151
|
Leaf wax trait in crops for drought and biotic stress tolerance: regulators of epicuticular wax synthesis and role of small RNAs. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40502-017-0333-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
152
|
Comparative Analysis of Cotton Small RNAs and Their Target Genes in Response to Salt Stress. Genes (Basel) 2017; 8:genes8120369. [PMID: 29206160 PMCID: PMC5748687 DOI: 10.3390/genes8120369] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 11/21/2022] Open
Abstract
Small RNAs play an important role in regulating plant responses to abiotic stress. Depending on the method of salt application, whether sudden or gradual, plants may experience either salt shock or salt stress, respectively. In this study, small RNA expression in response to salt shock and long-term salt stress in parallel experiments was described. Cotton small RNA libraries were constructed and sequenced under normal conditions, as well as sudden and gradual salt application. A total of 225 cotton microRNAs (miRNAs) were identified and of these 24 were novel miRNAs. There were 88 and 75 miRNAs with differential expression under the salt shock and long-term salt stress, respectively. Thirty one transcripts were found to be targets of 20 miRNA families. Eight targets showed a negative correlation in expression with their corresponding miRNAs. We also identified two TAS3s with two near-identical 21-nt trans-acting small interfering RNA (tasiRNA)-Auxin Response Factors (ARFs) that coaligned with the phases D7(+) and D8(+) in three Gossypium species. The miR390/tasiRNA-ARFs/ARF4 pathway was identified and showed altered expression under salt stress. The identification of these small RNAs as well as elucidating their functional significance broadens our understanding of post-transcriptional gene regulation in response to salt stress.
Collapse
|
153
|
Li S, Shao Z, Fu X, Xiao W, Li L, Chen M, Sun M, Li D, Gao D. Identification and characterization of Prunus persica miRNAs in response to UVB radiation in greenhouse through high-throughput sequencing. BMC Genomics 2017; 18:938. [PMID: 29197334 PMCID: PMC5712094 DOI: 10.1186/s12864-017-4347-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression of target mRNAs involved in plant growth, development, and abiotic stress. As one of the most important model plants, peach (Prunus persica) has high agricultural significance and nutritional values. It is well adapted to be cultivated in greenhouse in which some auxiliary conditions like temperature, humidity, and UVB etc. are needed to ensure the fruit quality. However, little is known about the genomic information of P. persica under UVB supplement. Transcriptome and expression profiling data for this species are therefore important resources to better understand the biological mechanism of seed development, formation and plant adaptation to environmental change. Using a high-throughput miRNA sequencing, followed by qRT-PCR tests and physiological properties determination, we identified the responsive-miRNAs under low-dose UVB treatment and described the expression pattern and putative function of related miRNAs and target genes in chlorophyll and carbohydrate metabolism. Results A total of 164 known peach miRNAs belonging to 59 miRNA families and 109 putative novel miRNAs were identified. Some of these miRNAs were highly conserved in at least four other plant species. In total, 1794 and 1983 target genes for known and novel miRNAs were predicted, respectively. The differential expression profiles of miRNAs between the control and UVB-supplement group showed that UVB-responsive miRNAs were mainly involved in carbohydrate metabolism and signal transduction. UVB supplement stimulated peach to synthesize more chlorophyll and sugars, which was verified by qRT-PCR tests of related target genes and metabolites’ content measurement. Conclusion The high-throughput sequencing data provided the most comprehensive miRNAs resource available for peach study. Our results identified a series of differentially expressed miRNAs/target genes that were predicted to be low-dose UVB-responsive. The correlation between transcriptional profiles and metabolites contents in UVB supplement groups gave novel clues for the regulatory mechanism of miRNAs in Prunus. Low-dose UVB supplement could increase the chlorophyll and sugar (sorbitol) contents via miRNA-target genes and therefore improve the fruit quality in protected cultivation of peaches. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4347-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaoxuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Zhanru Shao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Ming Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Mingyue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
154
|
Liu Q, Yan S, Yang T, Zhang S, Chen YQ, Liu B. Small RNAs in regulating temperature stress response in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:774-791. [PMID: 28731217 DOI: 10.1111/jipb.12571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 05/21/2023]
Abstract
Due to global climate change, temperature stress has become one of the primary causes of crop losses worldwide. Much progress has been made in unraveling the complex stress response mechanisms in plants, particularly in the identification of temperature stress responsive protein-coding genes. Recently discovered microRNAs (miRNAs) and endogenous small-interfering RNAs (siRN As) have also been demonstrated as important players in plant temperature stress response. Using high-throughput sequencing, many small RNAs, especially miRNAs, have been identified to be triggered by cold or heat. Subsequently, several studies have shown an important functional role for these small RNAs in cold or heat tolerance. These findings greatly broaden our understanding of endogenous small RNAs in plant stress response control. Here, we highlight new findings regarding the roles of miRNAs and siRNAs in plant temperature stress response and acclimation. We also review the current understanding of the regulatory mechanisms of small RNAs in temperature stress response, and explore the outlook for the use of these small RNAs in molecular breeding for improvement of temperature stress tolerance in plants.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tifeng Yang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shaohong Zhang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yue-Qin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
155
|
Chen Y, Dong J, Bennetzen JL, Zhong M, Yang J, Zhang J, Li S, Hao X, Zhang Z, Wang X. Integrating transcriptome and microRNA analysis identifies genes and microRNAs for AHO-induced systemic acquired resistance in N. tabacum. Sci Rep 2017; 7:12504. [PMID: 28970509 PMCID: PMC5624873 DOI: 10.1038/s41598-017-12249-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/04/2017] [Indexed: 11/09/2022] Open
Abstract
3-Acetonyl-3-hydroxyoxindole (AHO) induces systemic acquired resistance (SAR) in Nicotiana. However, the underlying molecular mechanism is not well understood. To understand the molecular regulation during SAR induction, we examined mRNA levels, microRNA (miRNA) expression, and their regulatory mechanisms in control and AHO-treated tobacco leaves. Using RNA-seq analysis, we identified 1,445 significantly differentially expressed genes (DEGs) at least 2 folds with AHO treatment. The DEGs significantly enriched in six metabolism pathways including phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis for protective cuticle and wax. Key DEGs including PALs and PR-10 in salicylic acid pathway involved in SAR were significantly regulated. In addition, we identified 403 miRNAs belonging to 200 miRNA families by miRNA sequencing. In total, AHO treatment led to 17 up- and 6 down-regulated at least 2 folds (Wald test, P < 0.05) miRNAs (DEMs), respectively. Targeting analysis implicated four DEMs regulating three DEGs involved in disease resistance, including miR156, miR172f, miR172g, miR408a, SPL6 and AP2. We concluded that both mRNA and miRNA regulation enhances AHO-induced SAR. These data regarding DEGs, miRNAs, and their regulatory mechanisms provide molecular evidence for the mechanisms involved in tobacco SAR, which are likely to be present in other plants.
Collapse
Affiliation(s)
- Yongdui Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China
| | - Jiahong Dong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China
| | - Jeffrey L Bennetzen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, P. R. China
- Department of Genetics, University of Georgia, Athens, USA
| | - Micai Zhong
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, P. R. China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, P. R. China
| | - Jie Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China
| | - Shunlin Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China.
| | - Xuewen Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, P. R. China.
- Department of Genetics, University of Georgia, Athens, USA.
| |
Collapse
|
156
|
Transcription Factors Responding to Pb Stress in Maize. Genes (Basel) 2017; 8:genes8090231. [PMID: 28927013 PMCID: PMC5615364 DOI: 10.3390/genes8090231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022] Open
Abstract
Pb can damage the physiological function of human organs by entering the human body via food-chain enrichment. Revealing the mechanisms of maize tolerance to Pb is critical for preventing this. In this study, a Pb-tolerant maize inbred line, 178, was used to analyse transcription factors (TFs) expressed under Pb stress based on RNA sequencing data. A total of 464 genes expressed in control check (CK) or Pb treatment samples were annotated as TFs. Among them, 262 differentially expressed transcription factors (DETs) were identified that responded to Pb treatment. Furthermore, the DETs were classified into 4 classes according to their expression patterns, and 17, 12 and 2 DETs were significantly annotated to plant hormone signal transduction, basal transcription factors and base excision repair, respectively. Seventeen DETs were found to participate in the plant hormone signal transduction pathway, where basic leucine zippers (bZIPs) were the most significantly enriched TFs, with 12 members involved. We further obtained 5 Arabidopsis transfer DNA (T-DNA) mutants for 6 of the maize bZIPs, among which the mutants atbzip20 and atbzip47, representing ZmbZIP54 and ZmbZIP107, showed obviously inhibited growth of roots and above-ground parts, compared with wild type. Five highly Pb-tolerant and 5 highly Pb-sensitive in maize lines were subjected to DNA polymorphism and expression level analysis of ZmbZIP54 and ZmbZIP107. The results suggested that differences in bZIPs expression partially accounted for the differences in Pb-tolerance among the maize lines. Our results contribute to the understanding of the molecular regulation mechanisms of TFs in maize under Pb stress.
