151
|
Loh CY, Arya A, Naema AF, Wong WF, Sethi G, Looi CY. Signal Transducer and Activator of Transcription (STATs) Proteins in Cancer and Inflammation: Functions and Therapeutic Implication. Front Oncol 2019; 9:48. [PMID: 30847297 PMCID: PMC6393348 DOI: 10.3389/fonc.2019.00048] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) pathway is connected upstream with Janus kinases (JAK) family protein and capable of integrating inputs from different signaling pathways. Each family member plays unique functions in signal transduction and crucial in mediating cellular responses to different kind of cytokines. STAT family members notably STAT3 and STAT5 have been involved in cancer progression whereas STAT1 plays opposite role by suppressing tumor growth. Persistent STAT3/5 activation is known to promote chronic inflammation, which increases susceptibility of healthy cells to carcinogenesis. Here, we review the role of STATs in cancers and inflammation while discussing current therapeutic implications in different cancers and test models, especially the delivery of STAT3/5 targeting siRNA using nanoparticulate delivery system.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Aditya Arya
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Ahmed Fadhil Naema
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad, Iraq
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
152
|
Ma Z, Bao X, Gu J. Furowanin A-induced autophagy alleviates apoptosis and promotes cell cycle arrest via inactivation STAT3/Mcl-1 axis in colorectal cancer. Life Sci 2019; 218:47-57. [PMID: 30562490 DOI: 10.1016/j.lfs.2018.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022]
Abstract
Aim Furowanin A (Fur A) is a flavonoid isolated from Millettia pachycarpa Benth. Studies show its potent anti-neoplastic effects against leukemia cells. The aim of the present study was to determine the potential therapeutic effect of Fur A against colorectal cancer (CRC), and elucidate the underlying mechanism. MATERIAL AND METHODS Cell Counting Kit-8 (CCK-8) assay was used to determine cell, and TUNEL and Annexin-V/PI staining was used to detect apoptosis and the cell cycle distribution. The expression levels of specific proteins in the CRC cells were analyzed by Western blotting. A xenograft model was also established to evaluate the therapeutic effect of Fur A in vivo. KEY FINDINGS Fur A suppressed proliferation, blocked cell cycle progression, induced apoptosis and promoted autophagy in CRC cells. Interestingly, Fur A-induced autophagy functioned not only as a survival mechanism against apoptosis but also intensified the cell cycle arrest in CRC cells. In addition, Fur A mediated its effects via the inactivation of the STAT3/Mcl-1 axis. SIGNIFICANCE Fur A is a promising drug candidate for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Zhao Ma
- Gastrointestinal Surgery Department, The People's Hospital of Zhengzhou University (People's Hospital of Henan Province), Zhengzhou, China
| | - Xuebin Bao
- Gastrointestinal Surgery Department, The People's Hospital of Zhengzhou University (People's Hospital of Henan Province), Zhengzhou, China.
| | - Junbao Gu
- Gastrointestinal Surgery Department, The People's Hospital of Zhengzhou University (People's Hospital of Henan Province), Zhengzhou, China
| |
Collapse
|
153
|
Gong WJ, Ma LY, Hu L, Lv YN, Huang H, Xu JQ, Huang DD, Liu RJ, Han Y, Zhang Y, Shi SJ, Wu SL. STAT3 rs4796793 contributes to lung cancer risk and clinical outcomes of platinum-based chemotherapy. Int J Clin Oncol 2019; 24:476-484. [PMID: 30689078 DOI: 10.1007/s10147-018-01386-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Signal transducer and activator of transcription (STAT) 3 plays a vital role in carcinogenesis and drug response. Platinum-based chemotherapy is the first-line treatment for lung cancer patients, especially those in advanced stages. In the present study, we investigated the association of STAT3 polymorphism rs4796793 with lung cancer susceptibility, platinum-based chemotherapy response, and toxicity. METHODS A total of 498 lung cancer patients and 213 healthy controls were enrolled in the study. 467 of them received at least 2-cycle platinum-based chemotherapy. Unconditional logistical regression analysis was used to assess the associations. RESULTS STAT3 rs4769793 G allele carriers had an increased susceptibility of lung cancer [additive model: adjusted OR (95% CI) 1.376 (1.058-1.789), P = 0.017; recessive model: adjusted OR (95% CI) 1.734 (1.007-2.985), P = 0.047]. Rs4769793 was not significantly associated with platinum-based chemotherapy response in lung cancer patients. STAT3 rs4796793 was associated with an increased risk of severe overall toxicity [additive model: adjusted OR (95% CI) 1.410 (1.076-1.850), P = 0.013; dominant model: adjusted OR (95% CI) 1.638 (1.091-2.459), P = 0.017], especially hematological toxicity [additive model: adjusted OR (95% CI) 1.352 (1.001-1.826), P = 0.049]. CONCLUSIONS STAT3 rs4796793 may be considered as a potential candidate biomarker for the prediction of susceptibility and prognosis in Chinese lung cancer patients. However, well-designed studies with larger sample sizes are required to verify the results.
Collapse
Affiliation(s)
- Wei-Jing Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Yun Ma
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, 100044, Beijing, China
| | - Yong-Ning Lv
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Huang
- Wuhan Highway Management Office, Wuhan, 430000, China
| | - Jia-Qiang Xu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan-Dan Huang
- Department of Nursing, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui-Jie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Han
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shao-Jun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - San-Lan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
154
|
Song J, Zhang X, Liao Z, Liang H, Chu L, Dong W, Zhang X, Ge Q, Liu Q, Fan P, Zhang Z, Zhang B. 14-3-3ζ inhibits heme oxygenase-1 (HO-1) degradation and promotes hepatocellular carcinoma proliferation: involvement of STAT3 signaling. J Exp Clin Cancer Res 2019; 38:3. [PMID: 30606233 PMCID: PMC6319010 DOI: 10.1186/s13046-018-1007-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Heme oxygenase 1 (HO-1) has been reported to be very important in the pathogenesis or progression of multiple types of cancer. Identification of novel hmox1 binding proteins may reveal undefined oncogenes, tumor suppressors, signaling pathways, and possible treatment targets. METHODS Immunoprecipitation and mass spectrometry analyses were used to identify novel regulators of HO-1. The association of the 14-3-3ζ protein with HO-1 and modulation of the stability of HO-1 were investigated by co-immunoprecipitation, immunofluorescence, western blotting, and quantitative RT-PCR. Degradation and in vivo ubiquitination assays were utilized to examine whether 14-3-3ζ stabilizes the HO-1 protein by inhibiting its ubiquitination. The effect of 14-3-3ζ on proliferation was investigated by function assays conducted in vitro using the CCK-8 and colony formation assays and in vivo in a xenograft mouse model. The biological functions of the 14-3-3ζ/HO-1 axis were demonstrated by western blotting and rescue experiments. Using gain-of-function and loss-of-function strategies, we further clarified the impact of 14-3-3ζ/HO-1 complex on the signal transducers and activators of transcription 3 (STAT3) signaling pathway in cancer cells. RESULTS We identified 14-3-3ζ as a novel HO-1 binding protein. The binding inhibited the ubiquitination and proteasome-mediated degradation of HO-1, thus facilitating its stabilization. Enforced expression of 14-3-3ζ significantly promoted cell proliferation in vitro, as well as tumorigenesis in vivo, while 14-3-3ζ knockdown had opposite effects. The data indicated that 14-3-3ζ can stabilize HO-1 expression and thus influence cancer cell proliferation. We further demonstrated the involvement of the STAT3 pathway in 14-3-3ζ/HO-1 regulation of hepatocellular carcinoma cell proliferation. CONCLUSIONS Collectively, these data show that 14-3-3ζ regulates the stability of HO-1 to promote cancer cell proliferation and STAT3 signaling activation. The data establish the 14-3-3ζ-HO-1-STAT3 axis as an important regulatory mechanism of cancer cell growth and implicate HO-1 and 14-3-3ζ as potential therapeutic targets in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Xiaochao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Xuewu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Qianyun Ge
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Pan Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| |
Collapse
|
155
|
Yoon YJ, Kim Y, Lee Y, Choi J, Kim C, Han DC, Kwon B. 2'-Hydroxycinnamaldehyde inhibits proliferation and induces apoptosis via signal transducer and activator of transcription 3 inactivation and reactive oxygen species generation. Cancer Sci 2019; 110:366-378. [PMID: 30375708 PMCID: PMC6317917 DOI: 10.1111/cas.13852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
Inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling pathway is a novel therapeutic strategy to treat human cancers with constitutively active STAT3. During the screening of natural products to find STAT3 inhibitors, we identified 2'-hydroxycinnamaldehyde (HCA) as a STAT3 inhibitor, which was isolated from the stem bark of Cinnamomum cassia. In this study, we found that HCA inhibited constitutive and inducible STAT3 activation in STAT3-activated DU145 prostate cancer cells. HCA selectively inhibited the STAT3 activity by direct binding to STAT3, which was confirmed by biochemical methods, including a pull-down assay with biotin-conjugated HCA, a drug affinity responsive target stability (DARTS) experiment and a cellular thermal shift assay (CETSA). HCA inhibited STAT3 phosphorylation at the tyrosine 705 residue, dimer formation, and nuclear translocation in DU145 cells, which led to a downregulation of STAT3 target genes. The downregulation of cell cycle progression and antiapoptosis-related gene expression by HCA induced the accumulation of cells in the G0/G1 phase of the cell cycle and then induced apoptosis. We also found that reactive oxygen species (ROS) were involved in the HCA-induced inhibition of STAT3 activation and cell proliferation because the suppressed p-STAT3 level was rescued by glutathione or N-acetyl-L-cysteine treatment, which are general ROS inhibitors. These results suggest that HCA could be a potent anticancer agent targeting STAT3-activated tumor cells.
