151
|
An integrative review of methylation at the serotonin transporter gene and its dialogue with environmental risk factors, psychopathology and 5-HTTLPR. Neurosci Biobehav Rev 2016; 72:190-209. [PMID: 27880876 DOI: 10.1016/j.neubiorev.2016.11.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 11/24/2022]
Abstract
Gene-environment (G×E) interactions have largely been regarded as the root of many complex disorders, including several psychiatric disorders. In this regard, it has been hypothesized that epigenetic mechanisms may be the main mediators of such interactions. Of particular interest is the previously described interaction between psychosocial stress and genetic variability of the serotonin transporter gene (SLC6A4) in its polymorphic region 5-HTTLPR. Here we review the literature concerning SLC6A4 methylation in association with environmental, clinical or genetic variables. While SLC6A4 hypermethylation has typically been described to be independently associated with both early life stress and depressive disorders, only a few papers address whether methylation could mediate the interaction between stress and 5-HTTLPR in predicting psychopathological risk. Nevertheless, research preliminarily indicates a methylation-driven increased vulnerability of carriers of the short allele of 5-HTTLPR to psychiatric disorders when exposed to early stress or soon after exposure to stress.
Collapse
|
152
|
Abstract
In 2007, we proposed an explanation of delusion formation as aberrant prediction error-driven associative learning. Further, we argued that the NMDA receptor antagonist ketamine provided a good model for this process. Subsequently, we validated the model in patients with psychosis, relating aberrant prediction error signals to delusion severity. During the ensuing period, we have developed these ideas, drawing on the simple principle that brains build a model of the world and refine it by minimising prediction errors, as well as using it to guide perceptual inferences. While previously we focused on the prediction error signal per se, an updated view takes into account its precision, as well as the precision of prior expectations. With this expanded perspective, we see several possible routes to psychotic symptoms - which may explain the heterogeneity of psychotic illness, as well as the fact that other drugs, with different pharmacological actions, can produce psychotomimetic effects. In this article, we review the basic principles of this model and highlight specific ways in which prediction errors can be perturbed, in particular considering the reliability and uncertainty of predictions. The expanded model explains hallucinations as perturbations of the uncertainty mediated balance between expectation and prediction error. Here, expectations dominate and create perceptions by suppressing or ignoring actual inputs. Negative symptoms may arise due to poor reliability of predictions in service of action. By mapping from biology to belief and perception, the account proffers new explanations of psychosis. However, challenges remain. We attempt to address some of these concerns and suggest future directions, incorporating other symptoms into the model, building towards better understanding of psychosis.
Collapse
Affiliation(s)
| | | | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Cambridge, UK .,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
153
|
Jardri R, Hugdahl K, Hughes M, Brunelin J, Waters F, Alderson-Day B, Smailes D, Sterzer P, Corlett PR, Leptourgos P, Debbané M, Cachia A, Denève S. Are Hallucinations Due to an Imbalance Between Excitatory and Inhibitory Influences on the Brain? Schizophr Bull 2016; 42:1124-34. [PMID: 27261492 PMCID: PMC4988749 DOI: 10.1093/schbul/sbw075] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review from the International Consortium on Hallucinations Research intends to question the pertinence of the excitatory-to-inhibitory (E/I) imbalance hypothesis as a model for hallucinations. A large number of studies suggest that subtle impairments of the E/I balance are involved in neurological and psychiatric conditions, such as schizophrenia. Emerging evidence also points to a role of the E/I balance in maintaining stable perceptual representations, suggesting it may be a plausible model for hallucinations. In support, hallucinations have been linked to inhibitory deficits as shown with impairment of gamma-aminobutyric acid transmission, N-methyl-d-aspartate receptor plasticity, reductions in gamma-frequency oscillations, hyperactivity in sensory cortices, and cognitive inhibition deficits. However, the mechanisms by which E/I dysfunctions at the cellular level might relate to clinical symptoms and cognitive deficits remain unclear. Given recent data advances in the field of clinical neuroscience, it is now possible to conduct a synthesis of available data specifically related to hallucinations. These findings are integrated with the latest computational frameworks of hallucinations, and recommendations for future research are provided.
Collapse
Affiliation(s)
- Renaud Jardri
- Univ Lille, CNRS UMR 9193, SCALab (psyCHIC Team) & CHU Lille, Psychiatry Department (CURE), Lille, France;
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen; Department of Radiology, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Matthew Hughes
- Brain & Psychological Sciences Centre, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Jérôme Brunelin
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Université Laval, Québec City, Québec, Canada; Université Lyon 1, INSERM U1028 & CNRS 5292, Lyon Neuroscience Research Centre (ΨR2 Team), Centre Hospitalier Le Vinatier, Lyon, France
| | - Flavie Waters
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, and Clinical Research Centre, Graylands Health Campus, North Metropolitan Area Health Service Mental Health, Perth, Western Australia, Australia
| | | | - Dave Smailes
- School of Health and Social Sciences, Leeds Trinity University, Leeds, UK
| | - Philipp Sterzer
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universtätsmedizin Berlin, Berlin, Germany
| | - Philip R Corlett
- Department of Psychiatry, Yale University, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT
| | - Pantelis Leptourgos
- Group for Neural Theory, INSERM U960, Institute of Cognitive Studies, École Normale Supérieure, Paris, France
| | - Martin Debbané
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Arnaud Cachia
- Laboratoire de Psychologie du Développement et de l'Éducation de l'Enfant, UMR 8240, CNRS & Université Paris-Descartes (Sorbonne-Paris-Cité), Paris, France
| | - Sophie Denève
- Group for Neural Theory, INSERM U960, Institute of Cognitive Studies, École Normale Supérieure, Paris, France
| |
Collapse
|
154
|
Kuypers KPC, Riba J, de la Fuente Revenga M, Barker S, Theunissen EL, Ramaekers JG. Ayahuasca enhances creative divergent thinking while decreasing conventional convergent thinking. Psychopharmacology (Berl) 2016; 233:3395-403. [PMID: 27435062 PMCID: PMC4989012 DOI: 10.1007/s00213-016-4377-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Ayahuasca is a South American psychotropic plant tea traditionally used in Amazonian shamanism. The tea contains the psychedelic 5-HT2A receptor agonist N,N-dimethyltryptamine (DMT), plus β-carboline alkaloids with monoamine oxidase-inhibiting properties. Increasing evidence from anecdotal reports and open-label studies indicates that ayahuasca may have therapeutic effects in treatment of substance use disorders and depression. A recent study on the psychological effects of ayahuasca found that the tea reduces judgmental processing and inner reactivity, classic goals of mindfulness psychotherapy. Another psychological facet that could potentially be targeted by ayahuasca is creative divergent thinking. This mode of thinking can enhance and strengthen psychological flexibility by allowing individuals to generate new and effective cognitive, emotional, and behavioral strategies. The present study aimed to assess the potential effects of ayahuasca on creative thinking. METHODS We visited two spiritual ayahuasca workshops and invited participants to conduct creativity tests before and during the acute effects of ayahuasca. In total, 26 participants consented. Creativity tests included the "pattern/line meanings test" (PLMT) and the "picture concept test" (PCT), both assessing divergent thinking and the latter also assessing convergent thinking. RESULTS While no significant effects were found for the PLMT, ayahuasca intake significantly modified divergent and convergent thinking as measured by the PCT. While convergent thinking decreased after intake, divergent thinking increased. CONCLUSIONS The present data indicate that ayahuasca enhances creative divergent thinking. They suggest that ayahuasca increases psychological flexibility, which may facilitate psychotherapeutic interventions and support clinical trial initiatives.