Collapse
|
157
|
Nawaz MA, Rehman HM, Imtiaz M, Baloch FS, Lee JD, Yang SH, Lee SI, Chung G. Systems Identification and Characterization of Cell Wall Reassembly and Degradation Related Genes in Glycine max (L.) Merill, a Bioenergy Legume. Sci Rep 2017; 7:10862. [PMID: 28883533 PMCID: PMC5589831 DOI: 10.1038/s41598-017-11495-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022] Open
Abstract
Soybean is a promising biomass resource for generation of second-generation biofuels. Despite the utility of soybean cellulosic biomass and post-processing residues in biofuel generation, there is no comprehensive information available on cell wall loosening and degradation related gene families. In order to achieve enhanced lignocellulosic biomass with softened cell walls and reduced recalcitrance, it is important to identify genes involved in cell wall polymer loosening and degrading. Comprehensive genome-wide analysis of gene families involved in cell wall modifications is an efficient stratagem to find new candidate genes for soybean breeding for expanding biofuel industry. We report the identification of 505 genes distributed among 12 gene families related to cell wall loosening and degradation. 1262 tandem duplication events contributed towards expansion and diversification of studied gene families. We identified 687 Simple Sequence Repeat markers and 5 miRNA families distributed on 316 and 10 genes, respectively. Publically available microarray datasets were used to explore expression potential of identified genes in soybean plant developmental stages, 68 anatomical parts, abiotic and biotic stresses. Co-expression networks revealed transcriptional coordination of different gene families involved in cell wall loosening and degradation process.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea
| | - Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea
| | - Muhammad Imtiaz
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275, China
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, 14280, Bolu, Turkey
| | - Jeong Dong Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea
| | - Soo In Lee
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, Republic of Korea.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
158
|
Nazari F, Safaie N, Soltani BM, Shams-Bakhsh M, Sharifi M. Bacillus subtilis affects miRNAs and flavanoids production in Agrobacterium-Tobacco interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:98-106. [PMID: 28624685 DOI: 10.1016/j.plaphy.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 05/23/2023]
Abstract
Agrobacterium tumefaciens is a very destructive plant pathogen. Selection of effective biological agents against this pathogen depends on more insight into molecular plant defence responses during the biocontrol agent-pathogen interaction. Auxin as a phytohormone is a key contributor in pathogenesis and plant defence and accumulation of auxin transport carriers are accompanied by increasing in flavonoid and miRNAs concentrations during plant interactions with bacteria. The aim of this research was molecular analysis of Bacillus subtilis (ATCC21332) biocontrol effect against A. tumefaciens (IBRC-M10701) pathogen interacting with Nicotiana tabacum plants. Tobacco plants were either treated with both or one of the challenging bacteria and the expression of miRNAs inside the plants were analysed through qRT-PCR. The results indicated that the bacterial treatments affect expression level of nta-miRNAs. In tobacco plants treated only with A. tumefaciens the expression of nta-miR393 was more than that was recorded for nta-miR167 (3.8 folds, P < 0.05 in 3dpi). While the expression level of nta-miR167 was more than the expression of nta-miR393 in other treatments including tobacco plants treated only with B. subtilis (2.1 folds, P < 0.05) and the plants treated with both of the bacteria (3.9 folds, P < 0.05) in 3 dpi. Also, the composition and concentration of rutin, myrecetin, daidzein and vitexin flavanoid derivatives were detected using HPLC and analysed according the standard curves. All of the tested flavanoid compounds were highly detected in Tobacco plants which were only challenged with A. tumefaciens. The amount of these compounds in the plants which were challenged with the B. subtilis alone, was similar to the amount recorded for the plants challenged with the both bacteria. This study suggests a relationship between the upregulation of nta-miR167, nta-miR393 and accumulation of flavanoid compounds. Overall, the expression of these miRNAs as well as flavonoid derivatives has the potential of being used as biomarkers for the interaction of B. subtilis and A. tumefaciens model system in N. tabacum.
Collapse
Affiliation(s)
- Fahimeh Nazari
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
159
|
Paul A, Dasgupta P, Roy D, Chaudhuri S. Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties. PLANT MOLECULAR BIOLOGY 2017; 95:63-88. [PMID: 28741224 DOI: 10.1007/s11103-017-0636-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Rice being an important cereal crop is highly sensitive to salinity stress causing growth retardation and loss in productivity. However, certain rice genotypes like Nonabokra and Pokkali show a high level of tolerance towards salinity stress compared to IR64 variety. This differential response of tolerant varieties towards salinity stress may be a cumulative effect of genetic and epigenetic factors. In this study, we have compared the salinity-induced changes in chromatin modifications at the OsBZ8 locus in salt-tolerant Nonabokra and salt-sensitive IR64 rice varieties. Expression analysis indicates that the OsBZ8 gene is highly induced in Nonabokra plants even in the absence of salt stress, whereas in IR64, the expression significantly increases only during salt stress. Sequence analysis and nucleosomal arrangement within the region -2000 to +1000 of OsBZ8 gene show no difference between the two rice varieties. However, there was a considerable difference in histone modifications and DNA methylation at the locus between these varieties. In Nonabokra, the upstream region was hyperacetylated at H3K9 and H3K27, and this acetylation did not change during salt stress. However, in IR64, histone acetylation was observed only during salt stress. Moreover, the upstream region of OsBZ8 gene has highly dynamic nucleosome arrangement in Nonabokra, compared to IR64. Furthermore, loss of DNA methylation was observed at OsBZ8 locus in Nonabokra control plants along with low H3K27me3 and high H3K4me3. Control IR64 plants show high DNA methylation and enriched H3K27me3. Collectively these results indicate a significant difference in chromatin modifications between the rice varieties that regulates differential expression of OsBZ8 gene during salt stress.
Collapse
Affiliation(s)
- Amit Paul
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Pratiti Dasgupta
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Dipan Roy
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
160
|
Zeng J, Dong Z, Wu H, Tian Z, Zhao Z. Redox regulation of plant stem cell fate. EMBO J 2017; 36:2844-2855. [PMID: 28838936 DOI: 10.15252/embj.201695955] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022] Open
Abstract
Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H2O2) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H2O2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H2O2 negatively regulates O2·- biosynthesis in stem cells, and increasing H2O2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H2O2 is key to stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Jian Zeng
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhicheng Dong
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Haijun Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhaoxia Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
161
|
Yue E, Liu Z, Li C, Li Y, Liu Q, Xu JH. Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.). PLANT CELL REPORTS 2017; 36:1171-1182. [PMID: 28451819 DOI: 10.1007/s00299-017-2146-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/18/2017] [Indexed: 05/23/2023]
Abstract
Overexpressing miR529a can enhance oxidative stress resistance by targeting OsSPL2 and OsSPL14 genes that can regulate the expression of their downstream SOD and POD related genes. MicroRNAs are involved in the regulation of plant developmental and physiological processes, and their expression can be altered when plants suffered environment stresses, including salt, oxidative, drought and Cadmium. The expression of microRNA529 (miR529) can be induced under oxidative stress. However, its biological function under abiotic stress responses is still unclear. In this study, miR529a was overexpressed to investigate the function of miR529a under oxidative stress in rice. Our results demonstrated that the expression of miR529a can be induced by exogenous H2O2, and overexpressing miR529a can increase plant tolerance to high level of H2O2, resulting in increased seed germination rate, root tip cell viability, reduced leaf rolling rate and chlorophyll retention. The expression of oxidative stress responsive genes and the activities of superoxide dismutase (SOD) and peroxidase (POD) were increased in miR529a overexpression plant, which could help to reduce redundant reactive oxygen species (ROS). Furthermore, only OsSPL2 and OsSPL14 were targeted by miR529a in rice seedlings, repressing their expression in miR529aOE plants could lead to strengthen plant tolerance to oxidation stress. Our study provided the evidence that overexpression of miR529a could strengthen oxidation resistance, and its target genes OsSPL2 and OsSPL14 were responsible for oxidative tolerance, implied the manipulation of miR529a and its target genes regulation on H2O2 related response genes could improve oxidative stress tolerance in rice.
Collapse
Affiliation(s)
- Erkui Yue
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Zhen Liu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Chao Li
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yu Li
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Qiuxiang Liu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Jian-Hong Xu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
162
|
Du Q, Zhao M, Gao W, Sun S, Li WX. microRNA/microRNA* complementarity is important for the regulation pattern of NFYA5 by miR169 under dehydration shock in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:22-33. [PMID: 28332758 DOI: 10.1111/tpj.13540] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 05/24/2023]
Abstract
MicroRNAs regulate gene expression at the mRNA and translational levels. Although our previous research showed that expression of miR169 and one of its targets, NFYA5, is down- and up-regulated by drought stress, respectively, the current study shows that expression of both miR169 and NFYA5 are induced by dehydration shock. Unlike overexpression of MIR169a/b, overexpression of MIR169i/l did not decrease NFYA5 transcripts but increased NFYA5 protein levels. NFYA5 protein abundance also increased in mir169a knock-out mutants and 35S::MIR169l mir169a double mutants. When bulge #11 and bulge #16 in the miR169/miR169* duplex were mutated, both NFYA5 transcripts and the corresponding protein levels were lower in 35S::MIR169l*-mut transgenic plants than in wild-type (WT) plants, and the 35S::MIR169l*-mut transgenic plants were as sensitive to drought stress as the 35S::MIR169a plants. The mRNA and protein levels of NFYA5 did not differ substantially between WT and 35S::MIR169a*-mut transgenic plants when the two bulges were introduced in the miR169a/miR169a* duplex. Both bulge #11 and bulge #16 in the miR169/miR169* duplex were essential for different regulation patterns of NFYA5 by miR169a and miR169l. These results increase the understanding of regulatory specialization in one MIR family, and also increase our understanding of the importance of microRNA/microRNA* secondary structure.
