151
|
Smanski MJ, Casper J, Peterson RM, Yu Z, Rajski SR, Shen B. Expression of the platencin biosynthetic gene cluster in heterologous hosts yielding new platencin congeners. JOURNAL OF NATURAL PRODUCTS 2012; 75:2158-2167. [PMID: 23157615 PMCID: PMC3532557 DOI: 10.1021/np3005985] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Platensimycin (PTM) and platencin (PTN) are potent and selective inhibitors of bacterial and mammalian fatty acid synthases and have emerged as promising drug leads for both antibacterial and antidiabetic therapies. We have previously cloned and sequenced the PTM-PTN dual biosynthetic gene cluster from Streptomyces platensis MA7327 and the PTN biosynthetic gene cluster from S. platensis MA7339, the latter of which is composed of 31 genes encoding PTN biosynthesis, regulation, and resistance. We have also demonstrated that PTM or PTN production can be significantly improved upon inactivation of the pathway-specific regulator ptmR1 or ptnR1 in S. platensis MA7327 or MA7339, respectively. We now report engineered production of PTN and congeners in a heterologous Streptomyces host. Expression constructs containing the ptn biosynthetic gene cluster were engineered from SuperCos 1 library clones and introduced into five model Streptomyces hosts, and PTN production was achieved in Streptomyces lividans K4-114. Inactivation of ptnR1 was crucial for expression of the ptn biosynthetic gene cluster, thereby PTN production, in S. lividans K4-114. Six PTN congeners, five of which were new, were also isolated from the recombinant strain S. lividans SB12606, revealing new insights into PTN biosynthesis. Production of PTN in a model Streptomyces host provides new opportunities to apply combinatorial biosynthetic strategies to the PTN biosynthetic machinery for structural diversity.
Collapse
Affiliation(s)
- Michael J. Smanski
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jeffrey Casper
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ryan M. Peterson
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Zhiguo Yu
- Department of Chemistry, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Scott R. Rajski
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ben Shen
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
- Department of Molecular Therapeutics, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
- Natural Products Library Initiative, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
152
|
Craney A, Ozimok C, Pimentel-Elardo SM, Capretta A, Nodwell JR. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. ACTA ACUST UNITED AC 2012; 19:1020-7. [PMID: 22921069 DOI: 10.1016/j.chembiol.2012.06.013] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/15/2012] [Accepted: 06/23/2012] [Indexed: 12/30/2022]
Abstract
Bacterially produced secondary metabolites are used as antibiotics, anticancer drugs, and for many other medicinal applications. The mechanisms that limit the production of these molecules in the laboratory are not well understood, and this has impeded the discovery of many important compounds. We have identified small molecules that remodel the yields of secondary metabolites in many actinomycetes and show that one set of these molecules does so by inhibiting fatty acid biosynthesis. This demonstrates a particularly intimate relationship between this primary metabolic pathway and secondary metabolism and suggests an approach to enhance the yields of metabolites for discovery and biochemical characterization.
Collapse
Affiliation(s)
- Arryn Craney
- Michael Degroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|
153
|
Abstract
Activation/exploitation of biosynthetic pathways for useful metabolites is a major current interest. The metabolism remodeling approach developed by Craney and colleagues in this issue of (Chemistry & Biology), in which small molecule probes alter the secondary metabolites produced by streptomycetes, could lead to discovery of a multitude of novel antibiotics and other drugs.
Collapse
|
154
|
Bioengineering natural product biosynthetic pathways for therapeutic applications. Curr Opin Biotechnol 2012; 23:931-40. [DOI: 10.1016/j.copbio.2012.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/13/2012] [Indexed: 01/05/2023]
|
155
|
Ochi K, Hosaka T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 2012; 97:87-98. [PMID: 23143535 PMCID: PMC3536979 DOI: 10.1007/s00253-012-4551-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 11/29/2022]
Abstract
Genome sequencing of Streptomyces, myxobacteria, and fungi showed that although each strain contains genes that encode the enzymes to synthesize a plethora of potential secondary metabolites, only a fraction are expressed during fermentation. Interest has therefore grown in the activation of these cryptic pathways. We review current progress on this topic, describing concepts for activating silent genes, utilization of “natural” mutant-type RNA polymerases and rare earth elements, and the applicability of ribosome engineering to myxobacteria and fungi, the microbial groups known as excellent searching sources, as well as actinomycetes, for secondary metabolites.
Collapse
Affiliation(s)
- Kozo Ochi
- Department of Life Science, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, Hiroshima, 731-5193, Japan.
| | | |
Collapse
|
156
|
Gómez C, Olano C, Méndez C, Salas JA. Three pathway-specific regulators control streptolydigin biosynthesis in Streptomyces lydicus. Microbiology (Reading) 2012; 158:2504-2514. [DOI: 10.1099/mic.0.061325-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Cristina Gómez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
157
|
Wu H, Qu S, Lu C, Zheng H, Zhou X, Bai L, Deng Z. Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008. BMC Genomics 2012; 13:337. [PMID: 22827618 PMCID: PMC3424136 DOI: 10.1186/1471-2164-13-337] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/24/2012] [Indexed: 01/11/2023] Open
Abstract
Background Streptomyces hygroscopicus 5008 has been used for the production of the antifungal validamycin/jinggangmycin for more than 40 years. A high yield of validamycin is achieved by culturing the strain at 37°C, rather than at 30°C for normal growth and sporulation. The mechanism(s) of its thermo-regulated biosynthesis was largely unknown. Results The 10,383,684-bp genome of strain 5008 was completely sequenced and composed of a linear chromosome, a 164.57-kb linear plasmid, and a 73.28-kb circular plasmid. Compared with other Streptomyces genomes, the chromosome of strain 5008 has a smaller core region and shorter terminal inverted repeats, encodes more α/β hydrolases, major facilitator superfamily transporters, and Mg2+/Mn2+-dependent regulatory phosphatases. Transcriptomic analysis revealed that the expression of 7.5% of coding sequences was increased at 37°C, including biosynthetic genes for validamycin and other three secondary metabolites. At 37°C, a glutamate dehydrogenase was transcriptionally up-regulated, and further proved its involvement in validamycin production by gene replacement. Moreover, efficient synthesis and utilization of intracellular glutamate were noticed in strain 5008 at 37°C, revealing glutamate as the nitrogen source for validamycin biosynthesis. Furthermore, a SARP-family regulatory gene with enhanced transcription at 37°C was identified and confirmed to be positively involved in the thermo-regulation of validamycin production by gene inactivation and transcriptional analysis. Conclusions Strain 5008 seemed to have evolved with specific genomic components to facilitate the thermo-regulated validamycin biosynthesis. The data obtained here will facilitate future studies for validamycin yield improvement and industrial bioprocess optimization.