Collapse
Affiliation(s)
- K P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - J Riba
- Human Experimental Neuropsychopharmacology, Sant Pau Institute of Biomedical Research, Barcelona, Spain
| | - M de la Fuente Revenga
- Human Experimental Neuropsychopharmacology, Sant Pau Institute of Biomedical Research, Barcelona, Spain
| | - S Barker
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - E L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
155
|
Nakagawa Y, Chiba K. Involvement of Neuroinflammation during Brain Development in Social Cognitive Deficits in Autism Spectrum Disorder and Schizophrenia. J Pharmacol Exp Ther 2016; 358:504-15. [PMID: 27384073 DOI: 10.1124/jpet.116.234476] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/05/2016] [Indexed: 03/08/2025] Open
Abstract
Development of social cognition, a unique and high-order function, depends on brain maturation from childhood to adulthood in humans. Autism spectrum disorder (ASD) and schizophrenia have similar social cognitive deficits, although age of onset in each disorder is different. Pathogenesis of these disorders is complex and contains several features, including genetic risk factors, environmental risk factors, and sites of abnormalities in the brain. Although several hypotheses have been postulated, they seem to be insufficient to explain how brain alterations associated with symptoms in these disorders develop at distinct developmental stages. Development of ASD appears to be related to cerebellar dysfunction and subsequent thalamic hyperactivation in early childhood. By contrast, schizophrenia seems to be triggered by thalamic hyperactivation in late adolescence, whereas hippocampal aberration has been possibly initiated in childhood. One of the possible culprits is metal homeostasis disturbances that can induce dysfunction of blood-cerebrospinal fluid barrier. Thalamic hyperactivation is thought to be induced by microglia-mediated neuroinflammation and abnormalities of intracerebral environment. Consequently, it is likely that the thalamic hyperactivation triggers dysregulation of the dorsolateral prefrontal cortex for lower brain regions related to social cognition. In this review, we summarize the brain aberration in ASD and schizophrenia and provide a possible mechanism underlying social cognitive deficits in these disorders based on their distinct ages of onset.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan
| | - Kenji Chiba
- Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan
| |
Collapse
|
156
|
Holloway T, Moreno JL, González-Maeso J. HSV-Mediated Transgene Expression of Chimeric Constructs to Study Behavioral Function of GPCR Heteromers in Mice. J Vis Exp 2016. [PMID: 27501227 DOI: 10.3791/53717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The heteromeric receptor complex between 5-HT2A and mGlu2 has been implicated in some of the behavioral phenotypes in mouse models of psychosis(1,2). Consequently, investigation of structural details of the interaction between 5-HT2A and mGlu2 affecting schizophrenia-related behaviors represents a powerful translational tool. As previously shown, the head-twitch response (HTR) in mice is elicited by hallucinogenic drugs and this behavioral response is absent in 5-HT2A knockout (KO) mice(3,4). Additionally, by conditionally expressing the 5-HT2A receptor only in cortex, it was demonstrated that 5-HT2A receptor-dependent signaling pathways on cortical pyramidal neurons are sufficient to elicit head-twitch behavior in response to hallucinogenic drugs(3). Finally, it has been shown that the head-twitch behavioral response induced by the hallucinogens DOI and lysergic acid diethylamide (LSD) is significantly decreased in mGlu2-KO mice(5). These findings suggest that mGlu2 is at least in part necessary for the 5-HT2A receptor-dependent psychosis-like behavioral effects induced by LSD-like drugs. However, this does not provide evidence as to whether the 5-HT2A-mGlu2 receptor complex is necessary for this behavioral phenotype. To address this question, herpes simplex virus (HSV) constructs to express either mGlu2 or mGlu2ΔTM4N (mGlu2/mGlu3 chimeric construct that does not form the 5-HT2A-mGlu2 receptor complex) in the frontal cortex of mGlu2-KO mice were used to examine whether this GPCR heteromeric complex is needed for the behavioral effects induced by LSD-like drugs(6).
Collapse
Affiliation(s)
- Terrell Holloway
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Jose L Moreno
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Javier González-Maeso
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai; Department of Neurology, Icahn School of Medicine at Mount Sinai; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; Department of Physiology and Biophysics, Virginia Commonwealth University Medical School;
| |
Collapse
|
157
|
Abstract
Most people who are regular consumers of psychoactive drugs are not drug addicts, nor will they ever become addicts. In neurobiological theories, non-addictive drug consumption is acknowledged only as a "necessary" prerequisite for addiction, but not as a stable and widespread behavior in its own right. This target article proposes a new neurobiological framework theory for non-addictive psychoactive drug consumption, introducing the concept of "drug instrumentalization." Psychoactive drugs are consumed for their effects on mental states. Humans are able to learn that mental states can be changed on purpose by drugs, in order to facilitate other, non-drug-related behaviors. We discuss specific "instrumentalization goals" and outline neurobiological mechanisms of how major classes of psychoactive drugs change mental states and serve non-drug-related behaviors. We argue that drug instrumentalization behavior may provide a functional adaptation to modern environments based on a historical selection for learning mechanisms that allow the dynamic modification of consummatory behavior. It is assumed that in order to effectively instrumentalize psychoactive drugs, the establishment of and retrieval from a drug memory is required. Here, we propose a new classification of different drug memory subtypes and discuss how they interact during drug instrumentalization learning and retrieval. Understanding the everyday utility and the learning mechanisms of non-addictive psychotropic drug use may help to prevent abuse and the transition to drug addiction in the future.
Collapse
|
158
|
|
159
|
Halberstadt AL. Behavioral and pharmacokinetic interactions between monoamine oxidase inhibitors and the hallucinogen 5-methoxy-N,N-dimethyltryptamine. Pharmacol Biochem Behav 2016; 143:1-10. [PMID: 26780349 PMCID: PMC5403252 DOI: 10.1016/j.pbb.2016.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 11/08/2015] [Accepted: 01/14/2016] [Indexed: 01/13/2023]
Abstract
Monoamine oxidase inhibitors (MAOIs) are often ingested together with tryptamine hallucinogens, but relatively little is known about the consequences of their combined use. We have shown previously that monoamine oxidase-A (MAO-A) inhibitors alter the locomotor profile of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) in rats, and enhance its interaction with 5-HT2A receptors. The goal of the present studies was to investigate the mechanism for the interaction between 5-MeO-DMT and MAOIs, and to determine whether other behavioral responses to 5-MeO-DMT are similarly affected. Hallucinogens disrupt prepulse inhibition (PPI) in rats, an effect typically mediated by 5-HT2A activation. 5-MeO-DMT also disrupts PPI but the effect is primarily attributable to 5-HT1A activation. The present studies examined whether an MAOI can alter the respective contributions of 5-HT1A and 5-HT2A receptors to the effects of 5-MeO-DMT on PPI. A series of interaction studies using the 5-HT1A antagonist WAY-100,635 and the 5-HT2A antagonist MDL 11,939 were performed to assess the respective contributions of these receptors to the behavioral effects of 5-MeO-DMT in rats pretreated with an MAOI. The effects of MAO-A inhibition on the pharmacokinetics of 5-MeO-DMT and its metabolism to bufotenine were assessed using liquid chromatography-electrospray ionization-selective reaction monitoring-tandem mass spectrometry (LC-ESI-SRM-MS/MS). 5-MeO-DMT (1mg/kg) had no effect on PPI when tested 45-min post-injection but disrupted PPI in animals pretreated with the MAO-A inhibitor clorgyline or the MAO-A/B inhibitor pargyline. The combined effect of 5-MeO-DMT and pargyline on PPI was antagonized by pretreatment with either WAY-100,635 or MDL 11,939. Inhibition of MAO-A increased the level of 5-MeO-DMT in plasma and whole brain, but had no effect on the conversion of 5-MeO-DMT to bufotenine, which was found to be negligible. The present results confirm that 5-MeO-DMT can disrupt PPI by activating 5-HT2A, and indicate that MAOIs alter 5-MeO-DMT pharmacodynamics by increasing its accumulation in the central nervous system.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| |
Collapse
|
160
|
Pokorny T, Preller KH, Kraehenmann R, Vollenweider FX. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience. Eur Neuropsychopharmacol 2016; 26:756-66. [PMID: 26875114 DOI: 10.1016/j.euroneuro.2016.01.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/08/2015] [Accepted: 01/15/2016] [Indexed: 11/18/2022]
Abstract
The mixed serotonin (5-HT) 1A/2A/2B/2C/6/7 receptor agonist psilocybin dose-dependently induces an altered state of consciousness (ASC) that is characterized by changes in sensory perception, mood, thought, and the sense of self. The psychological effects of psilocybin are primarily mediated by 5-HT2A receptor activation. However, accumulating evidence suggests that 5-HT1A or an interaction between 5-HT1A and 5-HT2A receptors may contribute to the overall effects of psilocybin. Therefore, we used a double-blind, counterbalanced, within-subject design to investigate the modulatory effects of the partial 5-HT1A agonist buspirone (20mg p.o.) and the non-hallucinogenic 5-HT2A/1A agonist ergotamine (3mg p.o.) on psilocybin-induced (170 µg/kg p.o.) psychological effects in two groups (n=19, n=17) of healthy human subjects. Psychological effects were assessed using the Altered State of Consciousness (5D-ASC) rating scale. Buspirone significantly reduced the 5D-ASC main scale score for Visionary Restructuralization (VR) (p<0.001), which was mostly driven by a reduction of the VR item cluster scores for elementary and complex visual hallucinations. Further, buspirone also reduced the main scale score for Oceanic Boundlessness (OB) including derealisation and depersonalisation phenomena at a trend level (p=0.062), whereas ergotamine did not show any effects on the psilocybin-induced 5D-ASC main scale scores. The present finding demonstrates that buspirone exerts inhibitory effects on psilocybin-induced effects, presumably via 5-HT1A receptor activation, an interaction between 5-HT1A and 5-HT2A receptors, or both. The data suggest that the modulation of 5-HT1A receptor activity may be a useful target in the treatment of visual hallucinations in different psychiatric and neurological diseases.