Collapse
Affiliation(s)
- Qingguo Du
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meng Zhao
- National Engineering Laboratory for Wheat and Maize, Maize Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wei Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Suzhen Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen-Xue Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
163
|
Singh V, Singh B, Joshi R, Jaju P, Pati PK. Changes in the leaf proteome profile of Withania somnifera (L.) Dunal in response to Alternaria alternata infection. PLoS One 2017; 12:e0178924. [PMID: 28575108 PMCID: PMC5456394 DOI: 10.1371/journal.pone.0178924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/22/2017] [Indexed: 12/11/2022] Open
Abstract
Withania somnifera is a high value medicinal plant which is used against large number of ailments. The medicinal properties of the plant attributes to a wide array of important secondary metabolites. The plant is predominantly infected with leaf spot pathogen Alternaria alternata, which leads to substantial biodeterioration of pharmaceutically important metabolites. To develop an effective strategy to combat this disease, proteomics based approach could be useful. Hence, in the present study, three different protein extraction methods tris-buffer based, phenol based and trichloroacetic acid-acetone (TCA-acetone) based method were comparatively evaluated for two-dimensional electrophoresis (2-DE) analysis of W. somnifera. TCA-acetone method was found to be most effective and was further used to identify differentially expressed proteins in response to fungal infection. Thirty-eight differentially expressed proteins were identified by matrix assisted laser desorption/ionization time of flight-mass spectrometry (MALDI TOF/TOF MS/MS). The known proteins were categorized into eight different groups based on their function and maximum proteins belonged to energy and metabolism, cell structure, stress and defense and RNA/DNA categories. Differential expression of some key proteins were also crosschecked at transcriptomic level by using qRT-PCR and were found to be consistent with the 2-DE data. These outcomes enable us to evaluate modifications that take place at the proteomic level during a compatible host pathogen interaction. The comparative proteome analysis conducted in this paper revealed the involvement of many key proteins in the process of pathogenesis and further investigation of these identified proteins could assist in the discovery of new strategies for the development of pathogen resistance in the plant.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Baldev Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Puneet Jaju
- Field Application Specialist - Life Science Group, Bio-rad Laboratories (India) Pvt. Ltd, Bangalore, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
164
|
Paul S. Identification and characterization of microRNAs and their targets in high-altitude stress-adaptive plant maca (Lepidium meyenii Walp). 3 Biotech 2017; 7:103. [PMID: 28560642 DOI: 10.1007/s13205-017-0734-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/19/2017] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, short (~21-nucleotide), non-coding RNA molecules that play pivotal roles in plant growth, development, and stress response signaling. In this study using recently published draft genome sequence of a high-altitude plant maca (Lepidium meyenii Walp) and applying genome-wide computational-based approaches, a total of 62 potentially conserved miRNAs belonging to 28 families were identified and four (lme-miR160a, lme-miR164c, lme-miR 166a, and lme-miR 319a) of them further validated by RT-PCR. Deploying psRNATarget tool a total of 99 potential miRNA target transcripts were also identified in maca. Targets include a number of transcription factors like Squamosa promoter-binding, NAC, MYB, auxin response factor, APETALA, WRKY, and F-box protein. To the best of my knowledge, this is the first genome-based miRNA profiling of a high-altitude plant.
Collapse
Affiliation(s)
- Sujay Paul
- Division of Plant Biology, Bose Institute, P 1/12 CIT Scheme VII M, Kolkata, 700054, India.
- Laboratorio de Micología y Biotecnología, Universidad Nacional Agraria La Molina, Av. La Molina s/n, 12, Lima, Peru.
| |
Collapse
|
165
|
Li H, Hu T, Amombo E, Fu J. Genome-wide identification of heat stress-responsive small RNAs in tall fescue (Festuca arundinacea) by high-throughput sequencing. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:157-165. [PMID: 28388488 DOI: 10.1016/j.jplph.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) play vital roles in the adaptive response of plants to various abiotic and biotic stresses. Tall fescue (Festuca arundinacea Schreb.) is a major cool-season forage and turf grass species which is severely influenced by heat stress. To unravel possible heat stress-responsive miRNAs, high-throughput sequencing was employed for heat-tolerant PI578718 and heat-sensitive PI234881 genotypes growing in presence and absence of heat stress (40°C for 36h). By searching against the miRBase database, among 1421 reference monocotyledon miRNAs, more than 850 were identified in all samples. Among these miRNAs, 1.46% and 2.29% were differentially expressed in PI234881 and PI578718 under heat stress, respectively, and most of them were down-regulated. In addition, a total of 170 novel miRNAs belonging to 145 miRNA families were identified. Furthermore, putative targets of differentially expressed miRNAs were predicted. The regulation of selected miRNAs by heat stress was revalidated through quantitative reverse transcription PCR (qRT-PCR) analysis. Most of these miRNAs shared similar expression patterns; however, some showed distinct expression patterns under heat stress, with their putative targets displaying different transcription levels. This is the first genome-wide miRNA identification in tall fescue. miRNAs specific to PI578718, or those that exhibited differential expression profiles between the two genotypes under high temperature, were probably associated with the variation in thermotolerance of tall fescue. The differentially expressed miRNAs between these two tall fescue genotypes and their putative targeted genes will provide essential information for further study on miRNAs mediating heat response and facilitate to improve turf grass breeding.
Collapse
Affiliation(s)
- Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo Street, Wuhan City, Hubei 430074, PR China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo Street, Wuhan City, Hubei 430074, PR China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo Street, Wuhan City, Hubei 430074, PR China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo Street, Wuhan City, Hubei 430074, PR China.
| |
Collapse
|
166
|
Ghorecha V, Zheng Y, Liu L, Sunkar R, Krishnayya NSR. MicroRNA dynamics in a wild and cultivated species of Convolvulaceae exposed to drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:291-300. [PMID: 28461718 PMCID: PMC5391358 DOI: 10.1007/s12298-017-0426-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/14/2017] [Accepted: 03/03/2017] [Indexed: 05/14/2023]
Abstract
Agricultural productivity is severely hampered by drought in many parts of the globe. It is well-known that wild plant species can tolerate drought better when compared with their closely related cultivated plant species. Better drought adaptation of wild species over cultivated ones is accounted for their ability to differentially regulate gene expression. miRNAs, known to regulate gene expression at the post-transcriptional level, are admitted to play an important role in plant adaptation to stresses. This study aims at evaluating miRNA dynamics in a drought-tolerant wild Ipomoea campanulata L. and drought-sensitive cultivated Jacquemontia pentantha (Jacq.) of the family Convolvulaceae under ex situ drought. Sequencing profiles revealed that 34 conserved miRNA families were analogous between the two species. Drought altered expression levels of several of these miRNAs in both the species. Drought-tolerant I. campanulata showed upregulation of miR398, miR168, miR858, miR162 and miR408, while miR394 and miR171 were downregulated. Drought-sensitive J. pentantha showed upregulation of miR394, miR156, miR160, miR164, miR167, miR172, miR319, miR395, miR396, miR403 and downregulation of miR157. Basal miRNA levels and their drought mediated regulation were very different between the two species. Differential drought sensitivities of these two plant species can be attributed to these innate variations in miRNA levels and their expression.
Collapse
Affiliation(s)
- Vallabhi Ghorecha
- Ecology Laboratory, Botany Department, Faculty of Science, M.S. University of Baroda, Baroda, 390002 India
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727, South Jingming Road, Kunming, 650500 Yunnan China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727, South Jingming Road, Kunming, 650500 Yunnan China
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74074 USA
| | - N. S. R. Krishnayya
- Ecology Laboratory, Botany Department, Faculty of Science, M.S. University of Baroda, Baroda, 390002 India
| |
Collapse
|
167
|
Khodadadi E, Mehrabi AA, Najafi A, Rastad S, Masoudi-Nejad A. Systems biology study of transcriptional and post-transcriptional co-regulatory network sheds light on key regulators involved in important biological processes in Citrus sinensis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:331-342. [PMID: 28461722 PMCID: PMC5391350 DOI: 10.1007/s12298-017-0416-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/25/2016] [Accepted: 01/17/2017] [Indexed: 05/08/2023]
Abstract
Transcriptional and post-transcriptional regulators including transcription regulator, transcription factor and miRNA are the main endogenous molecular elements which control complex cellular mechanisms such as development, growth and response to biotic and abiotic stresses in a coordinated manner in plants. Utilizing the most recent information on such relationships in a plant species, obtained from high-throughput experimental technologies and advanced computational tools, we can reconstruct its co-regulatory network which consequently sheds light on key regulators involved in its important biological processes. In this article, combined systems biology approaches such as mining the literatures, various databases and network reconstruction, analysis, and visualization tools were employed to infer and visualize the coregulatory relationships between miRNAs and transcriptional regulators in Citrus sinensis. Using computationally and experimentally verified miRNA-target interactions and constructed co-expression networks on array-based data, 10 coregulatory networks and 10 corresponding subgraphs include FFL motifs were obtained for 10 distinct tissues/conditions. Then PPI subnetworks were extracted for transcripts/genes included in mentioned subgraphs in order to the functional analysis of extracted coregulatory circuits. These proposed coregulatory connections shed light on precisely identifying C. sinensis metabolic pathways key switches, which are demanded for ultimate goals such as genome editing.
Collapse
Affiliation(s)
- Ehsan Khodadadi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Ilam, Ilam, Iran
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Ashraf Mehrabi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Ilam, Ilam, Iran
| | - Ali Najafi
- Department of Molecular Biology, Medical University of Baqiyatalah, Tehran, Iran
| | - Saber Rastad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
168
|
Colicchio J. Transgenerational effects alter plant defence and resistance in nature. J Evol Biol 2017; 30:664-680. [PMID: 28102915 PMCID: PMC5382043 DOI: 10.1111/jeb.13042] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
Trichomes, or leaf hairs, are epidermal extensions that take a variety of forms and perform many functions in plants, including herbivore defence. In this study, I document genetically determined variation, within-generation plasticity, and a direct role of trichomes in herbivore defence for Mimulus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome density and herbivore resistance. Patterns of interannual variation in herbivore density and the high cost of plant defence makes plant-herbivore interactions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring trichome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions.
