151
|
The Angiotensin II Type 2 Receptor in Brain Functions: An Update. Int J Hypertens 2012; 2012:351758. [PMID: 23320146 PMCID: PMC3540774 DOI: 10.1155/2012/351758] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor.
Collapse
|
152
|
Li W, Peng H, Seth DM, Feng Y. The Prorenin and (Pro)renin Receptor: New Players in the Brain Renin-Angiotensin System? Int J Hypertens 2012; 2012:290635. [PMID: 23316344 PMCID: PMC3536329 DOI: 10.1155/2012/290635] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/26/2012] [Accepted: 12/05/2012] [Indexed: 12/22/2022] Open
Abstract
It is well known that the brain renin-angiotensin (RAS) system plays an essential role in the development of hypertension, mainly through the modulation of autonomic activities and vasopressin release. However, how the brain synthesizes angiotensin (Ang) II has been a debate for decades, largely due to the low renin activity. This paper first describes the expression of the vasoconstrictive arm of RAS components in the brain as well as their physiological and pathophysiological significance. It then focus on the (pro)renin receptor (PRR), a newly discovered component of the RAS which has a high level in the brain. We review the role of prorenin and PRR in peripheral organs and emphasize the involvement of brain PRR in the pathogenesis of hypertension. Some future perspectives in PRR research are heighted with respect to novel therapeutic target for the treatment of hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Wencheng Li
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| | - Hua Peng
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| | - Dale M. Seth
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| | - Yumei Feng
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| |
Collapse
|
153
|
Roles of Brain Angiotensin II in Cognitive Function and Dementia. Int J Hypertens 2012; 2012:169649. [PMID: 23304450 PMCID: PMC3529904 DOI: 10.1155/2012/169649] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 12/29/2022] Open
Abstract
The brain renin-angiotensin system (RAS) has been highlighted as having a pathological role in stroke, dementia, and neurodegenerative disease. Particularly, in dementia, epidemiological studies indicate a preventive effect of RAS blockade on cognitive impairment in Alzheimer disease (AD). Moreover, basic experiments suggest a role of brain angiotensin II in neural injury, neuroinflammation, and cognitive function and that RAS blockade attenuates cognitive impairment in rodent dementia models of AD. Therefore, RAS regulation is expected to have therapeutic potential for AD. Here, we discuss the role of angiotensin II in cognitive impairment and AD. Angiotensin II binds to the type 2 receptor (AT2) and works mainly by binding with the type 1 receptor (AT1). AT2 receptor signaling plays a role in protection against multiple-organ damage. A direct AT2 receptor agonist is now available and is expected to reduce inflammation and oxidative stress and enhance cell differentiation. We and other groups reported that AT2 receptor activation enhances neuronal differentiation and neurite outgrowth in the brain. Here, we also review the effect of the AT2 receptor on cognitive function. RAS modulation may be a new therapeutic option for dementia including AD in the future.
Collapse
|
154
|
Discovery of inhibitors of insulin-regulated aminopeptidase as cognitive enhancers. Int J Hypertens 2012; 2012:789671. [PMID: 23304452 PMCID: PMC3529497 DOI: 10.1155/2012/789671] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022] Open
Abstract
The hexapeptide angiotensin IV (Ang IV) is a metabolite of angiotensin II (Ang II) and plays a central role in the brain. It was reported more than two decades ago that intracerebroventricular injection of Ang IV improved memory and learning in the rat. Several hypotheses have been put forward to explain the positive effects of Ang IV and related analogues on cognition. It has been proposed that the insulin-regulated aminopeptidase (IRAP) is the main target of Ang IV. This paper discusses progress in the discovery of inhibitors of IRAP as potential enhancers of cognitive functions. Very potent inhibitors of the protease have been synthesised, but pharmacokinetic issues (including problems associated with crossing the blood-brain barrier) remain to be solved. The paper also briefly presents an overview of the status in the discovery of inhibitors of ACE and renin, and of AT1R antagonists and AT2R agonists, in order to enable other discovery processes within the RAS system to be compared. The paper focuses on the relationship between binding affinities/inhibition capacity and the structures of the ligands that interact with the target proteins.