Collapse
Affiliation(s)
- Thomas Pokorny
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Heffter Research Center Zurich, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Katrin H Preller
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Heffter Research Center Zurich, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Rainer Kraehenmann
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Heffter Research Center Zurich, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Franz X Vollenweider
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Heffter Research Center Zurich, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
161
|
Abstract
Psychedelics (serotonergic hallucinogens) are powerful psychoactive substances that alter perception and mood and affect numerous cognitive processes. They are generally considered physiologically safe and do not lead to dependence or addiction. Their origin predates written history, and they were employed by early cultures in many sociocultural and ritual contexts. After the virtually contemporaneous discovery of (5R,8R)-(+)-lysergic acid-N,N-diethylamide (LSD)-25 and the identification of serotonin in the brain, early research focused intensively on the possibility that LSD and other psychedelics had a serotonergic basis for their action. Today there is a consensus that psychedelics are agonists or partial agonists at brain serotonin 5-hydroxytryptamine 2A receptors, with particular importance on those expressed on apical dendrites of neocortical pyramidal cells in layer V. Several useful rodent models have been developed over the years to help unravel the neurochemical correlates of serotonin 5-hydroxytryptamine 2A receptor activation in the brain, and a variety of imaging techniques have been employed to identify key brain areas that are directly affected by psychedelics. Recent and exciting developments in the field have occurred in clinical research, where several double-blind placebo-controlled phase 2 studies of psilocybin-assisted psychotherapy in patients with cancer-related psychosocial distress have demonstrated unprecedented positive relief of anxiety and depression. Two small pilot studies of psilocybin-assisted psychotherapy also have shown positive benefit in treating both alcohol and nicotine addiction. Recently, blood oxygen level-dependent functional magnetic resonance imaging and magnetoencephalography have been employed for in vivo brain imaging in humans after administration of a psychedelic, and results indicate that intravenously administered psilocybin and LSD produce decreases in oscillatory power in areas of the brain's default mode network.
Collapse
Affiliation(s)
- David E Nichols
- Eschelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
162
|
Halberstadt AL, Sindhunata IS, Scheffers K, Flynn AD, Sharp RF, Geyer MA, Young JW. Effect of 5-HT2A and 5-HT2C receptors on temporal discrimination by mice. Neuropharmacology 2016; 107:364-375. [PMID: 27020041 DOI: 10.1016/j.neuropharm.2016.03.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 11/25/2022]
Abstract
Timing deficits are observed in patients with schizophrenia. Serotonergic hallucinogens can also alter the subjective experience of time. Characterizing the mechanism through which the serotonergic system regulates timing will increase our understanding of the linkage between serotonin (5-HT) and schizophrenia, and will provide insight into the mechanism of action of hallucinogens. We investigated whether interval timing in mice is altered by hallucinogens and other 5-HT2 receptor ligands. C57BL/6J mice were trained to perform a discrete-trials temporal discrimination task. In the discrete-trials task, mice were presented with two levers after a variable interval. Responding on lever A was reinforced if the interval was <6.5 s, and responding on lever B was reinforced if the interval was >6.5 s. A 2-parameter logistic function was fitted to the proportional choice for lever B (%B responding), yielding estimates of the indifference point (T50) and the Weber fraction (a measure of timing precision). The 5-HT2A antagonist M100907 increased T50, whereas the 5-HT2C antagonist SB-242,084 reduced T50. The results indicate that 5-HT2A and 5-HT2C receptors have countervailing effects on the speed of the internal pacemaker. The hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI; 3 mg/kg IP), a 5-HT2 agonist, flattened the response curve at long stimulus intervals and shifted it to the right, causing both T50 and the Weber fraction to increase. The effect of DOI was antagonized by M100907 (0.03 mg/kg SC) but was unaffected by SB-242,084 (0.1 mg/kg SC). Similar to DOI, the selective 5-HT2A agonist 25CN-NBOH (6 mg/kg SC) reduced %B responding at long stimulus intervals, and increased T50 and the Weber fraction. These results demonstrate that hallucinogens alter temporal perception in mice, effects that are mediated by the 5-HT2A receptor. It appears that 5-HT regulates temporal perception, suggesting that altered serotonergic signaling may contribute to the timing deficits observed in schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| | - Ivan S Sindhunata
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Kees Scheffers
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Aaron D Flynn
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Richard F Sharp
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
163
|
Qiao Y, Zhang L, He S, Wen H, Yu YM, Cao CH, Li HF. Plasma metabonomics study of first-Episode schizophrenia treated with olanzapine in female patients. Neurosci Lett 2016; 617:270-6. [DOI: 10.1016/j.neulet.2016.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
|
164
|
Patrich E, Piontkewitz Y, Peretz A, Weiner I, Attali B. Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model. Brain Behav Immun 2016; 51:240-251. [PMID: 26327125 DOI: 10.1016/j.bbi.2015.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/20/2015] [Accepted: 08/27/2015] [Indexed: 11/28/2022] Open
Abstract
Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits.
Collapse
Affiliation(s)
- Eti Patrich
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Department of Psychology, Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Piontkewitz
- Strauss Center for Computational Neuroimaging, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ina Weiner
- Department of Psychology, Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
165
|
Kalueff AV, Echevarria DJ, Homechaudhuri S, Stewart AM, Collier AD, Kaluyeva AA, Li S, Liu Y, Chen P, Wang J, Yang L, Mitra A, Pal S, Chaudhuri A, Roy A, Biswas M, Roy D, Podder A, Poudel MK, Katare DP, Mani RJ, Kyzar EJ, Gaikwad S, Nguyen M, Song C. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:297-309. [PMID: 26372090 DOI: 10.1016/j.aquatox.2015.08.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 05/25/2023]
Abstract
Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Chemical-Technological Institute and Institute of Natural Sciences, Ural Federal University, Ekaterinburg 620002, Russia.
| | - David J Echevarria
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Sumit Homechaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adam Michael Stewart
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Adam D Collier
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | | | - Shaomin Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Yingcong Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Peirong Chen
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - JiaJia Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Lei Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Anisa Mitra
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Subharthi Pal
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adwitiya Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anwesha Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Missidona Biswas
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Dola Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anupam Podder
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Manoj K Poudel
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Deepshikha P Katare
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Ruchi J Mani
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Evan J Kyzar
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, 1601 W Taylor St., Chicago, IL 60612, USA
| | - Siddharth Gaikwad
- Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| | - Michael Nguyen
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
166
|
Papesh MA, Hurley LM. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors. Hear Res 2015; 332:121-136. [PMID: 26688176 DOI: 10.1016/j.heares.2015.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022]
Abstract
The neuromodulator serotonin is found throughout the auditory system from the cochlea to the cortex. Although effects of serotonin have been reported at the level of single neurons in many brainstem nuclei, how these effects correspond to more integrated measures of auditory processing has not been well-explored. In the present study, we aimed to characterize the effects of serotonin on far-field auditory brainstem responses (ABR) across a wide range of stimulus frequencies and intensities. Using a mouse model, we investigated the consequences of systemic serotonin depletion, as well as the selective stimulation and suppression of the 5-HT1 and 5-HT2 receptors, on ABR latency and amplitude. Stimuli included tone pips spanning four octaves presented over a forty dB range. Depletion of serotonin reduced the ABR latencies in Wave II and later waves, suggesting that serotonergic effects occur as early as the cochlear nucleus. Further, agonists and antagonists of specific serotonergic receptors had different profiles of effects on ABR latencies and amplitudes across waves and frequencies, suggestive of distinct effects of these agents on auditory processing. Finally, most serotonergic effects were more pronounced at lower ABR frequencies, suggesting larger or more directional modulation of low-frequency processing. This is the first study to describe the effects of serotonin on ABR responses across a wide range of stimulus frequencies and amplitudes, and it presents an important step in understanding how serotonergic modulation of auditory brainstem processing may contribute to modulation of auditory perception.
Collapse
Affiliation(s)
- Melissa A Papesh
- Indiana University, Department of Speech and Hearing Sciences, 200 South Jordan Avenue, Bloomington, IN 47405, USA.
| | - Laura M Hurley
- Indiana University, Department of Biology, Center for the Integrative Study of Animal Behavior, 1001 E. Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
167
|
Abstract
OBJECTIVE In this case report we attempt to emphasize the unfamiliar link between trazodone and relapse of psychotic symptoms. METHOD Case report and literature review of relevant papers. RESULTS We report a case of a 78-year-old woman with an established diagnosis of paranoid schizophrenia who has experienced an exacerbation of positive psychotic symptoms following initiation of 50 mg dailydose of trazodone. We noted that psychotic symptoms abated following discontinuation of trazodone. CONCLUSION Trazodone use in patients in remission from schizophrenia may be associated with relapse of psychotic symptoms and caution is required.
Collapse
|
168
|
|
169
|
Acute Effects of Lysergic Acid Diethylamide in Healthy Subjects. Biol Psychiatry 2015; 78:544-53. [PMID: 25575620 DOI: 10.1016/j.biopsych.2014.11.015] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/28/2014] [Accepted: 11/11/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND After no research in humans for >40 years, there is renewed interest in using lysergic acid diethylamide (LSD) in clinical psychiatric research and practice. There are no modern studies on the subjective and autonomic effects of LSD, and its endocrine effects are unknown. In animals, LSD disrupts prepulse inhibition (PPI) of the acoustic startle response, and patients with schizophrenia exhibit similar impairments in PPI. However, no data are available on the effects of LSD on PPI in humans. METHODS In a double-blind, randomized, placebo-controlled, crossover study, LSD (200 μg) and placebo were administered to 16 healthy subjects (8 women, 8 men). Outcome measures included psychometric scales; investigator ratings; PPI of the acoustic startle response; and autonomic, endocrine, and adverse effects. RESULTS Administration of LSD to healthy subjects produced pronounced alterations in waking consciousness that lasted 12 hours. The predominant effects induced by LSD included visual hallucinations, audiovisual synesthesia, and positively experienced derealization and depersonalization phenomena. Subjective well-being, happiness, closeness to others, openness, and trust were increased by LSD. Compared with placebo, LSD decreased PPI. LSD significantly increased blood pressure, heart rate, body temperature, pupil size, plasma cortisol, prolactin, oxytocin, and epinephrine. Adverse effects produced by LSD completely subsided within 72 hours. No severe acute adverse effects were observed. CONCLUSIONS In addition to marked hallucinogenic effects, LSD exerts methylenedioxymethamphetamine-like empathogenic mood effects that may be useful in psychotherapy. LSD altered sensorimotor gating in a human model of psychosis, supporting the use of LSD in translational psychiatric research. In a controlled clinical setting, LSD can be used safely, but it produces significant sympathomimetic stimulation.