Collapse
Affiliation(s)
- Hang Wu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | | | | | | | | | | | | |
Collapse
|
158
|
Zhai L, Lin S, Qu D, Hong X, Bai L, Chen W, Deng Z. Engineering of an industrial polyoxin producer for the rational production of hybrid peptidyl nucleoside antibiotics. Metab Eng 2012; 14:388-93. [DOI: 10.1016/j.ymben.2012.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/05/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
159
|
A novel reporter system for bacterial and mammalian cells based on the non-ribosomal peptide indigoidine. Metab Eng 2012; 14:325-35. [DOI: 10.1016/j.ymben.2012.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/19/2012] [Accepted: 04/13/2012] [Indexed: 12/16/2022]
|
160
|
Screening and characteristics of a butanol-tolerant strain and butanol production from enzymatic hydrolysate of NaOH-pretreated corn stover. World J Microbiol Biotechnol 2012; 28:2963-71. [DOI: 10.1007/s11274-012-1107-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
|
161
|
Gómez C, Horna DH, Olano C, Méndez C, Salas JA. Participation of putative glycoside hydrolases SlgC1 and SlgC2 in the biosynthesis of streptolydigin in Streptomyces lydicus. Microb Biotechnol 2012; 5:663-7. [PMID: 22726958 PMCID: PMC3815878 DOI: 10.1111/j.1751-7915.2012.00352.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 11/28/2022] Open
Abstract
Two genes of the streptolydigin gene cluster in Streptomyces lydicus cluster encode putative family 16 glycoside hydrolases. Both genes are expressed when streptolydigin is produced. Inactivation of these genes affects streptolydigin production when the microorganism is grown in minimal medium containing either glycerol or d-glucans as carbon source. Streptolydigin yields in S. lydicus were increased by overexpression of either slgC1 or slgC2.
Collapse
Affiliation(s)
- Cristina Gómez
- Departamento de Biología Funcional, Universidad de Oviedo, 33006, Oviedo, Spain
| | | | | | | | | |
Collapse
|
162
|
Barros-Filho BA, de Oliveira MCF, Mafezoli J, Barbosa FG, Rodrigues-Filho E. Secondary Metabolite Production by the Basidiomycete, Lentinus strigellus, under Different Culture Conditions. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The basidiomycete Lentinus strigellus was cultivated in three different culture media and the secondary metabolites produced under different culture conditions were isolated and identified. When cultivated in a liquid medium with peptone, L. strigellus afforded the benzopyrans, 2,2-dimethyl-6-methoxychroman-4-one, 4-hydroxy-2,2-dimethyl-6-methoxychromane and (3 R,4 S)-3,4-dihydroxy-2,2-dimethyl-6-methoxychromane. The indole alkaloid echinuline and the anthraquinone fiscione, both unprecedented for the genus Lentinus, were isolated from the mycelium of the fungus. When cultured in Czapek medium enriched with potato broth, the fungus afforded the same benzopyrans except (3 S,4 S)-3,4-dihydroxy-2,2-dimethyl-6-methoxychromane. Panepoxydone and isopanepoxydone were also isolated when the microorganism was grown in Czapek medium.
Collapse
Affiliation(s)
| | - Maria C. F. de Oliveira
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455-970, Brazil
| | - Jair Mafezoli
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455-970, Brazil
| | - Francisco G. Barbosa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455-970, Brazil
| | - Edson Rodrigues-Filho
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, Caixa Postal 676, São Carlos-SP, 13565-905, Brazil
| |
Collapse
|
163
|
Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact 2012; 11:50. [PMID: 22545791 PMCID: PMC3461431 DOI: 10.1186/1475-2859-11-50] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/30/2012] [Indexed: 01/19/2023] Open
Abstract
This paper gives an overview of the recent advances in engineering the central carbon metabolism of the industrially important bacteria Escherichia coli, Bacillus subtilis, Corynobacterium glutamicum, Streptomyces spp., Lactococcus lactis and other lactic acid bacteria. All of them are established producers of important classes of products, e.g. proteins, amino acids, organic acids, antibiotics, high-value metabolites for the food industry and also, promising producers of a large number of industrially or therapeutically important chemicals. Optimization of existing or introduction of new cellular processes in these microorganisms is often achieved through manipulation of targets that reside at major points of central metabolic pathways, such as glycolysis, gluconeogenesis, the pentose phosphate pathway and the tricarboxylic acid cycle with the glyoxylate shunt. Based on the huge progress made in recent years in biochemical, genetic and regulatory studies, new fascinating engineering approaches aim at ensuring an optimal carbon and energy flow within central metabolism in order to achieve optimized metabolite production.
Collapse
|
164
|
Synthetic Biology of secondary metabolite biosynthesis in actinomycetes: Engineering precursor supply as a way to optimize antibiotic production. FEBS Lett 2012; 586:2171-6. [DOI: 10.1016/j.febslet.2012.04.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 01/12/2023]
|
165
|
Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo) 2012; 65:385-95. [PMID: 22511224 DOI: 10.1038/ja.2012.27] [Citation(s) in RCA: 559] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The declining trends in microbial metabolite and natural products research and the refocusing of this research area are discussed. Renewing natural products research requires inexhaustible natural resources, as well as new genetic techniques and microbial sources, including endophytic microbes. The numbers of known bioactive metabolites are summarized according to their microbiological origin, biological activities and chemical structures. Synthetic and natural product-based libraries are also compared. Importantly, the wide range of microbial metabolite bioactivities, future trends and the importance of prioritizing natural products over synthetic compounds are emphasized.