Collapse
Affiliation(s)
- J Colicchio
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
169
|
Efficacy of New Fungicides against Late Blight of Potato in Subtropical Plains of India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
170
|
Awasthi P, Mahajan V, Jamwal VL, Kapoor N, Rasool S, Bedi YS, Gandhi SG. Cloning and expression analysis of chalcone synthase gene from Coleus forskohlii. J Genet 2017; 95:647-57. [PMID: 27659336 DOI: 10.1007/s12041-016-0680-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Flavonoids are an important class of secondary metabolites that play various roles in plants such as mediating defense, floral pigmentation and plant-microbe interaction. Flavonoids are also known to possess antioxidant and antimicrobial activities. Coleus forskohlii (Willd.) Briq. (Lamiaceae) is an important medicinal herb with a diverse metabolic profile, including production of a flavonoid, genkwanin. However, components of the flavonoid pathway have not yet been studied in this plant. Chalcone synthase (CHS) catalyses the first committed step of flavonoid biosynthetic pathway. Full-length cDNA, showing homology with plant CHS gene was isolated from leaves of C. forskohlii and named CfCHS (GenBank accession no. KF643243). Theoretical translation of CfCHS nucleotide sequence shows that it encodes a protein of 391 amino acids with a molecular weight of 42.75 kDa and pI 6.57. Expression analysis of CfCHS in different tissues and elicitor treatments showed that methyl jasmonate (MeJA) strongly induced its expression. Total flavonoids content and antioxidant activity of C. forskohlii also got enhanced in response to MeJA, which correlated with increased CfCHS expression. Induction of CfCHS by MeJA suggest its involvement in production of flavonoids, providing protection from microbes during herbivory or mechanical wounding. Further, our in silico predictions and experimental data suggested that CfCHS may be posttranscriptionally regulated by miR34.
Collapse
Affiliation(s)
- Praveen Awasthi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu 180 001,
| | | | | | | | | | | | | |
Collapse
|
171
|
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional Roles of microRNAs in Agronomically Important Plants-Potential as Targets for Crop Improvement and Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:378. [PMID: 28382044 PMCID: PMC5360763 DOI: 10.3389/fpls.2017.00378] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression, mainly through cleavage and/or translation inhibition of the target mRNAs during or after transcription. miRNAs play important roles by regulating a multitude of biological processes in plants which include maintenance of genome integrity, development, metabolism, and adaptive responses toward environmental stresses. The increasing population of the world and their food demands requires focused efforts for the improvement of crop plants to ensure sustainable food production. Manipulation of mRNA transcript abundance via miRNA control provides a unique strategy for modulating differential plant gene expression and miRNAs are thus emerging as the next generation targets for genetic engineering for improvement of the agronomic properties of crops. However, a deeper understanding of its potential and the mechanisms involved will facilitate the design of suitable strategies to obtain the desirable traits with minimum trade-offs in the modified crops. In this regard, this review highlights the diverse roles of conserved and newly identified miRNAs in various food and industrial crops and recent advances made in the uses of miRNAs to improve plants of agronomically importance so as to significantly enhance crop yields and increase tolerance to various environmental stress agents of biotic-or abiotic origin.
Collapse
Affiliation(s)
- Arnaud T. Djami-Tchatchou
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg (Auckland Park Kingsway Campus)Johannesburg, South Africa
| |
Collapse
|
172
|
Noman A, Fahad S, Aqeel M, Ali U, Amanullah, Anwar S, Baloch SK, Zainab M. miRNAs: Major modulators for crop growth and development under abiotic stresses. Biotechnol Lett 2017; 39:685-700. [PMID: 28238061 DOI: 10.1007/s10529-017-2302-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/02/2017] [Indexed: 01/08/2023]
Abstract
Cumulatively, biotic and abiotic stresses of various magnitudes can decrease the production of crops by 70%. miRNAs have emerged as a genetic tool with enormous potential that can be exploited to understand stress tolerance at the molecular level and eventually regulate stress in crops. Plant miRNA targets frequently fit into diverse families of TFs that control the expression of genes related to a certain trait. As key machinery in gene regulatory networks, it is agreed that a broad understanding of miRNAs will greatly increase our understanding of plant responses to environmental stresses. miRNA-led stress regulatory networks are being considered as novel tools for the development of abiotic stress tolerance in crops. At this time, we need to expand our knowledge about the modulatory role of miRNAs during environmental fluctuations. It has become exceedingly clear that with increased understanding of the role of miRNAs during stress, the techniques for using miRNA-mediated gene regulation to enhance plant stress tolerance will become more effective and reliable. In this review we present: (1) miRNAs as a potential avenue for the modulation of abiotic stresses, and (2) summarize the research progress regarding plant responses to stress. Current progress is explained through discussion of the identification and validation of several miRNAs that enhance crop tolerance of salinity, drought, etc., while missing links on different aspects of miRNAs related to abiotic stress tolerance are noted.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Shah Fahad
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Muhammad Aqeel
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Usman Ali
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Amanullah
- Department of Agronomy, Faculty of Crop Production, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Sumera Anwar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shahbaz Khan Baloch
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Madiha Zainab
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| |
Collapse
|
173
|
Sun P, Cheng C, Lin Y, Zhu Q, Lin J, Lai Z. Combined small RNA and degradome sequencing reveals complex microRNA regulation of catechin biosynthesis in tea (Camellia sinensis). PLoS One 2017; 12:e0171173. [PMID: 28225779 PMCID: PMC5321428 DOI: 10.1371/journal.pone.0171173] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/16/2017] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs are endogenous non-coding small RNAs playing crucial regulatory roles in plants. Tea, a globally popular non-alcoholic drink, is rich in health-enhancing catechins. In this study, 69 conserved and 47 novel miRNAs targeting 644 genes were identified by high-throughout sequencing. Predicted target genes of miRNAs were mainly involved in plant growth, signal transduction, morphogenesis and defense. To further identify targets of tea miRNAs, degradome sequencing and RNA ligase-mediated rapid amplification of 5'cDNA ends (RLM-RACE) were applied. Using degradome sequencing, 26 genes mainly involved in transcription factor, resistance protein and signal transduction protein synthesis were identified as potential miRNA targets, with 5 genes subsequently verified. Quantitative real-time PCR (qRT-PCR) revealed that the expression patterns of novel-miR1, novel-miR2, csn-miR160a, csn-miR162a, csn-miR394 and csn-miR396a were negatively correlated with catechin content. The expression of six miRNAs (csn-miRNA167a, csn-miR2593e, csn-miR4380a, csn-miR3444b, csn-miR5251 and csn-miR7777-5p.1) and their target genes involved in catechin biosynthesis were also analyzed by qRT-PCR. Negative and positive correlations were found between these miRNAs and catechin contents, while positive correlations were found between their target genes and catechin content. This result suggests that these miRNAs may negatively regulate catechin biosynthesis by down-regulating their biosynthesis-related target genes. Taken together, our results indicate that miRNAs are crucial regulators in tea, with the results of 5'-RLM-RACE and expression analyses revealing the important role of miRNAs in catechin anabolism. Our findings should facilitate future research to elucidate the function of miRNAs in catechin biosynthesis.
Collapse
Affiliation(s)
- Ping Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunzhen Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
174
|
Shao MR, Kumar Kenchanmane Raju S, Laurie JD, Sanchez R, Mackenzie SA. Stress-responsive pathways and small RNA changes distinguish variable developmental phenotypes caused by MSH1 loss. BMC PLANT BIOLOGY 2017; 17:47. [PMID: 28219335 PMCID: PMC5319189 DOI: 10.1186/s12870-017-0996-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/08/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Proper regulation of nuclear-encoded, organelle-targeted genes is crucial for plastid and mitochondrial function. Among these genes, MutS Homolog 1 (MSH1) is notable for generating an assortment of mutant phenotypes with varying degrees of penetrance and pleiotropy. Stronger phenotypes have been connected to stress tolerance and epigenetic changes, and in Arabidopsis T-DNA mutants, two generations of homozygosity with the msh1 insertion are required before severe phenotypes begin to emerge. These observations prompted us to examine how msh1 mutants contrast according to generation and phenotype by profiling their respective transcriptomes and small RNA populations. RESULTS Using RNA-seq, we analyze pathways that are associated with MSH1 loss, including abiotic stresses such as cold response, pathogen defense and immune response, salicylic acid, MAPK signaling, and circadian rhythm. Subtle redox and environment-responsive changes also begin in the first generation, in the absence of strong phenotypes. Using small RNA-seq we further identify miRNA changes, and uncover siRNA trends that indicate modifications at the chromatin organization level. In all cases, the magnitude of changes among protein-coding genes, transposable elements, and small RNAs increases according to generation and phenotypic severity. CONCLUSION Loss of MSH1 is sufficient to cause large-scale regulatory changes in pathways that have been individually linked to one another, but rarely described all together within a single mutant background. This study enforces the recognition of organelles as critical integrators of both internal and external cues, and highlights the relationship between organelle and nuclear regulation in fundamental aspects of plant development and stress signaling. Our findings also encourage further investigation into potential connections between organelle state and genome regulation vis-á-vis small RNA feedback.
Collapse
Affiliation(s)
- Mon-Ray Shao
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| | | | - John D. Laurie
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Robersy Sanchez
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Sally A. Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| |
Collapse
|
175
|
Jin Q, Xu Y, Mattson N, Li X, Wang B, Zhang X, Jiang H, Liu X, Wang Y, Yao D. Identification of Submergence-Responsive MicroRNAs and Their Targets Reveals Complex MiRNA-Mediated Regulatory Networks in Lotus ( Nelumbo nucifera Gaertn). FRONTIERS IN PLANT SCIENCE 2017; 8:6. [PMID: 28149304 PMCID: PMC5241310 DOI: 10.3389/fpls.2017.00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/03/2017] [Indexed: 05/25/2023]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs with important regulatory functions in plant development and stress responses. However, their population abundance in lotus (Nelumbo nucifera Gaertn) has so far been poorly described, particularly in response to stresses. In this work, submergence-related miRNAs and their target genes were systematically identified, compared, and validated at the transcriptome-wide level using high-throughput sequencing data of small RNA, Mrna, and the degradome. A total of 128 known and 20 novel miRNAs were differentially expressed upon submergence. We identified 629 target transcripts for these submergence-responsive miRNAs. Based on the miRNA expression profiles and GO and KEGG annotation of miRNA target genes, we suggest possible molecular responses and physiological changes of lotus in response to submergence. Several metabolic, physiological and morphological adaptations-related miRNAs, i.e., NNU_far-miR159, NNU_gma-miR393h, and NNU_aly-miR319c-3p, were found to play important regulatory roles in lotus response to submergence. This work will contribute to a better understanding of miRNA-regulated adaption responses of lotus to submergence stress.