Collapse
|
170
|
Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol Ther 2015; 154:21-35. [PMID: 26129625 DOI: 10.1016/j.pharmthera.2015.06.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/25/2015] [Indexed: 02/07/2023]
|
171
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
172
|
Ip FCF, Fu WY, Cheng EYL, Tong EPS, Lok KC, Liang Y, Ye WC, Ip NY. Anemoside A3 Enhances Cognition through the Regulation of Synaptic Function and Neuroprotection. Neuropsychopharmacology 2015; 40:1877-87. [PMID: 25649278 PMCID: PMC4839511 DOI: 10.1038/npp.2015.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/16/2015] [Accepted: 01/21/2015] [Indexed: 01/22/2023]
Abstract
Compounds that have the ability to both strengthen synaptic function and facilitate neuroprotection are valuable cognitive enhancers that may improve health and quality of life, as well as retard age-related cognitive deterioration. Medicinal plants are an abundant source of potential cognitive enhancers. Here we report that anemoside A3 (AA3) isolated from Pulsatilla chinensis modulates synaptic connectivity in circuits central to memory enhancement. AA3 specifically modulates the function of AMPA-type glutamate receptors (AMPARs) by increasing serine phosphorylation within the GluA1 subunit, which is a modification required for the trafficking of GluA1-containing AMPARs to synapses. Furthermore, AA3 administration activates several synaptic signaling molecules and increases protein expressions of the neurotrophin brain-derived neurotrophic factor and monoamine neurotransmitters in the mouse hippocampus. In addition to acting through AMPARs, AA3 also acts as a non-competitive NMDA receptor (NMDAR) modulator with a neuroprotective capacity against ischemic brain injury and overexcitation in rats. These findings collectively suggest that AA3 possesses a unique ability to modulate the functions of both AMPARs and NMDARs. Concordantly, behavioral studies indicate that AA3 not only facilitates hippocampal long-term potentiation but also enhances spatial reference memory formation in mice. These multifaceted roles suggest that AA3 is an attractive candidate for further development as a cognitive enhancer capable of alleviating memory dysfunctions associated with aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fanny CF Ip
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China,HKUST–Jinan Joint Laboratory of Innovative Drug Discovery, Jinan University, Guangzhou, China
| | - Wing-Yu Fu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Elaine YL Cheng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Estella PS Tong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ka-Chun Lok
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yan Liang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wen-Cai Ye
- HKUST–Jinan Joint Laboratory of Innovative Drug Discovery, Jinan University, Guangzhou, China,Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China,Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China, Tel: +8620 8522 0936, Fax: 8620-8522-1559, E-mail:
| | - Nancy Y Ip
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China,HKUST–Jinan Joint Laboratory of Innovative Drug Discovery, Jinan University, Guangzhou, China,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 000, China, Tel: +852 2358 7269, Fax: +852 2358 1464, E-mail:
| |
Collapse
|
173
|
Weber T, Vogt MA, Gartside SE, Berger SM, Lujan R, Lau T, Herrmann E, Sprengel R, Bartsch D, Gass P. Adult AMPA GLUA1 receptor subunit loss in 5-HT neurons results in a specific anxiety-phenotype with evidence for dysregulation of 5-HT neuronal activity. Neuropsychopharmacology 2015; 40:1471-84. [PMID: 25547714 PMCID: PMC4397405 DOI: 10.1038/npp.2014.332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 12/25/2022]
Abstract
Both the glutamatergic and serotonergic (5-HT) systems are implicated in the modulation of mood and anxiety. Descending cortical glutamatergic neurons regulate 5-HT neuronal activity in the midbrain raphe nuclei through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. To analyze the functional role of GLUA1-containing AMPA receptors in serotonergic neurons, we used the Cre-ERT2/loxP-system for the conditional inactivation of the GLUA1-encoding Gria1 gene selectively in 5-HT neurons of adult mice. These Gria1(5-HT-/-) mice exhibited a distinct anxiety phenotype but showed no alterations in locomotion, depression-like behavior, or learning and memory. Increased anxiety-related behavior was associated with significant decreases in tryptophan hydroxylase 2 (TPH2) expression and activity, and subsequent reductions in tissue levels of 5-HT, its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine in the raphe nuclei. However, TPH2 expression and activity as well as monoamine levels were unchanged in the projection areas of 5-HT neurons. Extracellular electrophysiological recordings of 5-HT neurons revealed that, while α1-adrenoceptor-mediated excitation was unchanged, excitatory responses to AMPA were enhanced and the 5-HT1A autoreceptor-mediated inhibitory response to 5-HT was attenuated in Gria1(5-HT-/-) mice. Our data show that a loss of GLUA1 protein in 5-HT neurons enhances AMPA receptor function and leads to multiple local molecular and neurochemical changes in the raphe nuclei that dysregulate 5-HT neuronal activity and induce anxiety-like behavior.
Collapse
Affiliation(s)
- Tillmann Weber
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany,Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany,AHG Klinik Wilhelmsheim, 71570 Oppenweiler, Germany. Tel: +49 0 7193 52215, Fax: +49 0 7193 52245, E-mail:
| | - Miriam A Vogt
- Research Group Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sarah E Gartside
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Stefan M Berger
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rafael Lujan
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Thorsten Lau
- Biochemical Laboratory, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/HeidelbergUniversity, Mannheim, Germany
| | - Elke Herrmann
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Peter Gass
- Research Group Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| |
Collapse
|
174
|
Majić T, Schmidt TT, Gallinat J. Peak experiences and the afterglow phenomenon: when and how do therapeutic effects of hallucinogens depend on psychedelic experiences? J Psychopharmacol 2015; 29:241-53. [PMID: 25670401 DOI: 10.1177/0269881114568040] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interest in the therapeutic potential of psychedelic substances has recently resumed. During an early phase of human psychedelic research, their therapeutic application in different pathologies had been suggested, and the first evidence for efficacy was provided. The range of recent clinical applications of psychedelics spans from cluster headaches and obsessive-compulsive disorder to addiction and the treatment of fear and anxiety in patients suffering from terminal illness, indicating potentially different therapeutic mechanisms. A variety of approaches in psychotherapy emphasize subjective experiences, such as so-called peak experiences or afterglow phenomena, as differentially mediating therapeutic action. This review aims to re-evaluate earlier and recent concepts of how psychedelic substances may exert beneficial effects. After a short outline of neurophenomenological aspects, we discuss different approaches to how psychedelics are used in psychotherapy. Finally, we summarize evidence for the relationship between subjective experiences and therapeutic success. While the distinction between pharmacological and psychological action obviously cannot be clear-cut, they do appear to contribute differently from each other when their effects are compared with regard to pathologies.