Collapse
|
166
|
Schwientek P, Szczepanowski R, Rückert C, Kalinowski J, Klein A, Selber K, Wehmeier UF, Stoye J, Pühler A. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics 2012; 13:112. [PMID: 22443545 PMCID: PMC3364876 DOI: 10.1186/1471-2164-13-112] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/23/2012] [Indexed: 11/16/2022] Open
Abstract
Background Actinoplanes sp. SE50/110 is known as the wild type producer of the alpha-glucosidase inhibitor acarbose, a potent drug used worldwide in the treatment of type-2 diabetes mellitus. As the incidence of diabetes is rapidly rising worldwide, an ever increasing demand for diabetes drugs, such as acarbose, needs to be anticipated. Consequently, derived Actinoplanes strains with increased acarbose yields are being used in large scale industrial batch fermentation since 1990 and were continuously optimized by conventional mutagenesis and screening experiments. This strategy reached its limits and is generally superseded by modern genetic engineering approaches. As a prerequisite for targeted genetic modifications, the complete genome sequence of the organism has to be known. Results Here, we present the complete genome sequence of Actinoplanes sp. SE50/110 [GenBank:CP003170], the first publicly available genome of the genus Actinoplanes, comprising various producers of pharmaceutically and economically important secondary metabolites. The genome features a high mean G + C content of 71.32% and consists of one circular chromosome with a size of 9,239,851 bp hosting 8,270 predicted protein coding sequences. Phylogenetic analysis of the core genome revealed a rather distant relation to other sequenced species of the family Micromonosporaceae whereas Actinoplanes utahensis was found to be the closest species based on 16S rRNA gene sequence comparison. Besides the already published acarbose biosynthetic gene cluster sequence, several new non-ribosomal peptide synthetase-, polyketide synthase- and hybrid-clusters were identified on the Actinoplanes genome. Another key feature of the genome represents the discovery of a functional actinomycete integrative and conjugative element. Conclusions The complete genome sequence of Actinoplanes sp. SE50/110 marks an important step towards the rational genetic optimization of the acarbose production. In this regard, the identified actinomycete integrative and conjugative element could play a central role by providing the basis for the development of a genetic transformation system for Actinoplanes sp. SE50/110 and other Actinoplanes spp. Furthermore, the identified non-ribosomal peptide synthetase- and polyketide synthase-clusters potentially encode new antibiotics and/or other bioactive compounds, which might be of pharmacologic interest.
Collapse
Affiliation(s)
- Patrick Schwientek
- Senior research group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum. J Biomed Biotechnol 2012; 2012:105109. [PMID: 22318718 PMCID: PMC3270403 DOI: 10.1155/2012/105109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/30/2011] [Accepted: 10/14/2011] [Indexed: 12/14/2022] Open
Abstract
Fungi comprise a vast group of microorganisms including the Ascomycota (majority of all described fungi), the Basidiomycota (mushrooms or higher fungi), and the Zygomycota and Chytridiomycota (basal or lower fungi) that produce industrially interesting secondary metabolites, such as β-lactam antibiotics. These compounds are one of the most commonly prescribed drugs world-wide. Since Fleming's initial discovery of Penicillium notatum 80 years ago, the role of Penicillium as an antimicrobial source became patent. After the isolation of Penicillium chrysogenum NRRL 1951 six decades ago, classical mutagenesis and screening programs led to the development of industrial strains with increased productivity (at least three orders of magnitude). The new “omics” era has provided the key to understand the underlying mechanisms of the industrial strain improvement process. The review of different proteomics methods applied to P. chrysogenum has revealed that industrial modification of this microorganism was a consequence of a careful rebalancing of several metabolic pathways. In addition, the secretome analysis of P. chrysogenum has opened the door to new industrial applications for this versatile filamentous fungus.
Collapse
|
168
|
Lee HN, Kim HJ, Kim P, Lee HS, Kim ES. Minimal polyketide pathway expression in an actinorhodin cluster-deleted and regulation-stimulated Streptomyces coelicolor. J Ind Microbiol Biotechnol 2012; 39:805-11. [PMID: 22252445 DOI: 10.1007/s10295-011-1083-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 12/31/2011] [Indexed: 12/26/2022]
Abstract
Along with traditional random mutagenesis-driven strain improvement, cloning and heterologous expression of Streptomyces secondary metabolite gene clusters have become an attractive complementary approach to increase its production titer, of which regulation is typically under tight control via complex multiple regulatory networks present in a metabolite low-producing wild-type strain. In this study, we generated a polyketide non-producing strain by deleting the entire actinorhodin cluster from the chromosome of a previously generated S. coelicolor mutant strain, which was shown to stimulate actinorhodin biosynthesis through deletion of two antibiotic downregulators as well as a polyketide precursor flux downregulator (Kim et al. in Appl Environ Microbiol 77:1872-1877, 2011). Using this engineered S. coelicolor mutant strain as a surrogate host, a model minimal polyketide pathway for aloesaponarin II, an actinorhodin shunt product, was cloned in a high-copy conjugative plasmid, followed by functional pathway expression and quantitative metabolite analysis. Aloesaponarin II production was detected only in the presence of a pathway-specific regulatory gene, actII-ORF4, and its production level was the highest in the actinorhodin cluster-deleted and downregulator-deleted mutant strain, implying that this engineered polyketide pathway-free and regulation-optimized S. coelicolor mutant strain could be used as a general surrogate host for efficient expression of indigenous or foreign polyketide pathways derived from diverse actinomycetes in nature.
Collapse
Affiliation(s)
- Han-Na Lee
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea
| | | | | | | | | |
Collapse
|
169
|
Nikapitiya C. Bioactive secondary metabolites from marine microbes for drug discovery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:363-87. [PMID: 22361200 DOI: 10.1016/b978-0-12-416003-3.00024-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The isolation and extraction of novel bioactive secondary metabolites from marine microorganisms have a biomedical potential for future drug discovery as the oceans cover 70% of the planet's surface and life on earth originates from sea. Wide range of novel bioactive secondary metabolites exhibiting pharmacodynamic properties has been isolated from marine microorganisms and many to be discovered. The compounds isolated from marine organisms (macro and micro) are important in their natural form and also as templates for synthetic modifications for the treatments for variety of deadly to minor diseases. Many technical issues are yet to overcome before wide-scale bioprospecting of marine microorganisms becomes a reality. This chapter focuses on some novel secondary metabolites having antitumor, antivirus, enzyme inhibitor, and other bioactive properties identified and isolated from marine microorganisms including bacteria, actinomycetes, fungi, and cyanobacteria, which could serve as potentials for drug discovery after their clinical trials.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
170
|
Maharjan S, Koju D, Lee HC, Yoo JC, Sohng JK. Metabolic Engineering of Nocardia sp. CS682 for Enhanced Production of Nargenicin A1. Appl Biochem Biotechnol 2011; 166:805-17. [DOI: 10.1007/s12010-011-9470-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
|
171
|
Kosec G, Goranovič D, Mrak P, Fujs S, Kuščer E, Horvat J, Kopitar G, Petković H. Novel chemobiosynthetic approach for exclusive production of FK506. Metab Eng 2011; 14:39-46. [PMID: 22100790 DOI: 10.1016/j.ymben.2011.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/17/2011] [Accepted: 11/02/2011] [Indexed: 11/15/2022]
Abstract
FK506, a widely used immunosuppressant, is produced by industrial fermentation processes using various Streptomyces species. Independently of the strain, structurally related compound FK520 is co-produced, resulting in complex and costly isolation procedures. In this paper, we report a chemobiosynthetic approach for exclusive biosynthesis of FK506. This approach is based on the Streptomyces tsukubaensis strain with inactivated allR gene, a homologue of crotonyl-CoA carboxylase/reductase, encoded in the FK506 biosynthetic cluster. This strain produces neither FK506 nor FK520; however, if allylmalonyl-S-N-acetylcysteamine precursor is added to cultivation broth, the production of FK506 is reestablished without FK506-related by-products. Using a combination of metabolic engineering and chemobiosynthetic approach, we achieved exclusive production of FK506, representing a significant step towards development of an advanced industrial bioprocess.
