151
|
Nielsen TB, Thomsen RP, Mortensen MR, Kjems J, Nielsen PF, Nielsen TE, Kodal ALB, Cló E, Gothelf KV. Peptide‐Directed DNA‐Templated Protein Labelling for The Assembly of a Pseudo‐IgM. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Thorbjørn B. Nielsen
- Research ChemistryNovo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Rasmus P. Thomsen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO) Denmark
| | - Michael R. Mortensen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO) Denmark
| | - Per Franklin Nielsen
- Analysis and MS Characterisation 2Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Thomas E. Nielsen
- Research ChemistryNovo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | | | - Emiliano Cló
- Research ChemistryNovo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Kurt V. Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
152
|
Nielsen TB, Thomsen RP, Mortensen MR, Kjems J, Nielsen PF, Nielsen TE, Kodal ALB, Cló E, Gothelf KV. Peptide-Directed DNA-Templated Protein Labelling for The Assembly of a Pseudo-IgM. Angew Chem Int Ed Engl 2019; 58:9068-9072. [PMID: 30995340 DOI: 10.1002/anie.201903134] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/15/2019] [Indexed: 12/30/2022]
Abstract
The development of methods for conjugation of DNA to proteins is of high relevance for the integration of protein function and DNA structures. Here, we demonstrate that protein-binding peptides can direct a DNA-templated reaction, selectively furnishing DNA-protein conjugates with one DNA label. Quantitative conversion of oligonucleotides is achieved at low stoichiometries and the reaction can be performed in complex biological matrixes, such as cell lysates. Further, we have used a star-like pentameric DNA nanostructure to assemble five DNA-Rituximab conjugates, made by our reported method, into a pseudo-IgM antibody structure that was subsequently characterized by negative-stain transmission electron microscopy (nsTEM) analysis.
Collapse
Affiliation(s)
- Thorbjørn B Nielsen
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark.,Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Rasmus P Thomsen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark.,Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO), Denmark
| | - Michael R Mortensen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO), Denmark
| | - Per Franklin Nielsen
- Analysis and MS Characterisation 2, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Thomas E Nielsen
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Anne Louise B Kodal
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Emiliano Cló
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
153
|
Blaeser A, Heilshorn SC, Duarte Campos DF. Smart Bioinks as de novo Building Blocks to Bioengineer Living Tissues. Gels 2019; 5:E29. [PMID: 31121889 PMCID: PMC6630496 DOI: 10.3390/gels5020029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
In vitro tissues and 3D in vitro models have come of age [...].
Collapse
Affiliation(s)
- Andreas Blaeser
- Medical Textiles and Biofabrication, RWTH Aachen University, 52074 Aachen, Germany.
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Daniela F Duarte Campos
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
154
|
Göpfrich K, Haller B, Staufer O, Dreher Y, Mersdorf U, Platzman I, Spatz JP. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells. ACS Synth Biol 2019; 8:937-947. [PMID: 31042361 PMCID: PMC6528161 DOI: 10.1021/acssynbio.9b00034] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Here, we introduce
a one-pot method for the bottom-up assembly
of complex single- and multicompartment synthetic cells. Cellular
components are enclosed within giant unilamellar vesicles (GUVs),
produced at the milliliter scale directly from small unilamellar vesicles
(SUVs) or proteoliposomes with only basic laboratory equipment within
minutes. Toward this end, we layer an aqueous solution, containing
SUVs and all biocomponents, on top of an oil–surfactant mix.
Manual shaking induces the spontaneous formation of surfactant-stabilized
water-in-oil droplets with a spherical supported lipid bilayer at
their periphery. Finally, to release GUV-based synthetic cells from
the oil and the surfactant shell into the physiological environment,
we add an aqueous buffer and a droplet-destabilizing agent. We prove
that the obtained GUVs are unilamellar by reconstituting the pore-forming
membrane protein α-hemolysin and assess the membrane quality
with cryotransmission electron microscopy (cryoTEM), fluorescence
recovery after photobleaching (FRAP), and zeta-potential measurements
as well as confocal fluorescence imaging. We further demonstrate that
our GUV formation method overcomes key challenges of standard techniques,
offering high volumes, a flexible choice of lipid compositions and
buffer conditions, straightforward coreconstitution of proteins, and
a high encapsulation efficiency of biomolecules and even large cargo
including cells. We thereby provide a simple, robust, and broadly
applicable strategy to mass-produce complex multicomponent GUVs for
high-throughput testing in synthetic biology and biomedicine, which
can directly be implemented in laboratories around the world.