Collapse
Affiliation(s)
- Tomislav Majić
- Clinic for Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany
| | - Timo T Schmidt
- Neurocomputation and Neuroimaging Unit, Freie Universität, Berlin, Germany Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Jürgen Gallinat
- Clinic for Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany Department for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
175
|
Abstract
Schizophrenia is a complex mental health disorder with positive, negative and cognitive symptom domains. Approximately one third of patients are resistant to currently available medication. New therapeutic targets and a better understanding of the basic biological processes that drive pathogenesis are needed in order to develop therapies that will improve quality of life for these patients. Several drugs that act on neurotransmitter systems in the brain have been suggested to model aspects of schizophrenia in animals and in man. In this paper, we selectively review findings from dopaminergic, glutamatergic, serotonergic, cannabinoid, GABA, cholinergic and kappa opioid pharmacological drug models to evaluate their similarity to schizophrenia. Understanding the interactions between these different neurotransmitter systems and their relationship with symptoms will be an important step towards building a coherent hypothesis for the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Hannah Steeds
- Imperial College London, Division of Brain Sciences, Du Cane Road, London W12 0NN, UK
| | | | - James M Stone
- King's College London, Institute of Psychiatry Psychology and Neuroscience, De Crespigny Park, London SE5 8AF, UK, Imperial College London, Division of Brain Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
176
|
Kim JH, Son YD, Kim JH, Choi EJ, Lee SY, Lee JE, Cho ZH, Kim YB. Serotonin transporter availability in thalamic subregions in schizophrenia: a study using 7.0-T MRI with [(11)C]DASB high-resolution PET. Psychiatry Res 2015; 231:50-7. [PMID: 25465315 DOI: 10.1016/j.pscychresns.2014.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/23/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
Abstract
The serotonin transporter (SERT) is an integral protein that provides an index of serotonergic innervation. Until recently, few studies have investigated SERT binding in thalamic subregions in schizophrenia. The purpose of this study was to examine SERT availability in thalamic subdivisions (anterior nucleus, mediodorsal nucleus, and pulvinar) using 7.0-T magnetic resonance imaging (MRI) and high-resolution positron emission tomography (PET) with (11)C-3-amino-4-(2-dimethylaminomethylphenylthio)benzonitrile ([(11)C]DASB) in schizophrenia. Antipsychotic-free patients with schizophrenia (n=12) and healthy controls (n=15) underwent PET and MRI scans. For SERT availability, the binding potential with respect to non-displaceable compartment (BPND) was derived using the simplified reference tissue model (SRTM2). The analysis revealed that there were no significant differences in SERT availability between the two groups. In patients with schizophrenia, the severity of negative symptoms had a negative correlation with SERT availability in the anterior nucleus of the left thalamus. The present study did not reveal significant differences in SERT availability in thalamic subdivisions between patients with schizophrenia and control subjects. The association of SERT availability in the anterior nucleus with negative symptoms may suggest a role for the anterior thalamic nucleus in the pathophysiology of symptoms of schizophrenia. The ultra-high resolution imaging system could be an important asset for in vivo psychiatric research by combining structural and molecular information.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Department of Psychiatry, Gil Medical Center, Gachon University, Incheon, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea; Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Jeong-Hee Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Eun-Jung Choi
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea; Department of Radiological Science, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Jee Eun Lee
- Gachon University Graduate School of Medicine, Incheon, Republic of Korea
| | - Zang-Hee Cho
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Young-Bo Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea; Department of Neurosurgery, Gil Medical Center, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
177
|
Abstract
The quantification of unconditioned motoric activity is one of the oldest and most commonly utilized tools in behavioral studies. Although typically measured in reference to psychiatric disorders, e.g., amphetamine-induced hyperactivity used as a model of schizophrenia, bipolar disorder (BD), and Tourette's syndrome, the motoric behavior of psychiatric patients had not been quantified similarly to rodents until recently. The rodent behavioral pattern monitor (BPM) was reverse-translated for use in humans, providing the quantification of not only motoric activity but also the locomotor exploratory profile of various psychiatric populations. This measurement includes the quantification of specific exploration and locomotor patterns. As an example, patients with BD, schizophrenia, and those with history of methamphetamine dependence exhibited unique locomotor profiles. It was subsequently determined that reducing dopamine transporter function selectively recreated the locomotor profile of BD mania patients and not any other patient population. Hence, multivariate locomotor profiling offers a first-step approach toward understanding the neural mechanism(s) underlying abnormal behavior in patients with psychiatric disorders. Advances in wearable technology will undoubtedly enable similar multivariate assessments of exploratory and locomotor behavior in "real-world" contexts. Furthermore, trans-diagnostic studies of locomotor activity profiles will inform about essential brain-based functions that cut across diagnostic nosologies.
Collapse
|
178
|
Kumari V, Ettinger U, Lee SE, Deuschl C, Anilkumar AP, Schmechtig A, Corr PJ, ffytche DH, Williams SCR. Common and distinct neural effects of risperidone and olanzapine during procedural learning in schizophrenia: a randomised longitudinal fMRI study. Psychopharmacology (Berl) 2015; 232:3135-47. [PMID: 25980483 PMCID: PMC4534487 DOI: 10.1007/s00213-015-3959-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/05/2015] [Indexed: 11/05/2022]
Abstract
RATIONALE Most cognitive domains show only minimal improvement following typical or atypical antipsychotic treatments in schizophrenia, and some may even worsen. One domain that may worsen is procedural learning, an implicit memory function relying mainly on the integrity of the fronto-striatal system. OBJECTIVES We investigated whether switching to atypical antipsychotics would improve procedural learning and task-related neural activation in patients on typical antipsychotics. Furthermore, we explored the differential effects of the atypical antipsychotics risperidone and olanzapine. METHODS Thirty schizophrenia patients underwent functional magnetic resonance imaging during a 5-min procedural (sequence) learning task on two occasions: at baseline and 7-8 weeks later. Of 30 patients, 10 remained on typical antipsychotics, and 20 were switched randomly in equal numbers to receive either olanzapine (10-20 mg) or risperidone (4-8 mg) for 7-8 weeks. RESULTS At baseline, patients (all on typical antipsychotics) showed no procedural learning. At follow-up, patients who remained on typical antipsychotics continued to show a lack of procedural learning, whereas those switched to atypical antipsychotics displayed significant procedural learning (p = 0.001) and increased activation in the superior-middle frontal gyrus, anterior cingulate and striatum (cluster-corrected p < 0.05). These neural effects were present as a linear increase over five successive 30-s blocks of sequenced trials. A switch to either risperidone or olanzapine resulted in comparable performance but with both overlapping and distinct task-related activations. CONCLUSIONS Atypical antipsychotics restore procedural learning deficits and associated neural activity in schizophrenia. Furthermore, different atypical antipsychotics produce idiosyncratic task-related neural activations, and this specificity may contribute to their differential long-term clinical profiles.
Collapse
Affiliation(s)
- Veena Kumari
- Department of Psychology, P078, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK,
| | | | - Seoung Eun Lee
- Department of Psychology, P078, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Christine Deuschl
- Department of Psychology, P078, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | | | - Anne Schmechtig
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | | | - Dominic H. ffytche
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Steven C. R. Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
179
|
Broadstock M, Ballard C, Corbett A. Novel pharmaceuticals in the treatment of psychosis in Parkinson’s disease. Expert Rev Clin Pharmacol 2014; 7:779-86. [DOI: 10.1586/17512433.2014.966814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
180
|
Stephens EK, Avesar D, Gulledge AT. Activity-dependent serotonergic excitation of callosal projection neurons in the mouse prefrontal cortex. Front Neural Circuits 2014; 8:97. [PMID: 25206322 PMCID: PMC4144257 DOI: 10.3389/fncir.2014.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/29/2014] [Indexed: 12/20/2022] Open
Abstract
Layer 5 pyramidal neurons (L5PNs) in the mouse prefrontal cortex respond to serotonin (5-HT) according to their long-distance axonal projections; 5-HT1A (1A) receptors mediate inhibitory responses in corticopontine (CPn) L5PNs, while 5-HT2A (2A) receptors can enhance action potential (AP) output in callosal/commissural (COM) L5PNs, either directly (in “COM-excited” neurons), or following brief 1A-mediated inhibition (in “COM-biphasic” neurons). Here we compare the impact of 5-HT on the excitability of CPn and COM L5PNs experiencing variable excitatory drive produced by current injection (DC current or simulated synaptic current) or with exogenous glutamate. 5-HT delivered at resting membrane potentials, or paired with subthreshold depolarizing input, hyperpolarized CPn and COM-biphasic L5PNs and failed to promote AP generation in COM-excited L5PNs. Conversely, when paired with suprathreshold excitatory drive generating multiple APs, 5-HT suppressed AP output in CPn L5PNs, enhanced AP generation in COM-excited L5PNs, and generated variable responses in COM-biphasic L5PNs. While COM-excited neurons failed to respond to 5-HT in the presence of a 2A receptor antagonist, 32% of CPn neurons exhibited 2A-dependent excitation following blockade of 1A receptors. The presence of pharmacologically revealed 2A receptors in CPn L5PNs was correlated with the duration of 1A-mediated inhibition, yet biphasic excitatory responses to 5-HT were never observed, even when 5-HT was paired with strong excitatory drive. Our results suggest that 2A receptors selectively amplify the output of COM L5PNs experiencing suprathreshold excitatory drive, while shaping the duration of 1A-mediated inhibition in a subset of CPn L5PNs. Activity-dependent serotonergic excitation of COM L5PNs, combined with 1A-mediated inhibition of CPn and COM-biphasic L5PNs, may facilitate executive function by focusing network activity within cortical circuits subserving the most appropriate behavioral output.
Collapse
Affiliation(s)
- Emily K Stephens
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA ; Program in Experimental and Molecular Medicine, Dartmouth College Hanover, NH, USA
| | - Daniel Avesar
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA ; Program in Experimental and Molecular Medicine, Dartmouth College Hanover, NH, USA
| | - Allan T Gulledge
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA ; Program in Experimental and Molecular Medicine, Dartmouth College Hanover, NH, USA
| |
Collapse
|
181
|
Lawn W, Barratt M, Williams M, Horne A, Winstock A. The NBOMe hallucinogenic drug series: Patterns of use, characteristics of users and self-reported effects in a large international sample. J Psychopharmacol 2014; 28:780-8. [PMID: 24569095 DOI: 10.1177/0269881114523866] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NBOMe compounds are a novel series of hallucinogenic drugs that are potent agonists of the 5-HT2A receptor, have a short history of human consumption and are available to buy online, in most countries. In this study, we sought to investigate the patterns of use, characteristics of users and self-reported effects. A cross-sectional anonymous online survey exploring the patterns of drug use was conducted in 2012 (n = 22,289), including questions about the use of 25B-NBOMe, 25C-NBOMe, and 25I-NBOMe and comparison drugs. We found that 2.6% of respondents (n = 582) reported having ever tried one of the three NBOMe drugs and that at 2.0%, 25I-NBOMe was the most popular (n = 442). Almost all (93.5%) respondents whose last new drug tried was a NBOMe drug, tried it in 2012, and 81.2% of this group administered the drug orally or sublingually/buccally. Subjective effects were similar to comparison serotonergic hallucinogens, though higher 'negative effects while high' and greater 'value for money' were reported. The most common (41.7%) drug source was via a website. The NBOMe drugs have emerged recently, are frequently bought using the internet and have similar effects to other hallucinogenic drugs; however, they may pose larger risks, due to the limited knowledge about them, their relatively low price and availability via the internet.