Collapse
Affiliation(s)
- Yae Jin Yoon
- Laboratory of Chemical Biology and GenomicsKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
| | - Young‐Hwan Kim
- Laboratory of Chemical Biology and GenomicsKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
- Department of BiologyChungnam National UniversityDaejeonKorea
| | - Yu‐Jin Lee
- Laboratory of Chemical Biology and GenomicsKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
| | - Jiyeon Choi
- Laboratory of Chemical Biology and GenomicsKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
- Department of BiologyChungnam National UniversityDaejeonKorea
| | - Cheol‐Hee Kim
- Department of BiologyChungnam National UniversityDaejeonKorea
| | - Dong Cho Han
- Laboratory of Chemical Biology and GenomicsKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
- Korea University of Science and Technology in KoreaDaejeonKorea
| | - Byoung‐Mog Kwon
- Laboratory of Chemical Biology and GenomicsKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
- Korea University of Science and Technology in KoreaDaejeonKorea
| |
Collapse
|
156
|
Ko JH, Arfuso F, Sethi G, Ahn KS. Pharmacological Utilization of Bergamottin, Derived from Grapefruits, in Cancer Prevention and Therapy. Int J Mol Sci 2018; 19:ijms19124048. [PMID: 30558157 PMCID: PMC6321104 DOI: 10.3390/ijms19124048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022] Open
Abstract
Cancer still remains one of the leading causes of death worldwide. In spite of significant advances in treatment options and the advent of novel targeted therapies, there still remains an unmet need for the identification of novel pharmacological agents for cancer therapy. This has led to several studies evaluating the possible application of natural agents found in vegetables, fruits, or plant-derived products that may be useful for cancer treatment. Bergamottin is a furanocoumarin derived from grapefruits and is also a well-known cytochrome P450 inhibitor. Recent studies have demonstrated potent anti-oxidative, anti-inflammatory, and anti-cancer properties of grapefruit furanocoumarin both in vitro and in vivo. The present review focuses on the potential anti-neoplastic effects of bergamottin in different tumor models and briefly describes the molecular targets affected by this agent.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
157
|
Prognostic roles of signal transducers and activators of transcription family in human breast cancer. Biosci Rep 2018; 38:BSR20171175. [PMID: 29326301 PMCID: PMC6294627 DOI: 10.1042/bsr20171175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 01/23/2023] Open
Abstract
Signal transducers and activators of transcription (STAT) family are critical transcription factors, which have been proved as prognostic predictors for a number of cancers. However, the prognostic roles of STAT family in breast cancer patients remain in dispute. In the present study, we mined the ‘Kaplan–Meier plotter’ (KM plotter) online database to explore the prognostic roles of STAT family mRNA expression in breast cancer including overall survival (OS), progression-free survival (PFS), as well as post-progression survival (PPS). The results suggest high mRNA expression of all the individual STATs, except STAT1 and STAT2, are significantly associated with favorable OS in breast cancer patients; high STAT1 mRNA expression is significantly associated with worse RFS and all the other individual STATs, except STAT3, are significantly associated with better RFS in breast cancer patients; only high STAT5b mRNA expression is significantly related to better PPS in breast cancer patients. Additionally, we explored the prognostic values of individual STATs in other clinicopathological features, such as pathological grades, estrogen receptor (ER) status and so on. The results suggest, except STAT2 and STAT6, high mRNA expression of STATs is related to a favorable prognosis especially for high pathological grade; high STAT5 mRNA expression indicates a favorable prognosis no matter under ER positive or negative status; high STAT4 mRNA expression suggests a favorable prognosis under human epidermal growth factor receptor 2 (HER2) negative status. Our results indicate that individual STATs, except STAT1 and STAT2, may act as a favorable prognostic biomarker in breast cancer. Nevertheless, further investigations on a larger population are warranted.
Collapse
|
158
|
Lee JH, Kim C, Ko JH, Jung YY, Jung SH, Kim E, Kong M, Chinnathambi A, Alahmadi TA, Alharbi SA, Sethi G, Ahn KS. Casticin inhibits growth and enhances ionizing radiation-induced apoptosis through the suppression of STAT3 signaling cascade. J Cell Biochem 2018; 120:9787-9798. [PMID: 30520154 DOI: 10.1002/jcb.28259] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
Abstract
Casticin (CTC), one of the major components of Vitex rotundifolia L., has been reported to exert significant beneficial pharmacological activities and can function as an antiprolactin, anticancer, anti-inflammatory, neuroprotective, analgesic, and immunomodulatory agent. This study aimed at investigating whether the proapoptotic effects of CTC may be mediated through the abrogation of signal transducers and activators of transcription-3 (STAT3) signaling pathway in a variety of human tumor cells. We found that CTC significantly decreased cell viability in a concentration-dependent manner and suppressed cell proliferation in 786-O, YD-8, and HN-9 cells. CTC also induced programmed cell death that was found to be mediated via caspase-3 activation and induction of poly(ADP-ribose) polymerase cleavage. Interestingly, CTC repressed both constitutive and interleukin-6-induced STAT3 activation in 786-O and YD-8 cells but only affected constitutive STAT3 phosphorylation in HN-9 cells. Moreover, CTC could potentiate ionizing radiation-induced apoptotic effects leading to the downregulation of STAT3 activation and thus may be used in combination with radiation against diverse malignancies.
Collapse
Affiliation(s)
- Jong Hyun Lee
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chulwon Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Hyeon Ko
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young Yun Jung
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Eunok Kim
- Korean Medicine Clinical Trial Center, Korean Medicine, Hospital, Kyung Hee University, Seoul, Republic of Korea.,Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Moonkyoo Kong
- Department of Radiation Oncology, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Emergency Medicine, Pediatric Emergency Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
159
|
Zhou Y, Yang J, Zhang Q, Xu Q, Lu L, Wang J, Xia W. P4HB knockdown induces human HT29 colon cancer cell apoptosis through the generation of reactive oxygen species and inactivation of STAT3 signaling. Mol Med Rep 2018; 19:231-237. [PMID: 30431122 PMCID: PMC6297753 DOI: 10.3892/mmr.2018.9660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is the second most lethal malignancy worldwide. A better understanding of colon cancer at the molecular level may increase overall survival rates. Previous studies have indicated that prolyl 4-hydroxylase, β polypeptide (P4HB) is associated with tumorigenesis in colon cancer; however, its role and molecular mechanisms in colon cancer remain unclear. In the present study, the cellular responses to P4HB in human colon cancer cell lines were investigated by proliferation and apoptosis assays, western blotting, and immunohistochemistry. The results showed that expression of P4HB was higher in colon cancer tissues compared within adjacent normal tissues. P4HB knockdown increased the apoptosis of human HT29 cells. Furthermore, P4HB knockdown reduced the activation of signal transducer and activator of transcription 3 (STAT3) and promoted accumulation of reactive oxygen species (ROS). Inhibiting the accumulation of ROS abrogated the increased cell apoptosis induced by P4HB knockdown. Notably, decreased ROS levels effectively antagonized the effects of P4HB on STAT3 inactivation. In conclusion, these findings suggested that P4HB knockdown may induce HT29 human colon cancer cell apoptosis through the generation of ROS and inactivation of the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jing Yang
- Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qilin Zhang
- Department of Neurosurgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qihua Xu
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Lihua Lu
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jiening Wang
- Department of Integrated TCM and Western Medicine, President's Office, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
160
|
Song J, Zhang X, Ge Q, Yuan C, Chu L, Liang H, Liao Z, Liu Q, Zhang Z, Zhang B. CRISPR/Cas9-mediated knockout of HBsAg inhibits proliferation and tumorigenicity of HBV-positive hepatocellular carcinoma cells. J Cell Biochem 2018; 119:8419-8431. [PMID: 29904948 PMCID: PMC6221038 DOI: 10.1002/jcb.27050] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Chronic hepatitis B virus (HBV) infection remains the most common risk factor for hepatocellular carcinoma (HCC). High HBV surface antigen (HBsAg) levels are highly correlated with hepatocarcinogenesis and HBV-associated HCC development. However, the role and detailed mechanisms associated with HBsAg in HCC development remain elusive. In this study, we designed specific single guide RNAs (sgRNAs) targeting the open reading frames, preS1/preS2/S, of the HBV genome and established HBsAg knockout HCC cell lines using the CRISPR/Cas9 system. We showed that knockout of HBsAg in HCC cell lines decreased HBsAg expression and significantly attenuated HCC proliferation in vitro, as well as tumorigenicity in vivo. We also found that overexpression of HBsAg, including the large (LHBs), middle (MHBs), and small (SHBs) surface proteins promoted proliferation and tumor formation in HCC cells. Moreover, we demonstrated that knockout of HBsAg in HCC cells decreased interleukin (IL)-6 production and inhibited signal transducer and activator of transcription 3 (STAT3) signaling, while overexpression of HBsAg induced a substantial accumulation of pY-STAT3. Collectively, these results highlighted the tumorigenic role of HBsAg and implied that the IL-6-STAT3 pathway may be implicated in the HBsAg-mediated malignant potential of HBV-associated HCC.
Collapse
Affiliation(s)
- Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province for the Clinical Medicine Research Center of Hepatic SurgeryWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhanChina
| | - Xiaochao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province for the Clinical Medicine Research Center of Hepatic SurgeryWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhanChina
| | - Qianyun Ge
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province for the Clinical Medicine Research Center of Hepatic SurgeryWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhanChina
| | - Chaoyi Yuan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province for the Clinical Medicine Research Center of Hepatic SurgeryWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhanChina
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province for the Clinical Medicine Research Center of Hepatic SurgeryWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhanChina
| | - Hui‐fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province for the Clinical Medicine Research Center of Hepatic SurgeryWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhanChina
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province for the Clinical Medicine Research Center of Hepatic SurgeryWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhanChina
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province for the Clinical Medicine Research Center of Hepatic SurgeryWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhanChina
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province for the Clinical Medicine Research Center of Hepatic SurgeryWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhanChina
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province for the Clinical Medicine Research Center of Hepatic SurgeryWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public HealthWuhanChina
| |
Collapse
|
161
|
YL064 directly inhibits STAT3 activity to induce apoptosis of multiple myeloma cells. Cell Death Discov 2018; 4:44. [PMID: 30302278 PMCID: PMC6170385 DOI: 10.1038/s41420-018-0108-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/02/2018] [Indexed: 01/07/2023] Open
Abstract
Aberrant activation of signal transducer and activator of transcription 3 (STAT3) plays a critical role in the proliferation and survival of multiple myeloma. And inactivation of STAT3 is considered a promising strategy for the treatment of multiple myeloma. Here we show that the sinomenine derivative YL064 could selectively reduce the cell viability of multiple myeloma cell lines and primary multiple myeloma cells. Moreover, YL064 also induces cell death of myeloma cells in the presence of stromal cells. Western blot analysis showed that YL064 inhibited the constitutive activation and IL-6-induced activation of STAT3, reflected by the decreased phosphorylation of STAT3 on Tyr705. Consistent with this, YL064 inhibited the nuclear translocation of STAT3 and the expression of STAT3 target genes, such as cyclin D1 and Mcl-1. Using biotin- and FITC-labeled YL064, we found that YL064 could pull-down STAT3 from myeloma cells and colocalized with STAT3, suggesting that YL064 directly targets STAT3. Cellular thermal shift assay further demonstrated the engagement of YL064 to STAT3 in cells. Molecular docking studies indicated that YL064 may interact with STAT3 in its SH2 domain, thereby inhibiting the dimerization of STAT3. Finally, YL064 inhibited the growth of human myeloma xenograft in vivo. Taken together, this study demonstrated that YL064 may be a promising candidate compound for the treatment of multiple myeloma by directly targeting STAT3.
