151
|
Influence of pH on the activity of thrombin-derived antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2374-2384. [DOI: 10.1016/j.bbamem.2018.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 01/11/2023]
|
152
|
Kimura R, Shibata M, Koeda S, Miyagawa A, Yamamura H, Mizuno T. Development of New Antimicrobial Agents from Cationic PG-Surfactants Containing Oligo-Lys Peptides. Bioconjug Chem 2018; 29:4072-4082. [DOI: 10.1021/acs.bioconjchem.8b00693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ryosuke Kimura
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Masahide Shibata
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Shuhei Koeda
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Atsushi Miyagawa
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Hatsuo Yamamura
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Toshihisa Mizuno
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
153
|
Xing X, Ma W, Zhao X, Wang J, Yao L, Jiang X, Wu Z. Interaction between Surface Charge-Modified Gold Nanoparticles and Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12583-12589. [PMID: 30239201 DOI: 10.1021/acs.langmuir.8b01700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This report clarifies the interaction of surface charge-modified gold nanoparticles (AuNPs) with phospholipid membranes, which is helpful to understand the antibacterial mechanism of positive charge-modified AuNPs to Gram-negative bacteria. Although the simulated bacterial cell membranes as a whole are negatively charged, the local electrostatic repulsive interaction between the positive charge-coated AuNPs and the small-sized flexible cationic head group of dioleyl phosphatidylethanolamine molecules induces the phase transformation of the simulated bacterial cell membranes from a lamellar to an inverted hexagonal phase. Transmembrane pores with a diameter of about 3.0 nm in the inverted hexagonal structure would result in the destruction of cell membrane function. Such an interaction of positive charge-modified AuNPs with the membrane mimics provides a promising route to develop new antibacterial agents by modifying positive charges on the surface of nanoparticles.
Collapse
Affiliation(s)
- Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Wanshun Ma
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , Beijing 100190 , China
| | - Xiaoyi Zhao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jiayi Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lei Yao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Xingyu Jiang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , Beijing 100190 , China
| | - Zhonghua Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
154
|
Dicks LMT, Dreyer L, Smith C, van Staden AD. A Review: The Fate of Bacteriocins in the Human Gastro-Intestinal Tract: Do They Cross the Gut-Blood Barrier? Front Microbiol 2018; 9:2297. [PMID: 30323796 PMCID: PMC6173059 DOI: 10.3389/fmicb.2018.02297] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022] Open
Abstract
The intestinal barrier, consisting of the vascular endothelium, epithelial cell lining, and mucus layer, covers a surface of about 400 m2. The integrity of the gut wall is sustained by transcellular proteins forming tight junctions between the epithelial cells. Protected by three layers of mucin, the gut wall forms a non-permeable barrier, keeping digestive enzymes and microorganisms within the luminal space, separate from the blood stream. Microorganisms colonizing the gut may produce bacteriocins in an attempt to outcompete pathogens. Production of bacteriocins in a harsh and complex environment such as the gastro-intestinal tract (GIT) may be below minimal inhibitory concentration (MIC) levels. At such low levels, the stability of bacteriocins may be compromised. Despite this, most bacteria in the gut have the ability to produce bacteriocins, distributed throughout the GIT. With most antimicrobial studies being performed in vitro, we know little about the migration of bacteriocins across epithelial barriers. The behavior of bacteriocins in the GIT is studied ex vivo, using models, flow cells, or membranes resembling the gut wall. Furthermore, little is known about the effect bacteriocins have on the immune system. It is generally believed that the peptides will be destroyed by macrophages once they cross the gut wall. Studies done on the survival of neurotherapeutic peptides and their crossing of the brain-blood barrier, along with other studies on small peptides intravenously injected, may provide some answers. In this review, the stability of bacteriocins in the GIT, their effect on gut epithelial cells, and their ability to cross epithelial cells are discussed. These are important questions to address in the light of recent papers advocating the use of bacteriocins as possible alternatives to, or used in combination with, antibiotics.
Collapse
Affiliation(s)
- Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leané Dreyer
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anton D. van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
155
|
Alvares DS, Viegas TG, Ruggiero Neto J. The effect of pH on the lytic activity of a synthetic mastoparan-like peptide in anionic model membranes. Chem Phys Lipids 2018; 216:54-64. [PMID: 30253128 DOI: 10.1016/j.chemphyslip.2018.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022]
Abstract
Peptide sequences containing acidic and basic residues could potentially have their net charges modulated by bulk pH with a possible influence on their lytic activity in lipid vesicles. The present study reports on a biophysical investigation of these modulatory effects on the synthetic mastoparan-like peptide L1A (IDGLKAIWKKVADLLKNT-NH2). At pH 10.0 L1A was 6 times more efficient in lysing large anionic (1-palmitoyl-oleoyl-sn-glycero-3-phosphocholine (POPC):1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG)/(8:2)) unilamellar vesicles (LUVs) than at pH 4.0. Despite the reduction of 60% in the L1A net charge in basic pH its affinity for this vesicle was almost insensitive to pH. On the other hand, L1A insertion into monolayers was dramatically influenced by subphase condition, showing that, in the neutral and basic subphases, the peptide induced surface pressure changes that surpassed the membrane lateral pressure, being able to destabilize a bilayer structure. In addition, in the basic subphase, visualization of the compression isotherms of co-spread 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC):POPG (8:2) + 4.8 mol% L1A showed that the peptide induced significant changes in solid lipid domains, indicating its capability in perturbing lipid-packing. An insight into L1A lytic activity was also obtained in giant unilamellar vesicles (GUVs) using phase contrast microscopy. The suppression of L1A lytic activity at acidic pH is in keeping with its lower insertion capability and ability to disturb the lipid monolayer. The lytic activity observed under neutral and basic conditions showed a quick and stochastic leakage following a lag-time. The permeability and the leakage-time averaged over at least 14 single GUVs were dependent on the bulk condition. At basic pH, permeability is higher and quicker than in a neutral medium in good accordance with the lipid-packing perturbation.
Collapse
Affiliation(s)
- Dayane S Alvares
- UNESP - São Paulo State University, IBILCE, Department of Physics, São José do Rio Preto, SP, Brazil
| | - Taisa G Viegas
- UNESP - São Paulo State University, IBILCE, Department of Physics, São José do Rio Preto, SP, Brazil
| | - João Ruggiero Neto
- UNESP - São Paulo State University, IBILCE, Department of Physics, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
156
|
Bagheri M, Amininasab M, Dathe M. Arginine/Tryptophan-Rich Cyclic α/β-Antimicrobial Peptides: The Roles of Hydrogen Bonding and Hydrophobic/Hydrophilic Solvent-Accessible Surface Areas upon Activity and Membrane Selectivity. Chemistry 2018; 24:14242-14253. [PMID: 29969522 DOI: 10.1002/chem.201802881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 11/08/2022]
Abstract
The bacterial selectivity of an amphiphilic library of small cyclic α/β-tetra-, α/β-penta-, and α/β-hexapeptides rich in arginine/tryptophan (Arg/Trp) residues, which contains asymmetric backbone configurations and differ in hydrophobicity and alternating d,l-amino acids, was investigated against Bacillus subtilis and Escherichia coli. The structural analyses showed that the peptides tend to form assemblies of different shapes. All-l-peptides, especially the most hydrophobic pentamers, were more strongly anti-B. subtilis. With the exception to cyclo(Phe-d-Trp-β3 hArg-Arg-d-Trp) (Phe=phenylalanine), the peptides had no effects on inner membrane of E. coli, but lyzed the lipopolysaccharide layer according to their activity pattern. The activities adversely changed with a decrease in the number of amide intramolecular hydrogen bonds in assemblies of diastereomeric peptides and the ratio of hydrophobic/hydrophilic solvent-accessible surface areas. The remarkable enhanced entropic contribution for the partitioning of the least conformationally constrained cyclo(Trp-d-Phe-β3 hTrp-Arg-d-Arg) sequence into the membranes supported the strong self-assembly behavior, therefore making the peptide less penetrable through the E. coli outer layer.
Collapse
Affiliation(s)
- Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335, Tehran, Iran
| | - Mehriar Amininasab
- Department of cell and molecular Biology, School of Biology, College of Science, University of, Tehran, Iran
| | - Margitta Dathe
- Leibniz institute of molecular pharmacology (FMP), Robert Roessle Street 10, 13125, Berlin, Germany
| |
Collapse
|
157
|
Antibacterial activity and its mechanisms of a recombinant Funme peptide against Cronobacter sakazakii in powdered infant formula. Food Res Int 2018; 116:258-265. [PMID: 30716944 DOI: 10.1016/j.foodres.2018.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/23/2018] [Accepted: 08/11/2018] [Indexed: 12/30/2022]
Abstract
Cronobacter sakazakii (Cs) is a typical foodborne bacterium that infect powdered infant formula (PIF) worldwide. In this study, a recombinant antimicrobial peptide, branded as Funme peptide (FP)was applied to protect PIF from Cs contamination. The result from the antimicrobial activity assay showed that the minimum inhibitory concentration (MIC) of BMAP-27 peptide, FP and Ampicillin against Cs were 250.0, 125.0 and 15.6 μg/mL, respectively, indicating FP possessed higher MIC than that of Ampicillin, and lower MIC than that of BMAP-27. The minimum biofilm eradication concentration (MBEC) assay showed that FP at 2 × MIC (250.0 μg/mL) could completely eradicated Cs biofilms. The antibacterial activity of FP might be due to the increasing permeability and the release of cytoplasmic β-galactosidase of Cs. The results acquired from transmission electron microscopy and scanning electron microscopy indicated that FP induced the disruption and dysfunction of cell walls and membranes. Moreover, safety assay showed that FP had low cytotoxicity to human erythrocytes. The present study investigated the antibacterial effects and mechanisms of FP against Cs, providing promising evidence to apply this novel antimicrobial agent against Cs contamination in foods and food processing facilities.