Collapse
Affiliation(s)
- Qijiang Jin
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yingchun Xu
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Neil Mattson
- Horticulture Section, School of Integrative Plant Science, Cornell UniversityNew York, NY, USA
| | - Xin Li
- Institute of Agricultural Science of Taihu Lake DistrictSuzhou, China
| | - Bei Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiao Zhang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Hongwei Jiang
- Institute of Agricultural Science of Taihu Lake DistrictSuzhou, China
| | - Xiaojing Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| | - Yanjie Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| |
Collapse
|
176
|
Moyle RL, Carvalhais LC, Pretorius LS, Nowak E, Subramaniam G, Dalton-Morgan J, Schenk PM. An Optimized Transient Dual Luciferase Assay for Quantifying MicroRNA Directed Repression of Targeted Sequences. FRONTIERS IN PLANT SCIENCE 2017; 8:1631. [PMID: 28979287 PMCID: PMC5611435 DOI: 10.3389/fpls.2017.01631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/05/2017] [Indexed: 05/04/2023]
Abstract
Studies investigating the action of small RNAs on computationally predicted target genes require some form of experimental validation. Classical molecular methods of validating microRNA action on target genes are laborious, while approaches that tag predicted target sequences to qualitative reporter genes encounter technical limitations. The aim of this study was to address the challenge of experimentally validating large numbers of computationally predicted microRNA-target transcript interactions using an optimized, quantitative, cost-effective, and scalable approach. The presented method combines transient expression via agroinfiltration of Nicotiana benthamiana leaves with a quantitative dual luciferase reporter system, where firefly luciferase is used to report the microRNA-target sequence interaction and Renilla luciferase is used as an internal standard to normalize expression between replicates. We report the appropriate concentration of N. benthamiana leaf extracts and dilution factor to apply in order to avoid inhibition of firefly LUC activity. Furthermore, the optimal ratio of microRNA precursor expression construct to reporter construct and duration of the incubation period post-agroinfiltration were determined. The optimized dual luciferase assay provides an efficient, repeatable and scalable method to validate and quantify microRNA action on predicted target sequences. The optimized assay was used to validate five predicted targets of rice microRNA miR529b, with as few as six technical replicates. The assay can be extended to assess other small RNA-target sequence interactions, including assessing the functionality of an artificial miRNA or an RNAi construct on a targeted sequence.
Collapse
|
177
|
Kumar S, Verma S, Trivedi PK. Involvement of Small RNAs in Phosphorus and Sulfur Sensing, Signaling and Stress: Current Update. FRONTIERS IN PLANT SCIENCE 2017; 8:285. [PMID: 28344582 PMCID: PMC5344913 DOI: 10.3389/fpls.2017.00285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/16/2017] [Indexed: 05/14/2023]
Abstract
Plants require several essential mineral nutrients for their growth and development. These nutrients are required to maintain physiological processes and structural integrity in plants. The root architecture has evolved to absorb nutrients from soil and transport them to other parts of the plant. Nutrient deficiency affects several physiological and biological processes in plants and leads to reduction in crop productivity and yield. To compensate this adversity, plants have developed adaptive mechanisms to enhance the acquisition, conservation, and mobilization of these nutrients under deficient or adverse conditions. In addition, plants have evolved an intricate nexus of complex signaling cascades, which help in nutrient sensing and uptake as well as to maintain nutrient homeostasis. In recent years, small non-coding RNAs such as micro RNAs (miRNAs) and endogenous small interfering RNAs have emerged as important component in regulating plant stress responses. A set of these small RNAs (sRNAs) have been implicated in regulating various processes involved in nutrient uptake, assimilation, and deficiency. In response to phosphorus (P) and sulphur (S) deficiencies, role of sRNAs, miR395 and miR399, have been identified to be instrumental; however, many more miRNAs might be involved in regulating the plant response to these nutrient stresses. These sRNAs modulate expression of target genes in response to P and S deficiencies and regulate their uptake and utilization for proper growth and development of the plant. This review summarizes the current understanding of uptake, sensing, and signaling of P and S and highlights the regulatory role of sRNAs in adaptive responses to these nutrient stresses in plants.
Collapse
Affiliation(s)
- Smita Kumar
- Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- Centre of Bio-Medical ResearchSanjay Gandhi Post-Graduate Institute of Medical Sciences Lucknow, India
- *Correspondence: Prabodh K. Trivedi, ; Smita Kumar,
| | - Saurabh Verma
- Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Prabodh K. Trivedi
- Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- *Correspondence: Prabodh K. Trivedi, ; Smita Kumar,
| |
Collapse
|
178
|
|
179
|
Zhang Q, Li Y, Zhang Y, Wu C, Wang S, Hao L, Wang S, Li T. Md-miR156ab and Md-miR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease. FRONTIERS IN PLANT SCIENCE 2017; 8:526. [PMID: 28469624 PMCID: PMC5395612 DOI: 10.3389/fpls.2017.00526] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression that post-transcriptionally regulate transcription factors involved in plant physiological activities. Little is known about the effects of miRNAs in disease resistance in apple (Malus×domestica). We globally profiled miRNAs in the apple cultivar Golden Delicious (GD) infected or not with the apple leaf spot fungus Alternaria alternaria f. sp. mali (ALT1), and identified 58 miRNAs that exhibited more than a 2-fold upregulation upon ALT1 infection. We identified a pair of miRNAs that target protein-coding genes involved in the defense response against fungal pathogens; Md-miR156ab targets a novel WRKY transcription factor, MdWRKYN1, which harbors a TIR and a WRKY domain. Md-miR395 targets another transcription factor, MdWRKY26, which contains two WRKY domains. Real-time PCR analysis showed that Md-miR156ab and Md-miR395 levels increased, while MdWRKYN1 and MdWRKY26 expression decreased in ALT1-inoculated GD leaves; furthermore, the overexpression of Md-miR156ab and Md-miR395 resulted in a significant reduction in MdWRKYN1 and MdWRKY26 expression. To investigate whether these miRNAs and their targets play a crucial role in plant defense, we overexpressed MdWRKYN1 or knocked down Md-miR156ab activity, which in both cases enhanced the disease resistance of the plants by upregulating the expression of the WRKY-regulated pathogenesis-related (PR) protein-encoding genes MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR10-1, and MdPR10-2. In a similar analysis, we overexpressed MdWRKY26 or suppressed Md-miR395 activity, and found that many PR protein-encoding genes were also regulated by MdWRKY26. In GD, ALT-induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1.
Collapse
|
180
|
Zhang Q, Li Y, Zhang Y, Wu C, Wang S, Hao L, Wang S, Li T. Md-miR156ab and Md-miR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease. FRONTIERS IN PLANT SCIENCE 2017; 8:526. [PMID: 28469624 DOI: 10.3389/fpls.2017.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/24/2017] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression that post-transcriptionally regulate transcription factors involved in plant physiological activities. Little is known about the effects of miRNAs in disease resistance in apple (Malus×domestica). We globally profiled miRNAs in the apple cultivar Golden Delicious (GD) infected or not with the apple leaf spot fungus Alternaria alternaria f. sp. mali (ALT1), and identified 58 miRNAs that exhibited more than a 2-fold upregulation upon ALT1 infection. We identified a pair of miRNAs that target protein-coding genes involved in the defense response against fungal pathogens; Md-miR156ab targets a novel WRKY transcription factor, MdWRKYN1, which harbors a TIR and a WRKY domain. Md-miR395 targets another transcription factor, MdWRKY26, which contains two WRKY domains. Real-time PCR analysis showed that Md-miR156ab and Md-miR395 levels increased, while MdWRKYN1 and MdWRKY26 expression decreased in ALT1-inoculated GD leaves; furthermore, the overexpression of Md-miR156ab and Md-miR395 resulted in a significant reduction in MdWRKYN1 and MdWRKY26 expression. To investigate whether these miRNAs and their targets play a crucial role in plant defense, we overexpressed MdWRKYN1 or knocked down Md-miR156ab activity, which in both cases enhanced the disease resistance of the plants by upregulating the expression of the WRKY-regulated pathogenesis-related (PR) protein-encoding genes MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR10-1, and MdPR10-2. In a similar analysis, we overexpressed MdWRKY26 or suppressed Md-miR395 activity, and found that many PR protein-encoding genes were also regulated by MdWRKY26. In GD, ALT-induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1.
Collapse
Affiliation(s)
- Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| |
Collapse
|
181
|
Bilichak A, Golubov A, Kovalchuk I. Small RNA Library Preparation and Illumina Sequencing in Plants. Methods Mol Biol 2017; 1456:189-196. [PMID: 27770367 DOI: 10.1007/978-1-4899-7708-3_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The discovery of small RNAs in plants and animals almost two decades ago attracted a significant interest towards epigenetic regulation of gene expression and the practical implementation of the gained knowledge in applied studies. New and sometimes unexpected functions have been ascribed to sRNAs almost every couple of years since their discovery, hence indicating that the complete role of sRNAs in plant and animal physiology is still barely understood. Next-generation sequencing technologies allow to generate high-resolution profiles of sRNAs for the consequent analysis and possibly to discover novel functions of sRNAs. In this chapter, we provide brief guidelines for sRNA library preparation in plants and a practical approach that can be implemented to overcome possible difficulties with sequencing library generation.
