151
|
Magnetotactic Protists at the Oxic–Anoxic Transition Zones of Coastal Aquatic Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
152
|
Williams TJ, Lefèvre CT, Zhao W, Beveridge TJ, Bazylinski DA. Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int J Syst Evol Microbiol 2011; 62:2443-2450. [PMID: 22140150 DOI: 10.1099/ijs.0.037697-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A marine, magnetotactic bacterium, designated strain MMS-1(T), was isolated from mud and water from a salt marsh in Woods Hole, Massachusetts, USA, after enrichment in defined oxygen-concentration/redox-gradient medium. Strain MMS-1(T) is an obligate microaerophile capable of chemoorganoheterotrophic and chemolithoautotrophic growth. Optimal growth occurred at pH 7.0 and 24-26 °C. Chemolithoautotrophic growth occurred with thiosulfate as the electron donor and autotrophic carbon fixation was via the Calvin-Benson-Bassham cycle. The G+C content of the DNA of strain MMS-1(T) was 47.2 mol%. Cells were Gram-negative and morphologically variable, with shapes that ranged from that of a lima bean to fully helical. Cells were motile by means of a single flagellum at each end of the cell (amphitrichous). Regardless of whether grown in liquid or semi-solid cultures, strain MMS-1(T) displayed only polar magnetotaxis and possessed a single chain of magnetosomes containing elongated octahedral crystals of magnetite, positioned along the long axis of the cell. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MMS-1(T) belongs to the family Rhodospirillaceae within the Alphaproteobacteria, and is distantly related to species of the genus Magnetospirillum. Strain MMS-1(T) is therefore considered to represent a novel species of a new genus, for which the name Magnetospira thiophila gen. nov., sp. nov. is proposed. The type strain of Magnetospira thiophila is MMS-1(T) ( = ATCC BAA-1438(T) = JCM 17960(T)).
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher T Lefèvre
- Laboratoire de Bioénergétique Cellulaire UMR 6191, CEA Cadarache, DSV, IBEB, Saint-Paul-lez-Durance 13108, France
- School of Life Sciences, University of Nevada at Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
| | - Weidong Zhao
- Northeast Ohio Medical University, 4209 SR 44, PO Box 95, Rootstown, OH 44272, USA
| | - Terry J Beveridge
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
| |
Collapse
|
153
|
Newly isolated but uncultivated magnetotactic bacterium of the phylum Nitrospirae from Beijing, China. Appl Environ Microbiol 2011; 78:668-75. [PMID: 22113917 DOI: 10.1128/aem.06764-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria (MTB) in the phylum Nitrospirae synthesize up to hundreds of intracellular bullet-shaped magnetite magnetosomes. In the present study, a watermelon-shaped magnetotactic bacterium (designated MWB-1) from Lake Beihai in Beijing, China, was characterized. This uncultivated microbe was identified as a member of the phylum Nitrospirae and represents a novel phylogenetic lineage with ≥6% 16S rRNA gene sequence divergence from all currently described MTB. MWB-1 contained 200 to 300 intracellular bullet-shaped magnetite magnetosomes and showed a helical swimming trajectory under homogeneous magnetic fields; its magnetotactic velocity decreased with increasing field strength, and vice versa. A robust phylogenetic framework for MWB-1 and all currently known MTB in the phylum Nitrospirae was constructed utilizing maximum-likelihood and Bayesian algorithms, which yielded strong evidence that the Nitrospirae MTB could be divided into four well-supported groups. Considering its population densities in sediment and its high numbers of magnetosomes, MWB-1 was estimated to account for more than 10% of the natural remanent magnetization of the surface sediment. Taken together, the results of this study suggest that MTB in the phylum Nitrospirae are more diverse than previously realized and can make important contributions to the sedimentary magnetization in particular environments.
Collapse
|
154
|
Kolinko S, Jogler C, Katzmann E, Wanner G, Peplies J, Schüler D. Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ Microbiol 2011; 14:1709-21. [PMID: 22003954 DOI: 10.1111/j.1462-2920.2011.02609.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetotactic bacteria (MTB) are a diverse group of prokaryotes that orient along magnetic fields using membrane-coated magnetic nanocrystals of magnetite (Fe(3) O(4) ) or greigite (Fe(3) S(4) ), the magnetosomes. Previous phylogenetic analysis of MTB has been limited to few cultivated species and most abundant members of natural populations, which were assigned to Proteobacteria and the Nitrospirae phyla. Here, we describe a single cell-based approach that allowed the targeted phylogenetic and ultrastructural analysis of the magnetotactic bacterium SKK-01, which was low abundant in sediments of Lake Chiemsee. Morphologically conspicuous single cells of SKK-01 were micromanipulated from magnetically collected multi-species MTB populations, which was followed by whole genome amplification and ultrastructural analysis of sorted cells. Besides intracellular sulphur inclusions, the large ovoid cells of SKK-01 harbour ∼175 bullet-shaped magnetosomes arranged in multiple chains that consist of magnetite as revealed by TEM and EDX analysis. Sequence analysis of 16 and 23S rRNA genes from amplified genomic DNA as well as fluorescence in situ hybridization assigned SKK-01 to the candidate division OP3, which so far lacks any cultivated representatives. SKK-01 represents the first morphotype that can be assigned to the OP3 group as well as the first magnetotactic member of the PVC superphylum.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Ludwig-Maximilians-Universität Munich, Microbiology, Großhaderner Strasse 2-4, Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
155
|
Abstract
Magnetotactic bacteria are microaerophilic organisms found in sediments or stratified water columns at the oxic-anoxic transition zone or the anoxic regions below. They use magnetite-filled membrane vesicles, magnetosomes, to passively align with, and actively swim along, the geomagnetic field lines in a magneto-aerotactic search for the ideal concentration of molecular oxygen. Such an efficient chemotaxis needs magnetosomes that contain nearly perfect magnetite crystals. These magnetosomes originate as invaginations of the inner membrane and the empty vesicles are aligned in a chain by an actin-like protein. Subsequently, the vesicles are filled with iron, which then is converted to magnetite crystals. Until now it was unclear how such a process might be accomplished. In this issue, Uebe et al., 2011 unveil a part of this complicated bio-mineralization process. In Magnetospirillum gryphiswaldense, MamM and MamB, two members of the cation diffusion facilitator (CDF) transport protein family, are required for magnetite formation. MamM increases the stability of MamB by forming a heterodimer. The MamBM heterodimer strongly influences the biomineralization process by controlling the size and the shape of the crystals, and even the nature of the formed iron mineral. Thus, these two CDF proteins not only transport iron, but they also control the magnetite biomineralization.