Collapse
|
155
|
Wright JW, Harding JW. Importance of the brain Angiotensin system in Parkinson's disease. PARKINSON'S DISEASE 2012; 2012:860923. [PMID: 23213621 PMCID: PMC3503402 DOI: 10.1155/2012/860923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) has become a major health problem affecting 1.5% of the world's population over 65 years of age. As life expectancy has increased so has the occurrence of PD. The primary direct consequence of this disease is the loss of dopaminergic (DA) neurons in the substantia nigra and striatum. As the intensity of motor dysfunction increases, the symptomatic triad of bradykinesia, tremors-at-rest, and rigidity occur. Progressive neurodegeneration may also impact non-DA neurotransmitter systems including cholinergic, noradrenergic, and serotonergic, often leading to the development of depression, sleep disturbances, dementia, and autonomic nervous system failure. L-DOPA is the most efficacious oral delivery treatment for controlling motor symptoms; however, this approach is ineffective regarding nonmotor symptoms. New treatment strategies are needed designed to provide neuroprotection and encourage neurogenesis and synaptogenesis to slow or reverse this disease process. The hepatocyte growth factor (HGF)/c-Met receptor system is a member of the growth factor family and has been shown to protect against degeneration of DA neurons in animal models. Recently, small angiotensin-based blood-brain barrier penetrant mimetics have been developed that activate this HGF/c-Met system. These compounds may offer a new and novel approach to the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- John W. Wright
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| | - Joseph W. Harding
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| |
Collapse
|
156
|
Corbett A, Pickett J, Burns A, Corcoran J, Dunnett SB, Edison P, Hagan JJ, Holmes C, Jones E, Katona C, Kearns I, Kehoe P, Mudher A, Passmore A, Shepherd N, Walsh F, Ballard C. Drug repositioning for Alzheimer's disease. Nat Rev Drug Discov 2012; 11:833-46. [PMID: 23123941 DOI: 10.1038/nrd3869] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Existing drugs for Alzheimer's disease provide symptomatic benefit for up to 12 months, but there are no approved disease-modifying therapies. Given the recent failures of various novel disease-modifying therapies in clinical trials, a complementary strategy based on repositioning drugs that are approved for other indications could be attractive. Indeed, a substantial body of preclinical work indicates that several classes of such drugs have potentially beneficial effects on Alzheimer's-like brain pathology, and for some drugs the evidence is also supported by epidemiological data or preliminary clinical trials. Here, we present a formal consensus evaluation of these opportunities, based on a systematic review of published literature. We highlight several compounds for which sufficient evidence is available to encourage further investigation to clarify an optimal dose and consider progression to clinical trials in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Anne Corbett
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Brain penetration of telmisartan, a unique centrally acting angiotensin II type 1 receptor blocker, studied by PET in conscious rhesus macaques. Nucl Med Biol 2012; 39:1232-5. [DOI: 10.1016/j.nucmedbio.2012.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 11/21/2022]
|
158
|
Free and Protein-Bound Angiotensin II1-7 in the Regulation of Drinking Behavior and Hemodynamics in Rats. Bull Exp Biol Med 2012; 153:623-6. [DOI: 10.1007/s10517-012-1782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
159
|
Wright JW, Wilson WL, Wakeling V, Boydstun AS, Jensen A, Kawas L, Harding JW. The Hepatocyte Growth Factor/c-Met Antagonist, Divalinal-Angiotensin IV, Blocks the Acquisition of Methamphetamine Dependent Conditioned Place Preference in Rats. Brain Sci 2012; 2:298-318. [PMID: 24961196 PMCID: PMC4061800 DOI: 10.3390/brainsci2030298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/06/2012] [Accepted: 08/10/2012] [Indexed: 11/16/2022] Open
Abstract
The use of methamphetamine (MA) is increasing in the U.S. and elsewhere around the world. MA's capacity to cause addiction significantly exceeds other psychostimulant drugs, and its use negatively impacts learning and memory. Recently, attempts have been made to interfere with the presumed mechanism(s) underlying the establishment of drug-induced memory consolidation. The majority of these studies have employed matrix metalloproteinase (MMP) inhibitors to disrupt MMP-induced extracellular matrix molecule dependent synaptic reconfiguration, or GABA receptor agonists. The present investigation utilized an angiotensin IV (AngIV) analogue, Divalinal-AngIV (divalinal), to disrupt acquisition of MA-induced dependence in rats as measured using the conditioned place preference paradigm. Results indicate that both acute and chronic intracerebroventricular infusion of divalinal prior to each daily subcutaneous injection of MA prevented acquisition. However, divalinal was unable to prevent MA-induced reinstatement after prior acquisition followed by extinction trials. These results indicate that prevention of MA dependence can be accomplished by blockade of the brain AT4 receptor subtype. On the other hand, once MA-induced memory consolidation is in place divalinal appears to be ineffective. Mechanistic studies indicated that divalinal is a potent inhibitor of the hepatocyte growth factor (HGF)/c-Met receptor system, and thus it appears that a functional HGF/c-Met system is required for the acquisition of MA-mediated conditioned place preference.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA.