Collapse
Affiliation(s)
- Gregor Kosec
- Acies Bio d.o.o., Tehnološki Park 21, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Discovery and engineered overproduction of antimicrobial nucleoside antibiotic A201A from the deep-sea marine actinomycete Marinactinospora thermotolerans SCSIO 00652. Antimicrob Agents Chemother 2011; 56:110-4. [PMID: 22064543 DOI: 10.1128/aac.05278-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marinactinospora thermotolerans SCSIO 00652, originating from a deep-sea marine sediment of the South China Sea, was discovered to produce antimicrobial nucleoside antibiotic A201A. Whole-genome scanning and annotation strategies enabled us to localize the genes responsible for A201A biosynthesis and to experimentally identify the gene cluster; inactivation of mtdF, an oxidoreductase gene within the suspected gene cluster, abolished A201A production. Bioinformatics analysis revealed that a gene designated mtdA furthest upstream within the A201A biosynthetic gene cluster encodes a GntR family transcriptional regulator. To determine the role of MtdA in regulating A201A production, the mtdA gene was inactivated in frame and the resulting ΔmtdA mutant was fermented alongside the wild-type strain as a control. High-performance liquid chromatography (HPLC) analyses of fermentation extracts revealed that the ΔmtdA mutant produced A201A in a yield ∼25-fold superior to that of the wild-type strain, thereby demonstrating that MtdA is a negative transcriptional regulator governing A201A biosynthesis. By virtue of its high production capacity, the ΔmtdA mutant constitutes an ideal host for the efficient large-scale production of A201A. These results validate M. thermotolerans as an emerging source of antibacterial agents and highlight the efficiency of metabolic engineering for antibiotic titer improvement.
Collapse
|
173
|
Hunter D, Behrendorff J, Johnston W, Hayes P, Huang W, Bonn B, Hayes M, De Voss J, Gillam E. Facile production of minor metabolites for drug development using a CYP3A shuffled library. Metab Eng 2011; 13:682-93. [DOI: 10.1016/j.ymben.2011.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/08/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
|
174
|
Zhou X, Wu H, Li Z, Zhou X, Bai L, Deng Z. Over-expression of UDP-glucose pyrophosphorylase increases validamycin A but decreases validoxylamine A production in Streptomyces hygroscopicus var. jinggangensis 5008. Metab Eng 2011; 13:768-76. [PMID: 22008983 DOI: 10.1016/j.ymben.2011.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 10/02/2011] [Accepted: 10/04/2011] [Indexed: 11/18/2022]
Abstract
During the fermentation of Streptomyces hygroscopicus TL01 to produce validamycin A (18 g/L), a considerable amount of an intermediate validoxylamine A (4.0 g/L) is accumulated. Chemical or enzymatic hydrolysis of validamycin A was not observed during the fermentation process. Over-expression of glucosyltransferase ValG in TL01 did not increase the efficiency of glycosylation. However, increased validamycin A and decreased validoxylamine A production were observed in both the cell-free extract and fermentation broth of TL01 supplemented with a high concentration of UDP-glucose. The enzymatic activity of UDP-glucose pyrophosphorylase (Ugp) in TL01, which catalyzes UDP-glucose formation, was found to be much lower than the activities of other enzymes involved in the biosynthesis of UDP-glucose and the glucosyltransferase ValG. An ugp gene was cloned from S. hygroscopicus 5008 and verified to code for Ugp. In TL01 with an extra copy of ugp, the transcription of ugp was increased for 1.5 times, and Ugp activity was increased by 100%. Moreover, 22 g/L validamycin A and 2.5 g/L validoxylamine A were produced, and the validamycin A/validoxylamine A ratio was increased from 3.15 in TL01 to 5.75. These data prove that validamycin A biosynthesis is limited by the supply of UDP-glucose, which can be relieved by Ugp over-expression.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
175
|
Santos-Aberturas J, Payero TD, Vicente CM, Guerra SM, Cañibano C, Martín JF, Aparicio JF. Functional conservation of PAS-LuxR transcriptional regulators in polyene macrolide biosynthesis. Metab Eng 2011; 13:756-67. [PMID: 22001323 DOI: 10.1016/j.ymben.2011.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 01/27/2023]
Abstract
Control of polyene macrolide production in Streptomyces natalensis is mediated by the PAS-LuxR transcriptional activator PimM. Expression of target genes in this strain is positively regulated by binding of the regulator to 14-nucleotide sites showing dyad symmetry, and overlapping the -35 element of each promoter. These sequences have been found in the upstream regions of genes belonging to different polyene biosynthetic gene clusters. All the sequences in the amphotericin, nystatin, and filipin clusters were cloned and the binding of PimM to all of them has been shown by electrophoretic mobility shift assays. The precise binding regions were investigated by DNaseI protection studies. Results indicated that PAS-luxR regulators share the same regulatory pattern in different polyene-producing strains, these genes being responsible for polyketide chain construction, and when available, the genes for sugar dehydration and attachment, and the ABC transporters, the targets for regulation. Information content analysis of the 24 sequences protected in target promoters was used to refine the information-based model of the binding site. This site now spans 16 nucleotides and adjusts to the consensus CTVGGGAWWTCCCBAG. Gene complementation of S. natalensis ΔpimM with a single copy of heterologous regulators of the PAS/LuxR class integrated into the chromosome, such as amphRIV, nysRIV, or pteF, restored antifungal production, thus proving the functional conservation of these regulators. Introduction of a single copy of pimM into the amphotericin producing strain Streptomyces nodosus, or into the filipin producing strain S. avermitilis, boosted the production of both polyenes, thus indicating that the expression of the PAS-LuxR regulator constitutes a bottleneck in the biosynthesis of the antifungal, and also that these regulators are fully exchangeable. This work is the first report of a general mechanism regulating polyene production.