Collapse
|
162
|
Arora L, Kumar AP, Arfuso F, Chng WJ, Sethi G. The Role of Signal Transducer and Activator of Transcription 3 (STAT3) and Its Targeted Inhibition in Hematological Malignancies. Cancers (Basel) 2018; 10:cancers10090327. [PMID: 30217007 PMCID: PMC6162647 DOI: 10.3390/cancers10090327] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT protein family, can be phosphorylated by receptor-associated Janus kinases (JAKs) in response to stimulation by cytokines and growth factors. It forms homo- or heterodimers that can translocate to the cell nucleus where they act as transcription activators. Constitutive activation of STAT3 has been found to be associated with initiation and progression of various cancers. It can exert proliferative as well as anti-apoptotic effects. This review focuses on the role of STAT3 in pathogenesis i.e., proliferation, differentiation, migration, and apoptosis of hematological malignancies viz. leukemia, lymphoma and myeloma, and briefly highlights the potential therapeutic approaches developed against STAT3 activation pathway.
Collapse
Affiliation(s)
- Loukik Arora
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore.
- Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia.
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore.
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119074, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| |
Collapse
|
163
|
Kim C, Lee SG, Yang WM, Arfuso F, Um JY, Kumar AP, Bian J, Sethi G, Ahn KS. Formononetin-induced oxidative stress abrogates the activation of STAT3/5 signaling axis and suppresses the tumor growth in multiple myeloma preclinical model. Cancer Lett 2018; 431:123-141. [DOI: 10.1016/j.canlet.2018.05.038] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/13/2023]
|
164
|
Li J, Liu YY, Yang XF, Shen DF, Sun HZ, Huang KQ, Zheng HC. Effects and mechanism of STAT3 silencing on the growth and apoptosis of colorectal cancer cells. Oncol Lett 2018; 16:5575-5582. [PMID: 30344711 PMCID: PMC6176248 DOI: 10.3892/ol.2018.9368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) have roles in various cellular processes, including angiogenesis, apoptosis, cell cycle progression, cell migration and drug resistance. To clarify the effects of STAT3 in colorectal cancer (CRC) cells and the underlying molecular mechanisms, STAT3 was directly silenced, and the effects of STAT3 silencing on cell proliferation, apoptosis and growth with phenotype-associated molecules were examined.pSH1-Si-STAT3 was successfully transfected into the CRC HCT-116 and SW480 cell lines, which was verified by GFP tagging under a fluorescence microscope. An MTT assay revealed that the proliferation of both cell lines that were transfected with pSH1-Si-STAT3 was significantly suppressed in comparison with the control and mock (P<0.05). Acridine orange/ethidium bromide staining and flow cytometry indicated that the transfected cell lines had a significantly higher rate of apoptosis than the control- and mock-treated cells (P<0.05). STAT3-silienced cells were also significantly arrested at the G2/M stage compared with the cells that were transfected with control and mock plasmids (P<0.05). At the mRNA level, the expression of STAT3 and survivin was significantly downregulated (P<0.05), but p53 and caspase-3 were significantly upregulated (P<0.05). The significantly different patterns of expression were observed in western blot analysis (P<0.05). The findings of the present study indicate that STAT3 silencing may suppress the proliferation and growth of CRC cells, and induce their apoptosis by upregulating the expression of survivin, p53 and caspase-3. Therefore, STAT3 may be a good candidate for CRC gene therapy.
Collapse
Affiliation(s)
- Jing Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - You-Yu Liu
- Department of Orthopedics, The Central Hospital of Liaoyang, Liaoyang, Liaoning 111000, P.R. China
| | - Xue-Feng Yang
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dao-Fu Shen
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hong-Zhi Sun
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ke-Qiang Huang
- Department of Orthodontics, School of Stomatology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hua-Chuan Zheng
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
165
|
Hu C, Liu S, Han M, Wang Y, Xu C. Knockdown of lncRNA XIST inhibits retinoblastoma progression by modulating the miR-124/STAT3 axis. Biomed Pharmacother 2018; 107:547-554. [PMID: 30114638 DOI: 10.1016/j.biopha.2018.08.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022] Open
Abstract
Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) was reportedly to be tightly associated with tumorigenesis and progression of multiple cancers. However, the expression, biological function, and action mechanisms of XIST in retinoblastoma (RB) are still unknown. Here, we found that XIST expression was upregulated in RB tissues and cell lines, and that increased XIST expression was positively associated with advanced cTNM stage (III-V) and late differentiation status. We also revealed that knockdown of XIST inhibited RB cell proliferation, promoted cell cycle at G1/G0 phase, and induced cell apoptosis. Mechanistically, XIST directly bound to microRNA (miR)-124 in RB cells. XIST mRNA expression was inversely correlated with miR-124 in RB tissues. Importantly, miR-124 inhibition partially reversed the effect on cell proliferation, cycle arrest and apoptosis by XIST knockdown mediated. In addition, XIST could regulate expression of signal transducer and activator of transcription 3(STAT3), a directly target of miR-124 in RB. These findings implied that XIST promoted RB progression partially by modulating the miR-124/STAT3 axis.
Collapse
Affiliation(s)
- Chunmei Hu
- Department of Tumor and Hematology, The Second Hospital of Jilin University, Nanguan District, Changchun, Jilin, 130041, PR China
| | - Shu Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, Changchun, Jilin, 130041, PR China
| | - Mei Han
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, Changchun, Jilin, 130041, PR China
| | - Yingxue Wang
- Department of Electrical Diagnosis, The Second Hospital of Jilin University, Nanguan District, Changchun, Jilin, 130041, PR China
| | - Chunling Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, Changchun, Jilin, 130041, PR China.
| |
Collapse
|
166
|
Wu S, Qiu Y, Shao Y, Yin S, Wang R, Pang X, Ma J, Zhang C, Wu B, Koo S, Han L, Zhang Y, Gao X, Wang T, Yu H. Lycorine Displays Potent Antitumor Efficacy in Colon Carcinoma by Targeting STAT3. Front Pharmacol 2018; 9:881. [PMID: 30135654 PMCID: PMC6092588 DOI: 10.3389/fphar.2018.00881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an attractive therapeutic target for cancer treatment. In this study, we identify lycorine is an effective inhibitor of STAT3, leading to repression of multiple oncogenic processes in colon carcinoma. Lycorine selectively inactivates phospho-STAT3 (Tyr-705), and subsequent molecular docking uncovers that lycorine directly binds to the SH2 domain of STAT3. Consequently, we find that lycorine exhibits anti-proliferative activity and induces cell apoptosis on human colorectal cancer (CRC) in vitro. Lycorine induces the activation of the caspase-dependent mitochondrial apoptotic pathway, as indicated by activation of caspase and increase of the ratio of Bax/Bcl-2 and mitochondrial depolarization. Overexpressing STAT3 greatly blocks these effects by lycorine in CRC cells. Finally, lycorine exhibits a potential therapeutic effect in xenograft colorectal tumors by targeting STAT3 without observed toxicity. Taken together, the present study indicates that lycorine acts as a promising inhibitor of STAT3, which blocks tumorigenesis in colon carcinoma.
Collapse
Affiliation(s)
- Song Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingying Shao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Pang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junhong Ma
- Department of Gastrointestinal Surgery, Nankai Hospital, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Bo Wu
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Sangho Koo
- Department of Chemistry, Myongji University, Seoul, South Korea
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
167
|
Bioassay-guided isolation of cantharidin from blister beetles and its anticancer activity through inhibition of epidermal growth factor receptor-mediated STAT3 and Akt pathways. J Nat Med 2018; 72:937-945. [DOI: 10.1007/s11418-018-1226-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/08/2018] [Indexed: 12/18/2022]
|
168
|
Xia Y, Chang X, Lian S, Zhu W. WW domain-containing E3 ubiquitin protein ligase 1 depletion evokes antitumor effect in cutaneous squamous cell carcinoma by inhibiting signal transducer and activator of transcription 3 signaling pathway. J Int Med Res 2018; 46:2898-2912. [PMID: 29888632 PMCID: PMC6124284 DOI: 10.1177/0300060518778905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) has been implicated in tumor progression. We aimed to investigate the role of WWP1 in cutaneous squamous cell carcinoma (CSCC). Methods WWP1 gene and protein levels were detected using semi-quantitative reverse transcription-polymerase chain reaction, immunohistochemistry and western blotting. The effects of WWP1 on cell cycle, apoptosis, cell migration and invasion were examined by flow cytometry, wound healing and Transwell assays, respectively. The antitumor efficacy of WWP1 small interfering RNA was determined in CSCC tumor xenografts in mice. Results WWP1 expression was significantly higher in CSCC tissues and cells than in normal skin and cells, respectively. WWP1 expression was significantly associated with histological grade, invasion depth and lymph node metastasis in patients with CSCC. High expression predicted metastatic potential and an unfavorable prognosis. WWP1 downregulation suppressed tumor growth in vitro and in vivo, reduced cell migration and invasion, arrested the cell cycle in G0/G1 and induced apoptosis in A431 cells. WWP1 depletion also decreased phosphorylated signal transducer and activator of transcription 3 (STAT3), matrix metalloproteinase-2, cyclin D1 and Bcl-2, but did not affect total STAT3. Conclusions WWP1 is a potential target for the diagnosis, prognosis and therapy of patients with CSCC.