| | - Wendy L Wilson
- Department of Psychology, Dickinson State University, Dickinson, ND 58601, USA.
| | - Vanessa Wakeling
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA.
| | - Alan S Boydstun
- L-3 Communications, Link Simulation and Training, Wright Patterson Air Force Base, OH 45433-7955, USA.
| | - Audrey Jensen
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA.
| | - Leen Kawas
- Program in Pharmacology and Toxicology, Washington State University, Pullman, WA 99164-6510, USA.
| | - Joseph W Harding
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA.
| |
Collapse
|
160
|
Zill P, Baghai TC, Schüle C, Born C, Früstück C, Büttner A, Eisenmenger W, Varallo-Bedarida G, Rupprecht R, Möller HJ, Bondy B. DNA methylation analysis of the angiotensin converting enzyme (ACE) gene in major depression. PLoS One 2012; 7:e40479. [PMID: 22808171 PMCID: PMC3396656 DOI: 10.1371/journal.pone.0040479] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/08/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The angiotensin converting enzyme (ACE) has been repeatedly discussed as susceptibility factor for major depression (MD) and the bi-directional relation between MD and cardiovascular disorders (CVD). In this context, functional polymorphisms of the ACE gene have been linked to depression, to antidepressant treatment response, to ACE serum concentrations, as well as to hypertension, myocardial infarction and CVD risk markers. The mostly investigated ACE Ins/Del polymorphism accounts for ~40%-50% of the ACE serum concentration variance, the remaining half is probably determined by other genetic, environmental or epigenetic factors, but these are poorly understood. MATERIALS AND METHODS The main aim of the present study was the analysis of the DNA methylation pattern in the regulatory region of the ACE gene in peripheral leukocytes of 81 MD patients and 81 healthy controls. RESULTS We detected intensive DNA methylation within a recently described, functional important region of the ACE gene promoter including hypermethylation in depressed patients (p = 0.008) and a significant inverse correlation between the ACE serum concentration and ACE promoter methylation frequency in the total sample (p = 0.02). Furthermore, a significant inverse correlation between the concentrations of the inflammatory CVD risk markers ICAM-1, E-selectin and P-selectin and the degree of ACE promoter methylation in MD patients could be demonstrated (p = 0.01 - 0.04). CONCLUSION The results of the present study suggest that aberrations in ACE promoter DNA methylation may be an underlying cause of MD and probably a common pathogenic factor for the bi-directional relationship between MD and cardiovascular disorders.