Collapse
|
176
|
Kardos N, Demain AL. Penicillin: the medicine with the greatest impact on therapeutic outcomes. Appl Microbiol Biotechnol 2011; 92:677-87. [PMID: 21964640 DOI: 10.1007/s00253-011-3587-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/26/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
The principal point of this paper is that the discovery of penicillin and the development of the supporting technologies in microbiology and chemical engineering leading to its commercial scale production represent it as the medicine with the greatest impact on therapeutic outcomes. Our nomination of penicillin for the top therapeutic molecule rests on two lines of evidence concerning the impact of this event: (1) the magnitude of the therapeutic outcomes resulting from the clinical application of penicillin and the subsequent widespread use of antibiotics and (2) the technologies developed for production of penicillin, including both microbial strain selection and improvement plus chemical engineering methods responsible for successful submerged fermentation production. These became the basis for production of all subsequent antibiotics in use today. These same technologies became the model for the development and production of new types of bioproducts (i.e., anticancer agents, monoclonal antibodies, and industrial enzymes). The clinical impact of penicillin was large and immediate. By ushering in the widespread clinical use of antibiotics, penicillin was responsible for enabling the control of many infectious diseases that had previously burdened mankind, with subsequent impact on global population demographics. Moreover, the large cumulative public effect of the many new antibiotics and new bioproducts that were developed and commercialized on the basis of the science and technology after penicillin demonstrates that penicillin had the greatest therapeutic impact event of all times.
Collapse
Affiliation(s)
- Nelson Kardos
- Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ 07940, USA.
| | | |
Collapse
|
177
|
Qiao K, Chooi YH, Tang Y. Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1. Metab Eng 2011; 13:723-32. [PMID: 21983160 DOI: 10.1016/j.ymben.2011.09.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/22/2011] [Accepted: 09/24/2011] [Indexed: 01/10/2023]
Abstract
Cytochalasins are a group of fungal secondary metabolites with diverse structures and bioactivities, including cytochalasin E produced by Aspergillus clavatus, which is a potent anti-angiogenic agent. Here, we report the identification and characterization of the cytochalasin gene cluster from A. clavatus NRRL 1. As a producer of cytochalasin E and K, the genome of A. clavatus was analyzed and the ∼30 kb ccs gene cluster was identified based on the presence of a polyketide synthase-nonribosomal peptide synthetases (PKS-NRPS) and a putative Baeyer-Villiger monooxygenase (BVMO). Deletion of the central PKS-NRPS gene, ccsA, abolished the production of cytochalasin E and K, confirming the association between the natural products and the gene cluster. Based on bioinformatic analysis, a putative biosynthetic pathway is proposed. Furthermore, overexpression of the pathway specific regulator ccsR elevated the titer of cytochalasin E from 25mg/L to 175 mg/L. Our results not only shed light on the biosynthesis of cytochalasins, but also provided genetic tools for increasing and engineering the production.
Collapse
Affiliation(s)
- Kangjian Qiao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
178
|
Li JWH, Vederas JC. [Drug discovery and natural products: end of era or an endless frontier?]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2011; 57:148-60. [PMID: 21870600 DOI: 10.18097/pbmc20115702148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
179
|
A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor. Proc Natl Acad Sci U S A 2011; 108:16020-5. [PMID: 21903924 PMCID: PMC3179087 DOI: 10.1073/pnas.1108124108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene clusters found in bacterial species classified as Streptomyces encode the majority of known antibiotics as well as many pharmaceutically active compounds. A site-specific recombination system similar to those that mediate plasmid conjugation was engineered to catalyze tandem amplification of one of these gene clusters in a heterologous Streptomyces species. Three genetic elements were known to be required for DNA amplification in S. kanamyceticus: the oriT-like recombination sites RsA and RsB, and ZouA, a site-specific relaxase similar to TraA proteins that catalyze plasmid transfer. We inserted RsA and RsB sequences into the S. coelicolor genome flanking a cluster of 22 genes (act) responsible for biosynthesis of the polyketide antibiotic actinorhodin. Recombination between RsA and RsB generated zouA-dependent DNA amplification resulting in 4-12 tandem copies of the act gene cluster averaging nine repeats per genome. This resulted in a 20-fold increase in actinorhodin production compared with the parental strain. To determine whether the recombination event required taxon-specific genetic effectors or generalized bacterial recombination (recA), it was also analyzed in the heterologous host Escherichia coli. zouA was expressed under the control of an inducible promoter in wild-type and recA mutant strains. A plasmid was constructed with recombination sites RsA and RsB bordering a drug resistance marker. Induction of zouA expression generated hybrid RsB/RsA sites, evidence of site-specific recombination that occurred independently of recA. ZouA-mediated DNA amplification promises to be a valuable tool for increasing the activities of commercially important biosynthetic, degradative, and photosynthetic pathways in a wide variety of organisms.
Collapse
|
180
|
Good L, Stach JEM. Synthetic RNA silencing in bacteria - antimicrobial discovery and resistance breaking. Front Microbiol 2011; 2:185. [PMID: 21941522 PMCID: PMC3170882 DOI: 10.3389/fmicb.2011.00185] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/20/2011] [Indexed: 12/30/2022] Open
Abstract
The increasing incidence and prevalence of antibiotic resistance in bacteria threatens the “antibiotic miracle.” Conventional antimicrobial drug development has failed to replace the armamentarium needed to combat this problem, and novel solutions are urgently required. Here we review both natural and synthetic RNA silencing and its potential to provide new antibacterials through improved target selection, evaluation, and screening. Furthermore, we focus on synthetic RNA silencers as a novel class of antibacterials and review their unique properties.
Collapse
Affiliation(s)
- Liam Good
- Department of Pathology and Infectious Diseases, Royal Veterinary College, University of London London, UK
| | | |
Collapse
|
181
|
Teijeira F, Ullán R, Fernández-Aguado M, Martín J. CefR modulates transporters of beta-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. Metab Eng 2011; 13:532-43. [DOI: 10.1016/j.ymben.2011.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 11/27/2022]
|
182
|
A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253. Appl Microbiol Biotechnol 2011; 91:1389-97. [PMID: 21655985 DOI: 10.1007/s00253-011-3348-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 01/21/2023]
Abstract
Rapamycin is a macrocyclic polyketide with immunosuppressive, antifungal, and anticancer activity produced by Streptomyces hygroscopicus ATCC 29253. Rapamycin production by a mutant strain (UV2-2) induced by ultraviolet mutagenesis was improved by approximately 3.2-fold (23.6 mg/l) compared to that of the wild-type strain. The comparative analyses of gene expression and intracellular acyl-CoA pools between wild-type and the UV2-2 strains revealed that the increased production of rapamycin in UV2-2 was due to the prolonged expression of rapamycin biosynthetic genes, but a depletion of intracellular methylmalonyl-CoA limited the rapamycin biosynthesis of the UV2-2 strain. Therefore, three different metabolic pathways involved in the biosynthesis of methylmalonyl-CoA were evaluated to identify the effective precursor supply pathway that can support the high production of rapamycin: propionyl-CoA carboxylase (PCC), methylmalonyl-CoA mutase, and methylmalonyl-CoA ligase. Among them, only the PCC pathway along with supplementation of propionate was found to be effective for an increase in intracellular pool of methylmalonyl-CoA and rapamycin titers in UV2-2 strain (42.8 mg/l), indicating that the PCC pathway is a major methylmalonyl-CoA supply pathway in the rapamycin producer. These results demonstrated that the combined approach involving traditional mutagenesis and metabolic engineering could be successfully applied to the diagnosis of yield-limiting factors and the enhanced production of industrially and clinically important polyketide compounds.