Collapse
Affiliation(s)
- Kerstin Göpfrich
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany
| | - Barbara Haller
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany
| | - Oskar Staufer
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany
| | - Yannik Dreher
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany
| | - Ulrike Mersdorf
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Jahnstraße 29, D 69120, Heidelberg, Germany
| | - Ilia Platzman
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany
| |
Collapse
|
155
|
Arrabito G, Cavaleri F, Porchetta A, Ricci F, Vetri V, Leone M, Pignataro B. Printing Life-Inspired Subcellular Scale Compartments with Autonomous Molecularly Crowded Confinement. ACTA ACUST UNITED AC 2019; 3:e1900023. [PMID: 32648672 DOI: 10.1002/adbi.201900023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/03/2019] [Indexed: 12/16/2022]
Abstract
A simple, rapid, and highly controlled platform to prepare life-inspired subcellular scale compartments by inkjet printing has been developed. These compartments consist of fL-scale aqueous droplets (few µm in diameter) incorporating biologically relevant molecular entities with programmed composition and concentration. These droplets are ink-jetted in nL mineral oil drop arrays allowing for lab-on-chip studies by fluorescence microscopy and fluorescence life time imaging. Once formed, fL-droplets are stable for several hours, thus giving the possibility of readily analyze molecular reactions and their kinetics and to verify molecular behavior and intermolecular interactions. Here, this platform is exploited to unravel the behavior of different molecular probes and biomolecular systems (DNA hairpins, enzymatic cascades, protein-ligand couples) within the compartments. The fL-scale size induces the formation of molecularly crowded confined shell structures (hundreds of nanometers in thickness) at the droplet surface, allowing discovery of specific features (e.g., heterogeneity, responsivity to molecular triggers) that are mediated by the intermolecular interactions in these peculiar environments. The presented results indicate the possibility of using this platform for designing nature-inspired confined reactors allowing for a deepened understanding of molecular confinement effects in living subcellular compartments.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Felicia Cavaleri
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Alessandro Porchetta
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Valeria Vetri
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Maurizio Leone
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| |
Collapse
|
156
|
Supramaniam P, Ces O, Salehi-Reyhani A. Microfluidics for Artificial Life: Techniques for Bottom-Up Synthetic Biology. MICROMACHINES 2019; 10:E299. [PMID: 31052344 PMCID: PMC6562628 DOI: 10.3390/mi10050299] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023]
Abstract
Synthetic biology is a rapidly growing multidisciplinary branch of science that exploits the advancement of molecular and cellular biology. Conventional modification of pre-existing cells is referred to as the top-down approach. Bottom-up synthetic biology is an emerging complementary branch that seeks to construct artificial cells from natural or synthetic components. One of the aims in bottom-up synthetic biology is to construct or mimic the complex pathways present in living cells. The recent, and rapidly growing, application of microfluidics in the field is driven by the central tenet of the bottom-up approach-the pursuit of controllably generating artificial cells with precisely defined parameters, in terms of molecular and geometrical composition. In this review we survey conventional methods of artificial cell synthesis and their limitations. We proceed to show how microfluidic approaches have been pivotal in overcoming these limitations and ushering in a new generation of complexity that may be imbued in artificial cells and the milieu of applications that result.
Collapse
Affiliation(s)
- Pashiini Supramaniam
- Department of Chemistry, White City Campus, Imperial College London, London SW7 2AZ, UK.
| | - Oscar Ces
- Department of Chemistry, White City Campus, Imperial College London, London SW7 2AZ, UK.
- FabriCELL, Imperial College London, London SW7 2AZ, UK.
| | - Ali Salehi-Reyhani
- FabriCELL, Imperial College London, London SW7 2AZ, UK.
