regardless of the presence of prefrontal WMH, Mexico City children performed more poorly across a variety of cognitive tests, compared to CTL children, thus WMH(+) is likely only partially identifying underlying white matter pathology. Together these findings reveal that exposure to air pollution may perturb the trajectory of cerebral development and result in cognitive deficits during childhood.
Collapse
|
159
|
Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol Psychiatry 2011; 16:987-95, 973. [PMID: 21727897 PMCID: PMC3270364 DOI: 10.1038/mp.2011.76] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Particulate matter air pollution is a pervasive global risk factor implicated in the genesis of pulmonary and cardiovascular disease. Although the effects of prolonged exposure to air pollution are well characterized with respect to pulmonary and cardiovascular function, comparatively little is known about the impact of particulate matter on affective and cognitive processes. The central nervous system may be adversely affected by activation of reactive oxygen species and pro-inflammatory pathways that accompany particulate matter pollution. Thus, we investigated whether long-term exposure to ambient fine airborne particulate matter (<2.5 μm (PM(2.5))) affects cognition, affective responses, hippocampal inflammatory cytokines and neuronal morphology. Male mice were exposed to either PM(2.5) or filtered air (FA) for 10 months. PM(2.5) mice displayed more depressive-like responses and impairments in spatial learning and memory as compared with mice exposed to FA. Hippocampal pro-inflammatory cytokine expression was elevated among PM(2.5) mice. Apical dendritic spine density and dendritic branching were decreased in the hippocampal CA1 and CA3 regions, respectively, of PM(2.5) mice. Taken together, these data suggest that long-term exposure to particulate air pollution levels typical of exposure in major cities around the globe can alter affective responses and impair cognition.
Collapse
|
160
|
Kannan S, Heller MM, Lee ES, Koo JY. The role of tumor necrosis factor-alpha and other cytokines in depression: what dermatologists should know. J DERMATOL TREAT 2011; 24:148-52. [PMID: 21888569 DOI: 10.3109/09546634.2011.619159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent studies have suggested that inflammatory responses may play an important role in the pathophysiology of depression. In fact, depressed individuals have been found to have higher levels of pro-inflammatory cytokines, especially tumor necrosis factor-alpha (TNF-α) and interleukin-6. This appears to be independent of any pre-existing chronic inflammatory disorders. In this article, various studies correlating increased levels of cytokines to depression are reviewed. As much as 60% of individuals with psoriasis also suffer from clinical depression. TNF-α antagonists, frequently used in the treatment of psoriasis, may be helpful in directly reducing depressive symptoms for patients with psoriasis and other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Swati Kannan
- Medical College of Georgia, School of Medicine, Augusta, Georgia 94118, USA.
| | | | | | | |
Collapse
|
161
|
Abstract
The seminal discovery that glial cells, particularly astrocytes, can release a number of gliotransmitters that serve as signalling molecules for the cross-talk with neighbouring cellular populations has recently changed our perception of brain functioning, as well as our view of the pathogenesis of several disorders of the CNS. Since glutamate was one of the first gliotransmitters to be identified and characterized, we tackle the mechanisms that underlie its release from astrocytes, including the Ca2+ signals underlying its efflux from astroglia, and we discuss the involvement of these events in a number of relevant physiological processes, from the modulatory control of neighbouring synapses to the regulation of blood supply to cerebral tissues. The relevance of these mechanisms strongly indicates that the contribution of glial cells and gliotransmission to the activities of the brain cannot be overlooked, and any study of CNS physiopathology needs to consider glial biology to have a comprehensive overview of brain function and dysfunction. Abnormalites in the signalling that controls the astrocytic release of glutamate are described in several experimental models of neurological disorders, for example, AIDS dementia complex, Alzheimer's disease and cerebral ischaemia. While the modalities of glutamate release from astrocytes remain poorly understood, and this represents a major impediment to the definition of novel therapeutic strategies targeting this process at the molecular level, some key mediators deputed to the control of the glial release of this excitatory amino acid have been identified. Among these, we can mention, for instance, proinflammatory cytokines, such as tumour necrosis factor-α, and prostaglandins. Agents that are able to block the major steps of tumour necrosis factor-α and prostaglandin production and/or signalling can be proposed as novel therapeutic targets for the treatment of these disorders.