Collapse
Affiliation(s)
- Andriy Bilichak
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Andrey Golubov
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada, T1K 3M4
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada, T1K 3M4.
| |
Collapse
|
182
|
Wang Y, Wang Q, Gao L, Zhu B, Ju Z, Luo Y, Zuo J. Parsing the Regulatory Network between Small RNAs and Target Genes in Ethylene Pathway in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:527. [PMID: 28443119 PMCID: PMC5387102 DOI: 10.3389/fpls.2017.00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 03/24/2017] [Indexed: 05/11/2023]
Abstract
Small RNAs are a class of short non-coding endogenous RNAs that play essential roles in many biological processes. Recent studies have reported that microRNAs (miRNAs) are also involved in ethylene signaling in plants. LeERF1 is one of the ethylene response factors (ERFs) in tomato that locates in the downstream of ethylene signal transduction pathway. To elucidate the intricate regulatory roles of small RNAs in ethylene signaling pathway in tomato, the deep sequencing and bioinformatics methods were combined to decipher the small RNAs landscape in wild and sense-/antisense-LeERF1 transgenic tomato fruits. Except for the known miRNAs, 36 putative novel miRNAs, 6 trans-acting short interfering RNAs (ta-siRNAs), and 958 natural antisense small interfering RNAs (nat-siRNAs) were also found in our results, which enriched the tomato small RNAs repository. Among these small RNAs, 9 miRNAs, and 12 nat-siRNAs were differentially expressed between the wild and transgenic tomato fruits significantly. A large amount of target genes of the small RNAs were identified and some of them were involved in ethylene pathway, including AP2 TFs, auxin response factors, F-box proteins, ERF TFs, APETALA2-like protein, and MADS-box TFs. Degradome sequencing further confirmed the targets of miRNAs and six novel targets were also discovered. Furthermore, a regulatory model which reveals the regulation relationships between the small RNAs and their targets involved in ethylene signaling was set up. This work provides basic information for further investigation of the function of small RNAs in ethylene pathway and fruit ripening.
Collapse
Affiliation(s)
- Yunxiang Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Qing Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Lipu Gao
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China
| | - Zheng Ju
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China
| | - Jinhua Zuo
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- *Correspondence: Jinhua Zuo
| |
Collapse
|
183
|
Thilagavathy A, Devaraj VR. Evaluation of appropriate reference gene for normalization of microRNA expression by real-time PCR in Lablab purpureus under abiotic stress conditions. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
184
|
Karakülah G, Yücebilgili Kurtoğlu K, Unver T. PeTMbase: A Database of Plant Endogenous Target Mimics (eTMs). PLoS One 2016; 11:e0167698. [PMID: 27936097 PMCID: PMC5148581 DOI: 10.1371/journal.pone.0167698] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNA) are small endogenous RNA molecules, which regulate target gene expression at post-transcriptional level. Besides, miRNA activity can be controlled by a newly discovered regulatory mechanism called endogenous target mimicry (eTM). In target mimicry, eTMs bind to the corresponding miRNAs to block the binding of specific transcript leading to increase mRNA expression. Thus, miRNA-eTM-target-mRNA regulation modules involving a wide range of biological processes; an increasing need for a comprehensive eTM database arose. Except miRSponge with limited number of Arabidopsis eTM data no available database and/or repository was developed and released for plant eTMs yet. Here, we present an online plant eTM database, called PeTMbase (http://petmbase.org), with a highly efficient search tool. To establish the repository a number of identified eTMs was obtained utilizing from high-throughput RNA-sequencing data of 11 plant species. Each transcriptome libraries is first mapped to corresponding plant genome, then long non-coding RNA (lncRNA) transcripts are characterized. Furthermore, additional lncRNAs retrieved from GREENC and PNRD were incorporated into the lncRNA catalog. Then, utilizing the lncRNA and miRNA sources a total of 2,728 eTMs were successfully predicted. Our regularly updated database, PeTMbase, provides high quality information regarding miRNA:eTM modules and will aid functional genomics studies particularly, on miRNA regulatory networks.
Collapse
Affiliation(s)
- Gökhan Karakülah
- İzmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylül University, İnciraltı, İzmir, Turkey
- * E-mail: (GK); (TU)
| | | | - Turgay Unver
- İzmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylül University, İnciraltı, İzmir, Turkey
- * E-mail: (GK); (TU)
| |
Collapse
|
185
|
Baldrich P, San Segundo B. MicroRNAs in Rice Innate Immunity. RICE (NEW YORK, N.Y.) 2016; 9:6. [PMID: 26897721 PMCID: PMC4761359 DOI: 10.1186/s12284-016-0078-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/12/2016] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are short regulatory non-coding RNAs that guide gene silencing in most eukaryotes. They regulate gene expression by triggering sequence-specific cleavage or translational repression of target transcripts. Plant miRNAs are known to play important roles in a wide range of developmental processes. Increasing evidence also supports that the modulation of miRNA levels plays an important role in reprogramming plant responses to abiotic stress (drought, cold, salinity and nutrient deficiency) and biotic stress (antibacterial resistance). Most of these studies were carried out in the model plant Arabidopsis thaliana. During the last years, the adoption of high-throughput sequencing technologies has significantly contributed to uncover multiple miRNAs while allowing miRNA profiling in plants. However, although a plethora of rice miRNAs have been shown to be regulated by pathogen infection, the biological function remains largely unknown for most of them. In this review, we summarize our current understanding on the contribution of miRNAs to rice immunity and discuss their potential applications in rice biotechnology. A better understanding of the miRNA species controlling rice immunity may lead to practical biotechnological applications leading to the development of appropriate strategies for rice protection.
Collapse
Affiliation(s)
- Patricia Baldrich
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, 08193 Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, 08193 Spain
| |
Collapse
|
186
|
Borpatragohain P, Rose TJ, King GJ. Fire and Brimstone: Molecular Interactions between Sulfur and Glucosinolate Biosynthesis in Model and Crop Brassicaceae. FRONTIERS IN PLANT SCIENCE 2016; 7:1735. [PMID: 27917185 PMCID: PMC5116641 DOI: 10.3389/fpls.2016.01735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabolite, and have a wide range of biological activities. Their unique properties also affect livestock and human health, and have been harnessed for food and other end-uses. Since GSLs are sulfur (S)-rich there are many lines of evidence suggesting that plant S status plays a key role in determining plant GSL content. However, there is still a need to establish a detailed knowledge of the distribution and remobilization of S and GSLs throughout the development of Brassica crops, and to represent this in terms of primary and secondary sources and sinks. The increased genome complexity, gene duplication and divergence within brassicas, together with their ontogenetic plasticity during crop development, appear to have a marked effect on the regulation of S and GSLs. Here, we review the current understanding of inorganic S (sulfate) assimilation into organic S forms, including GSLs and their precursors, the intracellular and inter-organ transport of inorganic and organic S forms, and the accumulation of GSLs in specific tissues. We present this in the context of overlapping sources and sinks, transport processes, signaling molecules and their associated molecular interactions. Our analysis builds on recent insights into the molecular regulation of sulfate uptake and transport by different transporters, transcription factors and miRNAs, and the role that these may play in GSL biosynthesis. We develop a provisional model describing the key processes that could be targeted in crop breeding programs focused on modifying GSL content.
Collapse
Affiliation(s)
| | - Terry J. Rose
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
- Southern Cross GeoScience, Southern Cross University, LismoreNSW, Australia
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
| |
Collapse
|
187
|
Yan J, Zhao C, Zhou J, Yang Y, Wang P, Zhu X, Tang G, Bressan RA, Zhu JK. The miR165/166 Mediated Regulatory Module Plays Critical Roles in ABA Homeostasis and Response in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006416. [PMID: 27812104 PMCID: PMC5094776 DOI: 10.1371/journal.pgen.1006416] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
The function of miR165/166 in plant growth and development has been extensively studied, however, its roles in abiotic stress responses remain largely unknown. Here, we report that reduction in the expression of miR165/166 conferred a drought and cold resistance phenotype and hypersensitivity to ABA during seed germination and post-germination seedling development. We further show that the ABA hypersensitive phenotype is associated with a changed transcript abundance of ABA-responsive genes and a higher expression level of ABI4, which can be directly regulated by a miR165/166 target. Additionally, we found that reduction in miR165/166 expression leads to elevated ABA levels, which occurs at least partially through the increased expression of BG1, a gene that is directly regulated by a miR165/166 target. Taken together, our results uncover a novel role for miR165/166 in the regulation of ABA and abiotic stress responses and control of ABA homeostasis.
Collapse
Affiliation(s)
- Jun Yan
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Jianping Zhou
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Xiaohong Zhu
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Ray A. Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
188
|
Ghosh Dastidar M, Mosiolek M, Bleckmann A, Dresselhaus T, Nodine MD, Maizel A. Sensitive whole mount in situ localization of small RNAs in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:694-702. [PMID: 27411563 DOI: 10.1111/tpj.13270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 05/25/2023]
Abstract
Small RNAs, such as microRNAs (miRNAs), regulate gene expression and play important roles in many plant processes. Although our knowledge of their biogenesis and mode of action has significantly progressed, we still have comparatively little information about their biological functions. In particular, knowledge about their spatio-temporal expression patterns rely on either indirect detection by use of reporter constructs or labor-intensive direct detection by in situ hybridization on sectioned material. None of the current approaches allows a systematic investigation of small RNA expression patterns. Here, we present a sensitive method for in situ detection of miRNAs and siRNAs in intact plant tissues that utilizes both double-labeled probes and a specific cross-linker. We determined the expression patterns of several small RNAs in diverse plant tissues.
Collapse
Affiliation(s)
- Mouli Ghosh Dastidar
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Magdalena Mosiolek
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Andrea Bleckmann
- Institute for Cell Biology and Plant Biochemistry, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Thomas Dresselhaus
- Institute for Cell Biology and Plant Biochemistry, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
189
|
Analysis of Small RNA Populations Using Hybridization to DNA Tiling Arrays. Methods Mol Biol 2016; 1456:127-139. [PMID: 27770363 DOI: 10.1007/978-1-4899-7708-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Epigenetic response to stress in plants involves changes in DNA methylation, histone modifications, and expression of small noncoding RNAs (sRNA). Here we present the method of analysis of differential expression of sRNA populations using DNA tiling arrays. sRNA extracted from Arabidopsis thaliana plants exposed to pathogen elicitor or control plants were reverse-transcribed into cDNAs, and subsequently hybridized after labeling to a custom-made DNA tiling array covering Arabidopsis chromosome 4. We first designed a control experiment with eight cDNA clones corresponding to sequences located on chromosome 4 and obtained robust and specific hybridization signals. Furthermore, hybridization signals along chromosome 4 were in good agreement with sRNA abundance as previously determined by massive parallel sequence signature (MPSS) in the case of untreated plants, but differed substantially after stress treatment. These results demonstrate the utility of hybridization to DNA tiling arrays to detect major changes in sRNA abundance.