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK.
| |
Collapse
|
157
|
Schaich M, Cama J, Al Nahas K, Sobota D, Sleath H, Jahnke K, Deshpande S, Dekker C, Keyser UF. An Integrated Microfluidic Platform for Quantifying Drug Permeation across Biomimetic Vesicle Membranes. Mol Pharm 2019; 16:2494-2501. [PMID: 30994358 DOI: 10.1021/acs.molpharmaceut.9b00086] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The low membrane permeability of candidate drug molecules is a major challenge in drug development, and insufficient permeability is one reason for the failure of antibiotic treatment against bacteria. Quantifying drug transport across specific pathways in living systems is challenging because one typically lacks knowledge of the exact lipidome and proteome of the individual cells under investigation. Here, we quantify drug permeability across biomimetic liposome membranes, with comprehensive control over membrane composition. We integrate the microfluidic octanol-assisted liposome assembly platform with an optofluidic transport assay to create a complete microfluidic total analysis system for quantifying drug permeability. Our system enables us to form liposomes with charged lipids mimicking the negative charge of bacterial membranes at physiological pH and salt concentrations, which proved difficult with previous liposome formation techniques. Furthermore, the microfluidic technique yields an order of magnitude more liposomes per experiment than previous assays. We demonstrate the feasibility of the assay by determining the permeability coefficient of norfloxacin and ciprofloxacin across biomimetic liposomes.
Collapse
Affiliation(s)
- Michael Schaich
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| | - Jehangir Cama
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K.,Living Systems Institute , University of Exeter , Stocker Road , Exeter EX4 4QD , U.K
| | - Kareem Al Nahas
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| | - Diana Sobota
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| | - Hannah Sleath
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| | - Kevin Jahnke
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K.,Department of Biophysical Chemistry , University of Heidelberg , Im Neuenheimer Feld 253 , D-69120 Heidelberg , Germany.,Department of Cellular Biophysics , Max Planck Institute for Medical Research , Jahnstraße 29 , D-69120 Heidelberg , Germany
| | - Siddharth Deshpande
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| | - Ulrich F Keyser
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| |
Collapse
|
158
|
Eilenberger C, Spitz S, Bachmann BEM, Ehmoser EK, Ertl P, Rothbauer M. The Usual Suspects 2019: of Chips, Droplets, Synthesis, and Artificial Cells. MICROMACHINES 2019; 10:E285. [PMID: 31035574 PMCID: PMC6562886 DOI: 10.3390/mi10050285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/03/2022]
Abstract
Synthetic biology aims to understand fundamental biological processes in more detail than possible for actual living cells. Synthetic biology can combat decomposition and build-up of artificial experimental models under precisely controlled and defined environmental and biochemical conditions. Microfluidic systems can provide the tools to improve and refine existing synthetic systems because they allow control and manipulation of liquids on a micro- and nanoscale. In addition, chip-based approaches are predisposed for synthetic biology applications since they present an opportune technological toolkit capable of fully automated high throughput and content screening under low reagent consumption. This review critically highlights the latest updates in microfluidic cell-free and cell-based protein synthesis as well as the progress on chip-based artificial cells. Even though progress is slow for microfluidic synthetic biology, microfluidic systems are valuable tools for synthetic biology and may one day help to give answers to long asked questions of fundamental cell biology and life itself.
Collapse
Affiliation(s)
- Christoph Eilenberger
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, A-1060 Vienna, Austria.
| | - Sarah Spitz
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, A-1060 Vienna, Austria.
| | - Barbara Eva Maria Bachmann
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, A-1200 Vienna, Austria.
| | - Eva Kathrin Ehmoser
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria.
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, A-1060 Vienna, Austria.
| | - Mario Rothbauer
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, A-1060 Vienna, Austria.
| |
Collapse
|
159
|
Stano P. Gene Expression Inside Liposomes: From Early Studies to Current Protocols. Chemistry 2019; 25:7798-7814. [DOI: 10.1002/chem.201806445] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA)University of Salento, Ecotekne 73100 Lecce Italy
| |
Collapse
|
160
|
Chang TMS. ARTIFICIAL CELL evolves into nanomedicine, biotherapeutics, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, cell/stem cell therapy, nanoparticles, liposomes, bioencapsulation, replicating synthetic cells, cell encapsulation/scaffold, biosorbent/immunosorbent haemoperfusion/plasmapheresis, regenerative medicine, encapsulated microbe, nanobiotechnology, nanotechnology. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:997-1013. [DOI: 10.1080/21691401.2019.1577885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Thomas Ming Swi Chang
- Artificial Cells and Organs Research Centre, Departments of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
161
|
Hürtgen D, Vogel SK, Schwille P. Cytoskeletal and Actin-Based Polymerization Motors and Their Role in Minimal Cell Design. ACTA ACUST UNITED AC 2019; 3:e1800311. [PMID: 32648711 DOI: 10.1002/adbi.201800311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/28/2019] [Indexed: 01/28/2023]
Abstract
Life implies motion. In cells, protein-based active molecular machines drive cell locomotion and intracellular transport, control cell shape, segregate genetic material, and split a cell in two parts. Key players among molecular machines driving these various cell functions are the cytoskeleton and motor proteins that convert chemical bound energy into mechanical work. Findings over the last decades in the field of in vitro reconstitutions of cytoskeletal and motor proteins have elucidated mechanistic details of these active protein systems. For example, a complex spatial and temporal interplay between the cytoskeleton and motor proteins is responsible for the translation of chemically bound energy into (directed) movement and force generation, which eventually governs the emergence of complex cellular functions. Understanding these mechanisms and the design principles of the cytoskeleton and motor proteins builds the basis for mimicking fundamental life processes. Here, a brief overview of actin, prokaryotic actin analogs, and motor proteins and their potential role in the design of a minimal cell from the bottom-up is provided.