Collapse
Affiliation(s)
- Yonghua Xia
- Department of Dermatology and Venerology, Xuanwu Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| | - Xiao Chang
- Department of Dermatology and Venerology, Xuanwu Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| | - Shi Lian
- Department of Dermatology and Venerology, Xuanwu Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| | - Wei Zhu
- Department of Dermatology and Venerology, Xuanwu Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| |
Collapse
|
169
|
Jung YY, Lee JH, Nam D, Narula AS, Namjoshi OA, Blough BE, Um JY, Sethi G, Ahn KS. Anti-myeloma Effects of Icariin Are Mediated Through the Attenuation of JAK/STAT3-Dependent Signaling Cascade. Front Pharmacol 2018; 9:531. [PMID: 29899697 PMCID: PMC5989039 DOI: 10.3389/fphar.2018.00531] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/02/2018] [Indexed: 01/07/2023] Open
Abstract
Because of the essential role of signal transducer and activator of transcription 3 (STAT3) in proliferation, anti-apoptosis, and chemoresistance of multiple myeloma (MM), we investigated whether icariin, a prenylated flavonol glycoside, inhibits both constitutive and inducible STAT3 activation in human myeloma cell lines. We noted that icariin could block constitutive STAT3 phosphorylation as well as its nuclear translocation and DNA binding ability in U266 cells. Icariin also suppressed IL-6-induced STAT3 activation through the inhibition of upstream kinases (Janus activated kinase-1 and -2, and c-Src). We found that icariin downregulated the protein expression of STAT3 downstream target gene products such as Bcl-2, Bcl-xl, survivin, IAP-1/2, COX-2, VEGF, and matrix metallopeptidase 9 (MMP-9) in a concentration-dependent manner. Moreover, this flavonoid also exhibited the capacity to significantly induce apoptosis and suppress proliferation of MM cells. Interestingly, this agent also significantly potentiated the apoptotic effects of bortezomib through the suppression of STAT3 activation in MM cells. Altogether, our data indicates that the potential application of icariin as a STAT3 blocker in myeloma therapy.
Collapse
Affiliation(s)
- Young Yun Jung
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jong Hyun Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Dongwoo Nam
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | | | - Ojas A Namjoshi
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC, United States
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC, United States
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
170
|
Shanmugam MK, Shen H, Tang FR, Arfuso F, Rajesh M, Wang L, Kumar AP, Bian J, Goh BC, Bishayee A, Sethi G. Potential role of genipin in cancer therapy. Pharmacol Res 2018; 133:195-200. [PMID: 29758279 DOI: 10.1016/j.phrs.2018.05.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022]
Abstract
Genipin, an aglycone derived from the iridoid glycoside, geniposide, is isolated and characterized from the extract of Gardenia jasminoides Ellis fruit (family Rubiaceae). It has long been used in traditional oriental medicine for the prevention and treatment of several inflammation driven diseases, including cancer. Genipin has been shown to have hepatoprotective activity acting as a potent antioxidant and inhibitor of mitochondrial uncoupling protein 2 (UCP2), and also reported to exert significant anticancer effects. It is an excellent crosslinking agent that helps to make novel sustained or delayed release nanoparticle formulations. In this review, we present the latest developments of genipin as an anticancer agent and briefly describe its diverse mechanism(s) of action. Several lines of evidence suggest that genipin is a potent inhibitor of UCP2, which functions as a tumor promoter in a variety of cancers, attenuates generation of reactive oxygen species and the expression of matrix metalloproteinase 2, as well as induces caspase-dependent apoptosis in vitro and in in vivo models. These finding suggests that genipin can serve as both a prominent anticancer agent as well as a potent crosslinking drug that may find useful application in several novel pharmaceutical formulations.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Hongyuan Shen
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, 138602, Singapore
| | - Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, 138602, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, 6102, WA, Australia
| | - Mohanraj Rajesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, 17666, United Arab Emirates
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, 6102, WA, Australia; Department of Haematology-Oncology, National University Health System, Singapore, 119228, Singapore
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, United States of America
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| |
Collapse
|
171
|
Sethi G, Shanmugam MK, Warrier S, Merarchi M, Arfuso F, Kumar AP, Bishayee A. Pro-Apoptotic and Anti-Cancer Properties of Diosgenin: A Comprehensive and Critical Review. Nutrients 2018; 10:nu10050645. [PMID: 29783752 PMCID: PMC5986524 DOI: 10.3390/nu10050645] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Novel and alternative options are being adopted to combat the initiation and progression of human cancers. One of the approaches is the use of molecules isolated from traditional medicinal herbs, edible dietary plants and seeds that play a pivotal role in the prevention/treatment of cancer, either alone or in combination with existing chemotherapeutic agents. Compounds that modulate these oncogenic processes are potential candidates for cancer therapy and may eventually make it to clinical applications. Diosgenin is a naturally occurring steroidal sapogenin and is one of the major bioactive compounds found in dietary fenugreek (Trigonella foenum-graecum) seeds. In addition to being a lactation aid, diosgenin has been shown to be hypocholesterolemic, gastro- and hepato-protective, anti-oxidant, anti-inflammatory, anti-diabetic, and anti-cancer. Diosgenin has a unique structural similarity to estrogen. Several preclinical studies have reported on the pro-apoptotic and anti-cancer properties of diosgenin against a variety of cancers, both in in vitro and in vivo. Diosgenin has also been reported to reverse multi-drug resistance in cancer cells and sensitize cancer cells to standard chemotherapy. Remarkably, diosgenin has also been reported to be used by pharmaceutical companies to synthesize steroidal drugs. Several novel diosgenin analogs and nano-formulations have been synthesized with improved anti-cancer efficacy and pharmacokinetic profile. In this review we discuss in detail the multifaceted anti-cancer properties of diosgenin that have found application in pharmaceutical, functional food, and cosmetic industries; and the various intracellular molecular targets modulated by diosgenin that abrogate the oncogenic process.
Collapse
Affiliation(s)
- Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore 560065, India.
| | - Myriam Merarchi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA.
| |
Collapse
|
172
|
Fathi N, Rashidi G, Khodadadi A, Shahi S, Sharifi S. STAT3 and apoptosis challenges in cancer. Int J Biol Macromol 2018; 117:993-1001. [PMID: 29782972 DOI: 10.1016/j.ijbiomac.2018.05.121] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022]
Abstract
Several studies have processed conceivable evidence for the vital role of Signal Transducer and Activator of Transcription 3 (STAT3) in cancer transformation and carcinogenesis. Therefore, one of the important factors in formation of cancer is STAT3 and for design of novel anticancer drugs is a suitable target. On the other hand, apoptosis pathway has a critical role in the cancers pathogenesis. Generally, increasing developments have been existed to expression, production, phosphorylation or activation of STAT3 in the effective or responsible cells of most of the cancers. In return, apoptosis process in this cells have been suffered inhibition, decrease in expression, produce or activation in some related factors which lead to debilitation or inhibition of the process. Further understanding of the STAT3 related signaling and apoptosis pathway can lead to the invention of novel approaches for therapies in unstudied disease. In this manuscript, review and highlight recent knowledge of the STAT3 pathway and its connection with apoptosis process in cancers and discuss STAT3-targeting agents to therapeutic developments.
Collapse
Affiliation(s)
- Nazanin Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Golnaz Rashidi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahriar Shahi
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
173
|
CD146 mediates an E-cadherin-to-N-cadherin switch during TGF-β signaling-induced epithelial-mesenchymal transition. Cancer Lett 2018; 430:201-214. [PMID: 29777784 DOI: 10.1016/j.canlet.2018.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 01/05/2023]
Abstract
Cadherin switch is an initiating factor of epithelial-mesenchymal transition (EMT) and is intimately correlated with cancer metastatic potential; however, its underlying mechanisms remain unclear. Here, using a transforming growth factor-β (TGF-β)-induced EMT model, we provide explicit evidence that CD146, with elevated expression and activity in a variety of cancers, is a key factor involved in the cadherin switch. We show that CD146 can be induced by TGF-β signaling. Moreover, CD146 expression is positively correlated with the activation levels of STAT3/Twist and ERK pathways. Transcriptional response of the CD146/STAT3/Twist cascade inhibits E-cadherin expression, whereas the CD146/ERK cascade enhances N-cadherin expression. CD146 overexpression also significantly promotes EMT in both mouse embryonic fibroblasts (MEFs) and ovarian cancer cells. Clinically, ovarian cancer patients with detectable CD146 expression had a significantly lower survival rate than that of patients without CD146 expression. Furthermore, CD146-deficient MEFs exhibited decreased motility as a result of reversion in this cadherin switch, strongly suggesting that targeting CD146 is a potential strategy for cancer treatment. Therefore, CD146-mediated regulation of the E-cadherin-to-N-cadherin switch provides an insight into the general mechanisms of EMT as well as cancer metastasis.
Collapse
|
174
|
Shanmugam MK, Ahn KS, Lee JH, Kannaiyan R, Mustafa N, Manu KA, Siveen KS, Sethi G, Chng WJ, Kumar AP. Celastrol Attenuates the Invasion and Migration and Augments the Anticancer Effects of Bortezomib in a Xenograft Mouse Model of Multiple Myeloma. Front Pharmacol 2018; 9:365. [PMID: 29773987 PMCID: PMC5943600 DOI: 10.3389/fphar.2018.00365] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/28/2018] [Indexed: 01/05/2023] Open
Abstract
Several lines of evidence have demonstrated that deregulated activation of NF-κB plays a pivotal role in the initiation and progression of a variety of cancers including multiple myeloma (MM). Therefore, novel molecules that can effectively suppress deregulated NF-κB upregulation can potentially reduce MM growth. In this study, the effect of celastrol (CSL) on patient derived CD138+ MM cell proliferation, apoptosis, cell invasion, and migration was investigated. In addition, we studied whether CSL can potentiate the apoptotic effect of bortezomib, a proteasome inhibitor in MM cells and in a xenograft mouse model. We found that CSL significantly reduced cell proliferation and enhanced apoptosis when used in combination with bortezomib and upregulated caspase-3 in these cells. CSL also inhibited invasion and migration of MM cells through the suppression of constitutive NF-κB activation and expression of downstream gene products such as CXCR4 and MMP-9. Moreover, CSL when administered either alone or in combination with bortezomib inhibited MM tumor growth and decreased serum IL-6 and TNF-α levels. Overall, our results suggest that CSL can abrogate MM growth both in vitro and in vivo and may serve as a useful pharmacological agent for the treatment of myeloma and other hematological malignancies.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang S Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jong H Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Radhamani Kannaiyan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nurulhuda Mustafa
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Kanjoormana A Manu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kodappully S Siveen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee J Chng
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore.,Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore.,Medical Sciences Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|
175
|
Xiu W, Ma J, Lei T, Zhang M, Zhou S. Immunosuppressive effect of bladder cancer on function of dendritic cells involving of Jak2/STAT3 pathway. Oncotarget 2018; 7:63204-63214. [PMID: 27556503 PMCID: PMC5325357 DOI: 10.18632/oncotarget.11434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022] Open
Abstract
Function of dendritic cells (DCs) is impaired by some cancer cells. However, the effect of bladder cancer cell (BCC) on phenotype and function of DCs remains unclear. In this study, healthy human peripheral blood mononuclear cells (PBMCs) derived DCs were co-cultured with BCC pumc-91 and adriamycin-resistant pumc-91/ADM. The expression of DC markers and costimulatory molecules decreased after co-culture. Co-cultured DCs rapidly underwent apoptosis, and had a declined capability to produce IL-8 and RANTES. Furthermore, co-cultured DCs showed impaired allogeneic T cell proliferation and T cell-derived cytokine secretion. Finally, AG490, a Jak2/STAT3 inhibitor, restored the expression of DC markers and costimulatory molecules. Of note, compared with control DCs, DCs co-cultured with pumc-91 produced more IP-10; DCs co-cultured with pumc-91/ADM secreted more MIG. Taken together, these results suggest BCC may inhibit maturation and function of DCs involving of Jak2/STAT3 pathway, and there may be different mechanisms by which adriamycin-resistant BCC restrains DC function in antitumor immune response.