Collapse
|
190
|
Ferdous J, Whitford R, Nguyen M, Brien C, Langridge P, Tricker PJ. Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Funct Integr Genomics 2016; 17:279-292. [PMID: 27730426 DOI: 10.1007/s10142-016-0526-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 12/31/2022]
Abstract
Drought is one of the major abiotic stresses reducing crop yield. Since the discovery of plant microRNAs (miRNAs), considerable progress has been made in clarifying their role in plant responses to abiotic stresses, including drought. miR827 was previously reported to confer drought tolerance in transgenic Arabidopsis. We examined barley (Hordeum vulgare L. 'Golden Promise') plants over-expressing miR827 for plant performance under drought. Transgenic plants constitutively expressing CaMV-35S::Ath-miR827 and drought-inducible Zm-Rab17::Hv-miR827 were phenotyped by non-destructive imaging for growth and whole plant water use efficiency (WUEwp). We observed that the growth, WUEwp, time to anthesis and grain weight of transgenic barley plants expressing CaMV-35S::Ath-miR827 were negatively affected in both well-watered and drought-treated growing conditions compared with the wild-type plants. In contrast, transgenic plants over-expressing Zm-Rab17::Hv-miR827 showed improved WUEwp with no growth or reproductive timing change compared with the wild-type plants. The recovery of Zm-Rab17::Hv-miR827 over-expressing plants also improved following severe drought stress. Our results suggest that Hv-miR827 has the potential to improve the performance of barley under drought and that the choice of promoter to control the timing and specificity of miRNA expression is critical.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Australian Centre for Plant Functional Genomics, Plant Genomics Centre, Hartley Grove, Urrbrae, Adelaide, South Australia, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Ryan Whitford
- Australian Centre for Plant Functional Genomics, Plant Genomics Centre, Hartley Grove, Urrbrae, Adelaide, South Australia, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Martin Nguyen
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Chris Brien
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Penny J Tricker
- Australian Centre for Plant Functional Genomics, Plant Genomics Centre, Hartley Grove, Urrbrae, Adelaide, South Australia, 5064, Australia.
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
191
|
Bu Y, Sun B, Zhou A, Zhang X, Takano T, Liu S. Overexpression of AtOxR gene improves abiotic stresses tolerance and vitamin C content in Arabidopsis thaliana. BMC Biotechnol 2016; 16:69. [PMID: 27717369 PMCID: PMC5055693 DOI: 10.1186/s12896-016-0299-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022] Open
Abstract
Background Abiotic stresses are serious threats to plant growth, productivity and result in crop loss worldwide, reducing average yields of most major crops. Although abiotic stresses might elicit different plant responses, most induce the accumulation of reactive oxygen species (ROS) in plant cells leads to oxidative damage. L-ascorbic acid (AsA, vitamin C) is known as an antioxidant and H2O2-scavenger that defends plants against abiotic stresses. In addition, vitamin C is also an important component of human nutrition that has to be obtained from different foods. Therefore, increasing the vitamin C content is important for improving abiotic stresses tolerance and nutrition quality in crops production. Results Here, we show that the expression of AtOxR gene is response to multiple abiotic stresses (salt, osmotic, metal ion, and H2O2 treatment) in both the leaves and roots of Arabidopsis. AtOxR protein was localized to the Endoplasmic Reticulum (ER) in yeast and Arabidopsis cells by co-localization analysis with ER specific dye. AtOxR-overexpressing transgenic Arabidopsis plants enhance the tolerance to abiotic stresses. Overexpression of AtOxR gene resulted in AsA accumulation and decreased H2O2 content in transgenic plants. Conclusions In this study, our results show that AtOxR responds to multiple abiotic stresses. Overexpressing AtOxR improves tolerance to abiotic stresses and increase vitamin C content in Arabidopsis thaliana. AtOxR will be useful for the improvement of important crop plants through moleculer breeding. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0299-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Bu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Bo Sun
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, People's Republic of China.,Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 232 Hesong, Daoli District, Harbin, 150070, China
| | - Aimin Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Xinxin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Testuo Takano
- Asian Natural Environmental Science Center(ASNESC), The University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
| | - Shenkui Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, People's Republic of China.
| |
Collapse
|
192
|
Li F, Mei L, Zhan C, Mao Q, Yao M, Wang S, Tang L, Chen F. Liquid Hybridization and Solid Phase Detection: A Highly Sensitive and Accurate Strategy for MicroRNA Detection in Plants and Animals. Int J Mol Sci 2016; 17:E1457. [PMID: 27598139 PMCID: PMC5037736 DOI: 10.3390/ijms17091457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/31/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in nearly every aspect of biology, including physiological, biochemical, developmental and pathological processes. Therefore, a highly sensitive and accurate method of detection of miRNAs has great potential in research on theory and application, such as the clinical approach to medicine, animal and plant production, as well as stress response. Here, we report a strategic method to detect miRNAs from multicellular organisms, which mainly includes liquid hybridization and solid phase detection (LHSPD); it has been verified in various species and is much more sensitive than traditional biotin-labeled Northern blots. By using this strategy and chemiluminescent detection with digoxigenin (DIG)-labeled or biotin-labeled oligonucleotide probes, as low as 0.01-0.25 fmol [for DIG-CDP Star (disodium2-chloro-5-(4-methoxyspiro{1,2-dioxetane-3,2'-(5'-chloro)tricyclo[3.3.1.13,7]decan}-4-yl)phenyl phosphate) system], 0.005-0.1 fmol (for biotin-CDP Star system), or 0.05-0.5 fmol (for biotin-luminol system) of miRNA can be detected and one-base difference can be distinguished between miRNA sequences. Moreover, LHSPD performed very well in the quantitative analysis of miRNAs, and the whole process can be completed within about 9 h. The strategy of LHSPD provides an effective solution for rapid, accurate, and sensitive detection and quantitative analysis of miRNAs in plants and animals.
Collapse
Affiliation(s)
- Fosheng Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Lanju Mei
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Cheng Zhan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Qiang Mao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
- Chengdu Botanical Garden, Chengdu 610083, Sichuan, China.
| | - Min Yao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Shenghua Wang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Lin Tang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Fang Chen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
- National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu 610000, Sichuan, China.
| |
Collapse
|
193
|
Liu H, Able AJ, Able JA. Water-deficit stress-responsive microRNAs and their targets in four durum wheat genotypes. Funct Integr Genomics 2016; 17:237-251. [PMID: 27562677 DOI: 10.1007/s10142-016-0515-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) guide regulation at the post-transcriptional level by inducing messenger RNA (mRNA) degradation or translational inhibition of their target protein-coding genes. Durum wheat miRNAs may contribute to the genotypic water-deficit stress response in different durum varieties. Further investigation of the interactive miRNA-target regulatory modules and experimental validation of their response to water stress will contribute to our understanding of the small RNA-mediated molecular networks underlying stress adaptation in durum wheat. In this study, a comprehensive genome-wide in silico analysis using the updated Triticum transcriptome assembly identified 2055 putative targets for 113 conserved durum miRNAs and 131 targets for four novel durum miRNAs that putatively contribute to genotypic stress tolerance. Predicted mRNA targets encode various transcription factors, binding proteins and functional enzymes, which play vital roles in multiple biological pathways such as hormone signalling and metabolic processes. Quantitative PCR profiling further characterised 43 targets and 5 miRNAs with stress-responsive and/or genotype-dependent differential expression in two stress-tolerant and two stress-sensitive durum genotypes subjected to pre-anthesis water-deficit stress. Furthermore, a 5' RLM-RACE approach validated nine mRNA targets cleaved by water-deficit stress-responsive miRNAs, which, to our knowledge, has not been previously reported in durum wheat. The present study provided experimental evidence of durum miRNAs and target genes in response to water-deficit stress in contrasting durum varieties, providing new insights into the regulatory roles of the miRNA-guided RNAi mechanism underlying stress adaptation in durum wheat.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia, 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia, 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
194
|
Fang YN, Zheng BB, Wang L, Yang W, Wu XM, Xu Q, Guo WW. High-throughput sequencing and degradome analysis reveal altered expression of miRNAs and their targets in a male-sterile cybrid pummelo (Citrus grandis). BMC Genomics 2016; 17:591. [PMID: 27506907 PMCID: PMC4979119 DOI: 10.1186/s12864-016-2882-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/05/2016] [Indexed: 12/22/2022] Open
Abstract
Background G1 + HBP is a male sterile cybrid line with nuclear genome from Hirado Buntan pummelo (C. grandis Osbeck) (HBP) and mitochondrial genome from “Guoqing No.1” (G1, Satsuma mandarin), which provides a good opportunity to study male sterility and nuclear-cytoplasmic cross talk in citrus. High-throughput sRNA and degradome sequencing were applied to identify miRNAs and their targets in G1 + HBP and its fertile type HBP during reproductive development. Results A total of 184 known miRNAs, 22 novel miRNAs and 86 target genes were identified. Some of the targets are transcription factors involved in floral development, such as auxin response factors (ARFs), SQUAMOSA promoter binding protein box (SBP-box), MYB, basic region-leucine zipper (bZIP), APETALA2 (AP2) and transport inhibitor response 1 (TIR1). Eight target genes were confirmed to be sliced by corresponding miRNAs using 5’ RACE technology. Based on the sequencing abundance, 42 differentially expressed miRNAs between sterile line G1 + HBP and fertile line HBP were identified. Differential expression of miRNAs and their target genes between two lines was validated by quantitative RT-PCR, and reciprocal expression patterns between some miRNAs and their targets were demonstrated. The regulatory mechanism of miR167a was investigated by yeast one-hybrid and dual-luciferase assays that one dehydrate responsive element binding (DREB) transcription factor binds to miR167a promoter and transcriptionally repress miR167 expression. Conclusion Our study reveals the altered expression of miRNAs and their target genes in a male sterile line of pummelo and highlights that miRNA regulatory network may be involved in floral bud development and cytoplasmic male sterility in citrus. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2882-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan-Ni Fang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bei-Bei Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Yang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
195
|
Yang Y, Zhu K, Wu J, Liu L, Sun G, He Y, Chen F, Yu D. Identification and characterization of a novel NAC-like gene in chrysanthemum (Dendranthema lavandulifolium). PLANT CELL REPORTS 2016; 35:1783-98. [PMID: 27233639 DOI: 10.1007/s00299-016-1996-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/12/2016] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE A NAC -like gene named DlNAC1 was identified in chrysanthemum and characterized; it may be involved in regulation of response to abiotic stressors, especially in tolerance to drought and salinity. NAC transcription factors in plants play crucial roles in tolerance to abiotic stressors, and overexpression of the NAC gene in Arabidopsis has been demonstrated to lead to improved drought tolerance. Functions of the NAC genes in chrysanthemum, however, remain poorly understood. In this study, a NAC-like gene named DlNAC1 was identified in chrysanthemum (Dendranthema lavandulifolium) and characterized. Phylogenetic analysis indicated that DlNAC1 contains a typical NAC domain and belongs to the ONAC022 subgroup. According to the subcellular localization and yeast one-hybrid assay, the DlNAC1 protein is localized to nuclei and has a transcription activation ability. Moreover, quantitative real-time PCR analyses showed that DlNAC1 was induced by low-temperature, high-salinity, and drought conditions (separately), but not by abscisic acid (ABA) and heat shock. In these experiments, the downstream genes of NAC transcription factors were found to be up-regulated, including stress-responsive genes KIN1 and AMY1. To further explore the effects of DlNAC1 in response to abiotic stressors, DlNAC1 was overexpressed in tobacco, and these transgenic plants showed significantly enhanced tolerance to drought and salinity. This study suggests that in chrysanthemum, the DlNAC1 gene is involved in regulation of the response to abiotic stressors, especially in tolerance to drought and salinity.