Collapse
|
158
|
Jahangiri S, Jafari M, Arjomand M, Mehrnejad F. Molecular insights into the interactions of GF‐17 with the gram‐negative and gram‐positive bacterial lipid bilayers. J Cell Biochem 2018; 119:9205-9216. [DOI: 10.1002/jcb.27187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/24/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Samira Jahangiri
- Department of Chemical Engineering South Tehran Branch, Islamic Azad University Tehran Iran
| | - Majid Jafari
- Computational Nanobiotechnology Laboratory, Department of Life Sciences Engineering Faculty of New Sciences and Technologies, University of Tehran Tehran Iran
| | - Mehdi Arjomand
- Department of Chemical Engineering South Tehran Branch, Islamic Azad University Tehran Iran
| | - Faramarz Mehrnejad
- Computational Nanobiotechnology Laboratory, Department of Life Sciences Engineering Faculty of New Sciences and Technologies, University of Tehran Tehran Iran
| |
Collapse
|
159
|
Cholesterol and phosphatidylethanolamine lipids exert opposite effects on membrane modulations caused by the M2 amphipathic helix. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:201-209. [PMID: 30071193 DOI: 10.1016/j.bbamem.2018.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022]
Abstract
Membrane curvature remodeling induced by amphipathic helices (AHs) is essential in many biological processes. Here we studied a model amphipathic peptide, M2AH, derived from influenza A M2. We are interested in how M2AH may promote membrane curvature by altering membrane physical properties. We used atomic force microscopy (AFM) to examine changes in membrane topographic and mechanical properties. We used electron paramagnetic resonance (EPR) spectroscopy to explore changes in lipid chain mobility and chain orientational order. We found that M2AH perturbed lipid bilayers by generating nanoscale pits. The structural data are consistent with lateral expansion of lipid chain packing, resulting in a mechanically weaker bilayer. Our EPR spectroscopy showed that M2AH reduced lipid chain mobility and had a minimal effect on lipid chain orientational order. The EPR data are consistent with the surface-bound state of M2AH that acts as a chain mobility inhibitor. By comparing results from different lipid bilayers, we found that cholesterol enhanced the activity of M2AH in inducing bilayer pits and altering lipid chain mobility. The results were explained by considering specific M2AH-cholesterol recognition and/or cholesterol-induced expansion of interlipid distance. Both AFM and EPR experiments revealed a modest effect of anionic lipids. This highlights that membrane interaction of M2AH is mainly driven by hydrophobic forces. Lastly, we found that phosphatidylethanolamine (PE) lipids inhibited the activity of M2AH. We explained our data by considering interlipid hydrogen-bonding that can stabilize bilayer organization. Our results of lipid-dependent membrane modulations are likely relevant to M2AH-induced membrane restructuring.
Collapse
|
160
|
Balatti GE, Martini MF, Pickholz M. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. J Mol Model 2018; 24:208. [PMID: 30019106 DOI: 10.1007/s00894-018-3747-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
In the present work we investigated the differential interactions of the antimicrobial peptides (AMPs) aurein 1.2 and maculatin 1.1 with a bilayer composed of a mixture of the lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE). We carried out molecular dynamics (MD) simulations using a coarse-grained approach within the MARTINI force field. The POPE/POPG mixture was used as a simple model of a bacterial (prokaryotic cell) membrane. The results were compared with our previous findings for structures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a representative lipid of mammalian cells. We started the simulations of the peptide-lipid system from two different initial conditions: peptides in water and peptides inside the hydrophobic core of the membrane, employing a pre-assembled lipid bilayer in both cases. Our results show similarities and differences regarding the molecular behavior of the peptides in POPE/POPG in comparison to their behavior in a POPC membrane. For instance, aurein 1.2 molecules can adopt similar pore-like structures on both POPG/POPE and POPC membranes, but the peptides are found deeper in the hydrophobic core in the former. Maculatin 1.1 molecules, in turn, achieve very similar structures in both kinds of bilayers: they have a strong tendency to form clusters and induce curvature. Therefore, the results of this study provide insight into the mechanisms of action of these two peptides in membrane leakage, which allows organisms to protect themselves against potentially harmful bacteria. Graphical Abstract Aurein pore structure (green) in a lipid bilayer composed by POPE (blue) and POPG (red) mixture. It is possible to see water beads (light blue) inside the pore.
Collapse
Affiliation(s)
- G E Balatti
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, IFIBA, C1428BFA, Buenos Aires, Argentina
| | - M F Martini
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, IQUIMEFA, C1113AA, Buenos Aires, Argentina
| | - M Pickholz
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina. .,CONICET-Universidad de Buenos Aires, IFIBA, C1428BFA, Buenos Aires, Argentina.
| |
Collapse
|
161
|
Carmona-Ribeiro AM. Self-Assembled Antimicrobial Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1408. [PMID: 29973521 PMCID: PMC6069395 DOI: 10.3390/ijerph15071408] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Nanotechnology came to stay improving the quality of human life by reducing environmental contamination of earth and water with pathogens. This review discusses how self-assembled antimicrobial nanomaterials can contribute to maintain humans, their water and their environment inside safe boundaries to human life even though some of these nanomaterials display an overt toxicity. At the core of their strategic use, the self-assembled antimicrobial nanomaterials exhibit optimal and biomimetic organization leading to activity at low doses of their toxic components. Antimicrobial bilayer fragments, bilayer-covered or multilayered nanoparticles, functionalized inorganic or organic polymeric materials, coatings and hydrogels disclose their potential for environmental and public health applications in this review.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo; Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
162
|
Lee MW, Lee EY, Wong GCL. What Can Pleiotropic Proteins in Innate Immunity Teach Us about Bioconjugation and Molecular Design? Bioconjug Chem 2018; 29:2127-2139. [PMID: 29771496 DOI: 10.1021/acs.bioconjchem.8b00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A common bioengineering strategy to add function to a given molecule is by conjugation of a new moiety onto that molecule. Adding multiple functions in this way becomes increasingly challenging and leads to composite molecules with larger molecular weights. In this review, we attempt to gain a new perspective by looking at this problem in reverse, by examining nature's strategies of multiplexing different functions into the same pleiotropic molecule using emerging analysis techniques such as machine learning. We concentrate on examples from the innate immune system, which employs a finite repertoire of molecules for a broad range of tasks. An improved understanding of how diverse functions are multiplexed into a single molecule can inspire new approaches for the deterministic design of multifunctional molecules.
Collapse
|
163
|
Lyu Y, Xiang N, Zhu X, Narsimhan G. Potential of mean force for insertion of antimicrobial peptide melittin into a pore in mixed DOPC/DOPG lipid bilayer by molecular dynamics simulation. J Chem Phys 2018; 146:155101. [PMID: 28433027 DOI: 10.1063/1.4979613] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) inactivate microorganisms by forming transmembrane pores in a cell membrane through adsorption and aggregation. Energetics of addition of an AMP to a transmembrane pore is important for evaluation of its formation and growth. Such information is essential for the characterization of pore forming ability of peptides in cell membranes. This study quantifies the potential of mean force through molecular dynamics (MD) simulation for the addition of melittin, a naturally occurring AMP, into a DOPC/DOPG mixed bilayer, a mimic of bacterial membrane, for different extents of insertion into either a bilayer or a pore consisting of three to six transmembrane peptides. The energy barrier for insertion of a melittin molecule into the bilayer was highest in the absence of transmembrane peptides and decreased for the number of transmembrane peptides from three to six, eventually approaching zero. The decrease in free energy for complete insertion of peptide was found to be higher for larger pore size. Water channel formation occurred only for insertion into pores consisting of three or more transmembrane peptides with the radius of water channel being larger for a larger number of transmembrane peptides. The structure of the pore was found to be paraboloid. The estimated free energy barrier for insertion of melittin into an ideal paraboloid pore accounting for different intermolecular interactions was consistent with MD simulation results. The results reported in this manuscript will be useful for the development of a model for nucleation of pores and a rational methodology for selection of synthetic antimicrobial peptides.