Collapse
Affiliation(s)
- Weigang Xiu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Juan Ma
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Ting Lei
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Shangyan Zhou
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
176
|
Shi K, Fang Y, Gao S, Yang D, Bi H, Xue J, Lu A, Li Y, Ke L, Lin X, Jin X, Li M. Inorganic kernel - Supported asymmetric hybrid vesicles for targeting delivery of STAT3-decoy oligonucleotides to overcome anti-HER2 therapeutic resistance of BT474R. J Control Release 2018; 279:53-68. [PMID: 29655990 DOI: 10.1016/j.jconrel.2018.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022]
Abstract
As a recombinant humanized monoclonal antibody that targets the extracellular region of HER2 tyrosine kinase receptor, trastuzumab (TRAZ) has demonstrated comparable clinical efficacy and improved survival in patients with HER2-positive breast cancer. Nevertheless, the therapeutic potential of TRAZ is often limited due to its frequent resistance to anti-HER2 therapy. Therefore, we investigate the reversal effect of STAT3-specific decoy oligonucleotides (STAT3-decoy ODNs) on TRAZ resistance, which contain the consensus sequence within the targeted gene promoter of STAT3. Considering the shortcomings of poor cellular permeability and rapid degradation in vivo limit the further clinical applications of ODNs, we report here an asymmetric hybrid lipid/polymer vesicles with calcium phosphate as the solid kernel (CaP@HA). Through hyaluronan-mediated CD44 targeting, the constructed vesicles can specifically carry STAT3-decoy ODNs into TRAZ-resistant breast cancer cells and then regulate TRAZ-induced apoptosis. In comparison with the native ones, ODNs packaged with CaP@HA showed significantly increased serum stability, cellular transfection, synergistic cytotoxicity and apoptosis in vitro. The improved TRAZ sensitization is attributed to the blockade of STAT3 signaling as well as the expression of downstream target genes associated with TRAZ resistance. With the synergistic action of STAT3-decoy ODNs loaded CaP@HA, TRAZ inhibited the growth of its resistant breast cancer xenograft dramatically and induced significant tumor cell apoptosis in vivo. These results suggested that CaP@HA mediated targeted delivery of STAT3-decoy ODNs might be a promising new strategy to overcome anti-HER2 resistance in breast cancer therapy.
Collapse
Affiliation(s)
- Kai Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China.
| | - Yan Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Shan Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Dongjuan Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Hongshu Bi
- Liaoning Yaolian Pharmaceutical Co., Ltd., Benxi, Liaoning 117004, PR China
| | - Jianxiu Xue
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Anqi Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Yuai Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Liyuan Ke
- Liaoning Cancer Hospital & Institue, Shenyang, Liaoning 110042, PR China
| | - Xiaojie Lin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Min Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| |
Collapse
|
177
|
Jiang H, Du J, Gu J, Jin L, Pu Y, Fei B. A 65‑gene signature for prognostic prediction in colon adenocarcinoma. Int J Mol Med 2018; 41:2021-2027. [PMID: 29393333 PMCID: PMC5810222 DOI: 10.3892/ijmm.2018.3401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/05/2018] [Indexed: 01/14/2023] Open
Abstract
The aim of the present study was to examine the molecular factors associated with the prognosis of colon cancer. Gene expression datasets were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases to screen differentially expressed genes (DEGs) between colon cancer samples and normal samples. Survival‑related genes were selected from the DEGs using the Cox regression method. A co‑expression network of survival‑related genes was then constructed, and functional clusters were extracted from this network. The significantly enriched functions and pathways of the genes in the network were identified. Using Bayesian discriminant analysis, a prognostic prediction system was established to distinguish the positive from negative prognostic samples. The discrimination efficacy of the system was validated in the GSE17538 dataset using Kaplan‑Meier survival analysis. A total of 636 and 1,892 DEGs between the colon cancer samples and normal samples were screened from the TCGA and GSE44861 dataset, respectively. There were 155 survival‑related genes selected. The co‑expression network of survival‑related genes included 138 genes, 534 lines (connections) and five functional clusters, including the signaling pathway, cellular response to cAMP, and immune system process functional clusters. The molecular function, cellular components and biological processes were the significantly enriched functions. The peroxisome proliferator‑activated receptor signaling pathway, Wnt signaling pathway, B cell receptor signaling pathway, and cytokine‑cytokine receptor interactions were the significant pathways. A prognostic prediction system based on a 65‑gene signature was established using this co‑expression network. Its discriminatory effect was validated in the TCGA dataset (P=3.56e‑12) and the GSE17538 dataset (P=1.67e‑6). The 65‑gene signature included kallikrein‑related peptidase 6 (KLK6), collagen type XI α1 (COL11A1), cartilage oligomeric matrix protein, wingless‑type MMTV integration site family member 2 (WNT2) and keratin 6B. In conclusion, a 65‑gene signature was screened in the present study, which showed a prognostic prediction effect in colon adenocarcinoma. KLK6, COL11A1, and WNT2 may be suitable prognostic predictors for colon adenocarcinoma.
Collapse
Affiliation(s)
- Hui Jiang
- Departments of Gastrointestinal Surgery
| | - Jun Du
- Departments of Gastrointestinal Surgery
| | - Jiming Gu
- Departments of Gastrointestinal Surgery
| | | | - Yong Pu
- Pathology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | | |
Collapse
|
178
|
Ko JH, Lee SG, Yang WM, Um JY, Sethi G, Mishra S, Shanmugam MK, Ahn KS. The Application of Embelin for Cancer Prevention and Therapy. Molecules 2018. [PMID: 29522451 PMCID: PMC6017120 DOI: 10.3390/molecules23030621] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Embelin is a naturally-occurring benzoquinone compound that has been shown to possess many biological properties relevant to human cancer prevention and treatment, and increasing evidence indicates that embelin may modulate various characteristic hallmarks of tumor cells. This review summarizes the information related to the various oncogenic pathways that mediate embelin-induced cell death in multiple cancer cells. The mechanisms of the action of embelin are numerous, and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and modulate the NF-κB, p53, PI3K/AKT, and STAT3 signaling pathways. Embelin also induces autophagy in cancer cells; however, these autophagic cell-death mechanisms of embelin have been less reported than the apoptotic ones. Recently, several autophagy-inducing agents have been used in the treatment of different human cancers, although they require further exploration before being transferred from the bench to the clinic. Therefore, embelin could be used as a potential agent for cancer therapy.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Seok-Geun Lee
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Woong Mo Yang
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Srishti Mishra
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
179
|
Proteomic identification of the oncoprotein STAT3 as a target of a novel Skp1 inhibitor. Oncotarget 2018; 8:2681-2693. [PMID: 27835873 PMCID: PMC5356833 DOI: 10.18632/oncotarget.13153] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/14/2016] [Indexed: 12/17/2022] Open
Abstract
The S phase kinase-associated protein 1 (Skp1), an adaptor protein of the Skp1-Cul1-F-box protein complex, binds the ubiquitin E3 ligase Skp2 and is critical to its biological functions. Targeting of Skp1 by a small compound 6-O-angeloylplenolin (6-OAP) results in dissociation and degradation of Skp2 and mitotic arrest of lung cancer cells. Here, by using a proteome microarray containing 16,368 proteins and a biotinylated 6-OAP, we identified 99 proteins that could bind 6-OAP, with Skp1 and STAT3 sitting at the central position of the 6-OAP interactome. 6-OAP formed hydrogen bonds with Ser611/Ser613/Arg609 at the SH2 domain of STAT3 and inhibited the constitutive and interleukin-6-induced phosphorylated STAT3 (pSTAT3), leading to inhibitory effects on lung cancer cells and suppression of Skp2 transcription. STAT3 was overexpressed in tumor samples compared to counterpart normal lung tissues and was inversely associated with prognosis of the patients. 6-OAP inhibited tumor growth in SCID mice intravenously injected with lung cancer cells, and downregulated both STAT3 and Skp2 in tumor samples. Given that 6-OAP is a Skp1 inhibitor, our data suggest that this compound may target Skp1 and STAT3 to suppress Skp2, augmenting its anti-lung cancer activity.
Collapse
|
180
|
Xu X, Han K, Zhu J, Mao H, Lin X, Zhang Z, Cao B, Zeng Y, Mao X. An inhibitor of cholesterol absorption displays anti-myeloma activity by targeting the JAK2-STAT3 signaling pathway. Oncotarget 2018; 7:75539-75550. [PMID: 27705908 PMCID: PMC5342759 DOI: 10.18632/oncotarget.12265] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/16/2016] [Indexed: 01/08/2023] Open
Abstract
The activated JAK2-STAT3 signaling pathway is a high risk factor for multiple myeloma (MM), a fatal malignancy of plasma cells. In the present study, SC09, a potential inhibitor of cholesterol absorption, was identified in a STAT3-targeted drug screen. SC09 suppressed the activation of STAT3 in a time-course and concentration-dependent manner but did not affect its family members STAT1 and STAT5. SC09 inhibited STAT3 transcriptional activity and downregulated the expression of STAT3-regulated genes. Further studies showed that SC09 selectively inhibited JAK2 activation but not other kinases including c-Src, ERK, p38 and mTOR that are all associated with STAT3 activation. Moreover, SC09 obviously induced MM cell death in vitro and delayed MM tumor growth in vivo. SC09-induced MM cell death was dependent on the endogenous STAT3 status, and this effect could be attenuated by enforced expression of STAT3. All the results collectively indicated that SC09 blocks the JAK2-STAT3 signaling thus displaying anti-MM activity. Given its well tolerance and anti-MM potency, SC09 is credited for further investigation as a promising drug for MM treatment.