Collapse
Affiliation(s)
- Will Lawn
- Clinical, Educational and Health Psychology, University College London, London, UK
| | - Monica Barratt
- National Drug Research Institute, Curtin University, Perth, WA, Australia
| | - Martin Williams
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Abi Horne
- School of Psychology, University of Sussex, Brighton, UK
| | - Adam Winstock
- South London and Maudsley NHS Foundation Trust, London, UK Institute of Psychiatry, King's College London, London, UK Global Drug Survey, London, UK
| |
Collapse
|
182
|
The natural hallucinogen 5-MeO-DMT, component of Ayahuasca, disrupts cortical function in rats: reversal by antipsychotic drugs. Int J Neuropsychopharmacol 2014; 17:1269-82. [PMID: 24650558 DOI: 10.1017/s1461145714000261] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen component of Ayahuasca, an Amazonian beverage traditionally used for ritual, religious and healing purposes that is being increasingly used for recreational purposes in US and Europe. 5MeO-DMT is of potential interest for schizophrenia research owing to its hallucinogenic properties. Two other psychotomimetic agents, phencyclidine and 2,5-dimethoxy-4-iodo-phenylisopropylamine (DOI), markedly disrupt neuronal activity and reduce the power of low frequency cortical oscillations (<4 Hz, LFCO) in rodent medial prefrontal cortex (mPFC). Here we examined the effect of 5-MeO-DMT on cortical function and its potential reversal by antipsychotic drugs. Moreover, regional brain activity was assessed by blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). 5-MeO-DMT disrupted mPFC activity, increasing and decreasing the discharge of 51 and 35% of the recorded pyramidal neurons, and reducing (-31%) the power of LFCO. The latter effect depended on 5-HT1A and 5-HT2A receptor activation and was reversed by haloperidol, clozapine, risperidone, and the mGlu2/3 agonist LY379268. Likewise, 5-MeO-DMT decreased BOLD responses in visual cortex (V1) and mPFC. The disruption of cortical activity induced by 5-MeO-DMT resembles that produced by phencyclidine and DOI. This, together with the reversal by antipsychotic drugs, suggests that the observed cortical alterations are related to the psychotomimetic action of 5-MeO-DMT. Overall, the present model may help to understand the neurobiological basis of hallucinations and to identify new targets in antipsychotic drug development.
Collapse
|
183
|
Hallucinogen persisting perception disorder and the serotonergic system: a comprehensive review including new MDMA-related clinical cases. Eur Neuropsychopharmacol 2014; 24:1309-23. [PMID: 24933532 DOI: 10.1016/j.euroneuro.2014.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 01/16/2023]
Abstract
Hallucinogen persisting perception disorder (HPPD) is a drug-induced condition associated with inaccurate visual representations. Since the underlying mechanism(s) are largely unknown, this review aims to uncover aspects underlying its etiology. Available evidence on HPPD and drug-related altered visual processing was reviewed and the majority of HPPD cases were attributed to drugs with agonistic effects on serotonergic 5-HT₂A receptors. Moreover, we present 31 new HPPD cases that link HPPD to the use of ecstasy (MDMA), which is known to reverse serotonin reuptake and acts as agonist on 5-HT₂A receptors. The available evidence suggests that HPPD symptoms may be a result from a misbalance of inhibitory-excitatory activity in low-level visual processing and GABA-releasing inhibitory interneurons may be involved. However, high co-morbidities with anxiety, attention problems and derealization symptoms add complexity to the etiology of HPPD. Also, other perceptual disorders that show similarity to HPPD cannot be ruled out in presentations to clinical treatment. Taken together, evidence is still sparse, though low-level visual processing may play an important role. A novel finding of this review study, evidenced by our new cases, is that ecstasy (MDMA) use may also induce symptoms of HPPD.
Collapse
|
184
|
Talpos JC, Aerts N, Fellini L, Steckler T. A touch-screen based paired-associates learning (PAL) task for the rat may provide a translatable pharmacological model of human cognitive impairment. Pharmacol Biochem Behav 2014; 122:97-106. [DOI: 10.1016/j.pbb.2014.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/13/2014] [Accepted: 03/16/2014] [Indexed: 12/12/2022]
|
185
|
Selvaraj S, Arnone D, Cappai A, Howes O. Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev 2014; 45:233-45. [PMID: 24971825 DOI: 10.1016/j.neubiorev.2014.06.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/13/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023]
Abstract
Serotonergic dysfunction is thought to contribute to the pathophysiology of schizophrenia but the evidence has not been systematically synthesised before. We therefore systematically reviewed postmortem and in vivo molecular imaging studies of serotonin function in schizophrenia. We identified fifty relevant studies investigating eight different serotonin receptor systems in a total of 684 patients and 675 controls. Meta-analysis of postmortem studies found an elevation in prefrontal 5-HT1A receptors with a moderate to large effect size (N=8, 85 patients and 94 controls, SMD=0.60; CI: 0.17-1.03; p=0.007) and a reduction with a large effect size in prefrontal 5-HT2A receptors (N=8, 168 patients and 163 controls, SMD=-0.73; CI: -1.33, -0.12; p=0.019) in schizophrenia vs healthy controls. The evidence for alterations in serotonin transporter availability or other serotonin receptors (5-HT1B; 5-HT1D; 5-HT3; 5-HT4; 5-HT7) is limited. There are fewer studies investigating 5-HT receptors in schizophrenia with neuroimaging. Findings indicated possible 5-HT alterations at psychosis onset, although due to the limited number it was not possible to combine studies in a meta-analysis. Further in vivo studies, particularly in drug naive patients using radiotracers that can index high affinity states, will help determine if the postmortem findings are primary or secondary to other factors.
Collapse
Affiliation(s)
- Sudhakar Selvaraj
- Medical Research Council, Clinical Sciences Centre, Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK; Department of Psychiatry and Behavioural Sciences, The University of Texas Health Science Centre at Houston, Houston, TX, USA.
| | - Danilo Arnone
- Centre for Affective Disorders, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Alessandra Cappai
- Medical Research Council, Clinical Sciences Centre, Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK; Forensic Outreach Service & Inreach Team HMP Wandsworth, South West London & St George's NHS Mental Health Trust, Springfield Hospital, Glenburnie Road, London SW17 7DJ, UK
| | - Oliver Howes
- Medical Research Council, Clinical Sciences Centre, Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK; Department of Psychosis Studies, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| |
Collapse
|
186
|
Nullmeier S, Panther P, Frotscher M, Zhao S, Schwegler H. Alterations in the hippocampal and striatal catecholaminergic fiber densities of heterozygous reeler mice. Neuroscience 2014; 275:404-19. [PMID: 24969133 DOI: 10.1016/j.neuroscience.2014.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 02/02/2023]
Abstract
The heterozygous reeler mouse (HRM), haploinsufficient for reelin, shares several neurochemical and behavioral similarities with patients suffering from schizophrenia. It has been shown that defective reelin signaling influences the mesolimbic dopaminergic pathways in a specific manner. However, there is only little information about the impact of reelin haploinsufficiency on the monoaminergic innervation of different brain areas, known to be involved in the pathophysiology of schizophrenia. In the present study using immunocytochemical procedures, we investigated HRM and wild-type mice (WT) for differences in the densities of tyrosine hydroxylase (TH)-immunoreactive (IR) and serotonin (5-HT)-IR fibers in prefrontal cortex, ventral and dorsal hippocampal formation, amygdala and ventral and dorsal striatum. We found that HRM, compared to WT, shows a significant increase in TH-IR fiber densities in dorsal hippocampal CA1, CA3 and ventral CA1. In contrast, HRM exhibits a significant decrease of TH-IR in the shell of the nucleus accumbens (AcbShell), but no differences in the other brain areas investigated. Overall, no genotype differences were found in the 5-HT-IR fiber densities. In conclusion, these results support the view that reelin haploinsufficiency differentially influences the catecholaminergic (esp. dopaminergic) systems in brain areas associated with schizophrenia. The reelin haploinsufficient mouse may provide a useful model for studying the role of reelin in hippocampal dysfunction and its effect on the dopaminergic system as related to schizophrenia.
Collapse
Affiliation(s)
- S Nullmeier
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - P Panther
- Department of Stereotactic Neurosurgery, University Hospital of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - M Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - S Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - H Schwegler
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
187
|
Pharmacology of hallucinations: several mechanisms for one single symptom? BIOMED RESEARCH INTERNATIONAL 2014; 2014:307106. [PMID: 24991548 PMCID: PMC4065763 DOI: 10.1155/2014/307106] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/11/2014] [Indexed: 01/24/2023]
Abstract
Hallucinations are complex misperceptions, that principally occur in schizophrenia or after intoxication induced by three main classes of drugs: psychostimulants, psychedelics, and dissociative anesthetics. There are at least three different pharmacological ways to induce hallucinations: (1) activation of dopamine D2 receptors (D2Rs) with psychostimulants, (2) activation of serotonin 5HT2A receptors (HT2ARs) with psychedelics, and (3) blockage of glutamate NMDA receptors (NMDARs) with dissociative anesthetics. In schizophrenia, the relative importance of NMDAR and D2R in the occurrence of hallucinations is still debated. Slight clinical differences are observed for each etiology. Thus, we investigated whether the concept of hallucination is homogenous, both clinically and neurobiologically. A narrative review of the literature is proposed to synthesize how the main contributors in the field have approached and tried to solve these outstanding questions. While some authors prefer one explanatory mechanism, others have proposed more integrated theories based on the different pharmacological psychosis models. In this review, such theories are discussed and faced with the clinical data. In addition, the nosological aspects of hallucinations and psychosis are addressed. We suggest that if there may be common neurobiological pathways between the different pharmacological systems that are responsible for the hallucinations, there may also be unique properties of each system, which explains the clinical differences observed.