Collapse
Affiliation(s)
- Peter Zill
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Focus on Brain Angiotensin III and Aminopeptidase A in the Control of Hypertension. Int J Hypertens 2012; 2012:124758. [PMID: 22792446 PMCID: PMC3389720 DOI: 10.1155/2012/124758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/26/2012] [Indexed: 01/30/2023] Open
Abstract
The classic renin-angiotensin system (RAS) was initially described as a hormone system designed to mediate cardiovascular and body water regulation. The discovery of a brain RAS composed of the necessary functional components (angiotensinogen, peptidases, angiotensins, and specific receptor proteins) independent of the peripheral system significantly expanded the possible physiological and pharmacological functions of this system. This paper first describes the enzymatic pathways resulting in active angiotensin ligands and their interaction with AT1, AT2, and mas receptor subtypes. Recent evidence points to important contributions by brain angiotensin III (AngIII) and aminopeptidases A (APA) and N (APN) in sustaining hypertension. Next, we discuss current approaches to the treatment of hypertension followed by novel strategies that focus on limiting the binding of AngII and AngIII to the AT1 receptor subtype by influencing the activity of APA and APN. We conclude with thoughts concerning future treatment approaches to controlling hypertension and hypotension.
Collapse
|
162
|
Chaikuad A, Pilka ES, De Riso A, von Delft F, Kavanagh KL, Vénien-Bryan C, Oppermann U, Yue WW. Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family. BMC STRUCTURAL BIOLOGY 2012; 12:14. [PMID: 22720794 PMCID: PMC3472314 DOI: 10.1186/1472-6807-12-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/29/2012] [Indexed: 11/13/2022]
Abstract
Backround Aspartyl aminopeptidase (DNPEP), with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated. Results The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-β-hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids. Conclusions The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference. Together, the structural knowledge will aid in the development of enzyme-/family-specific aminopeptidase inhibitors.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Structural Genomics Consortium, Old Road Research Campus Building, Oxford OX3 7DQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Marc Y, Gao J, Balavoine F, Michaud A, Roques BP, Llorens-Cortes C. Central antihypertensive effects of orally active aminopeptidase A inhibitors in spontaneously hypertensive rats. Hypertension 2012; 60:411-8. [PMID: 22710644 DOI: 10.1161/hypertensionaha.112.190942] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Brain renin-angiotensin system hyperactivity has been implicated in the development and maintenance of hypertension. We reported previously in the brain that aminopeptidase A and aminopeptidase N are involved in the metabolism of angiotensin II and angiotensin III, respectively. By using in vivo specific and selective aminopeptidase A and aminopeptidase N inhibitors, we showed that angiotensin III is one of the main effector peptides of the brain renin-angiotensin system, exerting a tonic stimulatory control more than blood pressure in hypertensive rats. Aminopeptidase A, the enzyme generating brain angiotensin III, thus represents a potential target for the treatment of hypertension. We demonstrated here the antihypertensive effects of RB150, a prodrug of the specific and selective aminopeptidase A inhibitor, EC33, in spontaneously hypertensive rats, a model of human essential hypertension. Oral administration of RB150 in conscious spontaneously hypertensive rats inhibited brain aminopeptidase A activity, demonstrating the central bioavailability of RB150 and its ability to generate EC33 into the brain. Oral RB150 treatment dose-dependently reduced blood pressure in spontaneously hypertensive rats with an ED(50) of 30 mg/kg, lasting for several hours. This decrease in blood pressure is partly attributed to a decrease in sympathetic tone, reducing vascular resistance. This treatment did not modify systemic renin-angiotensin system activity. Concomitant oral administration of RB150 with a systemic renin-angiotensin system blocker, enalapril, potentiated the RB150-induced blood pressure decrease achieved in <2 hours. Thus, RB150 may be the prototype of a new class of centrally active antihypertensive agents that might be used in combination with classic systemic renin-angiotensin system blockers to improve blood pressure control.