Collapse
Affiliation(s)
- Xin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Kunkun Han
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jingyu Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Hongwu Mao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xu Lin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zubin Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Biyin Cao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital East Campus, Suzhou, China
| | - Xinliang Mao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
181
|
Cheong DHJ, Arfuso F, Sethi G, Wang L, Hui KM, Kumar AP, Tran T. Molecular targets and anti-cancer potential of escin. Cancer Lett 2018; 422:1-8. [PMID: 29474858 DOI: 10.1016/j.canlet.2018.02.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 02/06/2023]
Abstract
Escin is a mixture of triterpenoid saponins extracted from the horse chestnut tree, Aesculus hippocastanum. Its potent anti-inflammatory and anti-odematous properties makes it a choice of therapy against chronic venous insufficiency and odema. More recently, escin is being actively investigated for its potential activity against diverse cancers. It exhibits anti-cancer effects in many cancer cell models including lung adenocarcinoma, hepatocellular carcinoma and leukemia. Escin also attenuates tumor growth and metastases in various in vivo models. Importantly, escin augments the effects of existing chemotherapeutic drugs, thereby supporting the role of escin as an adjunct or alternative anti-cancer therapy. The beneficial effects of escin can be attributed to its inhibition of proliferation and induction of cell cycle arrest. By regulating transcription factors/growth factors mediated oncogenic pathways, escin also potentially mitigates chronic inflammatory processes that are linked to cancer survival and resistance. This review provides a comprehensive overview of the current knowledge of escin and its potential as an anti-cancer therapy through its anti-proliferative, pro-apoptotic, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Dorothy H J Cheong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6009, Australia
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Viet Nam; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth WA, Australia; National University Cancer Institute, National University Health System, Singapore.
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore.
| |
Collapse
|
182
|
Willems M, Dubois N, Musumeci L, Bours V, Robe PA. IκBζ: an emerging player in cancer. Oncotarget 2018; 7:66310-66322. [PMID: 27579619 PMCID: PMC5323236 DOI: 10.18632/oncotarget.11624] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/23/2016] [Indexed: 01/12/2023] Open
Abstract
IκBζ, an atypical member of the nuclear IκB family of proteins, is expressed at low levels in most resting cells, but is induced upon stimulation of Toll-like/IL-1 receptors through an IRAK1/IRAK4/NFκB-dependent pathway. Like its homolog Bcl3, IκBζ can regulate the transcription of a set of inflamatory genes through its association with the p50 or p52 subunits of NF-κB. Long studied as a key component of the immune response, IκBζ emerges as an important regulator of inflammation, cell proliferation and survival. As a result, growing evidence support the role of this transcription factor in the pathogenesis number of human hematological and solid malignancies.
Collapse
Affiliation(s)
- Marie Willems
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Nadège Dubois
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Lucia Musumeci
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Vincent Bours
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Pierre A Robe
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium.,Department of Neurology and Neurosurgery, T&P Bohnenn Laboratory for Neuro-Oncology, Brain Center Rudolf Magnus, University Medical Center of Utrecht, Heidelberglaan, Utrecht, The Netherlands
| |
Collapse
|
183
|
Choi HS, Kim MK, Lee K, Lee KM, Choi YK, Shin YC, Cho SG, Ko SG. SH003 represses tumor angiogenesis by blocking VEGF binding to VEGFR2. Oncotarget 2018; 7:32969-79. [PMID: 27105528 PMCID: PMC5078067 DOI: 10.18632/oncotarget.8808] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
Tumor angiogenesis is a key feature of cancer progression, because a tumor requires abundant oxygen and nutrition to grow. Here, we demonstrate that SH003, a mixed herbal extract containing Astragalus membranaceus (Am), Angelica gigas (Ag) and Trichosanthes Kirilowii Maximowicz (Tk), represses VEGF-induced tumor angiogenesis both in vitro and in vivo. SH003 inhibited VEGF-induced migration, invasion and tube formation in human umbilical vein endothelial cells (HUVEC) with no effect on the proliferation. SH003 reduced CD31-positive vessel numbers in tumor tissues and retarded tumor growth in our xenograft mouse tumor model, while SH003 did not affect pancreatic tumor cell viability. Consistently, SH003 inhibited VEGF-stimulated vascular permeability in ears and back skins. Moreover, SH003 inhibited VEGF-induced VEGFR2-dependent signaling by blocking VEGF binding to VEGFR2. Therefore, our data conclude that SH003 represses tumor angiogenesis by inhibiting VEGF-induced VEGFR2 activation, and suggest that SH003 may be useful for treating cancer.
Collapse
Affiliation(s)
- Hyeong Sim Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Min Kyoung Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Kangwook Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Kang Min Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Youn Kyung Choi
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Korea
| | - Yong Cheol Shin
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Sung-Gook Cho
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong, Chungbuk, Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
184
|
Qu Y, Zheng S, Kang M, Dong R, Zhou H, Zhao D, Zhao J. Knockdown of long non-coding RNA HOXD-AS1 inhibits the progression of osteosarcoma. Biomed Pharmacother 2018; 98:899-906. [PMID: 29571260 DOI: 10.1016/j.biopha.2018.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNA HOXD-AS1 (HOXD-AS1) has recently been shown to be involved in the development and progression of multiple cancers. However, the expression, significance, and biological function of HOXD-AS1 in osteosarcoma (OS) remain unknown. Here, we found that the expression level of HOXD-AS1 was significantly upregulated in OS tissues and cells. Furthermore, high expression of HOXD-AS1 was positively associated with the clinical and pathological characteristics of OS, including tumor stage and lymph node metastasis, and negatively correlated with overall survival rate. in vitro assays confirmed that knockdown of HOXD-AS1 suppressed cell proliferation, colony formation, migration, and invasion, and promoted cell cycle arrest at G1 stage and apoptosis in OS cells. in vivo assays confirmed that knockdown of HOXD-AS1 significantly decreased tumor growth in xenograft mice, and decreased tumor size and weight. Importantly, we also showed that knockdown of HOXD-AS1 significantly reduced signal transducer and activator of transcription 3 and its target protein (CyclinD1, Bcl-2, and MMP-2) expression in vitro and in vivo. Moreover, overexpression of STAT3 could reverse the suppression of proliferation ability induced by sh-HOXD-AS1 in U2OS cells. Collectively, our data indicated that HOXD-AS1 might be an oncogenic long non-coding RNA (lncRNA) and might be a potential attractive therapeutic target for OS.
Collapse
Affiliation(s)
- Yang Qu
- Department of Orthopaedics, the Second Hospital of Jilin University, #218 Ziqiang Street, Changchun 130041, China
| | - Shuang Zheng
- Department of Orthopaedics, the Second Hospital of Jilin University, #218 Ziqiang Street, Changchun 130041, China
| | - Mingyang Kang
- Department of Orthopaedics, the Second Hospital of Jilin University, #218 Ziqiang Street, Changchun 130041, China
| | - Rongpeng Dong
- Department of Orthopaedics, the Second Hospital of Jilin University, #218 Ziqiang Street, Changchun 130041, China
| | - Haohan Zhou
- Department of Orthopaedics, the Second Hospital of Jilin University, #218 Ziqiang Street, Changchun 130041, China
| | - Dezhi Zhao
- Department of Orthopaedics, the Second Hospital of Jilin University, #218 Ziqiang Street, Changchun 130041, China
| | - Jianwu Zhao
- Department of Orthopaedics, the Second Hospital of Jilin University, #218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
185
|
PUM1 promotes ovarian cancer proliferation, migration and invasion. Biochem Biophys Res Commun 2018; 497:313-318. [DOI: 10.1016/j.bbrc.2018.02.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/07/2018] [Indexed: 01/30/2023]
|
186
|
Wang Y, Shao F, Chen L. ALDH1A2 suppresses epithelial ovarian cancer cell proliferation and migration by downregulating STAT3. Onco Targets Ther 2018; 11:599-608. [PMID: 29430185 PMCID: PMC5797454 DOI: 10.2147/ott.s145864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecological malignancy worldwide. A better understanding of epithelial ovarian cancer pathogenesis and the molecular mechanism underlying its metastasis may increase overall survival rates. Previous studies have indicated that aldehyde dehydrogenase 1 family member A2 (ALDH1A2) is a candidate tumor suppressor in epithelial ovarian cancer. However, the potential role of ALDH1A2 in the molecular mechanisms of epithelial ovarian cancer remains largely unclear. In the present study, we found lower expression of ALDH1A2 in high-grade epithelial ovarian cancer tissues than in low-grade epithelial ovarian cancer tissues. Overexpression of ALDH1A2 decreased the proliferation and migration of epithelial ovarian cancer cell lines, whereas ALDH1A2 knockdown significantly increased cell growth and migration. Moreover, upregulation of ALDH1A2 also reduced the activation of signal transducer and activator of transcription 3 (STAT3). In conclusion, these findings suggest that ALDH1A2 suppresses epithelial ovarian cancer cell proliferation and migration by downregulating STAT3.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feng Shao
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lu Chen
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
187
|
Liu Z, Zhang Y, Chen Y, Lin Y, Lin Z, Wang H. STAT1 inhibits STAT3 activation in esophageal squamous cell carcinoma. Cancer Manag Res 2018; 10:6517-6523. [PMID: 30555257 PMCID: PMC6278709 DOI: 10.2147/cmar.s182105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Signal transducer and activator of transcription (STAT) 1 is an important transcription factor and has been reported to be a tumor suppressor in many types of cancer. However, another STAT family member, STAT3, is considered to be an oncogene. The cross-talk between STAT1 and STAT3 in cancer has not been fully demonstrated. MATERIALS AND METHODS Esophageal squamous cell carcinoma (ESCC) was used as a model to examine STAT1-STAT3 cross-regulation in cancer. We detected STAT1-STAT3 binding by co-immunoprecipitation (co-IP) and measured the transcription activity by using a luciferase reporter gene. DNA binding was detected by a DNA probe. Expression of STAT1 and STAT3 in ESCC was detected by immunohistochemistry. RESULTS We found that STAT1 attenuated STAT3 activity upon oncostatin M treatment by decreasing STAT3 transcription activity and DNA binding ability of STAT3. Furthermore STAT3 downregulation increased the phosphorylation and transcriptional activation of STAT1. Finally, STAT1 expression and STAT3 expression were negatively correlated in ESCC cases. CONCLUSION Altogether, this paper demonstrated STAT1 and STAT3 cross-regulation in ESCC and proposed that STAT3 downregulation and/or STAT1 accumulation may be a therapeutic approach to treat ESCC.