Collapse
Affiliation(s)
- Yuan Lyu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ning Xiang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Xiao Zhu
- Research Computing, Rosen Center for Advanced Computing, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ganesan Narsimhan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
164
|
Young-Speirs M, Drouin D, Cavalcante PA, Barkema HW, Cobo ER. Host defense cathelicidins in cattle: types, production, bioactive functions and potential therapeutic and diagnostic applications. Int J Antimicrob Agents 2018; 51:813-821. [PMID: 29476808 DOI: 10.1016/j.ijantimicag.2018.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
Cathelicidins are a primitive class of host defense peptides and are known for their broad-spectrum antimicrobial activity against bacteria, fungi, and enveloped viruses. These small, cationic, proteolytically-activated peptides are diverse in structure, encompassing a wide range of activities on host immune and inflammatory cell responses. The dual capacity of cathelicidins to directly control infection and regulate host defenses highlights the potential use of these peptides as alternatives to antibiotics and immunomodulators. Cathelicidins are found in many mammalian species; this review focuses on bovine cathelicidins. Eight naturally and two synthetically occurring bovine cathelicidins are described in detail, with a focus on recent advances in their expression, location and biological roles. This review also presents an overview of the bioactive functions of cathelicidins in bovine mastitis, a disease causing economic losses in cattle dairy production. Comparison of the structural, antimicrobial, cytotoxic and mechanistic properties of bovine cathelicidins advances the knowledge needed for the development of these peptides as potential identifiers of infectious diseases (e.g., bovine mastitis) and as novel therapeutic alternatives to antibiotics.
Collapse
Affiliation(s)
- Morgan Young-Speirs
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dominique Drouin
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paloma Araujo Cavalcante
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Eduardo R Cobo
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
165
|
Kozic M, Fox SJ, Thomas JM, Verma CS, Rigden DJ. Large scale ab initio modeling of structurally uncharacterized antimicrobial peptides reveals known and novel folds. Proteins 2018; 86:548-565. [DOI: 10.1002/prot.25473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Mara Kozic
- Institute of Integrative Biology, University of Liverpool; Liverpool L69 7ZB U.K
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute; Singapore
| | - Stephen J. Fox
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute; Singapore
| | - Jens M. Thomas
- Institute of Integrative Biology, University of Liverpool; Liverpool L69 7ZB U.K
| | - Chandra S. Verma
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute; Singapore
- Department of Biological Sciences; National University of Singapore; Singapore
- School of Biological Sciences; Nanyang Technological University; Singapore
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool; Liverpool L69 7ZB U.K
| |
Collapse
|
166
|
Dermaseptins as potential antirabies compounds. Vaccine 2018; 37:4694-4700. [PMID: 29439871 DOI: 10.1016/j.vaccine.2018.01.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 01/11/2023]
Abstract
Over the last 20 years, natural peptides playing a key role in defense mechanisms and innate immunity have been isolated from unicellular organisms. Amphibian skin secretes dermaseptins, 24-34 amino acids in length that have a wide antimicrobial spectrum incorporating yeast, fungi, protozoa, bacteria and enveloped viruses. The anti-rabies virus (RABV) activity of dermaseptins S3 (30aa) and S4 (28aa) from Phyllomedusa sauvagei has been investigated, and further dissected its molecular basis by comparing punctual mutation or deletion of S4 analogues. The results showed that: (1) S4 is more active than S3 against RABV infection, 89% versus 38% inhibition at 7.5 μM; (2) the 5 NH2-aa of S4 are crucial for its inhibitory potential (S46-28 lost any inhibition) but the COOH terminus stabilizes the inhibitory potential (S41-16 showed only 23% inhibition at 7.5 μM); (3) there is a correlation between viral inhibition and dermaseptin cytotoxicity, which remains however moderated for BSR cells (≤12% at 10 μM). A single mutation in position 4 (S4M4K) slightly reduced cytotoxicity while keeping its antiviral activity, 97% at 7.5 μM. S4 and S4M4K showed an antiviral activity in vitro when provided 1 h after infection. In vivo experiments in mice by intramuscular injection of non-toxic doses of dermaseptin S4M4K 1 h post-infection by a lethal dose of RABV at the same site allowed more than 50% improvement in mice survival. This study highlights the potential interest of dermaseptins as non-expansive alternatives to rabies immunoglobulins for the treatment of rabies that continues to claim about 60,000 human lives per year worldwide, almost exclusively in developing countries.
Collapse
|
167
|
Tajbakhsh M, Karimi A, Tohidpour A, Abbasi N, Fallah F, Akhavan MM. The antimicrobial potential of a new derivative of cathelicidin from Bungarus fasciatus against methicillin-resistant Staphylococcus aureus. J Microbiol 2018; 56:128-137. [PMID: 29392557 DOI: 10.1007/s12275-018-7444-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
Cathelicidins are a family of antimicrobial peptides which exhibit broad antimicrobial activities against antibiotic-resistant bacteria. Considering the progressive antibiotic resistance, cathelicidin is a candidate for use as an alternative approach to treat and overcome the challenge of antimicrobial resistance. Cathelicidin-BF (Cath-BF) is a short antimicrobial peptide, which was originally extracted from the venom of Bungarus fasciatus. Recent studies have reported that Cath-BF and some related derivatives exert strong antimicrobial and weak hemolytic properties. This study investigates the bactericidal and cytotoxic effects of Cath-BF and its analogs (Cath-A and Cath-B). Cath-A and Cath-B were designed to increase their net positive charge, to have more activity against methicillin resistant S. aureus (MRSA). The results of this study show that Cath-A, with a +17-net charge, has the most noteworthy antimicrobial activity against MRSA strains, with minimum inhibitory concentration (MIC) ranging between 32-128 μg/ml. The bacterial kinetic analysis by 1 × MIC concentration of each peptide shows that Cath-A neutralizes the clinical MRSA isolate for 60 min. The present data support the notion that increasing the positive net charge of antimicrobial peptides can increase their potential antimicrobial activity. Cath-A also displayed the weakest cytotoxicity effect against human umbilical vein endothelial and H9c2 rat cardiomyoblast cell lines. Analysis of the hemolytic activity reveals that all three peptides exhibit minor hemolytic activity against human erythrocytes at concentrations up to 250 μg/ml. Altogether, these results suggest that Cath-A and Cath-B are competent candidates as novel antimicrobial compounds against MRSA and possibly other multidrug resistant bacteria.
Collapse
Affiliation(s)
- Mercedeh Tajbakhsh
- Pediatric Infections Research Center (PIRC), Research Institute for Children health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Karimi
- Pediatric Infections Research Center (PIRC), Research Institute for Children health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolghasem Tohidpour
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Naser Abbasi
- Department of Pharmacology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center (PIRC), Research Institute for Children health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maziar Mohammad Akhavan
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, Medical School, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
168
|
Perry SR, Hill TA, de Araujo AD, Hoang HN, Fairlie DP. Contiguous hydrophobic and charged surface patches in short helix-constrained peptides drive cell permeability. Org Biomol Chem 2018; 16:367-371. [DOI: 10.1039/c7ob02952g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different ways to get peptides into cells.
Collapse
Affiliation(s)
- Samuel R. Perry
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging
- Institute for Molecular Bioscience
- University of Queensland
- Brisbane
- Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging
- Institute for Molecular Bioscience
- University of Queensland
- Brisbane
- Australia
| | - Aline D. de Araujo
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging
- Institute for Molecular Bioscience
- University of Queensland
- Brisbane
- Australia
| | - Huy N. Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging
- Institute for Molecular Bioscience
- University of Queensland
- Brisbane
- Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging
- Institute for Molecular Bioscience
- University of Queensland
- Brisbane
- Australia
| |
Collapse
|
169
|
Alvares DS, Wilke N, Ruggiero Neto J. Effect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model membranes by a mastoparan-like peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:737-748. [PMID: 29287697 DOI: 10.1016/j.bbamem.2017.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 01/30/2023]
Abstract
L1A (IDGLKAIWKKVADLLKNT-NH2) is a peptide that displays a selective antibacterial activity to Gram-negative bacteria without being hemolytic. Its lytic activity in anionic lipid vesicles was strongly enhanced when its N-terminus was acetylated (ac-L1A). This modification seems to favor the perturbation of the lipid core of the bilayer by the peptide, resulting in higher membrane lysis. In the present study, we used lipid monolayers and bilayers as membrane model systems to explore the impact of acetylation on the L1A lytic activity and its correlation with lipid-packing perturbation. The lytic activity investigated in giant unilamellar vesicles (GUVs) revealed that the acetylated peptide permeated the membrane at higher rates compared with L1A, and modified the membrane's mechanical properties, promoting shape changes. The peptide secondary structure and the changes in the environment of the tryptophan upon adsorption to large unilamellar vesicles (LUVs) were monitored by circular dichroism (CD) and red-edge excitation shift experiments (REES), respectively. These experiments showed that the N-terminus acetylation has an important effect on both, peptide secondary structure and peptide insertion into the bilayer. This was also confirmed by experiments of insertion into lipid monolayers. Compression isotherms for peptide/lipid mixed films revealed that ac-L1A dragged lipid molecules to the more disordered phase, generating a more favorable environment and preventing the lipid molecules from forming stiff films. Enthalpy changes in the main phase transition of the lipid membrane upon peptide insertion suggested that the acetylated peptide induced higher impact than the non-acetylated one on the thermotropic behavior of anionic vesicles.