Collapse
Affiliation(s)
- Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
| | | | | | | | | | | |
Collapse
|
164
|
Segarra AB, Prieto I, Banegas I, Villarejo AB, Wangensteen R, de Gasparo M, Vives F, Ramírez-Sánchez M. Asymmetrical effect of captopril on the angiotensinase activity in frontal cortex and plasma of the spontaneously hypertensive rats: Expanding the model of neuroendocrine integration. Behav Brain Res 2012; 230:423-7. [DOI: 10.1016/j.bbr.2012.02.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
|
165
|
Wright JW, Harding JW. The brain renin–angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch 2012; 465:133-51. [DOI: 10.1007/s00424-012-1102-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 12/14/2022]
|
166
|
Lawnicka H, Ptasinska-Wnuk D, Mucha S, Kunert-Radek J, Pawlikowski M, Stepien H. The involvement of angiotensin type 1 and type 2 receptors in estrogen-induced cell proliferation and vascular endothelial growth factor expression in the rat anterior pituitary. ScientificWorldJournal 2012; 2012:358102. [PMID: 22645419 PMCID: PMC3360946 DOI: 10.1100/2012/358102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/17/2011] [Indexed: 11/23/2022] Open
Abstract
The aim of our study was to examine the involvement of renin-angiotensin system (RAS) in estrogen-induced lactotropes proliferation and vascular endothelial growth factor (VEGF) expression in rat pituitary. The study was performed on Fisher 344 rats underwent 8-day treatment with diethylstilboestrol (DES). The proliferation index (PCNA) and VEGF expression in pituitary sections were estimated using immunohistochemical methods.
Treatment with DES increased the number of PCNA-positive cells, VEGF-positive cells, and VEGF-positive blood vessels in pituitary. Stimulatory effect of estrogen on cell proliferation and VEGF expression in blood vessels was attenuated by losartan, PD123319, and captopril. VEGF immunoreactivity in pituitary cells of DES-treated rats was decreased by AT1 antagonist and not changed by AT2 blocker and ACE inhibitor. Our findings suggest the involvement of RAS in DES-induced cell proliferation and VEGF expression in pituitary. Both the AT1 and AT2 receptors appear to mediate the estrogen-dependent mitogenic and proangiogenic effects in rat pituitary.
Collapse
Affiliation(s)
- Hanna Lawnicka
- Department of Immunoendocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | | | | | | | | | | |
Collapse
|
167
|
Ptasinska-Wnuk D, Lawnicka H, Mucha S, Kunert-Radek J, Pawlikowski M, Stepien H. Angiotensins inhibit cell growth in GH3 lactosomatotroph pituitary tumor cell culture: a possible involvement of the p44/42 and p38 MAPK pathways. ScientificWorldJournal 2012; 2012:189290. [PMID: 22619620 PMCID: PMC3349324 DOI: 10.1100/2012/189290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/22/2011] [Indexed: 12/13/2022] Open
Abstract
The local renin-angiotensin system is present in the pituitary. We investigated the effects of angiotensins on GH3 lactosomatotroph cells proliferation in vitro and the involvement of p44/42 and p38 MAPK inhibitors in the growth-regulatory effects of angiotensins. Materials and Methods. Cell viability using the Mosmann method and proliferation by the measurement of BrdU incorporation during DNA synthesis were estimated. Results. Ang II and ang IV decreased the viability and proliferation of GH3 cells. Inhibitor of p44/42 MAPK attenuated the effects of ang II on cell viability and proliferation but did not affect the ang 5-8-dependent actions. Inhibitor of p38 MAPK prevented the decrease in the number of GH3 cells in ang-II- and ang-IV-treated groups. Conclusions. The growth-inhibitory effect of ang II is possibly mediated by the p44/42 MAPK. The p38 MAPK appears to mediate the inhibitory effects of both ang II and ang 5-8 upon cell survival.