Collapse
|
183
|
Li J, Li L, Tian Y, Niu G, Tan H. Hybrid antibiotics with the nikkomycin nucleoside and polyoxin peptidyl moieties. Metab Eng 2011; 13:336-44. [DOI: 10.1016/j.ymben.2011.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
184
|
Tang Z, Xiao C, Zhuang Y, Chu J, Zhang S, Herron PR, Hunter IS, Guo M. Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway. Enzyme Microb Technol 2011; 49:17-24. [PMID: 22112266 DOI: 10.1016/j.enzmictec.2011.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
The aromatic polyketide antibiotic, oxytetracycline (OTC), is produced by Streptomyces rimosus as an important secondary metabolite. High level production of antibiotics in Streptomycetes requires precursors and cofactors which are derived from primary metabolism; therefore it is exigent to engineer the primary metabolism. This has been demonstrated by targeting a key enzyme in the oxidative pentose phosphate pathway (PPP) and nicotinamide adenine dinucleotide phosphate (NADPH) generation, glucose-6-phosphate dehydrogenase (G6PDH), which is encoded by zwf1 and zwf2. Disruption of zwf1 or zwf2 resulted in a higher production of OTC. The disrupted strain had an increased carbon flux through glycolysis and a decreased carbon flux through PPP, as measured by the enzyme activities of G6PDH and phosphoglucose isomerase (PGI), and by the levels of ATP, which establishes G6PDH as a key player in determining carbon flux distribution. The increased production of OTC appeared to be largely due to the generation of more malonyl-CoA, one of the OTC precursors, as observed in the disrupted mutants. We have studied the effect of zwf modification on metabolite levels, gene expression, and secondary metabolite production to gain greater insight into flux distribution and the link between the fluxes in the primary and secondary metabolisms.
Collapse
Affiliation(s)
- Zhenyu Tang
- State Key Laboratory of Bioreactor Engineering, P.O. Box 329#, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, PR China
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Kumar RR, Prasad S. Metabolic engineering of bacteria. Indian J Microbiol 2011; 51:403-9. [PMID: 22754024 DOI: 10.1007/s12088-011-0172-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/16/2011] [Indexed: 11/27/2022] Open
Abstract
Yield and productivity are critical for the economics and viability of a bioprocess. In metabolic engineering the main objective is the increase of a target metabolite production through genetic engineering. Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the production of a certain substance. In the last years, the development of recombinant DNA technology and other related technologies has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathway. Industrial microorganisms like Escherichia coli, Actinomycetes, etc. have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. The factors like oxygenation, temperature and pH have been traditionally controlled and optimized in industrial fermentation in order to enhance metabolite production. Metabolic engineering of bacteria shows a great scope in industrial application as well as such technique may also have good potential to solve certain metabolic disease and environmental problems in near future.
Collapse
Affiliation(s)
- Ravi R Kumar
- Department of Biotechnology, Shree M. & N. Virani Science College, Rajkot, 360005 India
| | | |
Collapse
|
186
|
Chen Y, Yin M, Horsman GP, Shen B. Improvement of the enediyne antitumor antibiotic C-1027 production by manipulating its biosynthetic pathway regulation in Streptomyces globisporus. JOURNAL OF NATURAL PRODUCTS 2011; 74:420-424. [PMID: 21250756 PMCID: PMC3064734 DOI: 10.1021/np100825y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The production of C-1027 in Streptomyces globisporus was previously increased 2- to 3-fold by manipulating three pathway-specific activators, SgcR1, SgcR2, and SgcR3. In this study, we have further characterized two putative C-1027 regulatory genes, sgcE1 and sgcR, by in vivo inactivation. The HxlR family DNA-binding protein SgcE1 was not essential for C-1027 biosynthesis, since inactivation of sgcE1 showed no effect on C-1027 production. In contrast, the proposed repressive role of the sgcR gene was confirmed by a 3-fold increase in C-1027 production in the ΔsgcR mutant S. globisporus SB1022 strain relative to the wild-type strain. Considering SgcR shows no significant similarity to any protein of known function, it may be representative of a new family of regulatory proteins. Finally, overexpression of the previously characterized activator sgcR1 in S. globisporus SB1022 increased the C-1027 yield to 37.5 ± 7.7 mg/L, which is about 7-fold higher than the wild-type strain.
Collapse
Affiliation(s)
- Yihua Chen
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, USA
| | - Min Yin
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, USA
| | - Geoff P Horsman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, USA
| | - Ben Shen
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, USA
- University of Wisconsin National Cooperative Drug Discovery Group, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, USA
| |
Collapse
|
187
|
Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 2011; 13:159-68. [DOI: 10.1016/j.ymben.2011.01.003] [Citation(s) in RCA: 348] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 12/13/2022]
|
188
|
Fermentation optimization and industrialization of recombinant Saccharopolyspora erythraea strains for improved erythromycin a production. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0020-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
189
|
Baltz RH. Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol 2011; 38:657-66. [PMID: 21253811 DOI: 10.1007/s10295-010-0934-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/20/2010] [Indexed: 01/08/2023]
Abstract
With the recent advances in DNA sequencing technologies, it is now feasible to sequence multiple actinomycete genomes rapidly and inexpensively. An important observation that emerged from early Streptomyces genome sequencing projects was that each strain contains genes that encode 20 or more potential secondary metabolites, only a fraction of which are expressed during fermentation. More recently, this observation has been extended to many other actinomycetes with large genomes. The discovery of a wealth of orphan or cryptic secondary metabolite biosynthetic gene clusters has suggested that sequencing large numbers of actinomycete genomes may provide the starting materials for a productive new approach to discover novel secondary metabolites. The key issue for this approach to be successful is to find ways to turn on or turn up the expression of cryptic or poorly expressed pathways to provide material for structure elucidation and biological testing. In this review, I discuss several genetic approaches that are potentially applicable to many actinomycetes for this application.