Collapse
Affiliation(s)
- Dayane S Alvares
- UNESP - São Paulo State University, IBILCE, Department of Physics, São José do Rio Preto, SP, Brazil
| | - Natalia Wilke
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidade Nacional de Córdoba, Argentina
| | - João Ruggiero Neto
- UNESP - São Paulo State University, IBILCE, Department of Physics, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
170
|
Angiotensin Converting Enzyme Inhibitory and Antioxidant Activities of Enzymatic Hydrolysates of Korean Native Cattle (Hanwoo) Myofibrillar Protein. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5274637. [PMID: 29392136 PMCID: PMC5748151 DOI: 10.1155/2017/5274637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to determine the angiotensin converting enzyme (ACE) inhibitory and antioxidant activities of myofibrillar protein hydrolysates (HMPHs) of different molecular weights (<3 and <10 kDa) derived from Korean native cattle (Hanwoo breed) using a commercially available and inexpensive enzyme (Alkaline-AK). HMPH of both tested molecular weights had ACE inhibitory activity. Among the antioxidant activities, iron chelation and nitrite scavenging activities were higher in low-molecular-weight peptide of HMPH (<3 kDa), whereas 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was higher in high-molecular-weight peptide of HMPH (<10 kDa). HMPH did not induce cytotoxicity in RAW 264.7 cells at concentrations of 5–20 mg/mL. These results indicate that HMPH can be cheaply produced using Alkaline-AK and applied as a potential ACE inhibitor and antioxidant.
Collapse
|
171
|
Purification, Characterization, and Mode of Action of Pentocin JL-1, a Novel Bacteriocin Isolated from Lactobacillus pentosus, against Drug-Resistant Staphylococcus aureus. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7657190. [PMID: 29333451 PMCID: PMC5733122 DOI: 10.1155/2017/7657190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/21/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus and its drug-resistant strains, which threaten public health and food safety, are in need of effective control by biopreservatives. A novel bacteriocin, pentocin JL-1, produced by Lactobacillus pentosus that was isolated from the intestinal tract of Chiloscyllium punctatum, was purified by a four-step chromatographic process. Mass spectrometry based on MALDI-TOF indicated that pentocin JL-1 has a molecular mass of 2987.23 Da. Only six of the twenty-five amino acids could be identified by Edman degradation. This bacteriocin is thermostable and tolerates a pH range of 5–7. Also, it is sensitive to proteinase K, trypsin, pepsin, and alkaline protease. This bacteriocin has a broad inhibitory spectrum against both Gram-positive and Gram-negative strains and in particular is effective against multidrug-resistant S. aureus. Additionally, we showed that the cell membrane is the target of pentocin JL-1 against methicillin-resistant S. aureus (MRSA), causing a loss of proton motive force. Furthermore, pentocin JL-1 has a drastic impact on the structure and integrity of MRSA cells. These results suggest that pentocin JL-1 has potential as a biopreservative in the food industry.
Collapse
|
172
|
Almahboub SA, Narancic T, Devocelle M, Kenny ST, Palmer-Brown W, Murphy C, Nikodinovic-Runic J, O'Connor KE. Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity. Appl Microbiol Biotechnol 2017; 102:789-799. [PMID: 29177937 DOI: 10.1007/s00253-017-8655-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess > 98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 μg/ml for Escherichia coli, 50 μg/ml for Bacillus subtilis, 100 μg/ml for Salmonella typhimurium, 200 μg/ml for Pseudomonas aeruginosa and 400 μg/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.
Collapse
Affiliation(s)
- Sarah A Almahboub
- UCD Earth Institute and School of Biomolecular and Biomedical Science, O'Brien Centre for Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, O'Brien Centre for Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marc Devocelle
- Centre for Synthesis and Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Shane T Kenny
- Bioplastech Ltd., Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - William Palmer-Brown
- UCD Earth Institute and School of Biomolecular and Biomedical Science, O'Brien Centre for Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac Murphy
- UCD Earth Institute and School of Biomolecular and Biomedical Science, O'Brien Centre for Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade, Serbia
| | - Kevin E O'Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, O'Brien Centre for Science, University College Dublin, Belfield, Dublin 4, Ireland. .,BEACON - Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
173
|
Picoli T, Peter CM, Zani JL, Waller SB, Lopes MG, Boesche KN, Vargas GD, Hübner SDO, Fischer G. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus , Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microb Pathog 2017; 112:57-62. [DOI: 10.1016/j.micpath.2017.09.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/22/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
|
174
|
Rivas L, Nácher-Vázquez M, Andreu D. The Physical Matrix of the Plasma Membrane as a Target: The Charm of Drugs with Low Specificity. DRUG DISCOVERY FOR LEISHMANIASIS 2017:248-281. [DOI: 10.1039/9781788010177-00248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Antimicrobial peptides (AMPs) are ubiquitous through living organisms from different kingdoms. Their role is either defense against invading pathogens, or to strive for survival against microorganisms sharing the same ecological niche. Many AMPs are active against a broad variety of target microorganisms. This, together with their low induction of resistance, heralded the use of AMPs as a new generation of antibiotics. However, studies addressing the feasibility of AMP implementation on leishmaniasis are scarce. This review describes the different approaches to leishmaniasis carried out with AMPs regardless their biological origin. The chapter encompasses studies of AMPs both in vitro and in animal models of Leishmania infection. The mechanisms of action of AMPs both on Leishmania and on the macrophage are described, as well as the underlying molecular determinants of AMPs driving their effectiveness on Leishmania. Finally, the prospects for the feasible implementation of a pharmacological strategy for leishmaniasis based on peptide-based therapies are outlined.
Collapse
Affiliation(s)
- Luis Rivas
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) Ramiro de Maeztu 9 28040 Madrid Spain
| | - Montserrat Nácher-Vázquez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) Ramiro de Maeztu 9 28040 Madrid Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park 08003 Barcelona Spain
| |
Collapse
|
175
|
Martins DB, Vieira MR, Fadel V, Santana VAC, Guerra MER, Lima ML, Tempone AG, dos Santos Cabrera MP. Membrane targeting peptides toward antileishmanial activity: Design, structural determination and mechanism of interaction. Biochim Biophys Acta Gen Subj 2017; 1861:2861-2871. [DOI: 10.1016/j.bbagen.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 01/07/2023]
|
176
|
Jiang K, Gao X, Shen Q, Zhan C, Zhang Y, Xie C, Wei G, Lu W. Discerning the composition of penetratin for safe penetration from cornea to retina. Acta Biomater 2017; 63:123-134. [PMID: 28927928 DOI: 10.1016/j.actbio.2017.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022]
Abstract
Delivery of biomacromolecules into the eye is greatly hindered by several protective barriers. The cell-penetrating peptide, penetratin, has been found to be an effective absorption enhancer for noninvasive intraocular gene delivery. To discern the composition of penetratin for safe penetration from cornea to retina, we designed a series of penetratin derivatives by varying the hydrophobicity and evaluated their potency for retina-targeted delivery. The hydrophilic amino acids of penetratin, excluding the conserved basic amino acid residues, were respectively replaced with tryptophan. Secondary structure of the resultant derivatives was analyzed by computer simulation and circular dichroism, exhibiting that the hydrophobic derivatives had a propensity to form high content of helix and entered corneal and conjunctival cells more easily than did penetratin. As expected, the hydrophobic derivatives showed improved permeability in excised rabbit cornea and sclera, and kept intact after penetration. When instilled topically in the conjunctival sac of mice eyes, the hydrophobic derivatives distributed safely and rapidly into both cornea and retina, with increased amount and prolonged retention time in comparison to penetratin. In conclusion, we demonstrated that the ocular permeability of penetratin derivatives closely correlated with their hydrophobicity, and introducing hydrophobic amino acids in penetratin was a feasible approach to develop more powerful ocular absorption enhancers. STATEMENT OF SIGNIFICANCE Due to the defensive barriers of the eye, efficient and safe absorption enhancers are indispensable for noninvasive delivery of exogenous biomacromolecules to the posterior segment. In this manuscript, we designed a series of penetratin derivatives and validated they had significantly improved penetration ability from cornea to retina than wild-type penetratin, without increasing toxicity. More importantly, we provided a sequence of solid evidences that the ocular permeability of penetratin derivatives closely correlated with their hydrophobicity, and introducing hydrophobic amino acids in penetratin was a feasible approach to develop more powerful ocular absorption enhancers. We also demonstrated that the penetratin derivatives permeated through cornea and sclera with intact structure, and might enter the eye by non-corneal pathway.
Collapse
|
177
|
AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol Res 2017; 128:288-305. [PMID: 29079429 DOI: 10.1016/j.phrs.2017.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) presently accounts for high global mortality and morbidity rates, despite the introduction four decades ago of the affordable and efficient four-drugs (isoniazid, rifampicin, pyrazinamide and ethambutol). Thus, a strong need exists for new drugs with special structures and uncommon modes of action to effectively overcome M. tuberculosis. Within this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that comprise a section of the innate immune system, are currently the leading potential agents for the treatment of TB. Many studies have recently illustrated the capability of anti-mycobacterial peptides to disrupt the normal mycobacterial cell wall function through various modes, thereby interacting with the intracellular targets, as well as encompassing nucleic acids, enzymes and organelles. This review presents a wide array of antimicrobial activities, alongside the associated properties of the AMPs that could be utilized as potential agents in therapeutic tactics for TB treatment.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü) Çukurova University, Adana, Turkey.