Collapse
Affiliation(s)
- Yanfang Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Zhu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liqing Liu
- Fujian Provincial Key Lab of Subtropic Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361009, China
| | - Guiling Sun
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yanbiao He
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
196
|
Pan L, Wang Z, Cai J, Gao H, Zhao H, Dong L. High-throughput sequencing reveals differential regulation of miRNAs in fenoxaprop-P-ethyl-resistant Beckmannia syzigachne. Sci Rep 2016; 6:28725. [PMID: 27353151 PMCID: PMC4926119 DOI: 10.1038/srep28725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 06/09/2016] [Indexed: 12/02/2022] Open
Abstract
Non-target site resistance (NTSR) to herbicides is an increasing concern for weed control. The majority of previous studies have focused on metabolic resistance mechanisms of NTSR, but no research exists on gene regulation mechanisms behind herbicide resistance, such as microRNA (miRNA). Here, we identified 3 American sloughgrass (Beckmannia syzigachne Steud.) populations containing fenoxaprop-P-ethyl-resistant plants. We then constructed small RNA libraries and subjected them to deep sequencing and bioinformatics analyses. Forty known and 36 potentially novel, predicted miRNAs were successfully identified. Of these, we identified 3 conserved, predicted candidate NTSR-determinant miRNAs and their potential corresponding target genes, as well as 4 novel potential miRNAs with high count. Target gene prediction and annotation indicated that these 7 differentially expressed miRNAs potentially play a role in regulating specific stress-responsive genes, very likely related to herbicide resistance. Expression profiles were determined with quantitative real-time PCR. The present study is a novel, large-scale characterization of weed miRNAs. The results should further our understanding of miRNA expression profiles associated with herbicide resistance, allowing for the development of more effective weed management strategies.
Collapse
Affiliation(s)
- Lang Pan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Zhaoyun Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Jia Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Haitao Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| |
Collapse
|
197
|
Zhu Z, Miao Y, Guo Q, Zhu Y, Yang X, Sun Y. Identification of miRNAs Involved in Stolon Formation in Tulipa edulis by High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:852. [PMID: 27446103 PMCID: PMC4914584 DOI: 10.3389/fpls.2016.00852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/31/2016] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that play an important role in transcriptional and post-transcriptional gene regulation. However, the sequence information and functions of miRNAs are still unexplored in Tulipa edulis. In this study, high-throughput sequencing was used to identify small RNAs in stolon formation stages (stage 1, 2, and 3) in T. edulis. A total of 12,890,912, 12,182,122, and 12,061,434 clean reads were obtained from stage 1, 2, and 3, respectively. Among the reads, 88 conserved miRNAs and 70 novel miRNAs were identified. Target prediction of 122 miRNAs resulted in 531 potential target genes. Nr, Swiss-Prot, GO, COG, and KEGG annotations revealed that these target genes participate in many biologic and metabolic processes. Moreover, qRT-PCR was performed to analyze the expression levels of the miRNAs and target genes in stolon formation. The results revealed that miRNAs play a key role in T. edulis stolon formation.
Collapse
Affiliation(s)
- Zaibiao Zhu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural UniversityNanjing, China
| | - Yuanyuan Miao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural UniversityNanjing, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural UniversityNanjing, China
| | - Yunhao Zhu
- College of Pharmacy, Henan University of Chinese MedicineZhengzhou, China
| | - Xiaohua Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural UniversityNanjing, China
| | - Yuan Sun
- Institute of Chinese Medicinal Materials, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
198
|
Fan G, Niu S, Zhao Z, Deng M, Xu E, Wang Y, Yang L. Identification of microRNAs and their targets in Paulownia fortunei plants free from phytoplasma pathogen after methyl methane sulfonate treatment. Biochimie 2016; 127:271-80. [PMID: 27328782 DOI: 10.1016/j.biochi.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/15/2016] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) play major roles in plant responses to various biotic and abiotic stresses by regulating gene expression at the transcriptional and post-transcriptional levels. Paulownia witches' broom (PaWB) disease caused by phytoplasmas reduces Paulownia production worldwide. In this study, we investigated the miRNA-mediated plant response to PaWB phytoplasma by Illumina sequencing and degradome analysis of Paulownia fortunei small RNAs (sRNAs). The sRNA and degradome libraries were constructed from healthy and diseased P. fortunei plants and the plants free from phytoplasma pathogen after 60 mg L(-1) methyl methane sulfonate treatment. A total of 96 P. fortunei-conserved miRNAs and 83 putative novel miRNAs were identified. Among them, 37 miRNAs (17 conserved, 20 novel) were found to be differentially expressed in response to PaWB phytoplasma infection. In addition, 114 target genes for 18 of the conserved miRNA families and 33 target genes for 15 of the novel miRNAs in P. fortunei were detected. The expression patterns of 14 of the PaWB phytoplasma-responsive miRNAs and 12 target genes were determined by quantitative real-time polymerase chain reaction (qPCR) experiments. A functional analysis of the miRNA targets indicated that these targeted genes may regulate transcription, stress response, nitrogen metabolism, and various other activities. Our results will help identify the potential roles of miRNAs involved in protecting P. fortunei from diseases.
Collapse
Affiliation(s)
- Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China.
| | - Suyan Niu
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Enkai Xu
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Yuanlong Wang
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| | - Lu Yang
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China; College of Forestry, Henan Agricultural University, 450002 Zhengzhou, Henan, PR China
| |
Collapse
|
199
|
Novel drought-responsive regulatory coding and non-coding transcripts from Oryza Sativa L. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0439-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
200
|
Bakhshi B, Mohseni Fard E, Nikpay N, Ebrahimi MA, Bihamta MR, Mardi M, Salekdeh GH. MicroRNA Signatures of Drought Signaling in Rice Root. PLoS One 2016; 11:e0156814. [PMID: 27276090 PMCID: PMC4898717 DOI: 10.1371/journal.pone.0156814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/19/2016] [Indexed: 11/21/2022] Open
Abstract
Background Drought stress is one of the most important abiotic stresses and the main constraint to rice agriculture. MicroRNA-mediated post-transcriptional gene regulation is one of the ways to establish drought stress tolerance in plants. MiRNAs are 20–24-nt regulatory RNAs that play an important role in regulating plant gene expression upon exposure to biotic and abiotic stresses. Methodology/Principal Findings In this study, we applied a partial root drying system as well as a complete root drying system to identify miRNAs involved in conditions of drought stress, drought signaling and wet signaling using high-throughput sequencing. To this end, we produced four small RNA libraries: (1) fully-watered (WW), (2) fully-droughted (WD), and split-root systems where (3) one-half was well watered (SpWW) and (4) the other half was water-deprived (SpWD). Our analysis revealed 10,671 and 783 unique known and novel miRNA reads in all libraries, respectively. We identified, 65 (52 known + 13 novel), 72 (61 known + 11 novel) and 51 (38 known + 13 novel) miRNAs that showed differential expression under conditions of drought stress, drought signaling and wet signaling, respectively. The results of quantitative real-time PCR showed expression patterns similar to the high-throughput sequencing results. Furthermore, our target prediction led to the identification of 244, 341 and 239 unique target genes for drought-stress-, drought-signaling- and wet-signaling-responsive miRNAs, respectively. Conclusions/Significance Our results suggest that miRNAs that are responsive under different conditions could play different roles in the regulation of abscisic acid signaling, calcium signaling, detoxification and lateral root formation.
Collapse
Affiliation(s)
- Behnam Bakhshi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Mohseni Fard
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Nava Nikpay
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | | | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- * E-mail:
| |
Collapse
|