Collapse
Affiliation(s)
- Richard H Baltz
- CognoGen Biotechnology Consulting, 6438 North Olney Street, Indianapolis, IN 46220, USA.
| |
Collapse
|
190
|
Lin J, Bai L, Deng Z, Zhong JJ. Enhanced production of ansamitocin P-3 by addition of isobutanol in fermentation of Actinosynnema pretiosum. BIORESOURCE TECHNOLOGY 2011; 102:1863-1868. [PMID: 20980145 DOI: 10.1016/j.biortech.2010.09.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 05/30/2023]
Abstract
Supply of isobutanol to enhance the production of anti-tumor agent ansamitocin P-3 (AP-3) in medium containing agro-industrial residues was investigated with analysis of gene transcription, enzyme activity, and intermediate accumulation. Under the optimal addition of isobutanol, about 4-fold improvement of AP-3 production was obtained, and the consumption of isobutanol and accumulation of isobutyrate, malonyl-CoA, and acetyl-CoA were observed. Compared to the control without isobutanol addition, activities of both isobutanol dehydrogenase and valine dehydrogenase were enhanced in isobutanol supplemented culture. Transcription level of genes in AP-3 biosynthetic and isobutyryl-CoA catabolic pathways responded to isobutanol addition in a similar way as AP-3 biosynthesis. It is concluded that isobutanol addition was an effective strategy for increasing AP-3 production via regulation of gene transcription and pools of precursors, and the information obtained might be helpful to the fermentation productivity improvement on large scale.
Collapse
Affiliation(s)
- Jinxia Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | |
Collapse
|
191
|
Zhu H, Sun S, Zhang S. Enhanced production of total flavones and exopolysaccharides viaVitreoscilla hemoglobin biosynthesis in Phellinus igniarius. BIORESOURCE TECHNOLOGY 2011; 102:1747-1751. [PMID: 20855202 DOI: 10.1016/j.biortech.2010.08.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/21/2010] [Accepted: 08/23/2010] [Indexed: 05/29/2023]
Abstract
The Vitreoscilla hemoglobin gene (vgb) was expressed by chromosomal integration in Phellinus igniarius to alleviate oxygen limitation and improve metabolites yields during submerged fermentation. Firstly, an expression vector containing vgb was constructed, and transformed into protoplast from P. igniarius. Carbon monoxide difference spectrum absorbance assay showed that vgb was successfully expressed and had biological activity. In shake flasks, the vgb expression enhanced dry mycelial weight 1.32-fold and increased total flavones and exopolysaccharides production 1.78- and 1.33-fold, respectively. When P. igniarius (vgb+) and P. igniarius (vgb-) strains were cultured in bioreactor, Vitreoscilla hemoglobin in P. igniarius promoted the mycelia growth from 5.40 to 10.90 g/L and stimulated total flavones and exopolysaccharides synthesis; their maximum productions reached to 11.43 and 1.33 g/L. Furthermore, compared to P. igniarius (vgb-), the acetic acid accumulation in P. igniarius (vgb+) cultures decreased from 1.54 and 1.78 to 1.19 and 1.27 g/L in flask and bioreactor, respectively.
Collapse
Affiliation(s)
- Hu Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Dongying 257061, PR China.
| | | | | |
Collapse
|
192
|
Tarhan L, Kayalı HA, Sazak A, Şahin N. The Correlations Between TCA-Glyoxalate Metabolite and Antibiotic Production of Streptomyces sp. M4018 Grown in Glycerol, Glucose, and Starch Mediums. Appl Biochem Biotechnol 2010; 164:318-37. [DOI: 10.1007/s12010-010-9137-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
|
193
|
Titer improvement of iso-migrastatin in selected heterologous Streptomyces hosts and related analysis of mRNA expression by quantitative RT-PCR. Appl Microbiol Biotechnol 2010; 89:1709-19. [PMID: 21132287 DOI: 10.1007/s00253-010-3025-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/11/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
iso-Migrastatin (iso-MGS) has been actively pursued recently as an outstanding candidate of antimetastasis agents. Having characterized the iso-MGS biosynthetic gene cluster from its native producer Streptomyces platensis NRRL 18993, we have recently succeeded in producing iso-MGS in five selected heterologous Streptomyces hosts, albeit the low titers failed to meet expectations and cast doubt on the utility of this novel technique for large-scale production. To further explore and capitalize on the production capacity of these hosts, a thorough investigation of these five engineered strains with three fermentation media for iso-MGS production was undertaken. Streptomyces albus J1074 and Streptomyces lividans K4-114 were found to be preferred heterologous hosts, and subsequent analysis of carbon and nitrogen sources revealed that sucrose and yeast extract were ideal for iso-MGS production. After the initial optimization, the titers of iso-MGS in all five hosts were considerably improved by 3-18-fold in the optimized R2YE medium. Furthermore, the iso-MGS titer of S. albus J1074 (pBS11001) was significantly improved to 186.7 mg/L by a hybrid medium strategy. Addition of NaHCO(3) to the latter finally afforded an optimized iso-MGS titer of 213.8 mg/L, about 5-fold higher than the originally reported system. With S. albus J1074 (pBS11001) as a model host, the expression of iso-MGS gene cluster in four different media was systematically studied via the quantitative RT-PCR technology. The resultant comparison revealed the correlation of gene expression and iso-MGS production for the first time; synchronous expression of the whole gene cluster was crucial for optimal iso-MGS production. These results reveal new insights into the iso-MGS biosynthetic machinery in heterologous hosts and provide the primary data to realize large-scale production of iso-MGS for further preclinical studies.
Collapse
|
194
|
Olano C, Méndez C, Salas JA. Molecular insights on the biosynthesis of antitumour compounds by actinomycetes. Microb Biotechnol 2010; 4:144-64. [PMID: 21342461 PMCID: PMC3818856 DOI: 10.1111/j.1751-7915.2010.00231.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Natural products are traditionally the main source of drug leads. In particular, many antitumour compounds are either natural products or derived from them. However, the search for novel antitumour drugs active against untreatable tumours, with fewer side-effects or with enhanced therapeutic efficiency, is a priority goal in cancer chemotherapy. Microorganisms, particularly actinomycetes, are prolific producers of bioactive compounds, including antitumour drugs, produced as secondary metabolites. Structural genes involved in the biosynthesis of such compounds are normally clustered together with resistance and regulatory genes, which facilitates the isolation of the gene cluster. The characterization of these clusters has represented, during the last 25 years, a great source of genes for the generation of novel derivatives by using combinatorial biosynthesis approaches: gene inactivation, gene expression, heterologous expression of the clusters or mutasynthesis. In addition, these techniques have been also applied to improve the production yields of natural and novel antitumour compounds. In this review we focus on some representative antitumour compounds produced by actinomycetes covering the genetic approaches used to isolate and validate their biosynthesis gene clusters, which finally led to generating novel derivatives and to improving the production yields.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | |
Collapse
|
195
|
|
196
|
Bhatnagar I, Kim SK. Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 2010; 8:2673-701. [PMID: 21116414 PMCID: PMC2993000 DOI: 10.3390/md8102673] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 10/05/2010] [Accepted: 10/13/2010] [Indexed: 01/03/2023] Open
Abstract
Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.