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Gülfer Yakıcı
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Çukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
178
|
Differential Interaction of Antimicrobial Peptides with Lipid Structures Studied by Coarse-Grained Molecular Dynamics Simulations. Molecules 2017; 22:molecules22101775. [PMID: 29053635 PMCID: PMC6151434 DOI: 10.3390/molecules22101775] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/17/2017] [Indexed: 01/05/2023] Open
Abstract
In this work; we investigated the differential interaction of amphiphilic antimicrobial peptides with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid structures by means of extensive molecular dynamics simulations. By using a coarse-grained (CG) model within the MARTINI force field; we simulated the peptide-lipid system from three different initial configurations: (a) peptides in water in the presence of a pre-equilibrated lipid bilayer; (b) peptides inside the hydrophobic core of the membrane; and (c) random configurations that allow self-assembled molecular structures. This last approach allowed us to sample the structural space of the systems and consider cooperative effects. The peptides used in our simulations are aurein 1.2 and maculatin 1.1; two well-known antimicrobial peptides from the Australian tree frogs; and molecules that present different membrane-perturbing behaviors. Our results showed differential behaviors for each type of peptide seen in a different organization that could guide a molecular interpretation of the experimental data. While both peptides are capable of forming membrane aggregates; the aurein 1.2 ones have a pore-like structure and exhibit a higher level of organization than those conformed by maculatin 1.1. Furthermore; maculatin 1.1 has a strong tendency to form clusters and induce curvature at low peptide-lipid ratios. The exploration of the possible lipid-peptide structures; as the one carried out here; could be a good tool for recognizing specific configurations that should be further studied with more sophisticated methodologies.
Collapse
|
179
|
Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GCL. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 2017; 7:20160153. [PMID: 29147555 DOI: 10.1098/rsfs.2016.0153] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a diverse class of well-studied membrane-permeating peptides with important functions in innate host defense. In this short review, we provide a historical overview of AMPs, summarize previous applications of machine learning to AMPs, and discuss the results of our studies in the context of the latest AMP literature. Much work has been recently done in leveraging computational tools to design new AMP candidates with high therapeutic efficacies for drug-resistant infections. We show that machine learning on AMPs can be used to identify essential physico-chemical determinants of AMP functionality, and identify and design peptide sequences to generate membrane curvature. In a broader scope, we discuss the implications of our findings for the discovery of membrane-active peptides in general, and uncovering membrane activity in new and existing peptide taxonomies.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M Fulan
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
180
|
Alvares DS, Viegas TG, Ruggiero Neto J. Lipid-packing perturbation of model membranes by pH-responsive antimicrobial peptides. Biophys Rev 2017; 9:669-682. [PMID: 28853007 PMCID: PMC5662038 DOI: 10.1007/s12551-017-0296-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
The indiscriminate use of conventional antibiotics is leading to an increase in the number of resistant bacterial strains, motivating the search for new compounds to overcome this challenging problem. Antimicrobial peptides, acting only in the lipid phase of membranes without requiring specific membrane receptors as do conventional antibiotics, have shown great potential as possible substituents of these drugs. These peptides are in general rich in basic and hydrophobic residues forming an amphipathic structure when in contact with membranes. The outer leaflet of the prokaryotic cell membrane is rich in anionic lipids, while the surface of the eukaryotic cell is zwitterionic. Due to their positive net charge, many of these peptides are selective to the prokaryotic membrane. Notwithstanding this preference for anionic membranes, some of them can also act on neutral ones, hampering their therapeutic use. In addition to the electrostatic interaction driving peptide adsorption by the membrane, the ability of the peptide to perturb lipid packing is of paramount importance in their capacity to induce cell lysis, which is strongly dependent on electrostatic and hydrophobic interactions. In the present research, we revised the adsorption of antimicrobial peptides by model membranes as well as the perturbation that they induce in lipid packing. In particular, we focused on some peptides that have simultaneously acidic and basic residues. The net charges of these peptides are modulated by pH changes and the lipid composition of model membranes. We discuss the experimental approaches used to explore these aspects of lipid membranes using lipid vesicles and lipid monolayer as model membranes.
Collapse
Affiliation(s)
- Dayane S Alvares
- Department of Physics, UNESP - São Paulo State University, IBILCE, R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil
| | - Taisa Giordano Viegas
- Department of Physics, UNESP - São Paulo State University, IBILCE, R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil
| | - João Ruggiero Neto
- Department of Physics, UNESP - São Paulo State University, IBILCE, R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil.
| |
Collapse
|
181
|
Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes. Proc Natl Acad Sci U S A 2017; 114:E8324-E8332. [PMID: 28931578 DOI: 10.1073/pnas.1704489114] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Linear cationic antimicrobial peptides are a diverse class of molecules that interact with a wide range of cell membranes. Many of these peptides disrupt cell integrity by forming membrane-spanning pores that ultimately lead to their death. Despite these peptides high potency and ability to evade acquired bacterial drug resistance, there is a lack of knowledge on their selectivity and activity mechanisms. Such an understanding would provide an informative framework for rational design and could lead to potential antimicrobial therapeutic targets. In this paper, we use a high-throughput microfluidic platform as a quantitative screen to assess peptide activity and selectivity by precisely controlling exposure to vesicles with lipid compositions that mimic both bacterial and mammalian cell membranes. We explore the complexity of the lipid-peptide interactions governing membrane-disruptive behaviors and establish a link between peptide pore formation and both lipid-peptide charge and topological interactions. We propose a topological model for linear antimicrobial peptide activity based on the increase in membrane strain caused by the continuous adsorption of peptides to the target vesicle coupled with the effects of both lipid-peptide charge and topographical interactions. We also show the validity of the proposed model by investigating the activity of two prototypical linear cationic peptides: magainin 2 amide (which is selective for bacterial cells) and melittin (which targets both mammalian and bacterial cells indiscriminately). Finally, we propose the existence of a negative feedback mechanism that governs the pore formation process and controls the membrane's apparent permeability.
Collapse
|
182
|
Jiang Y, Zheng W, Kuang L, Ma H, Liang H. Hydrophilic Phage-Mimicking Membrane Active Antimicrobials Reveal Nanostructure-Dependent Activity and Selectivity. ACS Infect Dis 2017; 3:676-687. [PMID: 28758395 DOI: 10.1021/acsinfecdis.7b00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The prevalent wisdom on developing membrane active antimicrobials (MAAs) is to seek a delicate, yet unquantified, cationic-hydrophobic balance. Inspired by phages that use nanostructured protein devices to invade bacteria efficiently and selectively, we study here the antibiotic role of nanostructures by designing spherical and rod-like polymer molecular brushes (PMBs) that mimic the two basic structural motifs of bacteriophages. Three model PMBs with different well-defined geometries consisting of multiple, identical copies of densely packed poly(4-vinyl-N-methylpyridine iodide) branches are synthesized by controlled/"living" polymerization, reminiscent of the viral structural motifs comprised of multiple copies of protein subunits. We show that, while the individual linear-chain polymer branch that makes up the PMBs is hydrophilic and a weak antimicrobial, amphiphilicity is not a required antibiotic trait once nanostructures come into play. The nanostructured PMBs induce an unusual topological transition of bacterial but not mammalian membranes to form pores. The sizes and shapes of the nanostructures further help define the antibiotic activity and selectivity of the PMBs against different families of bacteria. This study highlights the importance of nanostructures in the design of MAAs with high activity, low toxicity, and target specificity.