Collapse
Affiliation(s)
- Dorota Ptasinska-Wnuk
- Department of Endocrinology, The County Hospital of Kutno, 52 Kosciuszki Street, 99-300 Kutno, Poland
| | - Hanna Lawnicka
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Slawomir Mucha
- Clinic of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Jolanta Kunert-Radek
- Clinic of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Marek Pawlikowski
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Henryk Stepien
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| |
Collapse
|
168
|
Vargas R, Rincón J, Pedreañez A, Viera N, Hernández-Fonseca JP, Peña C, Mosquera J. Role of angiotensin II in the brain inflammatory events during experimental diabetes in rats. Brain Res 2012; 1453:64-76. [PMID: 22464881 DOI: 10.1016/j.brainres.2012.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/27/2011] [Accepted: 03/08/2012] [Indexed: 01/17/2023]
Abstract
Hyperglycemia during diabetes is one of the causes of encephalopathy. However, diabetes causes chronic inflammatory complications and among them is peripheral neuropathy. Since, diabetes is one of the major risk factors for cerebrovascular disease, inflammatory process could take place in central nervous system (CNS). To test that hypothesis, experiments to determine inflammatory events in CNS during streptozotocin-induced diabetes were performed. Diabetes was induced by intravenous injection of streptozotocin (STZ). Brain angiotensin II (Ang II), monocyte/macrophage (ED-1 positive cells), CD8, the intercellular adhesion molecule-1 (ICAM-1), the lymphocyte function-associated antigen-1 (LFA-1) and superoxide anion were determined by hystochemical and immunohistochemical methods. Nitric oxide (NO), malondialdehyde (MDA) and catalase activity were measured in brain homogenates by enzymatic and biochemical methods. This research showed increased expressions of Ang II, ICAM-1, LFA-1 and CD8 positive cells in diverse zones of cerebrum and cerebellum of diabetic rats (week 8). Treatment of diabetic animals with losartan or enalapril reduced the expression of those molecules. Values of lipid peroxidation, nitrite content and superoxide anion expression remained similar to control rats. Only decreased activity of catalase was observed in diabetic animals, but losartan or enalapril failed to modify catalase activity. This study suggests the presence of Ang II-mediated brain inflammatory events in diabetes probably mediated by AT1 receptors.
Collapse
Affiliation(s)
- Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | | | | | | | | | | | | |
Collapse
|
169
|
Garrido-Gil P, Valenzuela R, Villar-Cheda B, Lanciego JL, Labandeira-Garcia JL. Expression of angiotensinogen and receptors for angiotensin and prorenin in the monkey and human substantia nigra: an intracellular renin-angiotensin system in the nigra. Brain Struct Funct 2012; 218:373-88. [PMID: 22407459 PMCID: PMC3580133 DOI: 10.1007/s00429-012-0402-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/22/2012] [Indexed: 02/07/2023]
Abstract
We have previously obtained in rodents a considerable amount of data suggesting a major role for the brain renin–angiotensin system (RAS) in dopaminergic neuron degeneration and potentially in Parkinson’s disease. However, the presence of a local RAS has not been demonstrated in the monkey or the human substantia nigra compacta (SNc). The present study demonstrates the presence of major RAS components in dopaminergic neurons, astrocytes and microglia in both the monkey and the human SNc. Angiotensin type 1 and 2 and renin–prorenin receptors were located at the surface of dopaminergic neurons and glial cells, as expected for a tissular RAS. However, angiotensinogen and receptors for angiotensin and renin–prorenin were also observed at the cytoplasm and nuclear level, which suggests the presence of an intracrine or intracellular RAS in monkey and human SNc. Although astrocytes and microglia were labeled for angiotensin and prorenin receptors in the normal SNc, most glial cells appeared less immunoreactive than the dopaminergic neurons. However, our previous studies in rodent models of PD and studies in other animal models of brain diseases suggest that the RAS activity is significantly upregulated in glial cells in pathological conditions. The present results together with our previous findings in rodents suggest a major role for the nigral RAS in the normal functioning of the dopaminergic neurons, and in the progression of the dopaminergic degeneration.