Collapse
Affiliation(s)
- Ira Bhatnagar
- Department of Chemistry, Pukyong National University, Busan 608-737, Korea; E-Mail:
| | - Se-Kwon Kim
- Department of Chemistry, Pukyong National University, Busan 608-737, Korea; E-Mail:
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Korea
- * Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-51-629-7097, Fax: +82-51-629-7099
| |
Collapse
|
197
|
Yu G, Jia X, Wen J, Lu W, Wang G, Caiyin Q, Chen Y. Strain Improvement of Streptomyces roseosporus for Daptomycin Production by Rational Screening of He–Ne Laser and NTG Induced Mutants and Kinetic Modeling. Appl Biochem Biotechnol 2010; 163:729-43. [DOI: 10.1007/s12010-010-9078-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 09/01/2010] [Indexed: 11/28/2022]
|
198
|
Iso-migrastatin Titer Improvement in the Engineered Streptomyces lividans SB11002 Strain by Optimization of Fermentation Conditions. BIOTECHNOL BIOPROC E 2010; 15:664-669. [PMID: 21625393 DOI: 10.1007/s12257-009-3129-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The heterologous production of iso-migrastatin (iso-MGS) was successfully demonstrated in an engineered S. lividans SB11002 strain, which was derived from S. lividans K4-114, following introduction of pBS11001, which harbored the entire mgs biosynthetic gene cluster. However, under similar fermentation conditions, the iso-MGS titer in the engineered strain was significantly lower than that in the native producer - Streptomyces platensis NRRL 18993. To circumvent the problem of low iso-MGS titers and to expand the utility of this heterologous system for iso-MGS biosynthesis and engineering, systematic optimization of the fermentation medium was carried out. The effects of major components in the cultivation medium, including carbon, organic and inorganic nitrogen sources, were investigated using a single factor optimization method. As a result, sucrose and yeast extract were determined to be the best carbon and organic nitrogen sources, resulting in optimized iso-MGS production. Conversely, all other inorganic nitrogen sources evaluated produced various levels of inhibition of iso-MGS production. The final optimized R2YE production medium produced iso-MGS with a titer of 86.5 mg/L, about 3.6-fold higher than that in the original R2YE medium, and 1.5 fold higher than that found within the native S. platensis NRRL 18993 producer.
Collapse
|
199
|
Chen Y, Yin M, Horsman GP, Huang S, Shen B. Manipulation of pathway regulation in Streptomyces globisporus for overproduction of the enediyne antitumor antibiotic C-1027. J Antibiot (Tokyo) 2010; 63:482-5. [PMID: 20551990 PMCID: PMC2929275 DOI: 10.1038/ja.2010.55] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Manipulation of pathway regulation is an efficient strategy to increase specific secondary metabolite production. Here we successfully improved production of both the enediyne antitumor antibiotic C-1027 and a heptaebe, an early metabolite of the C-1027 pathway, by manipulating the three regulatory genes, sgcR1, sgcR2, and sgcR3, within the C-1027 biosynthetic gene cluster. SgcR3 has previously been established as an activator, and we now propose that SgcR1 and SgcR2 are also positive regulators based on their up-regulation effects on titer and/or timing of heptaene and C-1027 production in Streptomyces globisporus. Specifically, overexpression of sgcR1 significantly improved production of the heptaene (about 5-fold) and C-1027 (2- to 3-fold) compared to the wild-type strain. However, the titers of heptaene and C-1027 were not increased by overexpressing all three activators together, underscoring the complexity of C-1027 biosynthetic pathway regulation. The possibility of exploiting the heptaene as a readily identifiable and unique indicator for rapidly detecting enediyne production was also assessed.
Collapse
Affiliation(s)
- Yihua Chen
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | | | | | | | |
Collapse
|
200
|
Novel mechanism of glycopeptide resistance in the A40926 producer Nonomuraea sp. ATCC 39727. Antimicrob Agents Chemother 2010; 54:2465-72. [PMID: 20308385 DOI: 10.1128/aac.00106-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In glycopeptide-resistant enterococci and staphylococci, high-level resistance is achieved by replacing the C-terminal d-alanyl-d-alanine of lipid II with d-alanyl-d-lactate, thus reducing glycopeptide affinity for cell wall targets. Reorganization of the cell wall in these organisms is directed by the vanHAX gene cluster. Similar self-resistance mechanisms have been reported for glycopeptide-producing actinomycetes. We investigated glycopeptide resistance in Nonomuraea sp. ATCC 39727, the producer of the glycopeptide A40926, which is the precursor of the semisynthetic antibiotic dalbavancin, which is currently in phase III clinical trials. The MIC of Nonomuraea sp. ATCC 39727 toward A40926 during vegetative growth was 4 microg/ml, but this increased to ca. 20 microg/ml during A40926 production. vanHAX gene clusters were not detected in Nonomuraea sp. ATCC 39727 by Southern hybridization or by PCR with degenerate primers. However, the dbv gene cluster for A40926 production contains a gene, vanY (ORF7), potentially encoding an enzyme capable of removing the terminal d-Ala residue of pentapeptide peptidoglycan precursors. Analysis of UDP-linked peptidoglycan precursors in Nonomuraea sp. ATCC 39727 revealed the predominant presence of the tetrapeptide UDP-MurNAc-l-Ala-d-Glu-meso-Dap-d-Ala and only traces of the pentapeptide UDP-MurNAc-l-Ala-d-Glu-meso-Dap-d-Ala-d-Ala. This suggested a novel mechanism of glycopeptide resistance in Nonomuraea sp. ATCC 39727 that was based on the d,d-carboxypeptidase activity of vanY. Consistent with this, a vanY-null mutant of Nonomuraea sp. ATCC 39727 demonstrated a reduced level of glycopeptide resistance, without affecting A40926 productivity. Heterologous expression of vanY in a sensitive Streptomyces species, Streptomyces venezuelae, resulted in higher levels of glycopeptide resistance.
Collapse
|