Collapse
Affiliation(s)
- Yunjiang Jiang
- Department of Cell Physiology & Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Wan Zheng
- Department of Cell Physiology & Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Liangju Kuang
- Department of Metallurgical and Materials
Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hairong Ma
- Department of Cell Physiology & Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Hongjun Liang
- Department of Cell Physiology & Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Departments
of Chemical Engineering and Chemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
183
|
Liu B, Zhang W, Gou S, Huang H, Yao J, Yang Z, Liu H, Zhong C, Liu B, Ni J, Wang R. Intramolecular cyclization of the antimicrobial peptide Polybia-MPI with triazole stapling: influence on stability and bioactivity. J Pept Sci 2017; 23:824-832. [PMID: 28833783 DOI: 10.1002/psc.3031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022]
Abstract
Cationic antimicrobial peptides have attracted increasing attention as a novel class of antibiotics to treat infectious diseases caused by pathogenic bacteria. However, susceptibility to protease is a shortcoming in their development. Cyclization is one approach to increase the proteolytic resistance of peptides. Therefore, to improve the proteolytic resistance of Polybia-MPI, we have synthesized the MPI cyclic analogs C-MPI-1 (i-to-i+4) and C-MPI-2 (i-to-i+6) by copper(I)-catalyzed azide-alkyne cycloaddition. Compared with MPI, C-MPI-1 displayed sustained antimicrobial activity and had enhanced anti-trypsin resistance, while C-MPI-2 displayed no antimicrobial activity. The relationship between peptide structure and bioactivity was further investigated by probing the secondary structure of the peptides by circular dichroism. This showed that C-MPI-1 adopted an α-helical structure in aqueous solution and, interestingly, had increased α-helical conformation in 30 mM sodium dodecyl sulfate and 50% trifluoroethyl alcohol compared with MPI. C-MPI-2 that was not α-helical in structure, suggesting that the propensity for α-helix conformation may play an important role in cyclic peptide design. In addition, scanning electron microscopy, propidium iodide uptake, and membrane permeabilization assays indicated that MPI and the optimized analog C-MPI-1 had membrane-active action modes, indicating that the peptides would not be susceptible to conventional resistance mechanisms. Our study provides additional insight into the influence of intramolecular cyclization at various positions on peptide structure and biological activity. In conclusion, the design and synthesis of cyclic analogs via click chemistry offer a new strategy for the development of stable antimicrobial agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Beijun Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.,School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haifeng Huang
- Shaanxi Provincial People's Hospital, Shanxi, 710068, China
| | - Jia Yao
- The First Hospital of Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zhibin Yang
- Key Laboratory of Entomological Biopharmaceutical R&D of Yunnan Province, Dali University, Dali, 671000, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Chao Zhong
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Beiyin Liu
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.,School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
184
|
Cyclic Peptides as Novel Therapeutic Microbicides: Engineering of Human Defensin Mimetics. Molecules 2017; 22:molecules22071217. [PMID: 28726740 PMCID: PMC6152268 DOI: 10.3390/molecules22071217] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022] Open
Abstract
Cyclic peptides are receiving significant attention thanks to their antimicrobial activity and high serum stability, which is useful to develop and design novel antimicrobial agents. Antimicrobial peptides appear to be key components of innate defences against bacteria, viruses, and fungi. Among the others, defensins possess a strong microbicidial activity. Defensins are cationic and amphipathic peptides with six cysteine residues connected by three disulfide bonds found in plants, insects, and mammals; they are divided in three families: α-, β-, and θ-defensins. α-Defensins are contained in the primary granules of human neutrophils; β-defensins are expressed in human epithelia; and θ-defensins are pseudo-cyclic defensins not found in humans, but in rhesus macaques. The structural diversities among the three families are reflected in a different antimicrobial action as well as in serum stability. The engineering of these peptides is an exciting opportunity to obtain more functional antimicrobial molecules highlighting their potential as therapeutic agents. The present review reports the most recent advances in the field of cyclic peptides with a specific regard to defensin analogs.
Collapse
|
185
|
Antibacterial Activity of AI-Hemocidin 2, a Novel N-Terminal Peptide of Hemoglobin Purified from Arca inflata. Mar Drugs 2017; 15:md15070205. [PMID: 28661457 PMCID: PMC5532647 DOI: 10.3390/md15070205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 01/01/2023] Open
Abstract
The continued emergence of antibiotic resistant bacteria in recent years is of great concern. The search for new classes of antibacterial agents has expanded to non-traditional sources such as shellfish. An antibacterial subunit of hemoglobin (Hb-I) was purified from the mantle of Arca inflata by phosphate extraction and ion exchange chromatography. A novel antibacterial peptide, AI-hemocidin 2, derived from Hb-I, was discovered using bioinformatics analysis. It displayed antibacterial activity across a broad spectrum of microorganisms, including several Gram-positive and Gram-negative bacteria, with minimal inhibitory concentration (MIC) values ranging from 37.5 to 300 μg/mL, and it exhibited minimal hemolytic or cytotoxic activities. The antibacterial activity of AI-hemocidin 2 was thermostable (25–100 °C) and pH resistant (pH 3–10). The cellular integrity was determined by flow cytometry. AI-hemocidin 2 was capable of permeating the cellular membrane. Changes in the cell morphology were observed with a scanning electron microscope. Circular dichroism spectra suggested that AI-hemocidin 2 formed an α-helix structure in the membrane mimetic environment. The results indicated that the anti-bacterial mechanism for AI-hemocidin 2 occurred through disrupting the cell membrane. AI-hemocidin 2 might be a potential candidate for tackling antibiotic resistant bacteria.
Collapse
|
186
|
Wu X, Wei PH, Zhu X, Wirth MJ, Bhunia A, Narsimhan G. Effect of immobilization on the antimicrobial activity of a cysteine-terminated antimicrobial Peptide Cecropin P1 tethered to silica nanoparticle against E. coli O157:H7 EDL933. Colloids Surf B Biointerfaces 2017; 156:305-312. [PMID: 28544962 DOI: 10.1016/j.colsurfb.2017.05.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
Abstract
Antimicrobial peptides (AMPs) have the ability to penetrate the cell membrane, form pores which eventually lead to cell death. Immobilization of AMP on nanoparticles can play a major role in antimicrobial materials, biosensors for pathogen detection and in food safety. The minimum inhibitory concentration (MIC) of free Cecropin P1 (CP1, sequence SWLSTAKKLENSAKKRLSEGIAIAIQGGPR) and adsorbed on silica nanoparticle against E. coli O157:H7 EDL933 were 0.78μg/ml. This was found to be consistent with preservation of α-helical secondary structure of CP1 upon adsorption as indicated by circular dichroism (CD). Cysteine-terminus modified Cecropin P1 (CP1C, sequence SWLSTAKKLENSAKKRLSEGIAIAIQGGPRC) was chemically immobilized onto silica nanoparticles with maleimide-PEG-NHS ester cross-linkers of different PEG chain lengths. The antimicrobial activity of CP1C in solution and adsorbed on silica nanoparticles against E. coli O157:H7 EDL933 were found to be the same as those for CP1. However, tethered CP1C exhibited much higher MIC of 24.38, 37.55 and 109.82μg/ml for (PEG)20, (PEG)6 and (PEG)2 linkers respectively. The antimicrobial activity of CP1C tethered to silica nanoparticles with (PEG)20 linker was found to be lower for lower surface coverage with MIC values being 86.06, 36.89, 24.38 and 17.84μg/ml for surface coverage of 12.3%, 24.4%, 52.8% and 83.8% respectively. All atom MD simulation of 1:3 DOPG/DOPC mixed membrane interacting with free and PEGlyated CP1C indicated that presence of PEG linker prevented CP1C from interacting with the bilayer which may explain the loss of antimicrobial activity of tethered CP1C.
Collapse
Affiliation(s)
- Xi Wu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Pei-Hsun Wei
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Xiao Zhu
- Department of Research Computing, Purdue University, West Lafayette, IN 47907, United States
| | - Mary J Wirth
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Arun Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States
| | - Ganesan Narsimhan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
187
|
Xie J, Zhao Q, Li S, Yan Z, Li J, Li Y, Mou L, Zhang B, Yang W, Miao X, Jiang X, Wang R. Novel antimicrobial peptide CPF-C1 analogs with superior stabilities and activities against multidrug-resistant bacteria. Chem Biol Drug Des 2017; 90:690-702. [PMID: 28371431 DOI: 10.1111/cbdd.12988] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 01/17/2023]
Abstract
As numerous clinical isolates are resistant to most conventional antibiotics, infections caused by multidrug-resistant bacteria are associated with a higher death rate. Antimicrobial peptides show great potential as new antibiotics. However, a major obstacle to the development of these peptides as useful drugs is their low stability. To overcome the problem of the natural antimicrobial peptide CPF-C1, we designed and synthesized a series of analogs. Our results indicated that by introducing lysine, which could increase the number of positive charges, and by introducing tryptophan, which could increase the hydrophobicity, we could improve the antimicrobial activity of the peptides against multidrug-resistant strains. The introduction of d-amino acids significantly improved stability. Certain analogs demonstrated antibiofilm activities. In mechanistic studies, the analogs eradicated bacteria not just by interrupting the bacterial membranes, but also by linking to DNA, which was not impacted by known mechanisms of resistance. In a mouse model, certain analogs were able to significantly reduce the bacterial load. Among the analogs, CPF-9 was notable due to its greater antimicrobial potency in vitro and in vivo and its superior stability, lower hemolytic activity, and higher antibiofilm activity. This analog is a potential antibiotic candidate for treating infections induced by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Junqiu Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sisi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhibin Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yao Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lingyun Mou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaokang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
188
|
Tseng TS, Tsai KC, Chen C. Characterizing the structure-function relationship reveals the mode of action of a novel antimicrobial peptide, P1, from jumper ant Myrmecia pilosula. MOLECULAR BIOSYSTEMS 2017; 13:1193-1201. [PMID: 28470277 DOI: 10.1039/c6mb00810k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbial infections of antibiotic-resistant strains cause serious diseases and have a significant impact on public health worldwide, so novel antimicrobial drugs are urgently needed. Insect venoms, a rich source of bioactive components containing antimicrobial peptides (AMPs), are attractive candidates for new therapeutic agents against microbes. Recently, a novel peptide, P1, identified from the venom of the Australian jumper ant Myrmecia pilosula, showed potent antimicrobial activities against both Gram-negative and Gram-positive bacteria, but its structure-function relationship is unknown. Here, we used biochemical and biophysical techniques coupled with computational simulations to explore the mode of action of P1 interaction with dodecylphosphocholine (DPC) micelles as a model membrane system. Our circular dichroism (CD) and NMR studies revealed an amphipathic α-helical structure for P1 upon interaction with DPC micelles. A paramagnetic relaxation enhancement approach revealed that P1 orients its α-helix segment (F6-G14) into DPC micelles. In addition, the α-helix segment could be essential for membrane permeabilization and antimicrobial activity. Moreover, the arginine residues R8, R11, and R15 significantly contribute to helix formation and membrane-binding affinity. The lysine residue K19 of the C-terminus functionally guides P1 to interact with DPC micelles in the early interaction stage. Our study provides insights into the mode of action of P1, which is valuable in modifying and developing potent AMPs as antibiotic drugs.