Collapse
Affiliation(s)
- Daniel Hürtgen
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (Synmikro), D-35043, Marburg, Germany
| | - Sven Kenjiro Vogel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry , Am Klopferspitz 18, D-82152, Martinsried, Germany
| |
Collapse
|
162
|
Matsushita-Ishiodori Y, Hanczyc MM, Wang A, Szostak JW, Yomo T. Using Imaging Flow Cytometry to Quantify and Optimize Giant Vesicle Production by Water-in-oil Emulsion Transfer Methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2375-2382. [PMID: 30645943 DOI: 10.1021/acs.langmuir.8b03635] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many biologists, biochemists, and biophysicists study giant vesicles, which have a diameter of >1 μm, owing to their ease of characterization using standard optical methods. More recently, there has been interest in using giant vesicles as model systems for living cells and for the construction of artificial cells. In fact, there have been a number of reports about functionalizing giant vesicles using membrane-bound pore proteins and encapsulating biochemical reactions. Among the various methods for preparing giant vesicles, the water-in-oil emulsion transfer method is particularly well established. However, the giant vesicles prepared by this method have complex and heterogeneous properties, such as particle size and membrane structure. Here, we demonstrate the characterization of giant vesicles by imaging flow cytometry to provide quantitative and qualitative information about the vesicle products prepared by the water-in-oil emulsion transfer method. Through image-based analyses, several kinds of protocol byproducts, such as oil droplets and vesicles encapsulating no target molecules, were identified and successfully quantified. Further, the optimal agitation conditions for the water-in-oil emulsion transfer method were found from detailed analysis of imaging flow cytometry data. Our results indicate that a sonication-based water-in-oil emulsion transfer method exhibited a higher efficiency in producing giant vesicles, about 10 times or higher than that of vortex and rumble strip-based methods. It is anticipated that these approaches will be useful for fine-tuning giant vesicle production and subsequent applications.
Collapse
Affiliation(s)
- Yuka Matsushita-Ishiodori
- Institute of Biology and Information Science, School of Computer Science and Software Engineering, School of Life Sciences , East China Normal University , Shanghai 200062 , PR China
| | - Martin M Hanczyc
- Laboratory for Artificial Biology, Centre for Integrative Biology (CIBIO) , University of Trento , 38122 , Trento , Italy
- Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Anna Wang
- Department of Molecular Biology , Massachusetts General Hospital , Boston , Massachusetts 02114 , United States
- Center for Computational and Integrative Biology , Massachusetts General Hospital , Boston , Massachusetts 02114 , United States
| | - Jack W Szostak
- Department of Molecular Biology , Massachusetts General Hospital , Boston , Massachusetts 02114 , United States
- Department of Genetics , Harvard Medical School , Boston , Massachusetts 02115 , United States
- Center for Computational and Integrative Biology , Massachusetts General Hospital , Boston , Massachusetts 02114 , United States
| | - Tetsuya Yomo
- Institute of Biology and Information Science, School of Computer Science and Software Engineering, School of Life Sciences , East China Normal University , Shanghai 200062 , PR China
| |
Collapse
|
163
|
Ganzinger KA, Schwille P. More from less - bottom-up reconstitution of cell biology. J Cell Sci 2019; 132:132/4/jcs227488. [PMID: 30718262 DOI: 10.1242/jcs.227488] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ultimate goal of bottom-up synthetic biology is recreating life in its simplest form. However, in its quest to find the minimal functional units of life, this field contributes more than its main aim by also offering a range of tools for asking, and experimentally approaching, biological questions. This Review focusses on how bottom-up reconstitution has furthered our understanding of cell biology. Studying cell biological processes in vitro has a long tradition, but only recent technological advances have enabled researchers to reconstitute increasingly complex biomolecular systems by controlling their multi-component composition and their spatiotemporal arrangements. We illustrate this progress using the example of cytoskeletal processes. Our understanding of these has been greatly enhanced by reconstitution experiments, from the first in vitro experiments 70 years ago to recent work on minimal cytoskeleton systems (including this Special Issue of Journal of Cell Science). Importantly, reconstitution approaches are not limited to the cytoskeleton field. Thus, we also discuss progress in other areas, such as the shaping of biomembranes and cellular signalling, and prompt the reader to add their subfield of cell biology to this list in the future.