Collapse
Affiliation(s)
- Zhaoyong Liu
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China,
| | - Ying Zhang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China,
| | - Yelong Chen
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China,
| | - Youbin Lin
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China,
| | - Zhen Lin
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China,
| | - Hu Wang
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China,
| |
Collapse
|
188
|
Zhang J, Li Z, Liu L, Wang Q, Li S, Chen D, Hu Z, Yu T, Ding J, Li J, Yao M, Huang S, Zhao Y, He X. Long noncoding RNA TSLNC8 is a tumor suppressor that inactivates the interleukin-6/STAT3 signaling pathway. Hepatology 2018; 67:171-187. [PMID: 28746790 DOI: 10.1002/hep.29405] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/26/2017] [Accepted: 07/23/2017] [Indexed: 02/06/2023]
Abstract
UNLABELLED Long noncoding RNAs can serve as oncogenes or tumor suppressors in human cancer; however, their biological functions and underlying mechanism in hepatocarcinogenesis are largely unknown. Here, we report a novel tumor suppressor long noncoding RNA on chromosome 8p12 (termed TSLNC8) that is frequently deleted and down-regulated in hepatocellular carcinoma (HCC) tissues. The loss of TSLNC8 is highly associated with the malignant features of HCC and serves as a prognostic indicator for HCC patients. TSLNC8 significantly suppresses the proliferation and metastasis of HCC cells in vitro and in vivo. TSLNC8 exerts its tumor suppressive activity by competitively interacting with transketolase and signal transducer and activator of transcription 3 (STAT3) and modulating the STAT3-Tyr705 and STAT3-Ser727 phosphorylation levels and STAT3 transcriptional activity, thus resulting in inactivation of the interleukin-6-STAT3 signaling pathway in HCC cells. CONCLUSION TSLNC8 is a promising prognostic predictor for patients with HCC, and the TSLNC8-transketolase-STAT3 axis is a potential therapeutic target for HCC treatment. (Hepatology 2018;67:171-187).
Collapse
Affiliation(s)
- Jiwei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhe Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Longzi Liu
- Liver Cancer Institute, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qifeng Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengli Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingjun Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
189
|
Lee JY, Talhi O, Jang D, Cerella C, Gaigneaux A, Kim KW, Lee JW, Dicato M, Bachari K, Han BW, Silva AMS, Orlikova B, Diederich M. Cytostatic hydroxycoumarin OT52 induces ER/Golgi stress and STAT3 inhibition triggering non-canonical cell death and synergy with BH3 mimetics in lung cancer. Cancer Lett 2017; 416:94-108. [PMID: 29247826 DOI: 10.1016/j.canlet.2017.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 01/02/2023]
Abstract
Coumarins are natural compounds with antioxidant, anti-inflammatory and anti-cancer potential known to modulate inflammatory pathways. Here, non-toxic biscoumarin OT52 strongly inhibited proliferation of non-small cell lung cancer cells with KRAS mutations, inhibited stem-like characteristics by reducing aldehyde dehydrogenase expression and abrogated spheroid formation capacity. This cytostatic effect was characterized by cell cycle arrest and onset of senescence concomitant with endoplasmic reticulum and Golgi stress, leading to metabolic alterations. Mechanistically, this cellular response was associated with the novel capacity of biscoumarin OT52 to inhibit STAT3 transactivation and expression of its target genes linked to proliferation. These results were validated by computational docking of OT52 to the STAT3 DNA-binding domain. Combination treatments of OT52 with subtoxic concentrations of Bcl-xL and Mcl-1-targeting BH3 protein inhibitors triggered synergistic immunogenic cell death validated in colony formation assays as well as in vivo by zebrafish xenografts.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Republic of Korea
| | - Oualid Talhi
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal; Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques - CRAPC, B. P. 384, Bou-Ismail, 42004 Tipaza, Algeria
| | - Dongman Jang
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Republic of Korea
| | - Claudia Cerella
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Republic of Korea; Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg
| | - Anthoula Gaigneaux
- Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg
| | - Kyu-Won Kim
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, Medicinal Bioconvergence Research Center, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques - CRAPC, B. P. 384, Bou-Ismail, 42004 Tipaza, Algeria
| | - Byung Woo Han
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Republic of Korea
| | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Barbora Orlikova
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Republic of Korea; Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, Republic of Korea.
| |
Collapse
|
190
|
Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP, Bishayee A, Ahn KS. The Role of Resveratrol in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18122589. [PMID: 29194365 PMCID: PMC5751192 DOI: 10.3390/ijms18122589] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Natural product compounds have recently attracted significant attention from the scientific community for their potent effects against inflammation-driven diseases, including cancer. A significant amount of research, including preclinical, clinical, and epidemiological studies, has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses, vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer development is a carefully orchestrated progression where normal cells acquires mutations in their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic processes can be considered as potential anti-cancer agents that may ultimately make it to clinical application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity, bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol’s in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that have demonstrated it to be a promising therapeutic and chemopreventive agent.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6009, Australia.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
191
|
Shanmugam MK, Arfuso F, Kumar AP, Wang L, Goh BC, Ahn KS, Bishayee A, Sethi G. Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacol Res 2017; 129:357-364. [PMID: 29162539 DOI: 10.1016/j.phrs.2017.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
Thymoquinone (TQ), isolated almost fifty years ago, is the main bioactive constituent of black seed essential oil extracted from the seed of Nigella sativa. TQ has been shown to have promising effects against a variety of inflammatory diseases and cancer. Cancer development is a multistep process where normal cells acquire qualities that enable the cells to proliferate continuously and migrate to distant sites in the human body. Drugs that interfere with this process are considered potential anti-cancer therapeutics, which may ultimately result in their clinical usage. TQ is once such compound which has been reported to modulate several major signaling pathways and key oncogenic molecules that play a prominent role in cancer initiation, progression, invasion, metastasis, and angiogenesis. Various studies have reported that TQ can enhance the anti-cancer potential when co-administered with several chemotherapeutic agents while reducing their toxic side effects. In addition, TQ has been shown to inhibit the growth of breast, prostate, pancreatic, colon, lung, and hematological malignancies in different mouse models of cancer. This review focuses on TQ's chemical and pharmacological properties, its diverse molecular targets and also provides clear evidence on its promising potential under preclinical and clinical settings.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6009, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117600, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6009, Australia; National University Cancer Institute, National University Health System, 117600, Singapore; Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117600, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117600, Singapore; Department of Haematology-Oncology, National University Health System, 119228, Singapore
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, South Korea, South Korea
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6009, Australia.
| |
Collapse
|
192
|
Han Q, Wang Y, Pang M, Zhang J. STAT3-blocked whole-cell hepatoma vaccine induces cellular and humoral immune response against HCC. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:156. [PMID: 29115974 PMCID: PMC5688805 DOI: 10.1186/s13046-017-0623-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
Background Whole-cell tumor vaccines have shown much promise; however, only limited success has been achieved for the goal of eliciting robust tumor-specific T-cell responses. Methods Hepatocellular carcinoma (HCC) cells, H22 and Hepa1–6, were modified by blocking the STAT3 signaling pathway with a STAT3 decoy oligodeoxynucleotide, and the immunogenicity and possibility of using these cell lysates as a vaccine were evaluated. Results STAT3-blocked whole HCC cell lysates inhibited tumor growth and tumorigenesis, and prolonged the survival of tumor-bearing mice. In addition, STAT3-blocked whole HCC cell lysates stimulated the activation of T cells and natural killer (NK) cells, and enhanced the infiltration of cytotoxic CD8+ T cells in the tumor tissues. In addition, the maturation of dendritic cells (DCs) was enhanced, which promoted the generation of immunological memory against HCC. Furthermore, secondary immune responses could be primed as soon as these immunized mice were challenged with HCC cells, accompanied by T cell and NK cell activation and infiltration. Additionally, immunization with this vaccine decreased the generation of Tregs and the production of TGF-β and IL-10. Importantly, STAT3-blocked whole HCC cell lysates prevented HCC-mediated exhaustion of T cells and NK cells, showing low expression of checkpoint molecules such as PD-1 and TIGIT on T cells and NK cells in the immunized mice. Conclusions The newly generated STAT3-blocked whole-cell HCC vaccine has potential for cancer cell vaccination. Electronic supplementary material The online version of this article (10.1186/s13046-017-0623-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yaqun Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Min Pang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
193
|
Shin SY, Lee DH, Lee J, Choi C, Kim JY, Nam JS, Lim Y, Lee YH. C-C motif chemokine receptor 1 (CCR1) is a target of the EGF-AKT-mTOR-STAT3 signaling axis in breast cancer cells. Oncotarget 2017; 8:94591-94605. [PMID: 29212252 PMCID: PMC5706898 DOI: 10.18632/oncotarget.21813] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/20/2017] [Indexed: 01/05/2023] Open
Abstract
The CC motif chemokine receptor 1 (CCR1) has been implicated in tumor invasion and metastasis in numerous cancers. However, the detailed mechanism of CCR1 upregulation in metastatic tumor cells is poorly understood. The aim of this study was to clarify the regulatory mechanism underlying transcriptional activation of the CCR1 gene in response to epidermal growth factor (EGF) stimulation in breast cancer cells. CCR1 was highly expressed in human breast invasive ductal carcinoma (IDC) compared to adjacent normal tissues. Upon EGF stimulation, CCR1 expression was upregulated at the transcriptional level. Promoter analysis showed that signal transducer and activator of transcription 3 (STAT3) is necessary for EGF-induced CCR1 promoter activation, and STAT3 silencing abrogated EGF-induced CCR1 transcription. Pharmacological inhibition and short hairpin RNA-mediated knockdown experiments showed that AKT-dependent mammalian target of rapamycin (mTOR) activation was involved in the phosphorylation of serine-727 of STAT3, which in turn stimulated the transcription of the CCR1 gene. In conclusion, the AKT-mTOR-STAT3 signaling axis contributes to EGF-induced CCR1 expression, which promotes invasion and metastasis in breast cancer cells. We propose that the AKT-mTOR-STAT3 axis is a potential therapeutic target for blocking the invasion and metastasis of breast cancers.