Collapse
Affiliation(s)
- Tien-Sheng Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan and The Ph.D. Program for Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
189
|
Guerra MER, Fadel V, Maltarollo VG, Baldissera G, Honorio KM, Ruggiero JR, Dos Santos Cabrera MP. MD simulations and multivariate studies for modeling the antileishmanial activity of peptides. Chem Biol Drug Des 2017; 90:501-510. [PMID: 28267894 DOI: 10.1111/cbdd.12970] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/29/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
Abstract
Leishmaniasis, a protozoan-caused disease, requires alternative treatments with minimized side-effects and less prone to resistance development. Antimicrobial peptides represent a possible choice to be developed. We report on the prospection of structural parameters of 23 helical antimicrobial and leishmanicidal peptides as a tool for modeling and predicting the activity of new peptides. This investigation is based on molecular dynamic simulations (MD) in mimetic membrane environment, as most of these peptides share the feature of interacting with phospholipid bilayers. To overcome the lack of experimental data on peptides' structures, we started simulations from designed 100% α-helices. This procedure was validated through comparisons with NMR data and the determination of the structure of Decoralin-amide. From physicochemical features and MD results, descriptors were raised and statistically related to the minimum inhibitory concentration against Leishmania by the multivariate data analysis technique. This statistical procedure confirmed five descriptors combined by different loadings in five principal components. The leishmanicidal activity depends on peptides' charge, backbone solvation, volume, and solvent-accessible surface area. The generated model possesses good predictability (q2 = 0.715, r2 = 0.898) and is indicative for the most and the least active peptides. This is a novel theoretical path for structure-activity studies combining computational methods that identify and prioritize the promising peptide candidates.
Collapse
Affiliation(s)
| | - Valmir Fadel
- Departamento de Física, Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil
| | | | | | - Kathia Maria Honorio
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Roberto Ruggiero
- Departamento de Física, Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil
| | - Marcia Perez Dos Santos Cabrera
- Departamento de Física, Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil.,Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil
| |
Collapse
|
190
|
Gagnon MC, Strandberg E, Grau-Campistany A, Wadhwani P, Reichert J, Bürck J, Rabanal F, Auger M, Paquin JF, Ulrich AS. Influence of the Length and Charge on the Activity of α-Helical Amphipathic Antimicrobial Peptides. Biochemistry 2017; 56:1680-1695. [PMID: 28282123 DOI: 10.1021/acs.biochem.6b01071] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrophobic mismatch is important for pore-forming amphipathic antimicrobial peptides, as demonstrated recently [Grau-Campistany, A., et al. (2015) Sci. Rep. 5, 9388]. A series of different length peptides have been generated with the heptameric repeat sequence KIAGKIA, called KIA peptides, and it was found that only those helices sufficiently long to span the hydrophobic thickness of the membrane could induce leakage in lipid vesicles; there was also a clear length dependence of the antimicrobial and hemolytic activities. For the original KIA sequences, the cationic charge increased with peptide length. The goal of this work is to examine whether the charge also has an effect on activity; hence, we constructed two further series of peptides with a sequence similar to those of the KIA peptides, but with a constant charge of +7 for all lengths from 14 to 28 amino acids. For both of these new series, a clear length dependence similar to that of KIA peptides was observed, indicating that charge has only a minor influence. Both series also showed a distinct threshold length for peptides to be active, which correlates directly with the thickness of the membrane. Among the longer peptides, the new series showed activities only slightly lower than those of the original KIA peptides of the same length that had a higher charge. Shorter peptides, in which Gly was replaced with Lys, showed activities similar to those of KIA peptides of the same length, but peptides in which Ile was replaced with Lys lost their helicity and were less active.
Collapse
Affiliation(s)
- Marie-Claude Gagnon
- Department of Chemistry, PROTEO, CGCC, Université Laval , 1045 avenue de la Médecine, Québec, Canada G1V 0A6.,Department of Chemistry, PROTEO, CERMA, CQMF, Université Laval , 1045 avenue de la Médecine, Québec, Canada G1V 0A6
| | - Erik Strandberg
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Ariadna Grau-Campistany
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona , Barcelona, Spain
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Johannes Reichert
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Francesc Rabanal
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona , Barcelona, Spain
| | - Michèle Auger
- Department of Chemistry, PROTEO, CERMA, CQMF, Université Laval , 1045 avenue de la Médecine, Québec, Canada G1V 0A6
| | - Jean-François Paquin
- Department of Chemistry, PROTEO, CGCC, Université Laval , 1045 avenue de la Médecine, Québec, Canada G1V 0A6
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany.,KIT , Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
191
|
Wu H, Liu S, Wiradharma N, Ong ZY, Li Y, Yang YY, Ying JY. Short Synthetic α-Helical-Forming Peptide Amphiphiles for Fungal Keratitis Treatment In Vivo. Adv Healthc Mater 2017; 6. [PMID: 28081296 DOI: 10.1002/adhm.201600777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/26/2016] [Indexed: 12/28/2022]
Abstract
The emergence of fungal keratitis is on the rise globally. However, current antifungal therapeutics are ineffective in severe keratomycosis. Previously reported α-helical peptides comprising 8-14 amino acids demonstrate broad-spectrum antimicrobial activity both in vitro and in vivo. Here, α-helical peptides of the optimized sequences are investigated for antifungal biofilm in vitro and in vivo using a fungal biofilm-caused mouse keratitis model. The peptides with the optimal composition demonstrate higher α-helical propensity and improve antifungal activity in dispersing Candida albicans biofilm in vitro. Moreover, the optimized α-helical peptides are not only effective in treating C. albicans biofilm-induced keratitis in mice, they are also nontoxic to the mice eyes. These peptides have the potential to be developed as antifungal agents for the treatment of C. albicans biofilm-caused keratitis.
Collapse
Affiliation(s)
- Hong Wu
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Nikken Wiradharma
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Zhan Yuin Ong
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Yan Li
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Jackie Y. Ying
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| |
Collapse
|
192
|
Vineeth Kumar TPVK, Asha R, Shyla G, George S. Identification and characterization of novel host defense peptides from the skin secretion of the fungoid frog, Hydrophylax bahuvistara (Anura: Ranidae). Chem Biol Drug Des 2017; 92:1409-1418. [PMID: 28072492 DOI: 10.1111/cbdd.12937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022]
Abstract
Two novel peptides (brevinin1 HYba1 and brevinin1 HYba2) were identified from the skin secretion of the frog Hydrophylax bahuvistara, endemic to Western Ghats, India, and their amino acid sequences were confirmed using cDNA cloning and LC/MS/MS. Antibacterial, hemolytic, and cytotoxic activities of brevinin1 peptides and their synthetic analogs (amidated C-terminus) were investigated and compared. All the peptides except the acidic forms showed antibacterial activity against all tested Gram-positive and Gram-negative bacteria. They exhibited low hemolysis on human erythrocytes and showed potent cytotoxic activity against Hep 3B cancer cell line. Upon amidation, the peptides showed increased activity against the tested microbes without altering their hemolytic and cytotoxic properties. The study also emphasizes the need for screening endemic amphibian fauna of Western Ghats, as a potential source of host defense peptides with possible therapeutic applications in the future.
Collapse
Affiliation(s)
| | - Radhamony Asha
- Chemical Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Gopal Shyla
- Molecular Ecology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sanil George
- Molecular Ecology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
193
|
Tan T, Wu D, Li W, Zheng X, Li W, Shan A. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7. Int J Mol Sci 2017; 18:E339. [PMID: 28178190 PMCID: PMC5343874 DOI: 10.3390/ijms18020339] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/29/2017] [Accepted: 02/01/2017] [Indexed: 01/08/2023] Open
Abstract
Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH₂), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17-29) (FV-LL), FV7-magainin 2 (9-21) (FV-MA) and FV7-cecropin A (1-8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17-29) (LL), magainin 2 (9-21) (MA) and cecropin A (1-8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents.