Collapse
Affiliation(s)
- Kristina A Ganzinger
- Physics of Cellular Interactions Group, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Petra Schwille
- Department Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
164
|
Di Russo J, Young JL, Balakrishnan A, Benk AS, Spatz JP. NTA-Co3+-His6 versus NTA-Ni2+-His6 mediated E-Cadherin surface immobilization enhances cellular traction. Biomaterials 2019; 192:171-178. [DOI: 10.1016/j.biomaterials.2018.10.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 01/09/2023]
|
165
|
Rampioni G, D'Angelo F, Leoni L, Stano P. Gene-Expressing Liposomes as Synthetic Cells for Molecular Communication Studies. Front Bioeng Biotechnol 2019; 7:1. [PMID: 30705882 PMCID: PMC6344414 DOI: 10.3389/fbioe.2019.00001] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/02/2019] [Indexed: 11/13/2022] Open
Abstract
The bottom-up branch of synthetic biology includes-among others-innovative studies that combine cell-free protein synthesis with liposome technology to generate cell-like systems of minimal complexity, often referred to as synthetic cells. The functions of this type of synthetic cell derive from gene expression, hence they can be programmed in a modular, progressive and customizable manner by means of ad hoc designed genetic circuits. This experimental scenario is rapidly expanding and synthetic cell research already counts numerous successes. Here, we present a review focused on the exchange of chemical signals between liposome-based synthetic cells (operating by gene expression) and biological cells, as well as between two populations of synthetic cells. The review includes a short presentation of the "molecular communication technologies," briefly discussing their promises and challenges.
Collapse
Affiliation(s)
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
166
|
Kim BJ, Lee JK, Choi IS. Iron gall ink revisited: hierarchical formation of Fe(iii)–tannic acid coacervate particles in microdroplets for protein condensation. Chem Commun (Camb) 2019; 55:2142-2145. [DOI: 10.1039/c8cc09507h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a hierarchical self-assembly approach to form Fe(iii)–tannic acid particles in microdroplets and its application to protein condensation.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell-Encapsulation Research
- Department of Chemistry
- KAIST
- Daejeon 34141
- Korea
| | - Jungkyu K. Lee
- Green-Nano Materials Research Center
- Department of Chemistry
- Kyungpook National University
- Daegu 41566
- Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research
- Department of Chemistry
- KAIST
- Daejeon 34141
- Korea
| |
Collapse
|
167
|
Stano P. Is Research on "Synthetic Cells" Moving to the Next Level? Life (Basel) 2018; 9:E3. [PMID: 30587790 PMCID: PMC6463193 DOI: 10.3390/life9010003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
"Synthetic cells" research focuses on the construction of cell-like models by using solute-filled artificial microcompartments with a biomimetic structure. In recent years this bottom-up synthetic biology area has considerably progressed, and the field is currently experiencing a rapid expansion. Here we summarize some technical and theoretical aspects of synthetic cells based on gene expression and other enzymatic reactions inside liposomes, and comment on the most recent trends. Such a tour will be an occasion for asking whether times are ripe for a sort of qualitative jump toward novel SC prototypes: is research on "synthetic cells" moving to a next level?