Collapse
Affiliation(s)
- Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Pavia, Italy.
| | | | | |
Collapse
|
162
|
Arnett S, Alleva L, Korossy-Horwood R, Clark I. Chronic fatigue syndrome – A neuroimmunological model. Med Hypotheses 2011; 77:77-83. [DOI: 10.1016/j.mehy.2011.03.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 01/18/2023]
|
163
|
Serghides L. The Case for the Use of PPARγ Agonists as an Adjunctive Therapy for Cerebral Malaria. PPAR Res 2011; 2012:513865. [PMID: 21772838 PMCID: PMC3135089 DOI: 10.1155/2012/513865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/28/2011] [Indexed: 12/24/2022] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection associated with high mortality even when highly effective antiparasitic therapy is used. Adjunctive therapies that modify the pathophysiological processes caused by malaria are a possible way to improve outcome. This review focuses on the utility of PPARγ agonists as an adjunctive therapy for the treatment of cerebral malaria. The current knowledge of PPARγ agonist use in malaria is summarized. Findings from experimental CNS injury and disease models that demonstrate the potential for PPARγ agonists as an adjunctive therapy for cerebral malaria are also discussed.
Collapse
Affiliation(s)
- Lena Serghides
- Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, University Health Network, 101 College Street, Suite 10-359, Toronto, ON, Canada M5G 1L7
| |
Collapse
|
164
|
Abstract
BACKGROUND Thrombolytic therapy reduces stroke size and disability by reperfusion and salvage of ischaemic penumbra. Emerging evidence suggests that retrieved penumbra may be the site of ongoing inflammatory pathology that includes extensive microglial activation. Microglial activation may be associated with excessive levels of tumour necrosis factor (TNF) and resultant neurotoxicity. Etanercept, a potent biologic TNF antagonist, reduces microglial activation in experimental models and has been therapeutically effective in models of brain and neuronal injury. Perispinal administration of etanercept, previously reported to be beneficial for the treatment of Alzheimer's disease, may facilitate delivery of etanercept into the brain. OBJECTIVE The objective of this report is to document the initial clinical response to perispinal etanercept in the first chronic stroke cohort so treated. METHODS Three consecutive patients with stable and persistent chronic neurological deficits due to strokes that had failed to resolve despite previous treatment and rehabilitation were evaluated at an outpatient clinic. They were treated off-label with perispinal etanercept as part of the clinic's practice of medicine. RESULTS All three patients had chronic hemiparesis, in addition to other stroke deficits. Their stroke distributions were right middle cerebral artery (MCA), brainstem (medulla) and left MCA. The two patients with MCA strokes had both received acute thrombolytic therapy. Each of the three patients was treated with an initial dose of perispinal etanercept 13, 35 and 36 months following their acute stroke, respectively. Significant clinical improvement following perispinal etanercept administration was observed in all patients. Onset of clinical response was evident within 10 minutes of perispinal injection in all patients. Improvements in hemiparesis, gait, hand function, hemi-sensory deficits, spatial perception, speech, cognition and behaviour were noted among the patients treated. Each patient received a second perispinal etanercept dose at 22-26 days after the first dose that was followed by additional clinical improvement. CONCLUSIONS Open-label administration of perispinal etanercept resulted in rapid neurological improvement in three consecutive patients with chronic neurological dysfunction due to strokes occurring 13-36 months earlier. These results suggest that stroke may result in chronic TNF-mediated pathophysiology that may be amenable to therapeutic intervention long after the acute event. Randomized clinical trials of perispinal etanercept for selected patients with chronic neurological dysfunction following stroke are indicated.
Collapse
Affiliation(s)
- Edward Tobinick
- Institute for Neurological Research, a private medical group, inc., Los Angeles, California, USA.
| |
Collapse
|
165
|
Harned AM, Volp KA. The sorbicillinoid family of natural products: Isolation, biosynthesis, and synthetic studies. Nat Prod Rep 2011; 28:1790-810. [DOI: 10.1039/c1np00039j] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|