Collapse
Affiliation(s)
- Tingting Tan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Di Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Weizhong Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Weifen Li
- Institute of Animal Nutrition and Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
194
|
Chen L, Zhang Q, Yuan X, Cao Y, Yuan Y, Yin H, Ding X, Zhu Z, Luo SZ. How charge distribution influences the function of membrane-active peptides: Lytic or cell-penetrating? Int J Biochem Cell Biol 2017; 83:71-75. [DOI: 10.1016/j.biocel.2016.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 11/27/2022]
|
195
|
Ciumac D, Campbell RA, Xu H, Clifton LA, Hughes AV, Webster JR, Lu JR. Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide. Colloids Surf B Biointerfaces 2017; 150:308-316. [DOI: 10.1016/j.colsurfb.2016.10.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/10/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|
196
|
Liu B, Huang H, Yang Z, Liu B, Gou S, Zhong C, Han X, Zhang Y, Ni J, Wang R. Design of novel antimicrobial peptide dimer analogues with enhanced antimicrobial activity in vitro and in vivo by intermolecular triazole bridge strategy. Peptides 2017; 88:115-125. [PMID: 28040477 DOI: 10.1016/j.peptides.2016.12.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Currently, antimicrobial peptides have attracted considerable attention because of their broad-sprectum activity and low prognostic to induce antibiotic resistance. In our study, for the first time, a series of side-chain hybrid dimer peptides J-AA (Anoplin-Anoplin), J-RR (RW-RW), and J-AR (Anoplin-RW) based on the wasp peptide Anoplin and the arginine- and tryptophan-rich hexapeptide RW were designed and synthesized by click chemistry, with the intent to improve the antimicrobial efficacy of peptides against bacterial pathogens. The results showed that all dimer analogues exhibited up to a 4-16 fold increase in antimicrobial activity compared to the parental peptides against bacterial strains. Furthermore, the antimicrobial activity was confirmed by time-killing kinetics assay with two strains which showed that these dimer analogues at 1, 2×MIC were rapidly bactericidal and reduced the initial inoculum significantly during the first 2-6h. Notably, dimer peptides showed synergy and additivity effects when used in combination with conventional antibiotics rifampin or penicillin respectively against the multidrug-resistant strains. In the Escherichia coli-infected mouse model, all of hybrid dimer analogues had significantly lower degree of bacterial load than the untreated control group when injected once i.p. at 5mg/kg. In addition, the infected mice by methicillin-resistant (MRSA) strain could be effectively treated with J-RR. All of dimer analogues had membrane-active action mode. And the membrane-dependent mode of action signifies that peptides functions freely and without regard to conventional resistant mechanisms. Circular dichroism analyses of all dimer analogues showed a general predominance of α-helix conformation in 50% trifluoroethanol (TFE). Additionally, the acute toxicities study indicated that J-RR or J-AR did not show the signs of toxicity when adult mice exposed to concentration up to 120mg/kg. The 50% lethal dose (LD50) of J-AA was 53.6mg/kg. In conclusion, to design and synthesize side chain-hybrid dimer analogues via click chemistry may offer a new strategy for antibacterial therapeutic option.
Collapse
Affiliation(s)
- Beijun Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Haifeng Huang
- Shaanxi Provincial People's Hospital, Shanxi 710068, China
| | - Zhibin Yang
- Key Laboratory of Entomological Biopharmaceutical R&D of Yunnan Province, Dali University, Dali 671000, China
| | - Beiyin Liu
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao Zhong
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiufeng Han
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
197
|
Mai S, Mauger MT, Niu LN, Barnes JB, Kao S, Bergeron BE, Ling JQ, Tay FR. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Acta Biomater 2017; 49:16-35. [PMID: 27845274 DOI: 10.1016/j.actbio.2016.11.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/24/2016] [Accepted: 11/10/2016] [Indexed: 02/02/2023]
Abstract
Antimicrobial peptides (AMPs) are short cationic host-defense molecules that provide the early stage of protection against invading microbes. They also have important modulatory roles and act as a bridge between innate and acquired immunity. The types and functions of oral AMPs were reviewed and experimental reports on the use of natural AMPs and their synthetic mimics in caries and pulpal infections were discussed. Natural AMPs in the oral cavity, predominantly defensins, cathelicidins and histatins, possess antimicrobial activities against oral pathogens and biofilms. Incomplete debridement of microorganisms in root canal space may precipitate an exacerbated immune response that results in periradicular bone resorption. Because of their immunomodulatory and wound healing potentials, AMPs stimulate pro-inflammatory cytokine production, recruit host defense cells and regulate immuno-inflammatory responses in the vicinity of the pulp and periapex. Recent rapid advances in the development of synthetic AMP mimics offer exciting opportunities for new therapeutic initiatives in root canal treatment and regenerative endodontics. STATEMENT OF SIGNIFICANCE Identification of new therapeutic strategies to combat antibiotic-resistant pathogens and biofilm-associated infections continues to be one of the major challenges in modern medicine. Despite the presence of commercialization hurdles and scientific challenges, interests in using antimicrobial peptides as therapeutic alternatives and adjuvants to combat pathogenic biofilms have never been foreshortened. Not only do these cationic peptides possess rapid killing ability, their multi-modal mechanisms of action render them advantageous in targeting different biofilm sub-populations. These factors, together with adjunctive bioactive functions such as immunomodulation and wound healing enhancement, render AMPs or their synthetic mimics exciting candidates to be considered as adjuncts in the treatment of caries, infected pulps and root canals.
Collapse
|
198
|
Farkas A, Maróti G, Kereszt A, Kondorosi É. Comparative Analysis of the Bacterial Membrane Disruption Effect of Two Natural Plant Antimicrobial Peptides. Front Microbiol 2017; 8:51. [PMID: 28167938 PMCID: PMC5253368 DOI: 10.3389/fmicb.2017.00051] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/09/2017] [Indexed: 12/27/2022] Open
Abstract
In the Medicago truncatula genome about 700 genes code for nodule-specific cysteine-rich (NCR) small peptides that are expressed in the symbiotic organ, the root nodule, where they control terminal differentiation of the endosymbiotic rhizobium bacteria to nitrogen-fixing bacteroids. Cationic NCR peptides were predicted to have antimicrobial activities. Here antibacterial activities of NCR247, NCR335, polymyxin B (PMB), and streptomycin were investigated and compared on two foodborne pathogens Salmonella enterica and Listeria monocytogenes as representatives of Gram-negative and Gram-positive bacteria. The integrity of the bacterial membrane was seriously compromised by these NCR peptides. Different localization was observed for NCR247 and NCR335 in the treated bacteria, the peptides mostly accumulated in the cytosol in S. enterica while they remained in the bacterial membrane in L. monocytogenes. Scanning electron microscopy revealed distinct membrane morphology of the peptide-treated bacteria. Complete cell disruption was induced by PMB and NCR335 in S. enterica while NCR247 treatment resulted in extensive budding observed on the cell surface of Salmonella. PMB had no effect on L. monocytogenes while NCR335 and NCR247 provoked morphological changes on this bacterium, the whole Listeria cell content was released in response to NCR335 treatment.
Collapse
Affiliation(s)
- Attila Farkas
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences Szeged, Hungary
| | - Gergely Maróti
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences Szeged, Hungary
| | - Attila Kereszt
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences Szeged, Hungary
| | - Éva Kondorosi
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences Szeged, Hungary
| |
Collapse
|
199
|
Abstract
Methods are described for the design of amphipathic helical AMPs, to improve potency and/or increase selectivity with respect to host cells. One method is based on the statistical analysis of known helical AMPs to derive a sequence template and ranges of charge, hydrophobicity, and amphipathicity (hydrophobic moment) values that lead to broad-spectrum activity, but leaves optimization for selectivity to subsequent rounds of SAR determinations. A second method uses a small database of anuran AMPs with known potency (MIC values vs. E. coli) and selectivity (HC50 values vs. human erythrocytes), as well as the concept of longitudinal moment, to suggest sequences or sequence variations that can improve selectivity. These methods can assist in the initial design of novel AMPs with useful properties in vitro, but further development requires knowledge-based decisions and a sound prior understanding of how structural and physical attributes of this class of peptides affect their mechanism of action against bacteria and host cells.
Collapse
Affiliation(s)
- Davor Juretić
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Damir Vukičević
- Department of Mathematics, Faculty of Science, University of Split, Split, Croatia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via Licio Giorgiere1, 34127, Trieste, Italy.
| |
Collapse
|
200
|
Identification and Characterisation of the Antimicrobial Peptide, Phylloseptin-PT, from the Skin Secretion of Phyllomedusa tarsius, and Comparison of Activity with Designed, Cationicity-Enhanced Analogues and Diastereomers. Molecules 2016; 21:molecules21121667. [PMID: 27918477 PMCID: PMC6273899 DOI: 10.3390/molecules21121667] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial peptides belonging to the phylloseptin family are mainly found in phyllomedusine frogs. These peptides not only possess potent antimicrobial activity but exhibit low toxicity against eukaryotic cells. Therefore, they are considered as promising drug candidates for a number of diseases. In a recent study, potent antimicrobial activity was correlated with the conserved structures and cationic amphiphilic characteristics of members of this peptide family. A phylloseptin peptide precursor was discovered here in the skin secretion of Phyllomedusa tarsius and the mature peptide was validated by MS/MS sequencing, and was subsequently named phylloseptin-PT. The chemically-synthesized and purified phylloseptin-PT displayed activity against Staphylococcus aureus and Candida albicans. Nevertheless, a range of cationicity-enhanced peptide analogues of phylloseptin-PT, which contained amino acid substitutions at specific sites, exhibited significant increases in antimicrobial activity compared to native phylloseptin-PT. In addition, alternative conformers which were designed and chemically-synthesized with d-lysine, showed potent antimicrobial activity and enhanced bioavailability. These data indicate that phylloseptins may represent potential candidates for next-generation antibiotics. Thus, rational design through modification of natural antimicrobial peptide templates could provide an accelerated path to overcoming obstacles en-route to their possible clinical applications.
Collapse
|