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento; Ecotekne-S.P. Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
168
|
Khmelinskaia A, Mücksch J, Petrov EP, Franquelim HG, Schwille P. Control of Membrane Binding and Diffusion of Cholesteryl-Modified DNA Origami Nanostructures by DNA Spacers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14921-14931. [PMID: 30253101 DOI: 10.1021/acs.langmuir.8b01850] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA origami nanotechnology is being increasingly used to mimic membrane-associated biophysical phenomena. Although a variety of DNA origami nanostructures has already been produced to target lipid membranes, the requirements for membrane binding have so far not been systematically assessed. Here, we used a set of elongated DNA origami structures with varying placement and number of cholesteryl-based membrane anchors to compare different strategies for their incorporation. Single and multiple cholesteryl anchors were attached to DNA nanostructures using single- and double-stranded DNA spacers of varying length. The produced DNA nanostructures were studied in terms of their membrane binding and diffusion. Our results show that the location and number of anchoring moieties play a crucial role for membrane binding of DNA nanostructures mainly if the cholesteryl anchors are in close proximity to the bulky DNA nanostructures. Moreover, the use of DNA spacers largely overcomes local steric hindrances and thus enhances membrane binding. Fluorescence correlation spectroscopy measurements demonstrate that the distinct physical properties of single- and double-stranded DNA spacers control the interaction of the amphipathic DNA nanostructures with lipid membranes. Thus, we provide a rational basis for the design of amphipathic DNA origami nanostructures to efficiently bind lipid membranes in various environments.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| | - Jonas Mücksch
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| | - Eugene P Petrov
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
- Faculty of Physics , Ludwig Maximilian University of Munich , Geschwister-Scholl-Platz 1 , 80539 Munich , Germany
| | - Henri G Franquelim
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| |
Collapse
|
169
|
Haller B, Göpfrich K, Schröter M, Janiesch JW, Platzman I, Spatz JP. Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems. LAB ON A CHIP 2018; 18:2665-2674. [PMID: 30070293 DOI: 10.1039/c8lc00582f] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this manuscript, we introduce a simple, off-the-shelf approach for the on-demand creation of giant unilamellar vesicles (GUVs) or multicompartment synthetic cell model systems in a high-throughput manner. To achieve this, we use microfluidics to encapsulate small unilamellar vesicles in block-copolymer surfactant-stabilized water-in-oil droplets. By tuning the charge of the inner droplet interface, adsorption of lipids can be either inhibited, leading to multicompartment systems, or induced, leading to the formation of droplet-stabilized GUVs. To control the charge density, we formed droplets using different molar ratios of an uncharged PEG-based fluorosurfactant and a negatively-charged PFPE carboxylic acid fluorosurfactant (Krytox). We systematically studied the transition from a multicompartment system to 3D-supported lipid bilayers as a function of lipid charge and Krytox concentration using confocal fluorescence microscopy, cryo-scanning electron microscopy and interfacial tension measurements. Moreover, we demonstrate a simple method to release GUVs from the surfactant shell and the oil phase into a physiological buffer - providing a remarkably high-yield approach for GUV formation. This widely applicable microfluidics-based technology will increase the scope of GUVs as adaptable cell-like compartments in bottom-up synthetic biology applications and beyond.
Collapse
Affiliation(s)
- Barbara Haller
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
170
|
Rideau E, Wurm FR, Landfester K. Giant polymersomes from non-assisted film hydration of phosphate-based block copolymers. Polym Chem 2018. [DOI: 10.1039/c8py00992a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polybutadiene-block-poly(ethyl ethylene phosphate) can reproducibly self-assemble in large number into giant unilamellar vesicles (GUVs) by non-assisted film hydration, representing a stepping stone for better liposomes – substitutes towards the generation of artificial cells.
Collapse
Affiliation(s)
- Emeline Rideau
- Max-Planck-Institut für Polymerforschung
- 55128 Mainz
- Germany
| | | | | |
Collapse
|
171
|
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 2018; 47:8572-8610. [DOI: 10.1039/c8cs00162f] [Citation(s) in RCA: 521] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Minimal cells: we compare and contrast liposomes and polymersomes for a bettera priorichoice and design of vesicles and try to understand the advantages and shortcomings associated with using one or the other in many different aspects (properties, synthesis, self-assembly, applications).
Collapse
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Rumiana Dimova
- Max Planck Institute for Colloids and Interfaces
- Wissenschaftspark Potsdam-Golm
- 14476 Potsdam
- Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry
- 82152 Martinsried
- Germany
| | | | | |
Collapse
|