Collapse
|
188
|
Martin DA, Marona-Lewicka D, Nichols DE, Nichols CD. Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia. Neuropharmacology 2014; 83:1-8. [PMID: 24704148 DOI: 10.1016/j.neuropharm.2014.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 12/27/2022]
Abstract
Chronic administration of lysergic acid diethylamide (LSD) every other day to rats results in a variety of abnormal behaviors. These build over the 90 day course of treatment and can persist at full strength for at least several months after cessation of treatment. The behaviors are consistent with those observed in animal models of schizophrenia and include hyperactivity, reduced sucrose-preference, and decreased social interaction. In order to elucidate molecular changes that underlie these aberrant behaviors, we chronically treated rats with LSD and performed RNA-sequencing on the medial prefrontal cortex (mPFC), an area highly associated with both the actions of LSD and the pathophysiology of schizophrenia and other psychiatric illnesses. We observed widespread changes in the neurogenetic state of treated animals four weeks after cessation of LSD treatment. QPCR was used to validate a subset of gene expression changes observed with RNA-Seq, and confirmed a significant correlation between the two methods. Functional clustering analysis indicates differentially expressed genes are enriched in pathways involving neurotransmission (Drd2, Gabrb1), synaptic plasticity (Nr2a, Krox20), energy metabolism (Atp5d, Ndufa1) and neuropeptide signaling (Npy, Bdnf), among others. Many processes identified as altered by chronic LSD are also implicated in the pathogenesis of schizophrenia, and genes affected by LSD are enriched with putative schizophrenia genes. Our results provide a relatively comprehensive analysis of mPFC transcriptional regulation in response to chronic LSD, and indicate that the long-term effects of LSD may bear relevance to psychiatric illnesses, including schizophrenia.
Collapse
Affiliation(s)
- David A Martin
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Danuta Marona-Lewicka
- Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | - David E Nichols
- Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | - Charles D Nichols
- Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
189
|
Tylš F, Páleníček T, Horáček J. Psilocybin--summary of knowledge and new perspectives. Eur Neuropsychopharmacol 2014; 24:342-56. [PMID: 24444771 DOI: 10.1016/j.euroneuro.2013.12.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/17/2013] [Accepted: 12/02/2013] [Indexed: 12/01/2022]
Abstract
Psilocybin, a psychoactive alkaloid contained in hallucinogenic mushrooms, is nowadays given a lot of attention in the scientific community as a research tool for modeling psychosis as well as due to its potential therapeutic effects. However, it is also a very popular and frequently abused natural hallucinogen. This review summarizes all the past and recent knowledge on psilocybin. It briefly deals with its history, discusses the pharmacokinetics and pharmacodynamics, and compares its action in humans and animals. It attempts to describe the mechanism of psychedelic effects and objectify its action using modern imaging and psychometric methods. Finally, it describes its therapeutic and abuse potential.
Collapse
Affiliation(s)
- Filip Tylš
- Prague Psychiatric Center, Prague, Czech Republic; 3rd Faculty of Medicine, Charles University in Prague, Czech Republic.
| | - Tomáš Páleníček
- Prague Psychiatric Center, Prague, Czech Republic; 3rd Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Jiří Horáček
- Prague Psychiatric Center, Prague, Czech Republic; 3rd Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
190
|
Vanneste S, Joos K, Langguth B, To WT, De Ridder D. Neuronal correlates of maladaptive coping: an EEG-study in tinnitus patients. PLoS One 2014; 9:e88253. [PMID: 24558383 PMCID: PMC3928191 DOI: 10.1371/journal.pone.0088253] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 01/07/2014] [Indexed: 02/05/2023] Open
Abstract
Here we aimed to investigate the neuronal correlates of different coping styles in patients suffering from chronic tinnitus. Adaptive and maladaptive coping styles were determined in 85 tinnitus patients. Based on resting state EEG recordings, coping related differences in brain activity and connectivity were found. Maladaptive coping behavior was related to increases in subjective tinnitus loudness and distress, higher tinnitus severity and higher depression scores. EEG recordings demonstrated increased alpha activity over the left dorsolateral prefrontal cortex (DLPFC) and subgenual anterior cingulate cortex (sgACC) as well as increased connectivity in the default (i.e. resting state) network in tinnitus patients with a maladaptive coping style. Correlation analysis revealed that the changes in the DLPFC correlate primarily with maladaptive coping behavior, whereas the changes in the sgACC correlate with tinnitus severity and depression. Our findings are in line with previous research in the field of depression that during resting state a alpha band hyperconnectivity exists within the default network for patients who use a maladaptive coping style, with the sgACC as the dysfunctional node and that the strength of the connectivity is related to focusing on negative mood and catastrophizing about the consequences of tinnitus.
Collapse
Affiliation(s)
- Sven Vanneste
- Department of Translational Neuroscience, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Kathleen Joos
- Department of Translational Neuroscience, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Wing Ting To
- Faculty of Social Work and Welfare Studies, University College Ghent, Ghent, Belgium
| | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- BRAIN, Sint Augustinus Hospital, Antwerp, Belgium
| |
Collapse
|
191
|
Poklis JL, Clay DJ, Poklis A. High-performance liquid chromatography with tandem mass spectrometry for the determination of nine hallucinogenic 25-NBOMe designer drugs in urine specimens. J Anal Toxicol 2014; 38:113-21. [PMID: 24535338 DOI: 10.1093/jat/bku005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a high-performance liquid chromatography triple quadrupole mass spectrometry (HPLC-MS-MS) method for the identification and quantification of nine serotonin 5-HT2A receptor agonist hallucinogenic substances from a new class of N-methoxybenzyl derivatives of methoxyphenylethylamine (NBOMe) designer drugs in human urine: 25H-NBOMe, 2CC-NBOMe, 25I-NBF, 25D-NBOMe, 25B-NBOMe, 2CT-NBOMe, 25I-NBMD, 25G-NBOMe and 25I-NBOMe. This assay was developed for the Virginia Commonwealth University Clinical and Forensic Toxicology laboratory to screen emergency department specimens in response to an outbreak of N-benzyl-phenethylamine derivative abuse and overdose cases in Virginia. The NBOMe derivatives were rapidly extracted from the urine specimens by use of FASt™ solid-phase extraction columns. Assay performance was determined as recommended for validation by the Scientific Working Group for Forensic Toxicology (SWGTOX) for linearity, lower limit of quantification, lower limit of detection, accuracy/bias, precision, dilution integrity, carryover, selectivity, absolute recovery, ion suppression and stability. Linearity was verified to be from 1 to 100 ng/mL for each of the nine analytes. The bias determined for the NBOMe derivatives was 86-116% with a <14% coefficient of variation over the linear range of the assay. Four different NBOMe derivatives were detected using the presented method in patient urine specimens.
Collapse
Affiliation(s)
- Justin L Poklis
- 1Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298-0613, USA
| | | | | |
Collapse
|
192
|
Shine JM, O'Callaghan C, Halliday GM, Lewis SJG. Tricks of the mind: Visual hallucinations as disorders of attention. Prog Neurobiol 2014; 116:58-65. [PMID: 24525149 DOI: 10.1016/j.pneurobio.2014.01.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
Visual hallucinations are common across a number of disorders but to date, a unifying pathophysiology underlying these phenomena has not been described. In this manuscript, we combine insights from neuropathological, neuropsychological and neuroimaging studies to propose a testable common neural mechanism for visual hallucinations. We propose that 'simple' visual hallucinations arise from disturbances within regions responsible for the primary processing of visual information, however with no further modulation of perceptual content by attention. In contrast, 'complex' visual hallucinations reflect dysfunction within and between the Attentional Control Networks, leading to the inappropriate interpretation of ambiguous percepts. The incorrect information perceived by hallucinators is often differentially interpreted depending on the time-course and the neuroarchitecture underlying the interpretation. Disorders with 'complex' hallucinations without retained insight are proposed to be associated with a reduction in the activity within the Dorsal Attention Network. The review concludes by showing that a variety of pathological processes can ultimately manifest in any of these three categories, depending on the precise location of the impairment.
Collapse
Affiliation(s)
- James M Shine
- Parkinson's Disease Research Clinic, Brain and Mind Research Institute, The University of Sydney, NSW, Australia.
| | - Claire O'Callaghan
- Parkinson's Disease Research Clinic, Brain and Mind Research Institute, The University of Sydney, NSW, Australia; Neuroscience Research Australia and the University of New South Wales, Sydney, NSW, Australia.
| | - Glenda M Halliday
- Neuroscience Research Australia and the University of New South Wales, Sydney, NSW, Australia.