Collapse
Affiliation(s)
- Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
- Cancer and Metabolism Institute, Konkuk University, Seoul, Republic of Korea
| | - Da Hyun Lee
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jishin Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Chan Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ji-Young Kim
- Laboratory Animal Resource Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Republic of Korea
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
- Cancer and Metabolism Institute, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
194
|
GRIM-19 represses the proliferation and invasion of cutaneous squamous cell carcinoma cells associated with downregulation of STAT3 signaling. Biomed Pharmacother 2017; 95:1169-1176. [DOI: 10.1016/j.biopha.2017.09.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
|
195
|
Shi K, Xue J, Fang Y, Bi H, Gao S, Yang D, Lu A, Li Y, Chen Y, Ke L. Inorganic Kernel-Reconstituted Lipoprotein Biomimetic Nanovehicles Enable Efficient Targeting "Trojan Horse" Delivery of STAT3-Decoy Oligonucleotide for Overcoming TRAIL Resistance. Theranostics 2017; 7:4480-4497. [PMID: 29158840 PMCID: PMC5695144 DOI: 10.7150/thno.21707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/21/2017] [Indexed: 01/24/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in a variety of tumor cells, but not most normal cells. Nevertheless, its therapeutic potential is limited due to the frequent occurrence of resistance in tumor cells, especially hepatocellular carcinoma cell lines. Therefore, we investigated the reversal effect of STAT3-decoy oligonucleotides (ODNs) on TRAIL resistance. Methods. Considering that the drawback of poor cellular permeability and rapid degradation in vivo limited ODNs' further clinical applications, we developed a biomimetic calcium phosphate-reconstituted low density lipoprotein nanovehicle (CaP@LDL) that would serve as a “Trojan horse” to carry STAT3-decoy ODNs into tumor cells and then regulate TRAIL-induced apoptosis. Results. In comparison with native ODNs, the reconstituted CaP@LDL packaged ODNs showed significantly increased serum stability, cellular transfection, in vitro synergistic cytotoxicity and apoptosis in hepatoma cells, while there was no cytotoxicity to normal cells. The improved TRAIL sensitization is attributed to blocking of STAT3 signaling and consequent expression of the downstream target antiapoptotic gene. Following systemic administration, CaP@LDL displayed LDL-mimicking pharmacokinetic behavior such as attenuated blood clearance as well as enhanced accumulation in tumor and hepatorenal sites. With the synergistic combination of decoyODN/CaP@LDL, TRAIL dramatically inhibited hepatic tumor growth in a xenograft model and induced significant tumor apoptosis in vivo. Conclusion. These results suggested that CaP@LDL-mediated STAT3-decoy ODN delivery might be a promising new strategy for reversing TRAIL resistance in hepatocellular carcinoma therapy.
Collapse
|
196
|
Tian F, Yang X, Liu Y, Yuan X, Fan T, Zhang F, Zhao J, Lu J, Jiang Y, Dong Z, Yang Y. Constitutive activated STAT3 is an essential regulator and therapeutic target in esophageal squamous cell carcinoma. Oncotarget 2017; 8:88719-88729. [PMID: 29179470 PMCID: PMC5687640 DOI: 10.18632/oncotarget.20838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023] Open
Abstract
Esophageal carcinoma is among the most common cancers worldwide and a leading cause of cancer death [1]. Large numbers of studies indicated that chronic inflammation is closely associated with its development [21, 25]. Furthermore, the JAK/STAT pathway, which plays a critical role in inflammation and immunity, has been implied in a number of malignancies [11]. It has been shown that targeting the pathway affected the growth, apoptosis, and metastasis of cultured esophageal squamous cell carcinoma cells [26]. We found in the present study that STAT3 is constitutively activated in a subgroup of esophageal squamous cell carcinoma cell lines and primary tumors. Altered expressions of STAT3 target genes were found in these tumors by using RNAseq and qPCR analysis. Cytokines that activate STAT3 affected the expression of STAT3 target genes and promoted the growth of the ESCC cells, which could be blocked by STAT3 inhibitor and specific siRNA. Inhibition of STAT3 also suppressed the growth and colony formation, and induced apoptosis in the esophageal squamous cell carcinoma cells containing constitutively activated STAT3. Furthermore, the STAT3 inhibitor effectively blocked the growth of patient-derived tumor xenografts that harbored phosphorylated STAT3, but acted less effective on the xenografts derived from primary tumors that contained low levels of activated STAT3. These results indicated that activated STAT3 plays a critical role in the survival and growth of a subgroup of esophageal squamous cell carcinoma, and may serve as a target for precision therapeutic intervention.
Collapse
Affiliation(s)
- Fang Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, P. R. China
| | - Xiawen Yang
- Division of Molecular Signaling, Department of Advanced Biomedical Research, University of Yamanashi, Yamanashi, Japan
| | - Ying Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, P. R. China
| | - Xiao Yuan
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, P. R. China
| | - Tianli Fan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, P. R. China
| | - Fanmiao Zhang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, P. R. China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, P. R. China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, P. R. China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, P. R. China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, P. R. China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
197
|
Zhang L, Li J, Wang Q, Meng G, Lv X, Zhou H, Li W, Zhang J. The relationship between microRNAs and the STAT3-related signaling pathway in cancer. Tumour Biol 2017; 39:1010428317719869. [PMID: 28859543 DOI: 10.1177/1010428317719869] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are non-coding RNAs that regulate gene expression by targeting messenger RNA molecules in 3' untranslated region. Mounting evidence indicates that microRNAs regulate several factors to influence various biological activities that are related to carcinogenesis, including signal transducer and activator of transcription 3, which is a transcription factor that also acts as an oncogene. MicroRNAs influence signal transducer and activator of transcription 3 either by directly targeting or via other pathway components upstream or downstream of signal transducer and activator of transcription 3 such as Janus kinases, members of the suppressor of cytokine signaling family, and other genes that regulate cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition. However, signal transducer and activator of transcription 3 activation changes the pattern of expression of microRNAs and mediates tumorigenesis. Moreover, the relationship between signal transducer and activator of transcription 3 and microRNAs varies among different kinds of cancers. A specific microRNA may act as an oncogene or tumor suppressor in different cancers, and microRNAs also directly or indirectly regulate signal transducer and activator of transcription 3 via pathways in the same cancers. In this review, we focus on the reciprocal regulation and roles of microRNAs and signal transducer and activator of transcription 3 in cancer, as well as describe current research progress on this relationship. A better understanding of this relationship may facilitate in the identification of targets for clinical therapeutics.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Junyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Guangping Meng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Xuejiao Lv
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Hong Zhou
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Wei Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
198
|
Capsazepine inhibits JAK/STAT3 signaling, tumor growth, and cell survival in prostate cancer. Oncotarget 2017; 8:17700-17711. [PMID: 27458171 PMCID: PMC5392279 DOI: 10.18632/oncotarget.10775] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
Persistent STAT3 activation is seen in many tumor cells and promotes malignant transformation. Here, we investigated whether capsazepine (Capz), a synthetic analogue of capsaicin, exerts anticancer effects by inhibiting STAT3 activation in prostate cancer cells. Capz inhibited both constitutive and induced STAT3 activation in human prostate carcinoma cells. Capz also inhibited activation of the upstream kinases JAK1/2 and c-Src. The phosphatase inhibitor pervanadate reversed Capz-induced STAT3 inhibition, indicating that the effect of Capz depends on a protein tyrosine phosphatase. Capz treatment increased PTPε protein and mRNA levels. Moreover, siRNA-mediated knockdown of PTPε reversed the Capz-induced induction of PTPε and inhibition of STAT3 activation, indicating that PTPε is crucial for Capz-dependent STAT3 dephosphorylation. Capz also decreased levels of the protein products of various oncogenes, which in turn inhibited proliferation and invasion and induced apoptosis. Finally, intraperitoneal Capz administration decreased tumor growth in a xenograft mouse prostate cancer model and reduced p-STAT3 and Ki-67 expression. These data suggest that Capz is a novel pharmacological inhibitor of STAT3 activation with several anticancer effects in prostate cancer cells.
Collapse
|
199
|
Wang X, Liu W, Xie X. Energy imbalance and cancer: Cause or consequence? IUBMB Life 2017; 69:776-784. [PMID: 28858429 DOI: 10.1002/iub.1674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
Obesity has been an epidemic worldwide over the past decades and significantly increases the risk of developing a variety of deadly diseases including type 2 diabetes, cardiovascular diseases and many cancers. The relationship between obesity and type 2 diabetes and cardiovascular disease has been well documented. The drastically increased frequency of a number of cancers in obesity has attracted growing interest. On one hand, how increased adiposity promotes cancer development remains poorly understood, despite the fact that considerable epidemiological evidence has suggested links between them. On the other hand, however, numerous studies have shown that tumorigenesis leads to substantial weight loss in a large portion of cancer patients. Here, we summarize the recent advances on our understanding of the link between obesity and cancer development with a focus on the molecular mechanisms accounting for the rising cancer incidence in the context of obesity. In addition, we also discuss how cancer-associated anorexia and cachexia causes weight loss. © 2017 IUBMB Life, 69(10):776-784, 2017.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Liu
- Department of Neurology, Beijing Haidian Hospital, Beijing 100080, China
| | - Xiangyang Xie
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| |
Collapse
|
200
|
Lu R, Zhang YG, Sun J. STAT3 activation in infection and infection-associated cancer. Mol Cell Endocrinol 2017; 451:80-87. [PMID: 28223148 PMCID: PMC5469714 DOI: 10.1016/j.mce.2017.02.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/23/2022]
Abstract
The Janus kinase/signal transducers and activators for transcription (JAK/STAT) pathway plays crucial roles in regulating apoptosis, proliferation, differentiation, and the inflammatory response. The JAK/STAT families are composed of four JAK family members and seven STAT family members. STAT3 plays a key role in inducing and maintaining a pro-carcinogenic inflammatory microenvironment. Recent evidence suggests that STAT3 regulates diverse biological functions in pathogenesis of diseases, such as infection and cancer. In the current review, we will summarize the research progress of STAT3 activation in infection and cancers. We highlight our recent study on the novel role of STAT3 in Salmonella infection-associated colon cancer. Infection with bacterial AvrA-expressing Salmonella activates the STAT3 pathway, which induces the β-catenin signals and enhances colonic tumorigenesis. STAT3 may be a promising target in developing prevention and treatment for infectious diseases and infection-associated cancers.
Collapse
Affiliation(s)
- Rong Lu
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yong-Guo Zhang
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|