Collapse
Affiliation(s)
- Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
170
|
Vijayapand P, Harisankar S, Nancy J. Depression-like Effect of Telmisartan in Mice Forced Swim Test: Involvement of Brain Monoaminergic System. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/jpt.2012.87.95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
171
|
Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 88:69-132. [PMID: 22814707 DOI: 10.1016/b978-0-12-398314-5.00004-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. The consistent findings obtained by various animal models of PD suggest that neuroinflammation is an important contributor to the pathogenesis of the disease and may further propel the progressive loss of nigral dopaminergic neurons. Furthermore, although it may not be the primary cause of PD, additional epidemiological, genetic, pharmacological, and imaging evidence support the proposal that inflammatory processes in this specific brain region are crucial for disease progression. Recent in vitro studies, however, have suggested that activation of microglia and subsequently astrocytes via mediators released by injured dopaminergic neurons is involved. However, additional in vivo experiments are needed for a deeper understanding of the mechanisms involved in PD pathogenesis. Further insight on the mechanisms of inflammation in PD will help to further develop alternative therapeutic strategies that will specifically and temporally target inflammatory processes without abrogating the potential benefits derived by neuroinflammation, such as tissue restoration.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | | |
Collapse
|
172
|
Guimond MO, Gallo-Payet N. How does angiotensin AT(2) receptor activation help neuronal differentiation and improve neuronal pathological situations? Front Endocrinol (Lausanne) 2012; 3:164. [PMID: 23267346 PMCID: PMC3525946 DOI: 10.3389/fendo.2012.00164] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023] Open
Abstract
The angiotensin type 2 (AT(2)) receptor of angiotensin II has long been thought to be limited to few tissues, with the primary effect of counteracting the angiotensin type 1 (AT(1)) receptor. Functional studies in neuronal cells have demonstrated AT(2) receptor capability to modulate neuronal excitability, neurite elongation, and neuronal migration, suggesting that it may be an important regulator of brain functions. The observation that the AT(2) receptor was expressed in brain areas implicated in learning and memory led to the hypothesis that it may also be implicated in cognitive functions. However, linking signaling pathways to physiological effects has always proven challenging since information relative to its physiological functions has mainly emerged from indirect observations, either from the blockade of the AT(1) receptor or through the use of transgenic animals. From a mechanistic standpoint, the main intracellular pathways linked to AT(2) receptor stimulation include modulation of phosphorylation by activation of kinases and phosphatases or the production of nitric oxide and cGMP, some of which are associated with the Gi-coupling protein. The receptor can also interact with other receptors, either G protein-coupled such as bradykinin, or growth factor receptors such as nerve growth factor or platelet-derived growth factor receptors. More recently, new advances have also led to identification of various partner proteins, thus providing new insights into this receptor's mechanism of action. This review summarizes the recent advances regarding the signaling pathways induced by the AT(2) receptor in neuronal cells, and discussed the potential therapeutic relevance of central actions of this enigmatic receptor. In particular, we highlight the possibility that selective AT(2) receptor activation by non-peptide and selective agonists could represent new pharmacological tools that may help to improve impaired cognitive performance in Alzheimer's disease and other neurological cognitive disorders.
Collapse
Affiliation(s)
| | - Nicole Gallo-Payet
- *Correspondence: Nicole Gallo-Payet, Service d’Endocrinologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada J1H 5N4. e-mail:
| |
Collapse
|
173
|
Carey RM. Functional intracellular renin-angiotensin systems: potential for pathophysiology of disease. Am J Physiol Regul Integr Comp Physiol 2011; 302:R479-81. [PMID: 22170615 DOI: 10.1152/ajpregu.00656.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
174
|
Cook JL, Re RN. Lessons from in vitro studies and a related intracellular angiotensin II transgenic mouse model. Am J Physiol Regul Integr Comp Physiol 2011; 302:R482-93. [PMID: 22170617 DOI: 10.1152/ajpregu.00493.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the classical renin-angiotensin system, circulating ANG II mediates growth stimulatory and hemodynamic effects through the plasma membrane ANG II type I receptor, AT1. ANG II also exists in the intracellular space in some native cells, and tissues and can be upregulated in diseases, including hypertension and diabetes. Moreover, intracellular AT1 receptors can be found associated with endosomes, nuclei, and mitochondria. Intracellular ANG II can function in a canonical fashion through the native receptor and also in a noncanonical fashion through interaction with alternative proteins. Likewise, the receptor and proteolytic fragments of the receptor can function independently of ANG II. Participation of the receptor and ligand in alternative intracellular pathways may serve to amplify events that are initiated at the plasma membrane. We review historical and current literature relevant to ANG II, compared with other intracrines, in tissue culture and transgenic models. In particular, we describe a new transgenic mouse model, which demonstrates that intracellular ANG II is linked to high blood pressure. Appreciation of the diverse, pleiotropic intracellular effects of components of the renin-angiotensin system should lead to alternative disease treatment targets and new therapies.
Collapse
Affiliation(s)
- Julia L Cook
- Laboratory of Molecular Genetics, Department of Research, New Orleans, LA 70121, USA.
| | | |
Collapse
|