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Research Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
193
|
Acute effects of ayahuasca on neuropsychological performance: differences in executive function between experienced and occasional users. Psychopharmacology (Berl) 2013; 230:415-24. [PMID: 23793226 DOI: 10.1007/s00213-013-3167-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Ayahuasca, a South American psychotropic plant tea containing the psychedelic 5-HT2A receptor agonist N,N-dimethyltryptamine, has been shown to increase regional cerebral blood flow in prefrontal brain regions after acute administration to humans. Despite interactions at this level, neuropsychological studies have not found cognitive deficits in abstinent long-term users. OBJECTIVES Here, we wished to investigate the effects of acute ayahuasca intake on neuropsychological performance, specifically on working memory and executive function. METHODS Twenty-four ayahuasca users (11 long-term experienced users and 13 occasional users) were assessed in their habitual setting using the Stroop, Sternberg, and Tower of London tasks prior to and following ayahuasca intake. RESULTS Errors in the Sternberg task increased, whereas reaction times in the Stroop task decreased and accuracy was maintained for the whole sample following ayahuasca intake. Interestingly, results in the Tower of London showed significantly increased execution and resolution times and number of movements for the occasional but not the experienced users. Additionally, a correlation analysis including all subjects showed that impaired performance in the Tower of London was inversely correlated with lifetime ayahuasca use. CONCLUSIONS Acute ayahuasca administration impaired working memory but decreased stimulus-response interference. Interestingly, detrimental effects on higher cognition were only observed in the less experienced group. Rather than leading to increased impairment, greater prior exposure to ayahuasca was associated with reduced incapacitation. Compensatory or neuromodulatory effects associated with long-term ayahuasca intake could underlie preserved executive function in experienced users.
Collapse
|
194
|
Stewart AM, Kalueff AV. Anxiolytic drug discovery: what are the novel approaches and how can we improve them? Expert Opin Drug Discov 2013; 9:15-26. [PMID: 24206163 DOI: 10.1517/17460441.2014.857309] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Contemporary biological psychiatry uses experimental (animal) models to increase our understanding of affective disorder pathogenesis. Despite the well-recognized spectrum nature of affective disorders, modern anxiolytic drug discovery mainly targets specific pathways and molecular determinants within a single phenotypic domain. However, greater understanding of the integrative mechanisms and pathogenesis is essential in order to develop new effective therapies. AREAS COVERED In this review, the authors emphasize the importance of a 'domain interplay-oriented' approach to experimental affective research. They also highlight the need to expand the scope of anxiolytic drug targets to better understand the pathogenesis of anxiety-spectrum disorders. EXPERT OPINION There is the potential to markedly improve the utility of animal models for affective disorders. First, the authors suggest that one such way would be by analyzing the systems of several domains and their interplay to better understand disease pathogenesis. Further, it could also be improved by expanding the range of model species and by extending the spectrum of anxiolytic drug targets; this would help to focus on emerging and unconventional systems to better develop new therapies.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute , 309 Palmer Court, Slidell, LA 70458 , USA +1 240 328 2275 ; +1 240 328 2275 ;
| | | |
Collapse
|
195
|
Abstract
One of the main obstacles faced by translational neuroscience is the development of animal models of psychiatric disorders. Behavioural pharmacology studies indicate that psychedelic drugs, such as lysergic acid diethylamide (LSD) and dissociative drugs, such as phencyclidine (PCP), induce in healthy human volunteers psychotic and cognitive symptoms that resemble some of those observed in schizophrenia patients. Serotonin 5-HT2A and metabotropic glutamate 2 receptors have been involved in the mechanism of action of psychedelic and dissociative drugs. Here we review recent advances using LSD-like and PCP-like drugs in rodent models that implicate these receptors in the neurobiology of schizophrenia and its treatment.
Collapse
|
196
|
Abstract
One of the oldest models of schizophrenia is based on the effects of serotonergic hallucinogens such as mescaline, psilocybin, and (+)-lysergic acid diethylamide (LSD), which act through the serotonin 5-HT(2A) receptor. These compounds produce a 'model psychosis' in normal individuals that resembles at least some of the positive symptoms of schizophrenia. Based on these similarities, and because evidence has emerged that the serotonergic system plays a role in the pathogenesis of schizophrenia in some patients, animal models relevant to schizophrenia have been developed based on hallucinogen effects. Here we review the behavioural effects of hallucinogens in four of those models, the receptor and neurochemical mechanisms for the effects and their translational relevance. Despite the difficulty of modelling hallucinogen effects in nonverbal species, animal models of schizophrenia based on hallucinogens have yielded important insights into the linkage between 5-HT and schizophrenia and have helped to identify receptor targets and interactions that could be exploited in the development of new therapeutic agents.
Collapse
|
197
|
Thwaites SJ, Gogos A, Van den Buuse M. Schizophrenia-like disruptions of sensory gating by serotonin receptor stimulation in rats: Effect of MDMA, DOI and 8-OH-DPAT. Pharmacol Biochem Behav 2013; 112:71-7. [DOI: 10.1016/j.pbb.2013.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/23/2013] [Accepted: 09/28/2013] [Indexed: 11/27/2022]
|
198
|
Controlled substances and innovation of biomedicine: a preclinical perspective. Nat Rev Neurosci 2013; 14:877. [PMID: 24149185 DOI: 10.1038/nrn3530-c1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
199
|
Castro B, Sánchez P, Torres JM, Ortega E. Effects of adult exposure to bisphenol a on genes involved in the physiopathology of rat prefrontal cortex. PLoS One 2013; 8:e73584. [PMID: 24066056 PMCID: PMC3774751 DOI: 10.1371/journal.pone.0073584] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/29/2013] [Indexed: 01/11/2023] Open
Abstract
Several neurological and behavioral dysfunctions have been reported in animals exposed to bisphenol A (BPA). However, little is known about the impact of adult exposure to BPA on brain physiopathology. Here, we focused on prefrontal cortex (PFC) of rats, because it is an important area for cognitive control, complex behaviors and is altered in many psychopathologies. Gamma-aminobutyric acid (GABA) and serotonin (5-HT) systems are essential for PFC function. Therefore, we examined the effects of adult exposure to BPA on 5α-Reductase (5α-R) and cytochrome P450 aromatase (P450arom), enzymes that synthesize GABAA receptor modulators, and tryptophan hydroxylase (Tph), the rate-limiting enzyme in 5-HT biosynthesis. To gain better understanding of BPA's action in the adult PFC, 84 genes involved in neurotoxicity were also analysed. Adult male and female rats were subcutaneously injected for 4 days with 50 µg/kg/day, the current reference safe dose for BPA. mRNA and protein levels of 5α-R, P450arom and Tph were quantified by real-time RT-PCR and Western blot. Genes linked to neurotoxicity were analyzed by PCR-Array technology. Adult exposure to BPA increased both P450arom and Tph2 expression in PFC of male and female, but decreased 5α-R1 expression in female. Moreover, we identified 17 genes related to PFC functions such as synaptic plasticity and memory, as potential targets of BPA. Our results provided new insights on the molecular mechanisms underlying BPA action in the physiopathology of PFC, but also raise the question about the safety of short-term exposure to it in the adulthood.
Collapse
Affiliation(s)
- Beatriz Castro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Pilar Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Jesús M. Torres
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neurosciences, Faculty of Medicine, University of Granada, Granada, Spain
- * E-mail: (JMT); (EO)
| | - Esperanza Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neurosciences, Faculty of Medicine, University of Granada, Granada, Spain
- * E-mail: (JMT); (EO)
| |
Collapse
|
200
|
Halberstadt AL, Geyer MA. Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology 2013; 77:200-7. [PMID: 24012658 DOI: 10.1016/j.neuropharm.2013.08.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/17/2013] [Accepted: 08/19/2013] [Indexed: 01/06/2023]
Abstract
N-benzyl substitution markedly enhances the affinity of phenethylamine hallucinogens at the 5-HT(2A) receptor. N-benzyl substituted derivatives of 2,5-dimethoxy-4-iodophenethylamine (2C-I), such as N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBOMe) and N-(2,3-methylenedioxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBMD), have appeared recently as designer drugs, but have not been characterized behaviorally. The head twitch response (HTR) is induced by 5-HT(2A) receptor activation in rats and mice, and is widely used as a behavioral proxy for hallucinogen effects in humans. Nevertheless, it is not clear whether phenethylamine hallucinogens reliably provoke this behavior. Hence, we investigated whether 2C-I, 25I-NBOMe and 25I-NBMD induce head twitches in C57BL/6J mice. The HTR was assessed using a head-mounted magnet and a magnetometer coil. 2C-I (1-10 mg/kg SC), 25I-NBOMe (0.1-1 mg/kg SC), and 25I-NBMD (1-10 mg/kg SC) induced the HTR. 25I-NBOMe displayed 14-fold higher potency than 2C-I, and the selective 5-HT(2A) antagonist M100,907 completely blocked the HTR induced by all three compounds. These findings show that phenethylamine hallucinogens induce the HTR by activating 5-HT(2A) receptors. Our results demonstrate that 25I-NBOMe is a highly potent derivative of 2C-I, confirming previous in vitro findings that N-benzyl substitution increases 5-HT(2A) affinity. Given the high potency and ease of synthesis of N-benzylphenethylamines, it is likely that the recreational use of these hallucinogens will become more widespread in the future.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, USA.
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|