Collapse
Affiliation(s)
- Dietrich H Nies
- Inst. Microbiology, University of Halle, Kurt-Mothes-Str. 3, Halle/Saale 06099, Germany.
| |
Collapse
|
156
|
Zhou K, Zhang WY, Yu-Zhang K, Pan HM, Zhang SD, Zhang WJ, Yue HD, Li Y, Xiao T, Wu LF. A novel genus of multicellular magnetotactic prokaryotes from the Yellow Sea. Environ Microbiol 2011; 14:405-13. [DOI: 10.1111/j.1462-2920.2011.02590.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
157
|
Lefèvre CT, Viloria N, Schmidt ML, Pósfai M, Frankel RB, Bazylinski DA. Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME JOURNAL 2011; 6:440-50. [PMID: 21776027 DOI: 10.1038/ismej.2011.97] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two novel magnetotactic bacteria (MTB) were isolated from sediment and water collected from the Badwater Basin, Death Valley National Park and southeastern shore of the Salton Sea, respectively, and were designated as strains BW-2 and SS-5, respectively. Both organisms are rod-shaped, biomineralize magnetite, and are motile by means of flagella. The strains grow chemolithoautotrophically oxidizing thiosulfate and sulfide microaerobically as electron donors, with thiosulfate oxidized stoichiometrically to sulfate. They appear to utilize the Calvin-Benson-Bassham cycle for autotrophy based on ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity and the presence of partial sequences of RubisCO genes. Strains BW-2 and SS-5 biomineralize chains of octahedral magnetite crystals, although the crystals of SS-5 are elongated. Based on 16S rRNA gene sequences, both strains are phylogenetically affiliated with the Gammaproteobacteria class. Strain SS-5 belongs to the order Chromatiales; the cultured bacterium with the highest 16S rRNA gene sequence identity to SS-5 is Thiohalocapsa marina (93.0%). Strain BW-2 clearly belongs to the Thiotrichales; interestingly, the organism with the highest 16S rRNA gene sequence identity to this strain is Thiohalospira alkaliphila (90.2%), which belongs to the Chromatiales. Each strain represents a new genus. This is the first report of magnetite-producing MTB phylogenetically associated with the Gammaproteobacteria. This finding is important in that it significantly expands the phylogenetic diversity of the MTB. Physiology of these strains is similar to other MTB and continues to demonstrate their potential in nitrogen, iron, carbon and sulfur cycling in natural environments.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA
| | | | | | | | | | | |
Collapse
|
158
|
Lefèvre CT, Frankel RB, Pósfai M, Prozorov T, Bazylinski DA. Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environ Microbiol 2011; 13:2342-50. [PMID: 21605309 DOI: 10.1111/j.1462-2920.2011.02505.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large numbers of magnetotactic bacteria were discovered in mud and water samples collected from a number of highly alkaline aquatic environments with pH values of ≈ 9.5. These bacteria were helical in morphology and biomineralized chains of bullet-shaped crystals of magnetite and were present in all the highly alkaline sites sampled. Three strains from different sites were isolated and cultured and grew optimally at pH 9.0-9.5 but not at 8.0 and below, demonstrating that these organisms truly require highly alkaline conditions and are not simply surviving/growing in neutral pH micro-niches in their natural habitats. All strains grew anaerobically through the reduction of sulfate as a terminal electron acceptor and phylogenetic analysis, based on 16S rRNA gene sequences, as well as some physiological features, showed that they could represent strains of Desulfonatronum thiodismutans, a known alkaliphilic bacterium that does not biomineralize magnetosomes. Our results show that some magnetotactic bacteria can be considered extremophilic and greatly extend the known ecology of magnetotactic bacteria and the conditions under which they can biomineralize magnetite. Moreover, our results show that this type of magnetotactic bacterium is common in highly alkaline environments. Our findings also greatly influence the interpretation of the presence of nanometer-sized magnetite crystals, so-called magnetofossils, in highly alkaline environments.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA
| | | | | | | | | |
Collapse
|
159
|
Quinlan A, Murat D, Vali H, Komeili A. The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol Microbiol 2011; 80:1075-87. [PMID: 21414040 PMCID: PMC3091955 DOI: 10.1111/j.1365-2958.2011.07631.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnetotactic bacteria contain nanometre-sized, membrane-bound organelles, called magnetosomes, which are tasked with the biomineralization of small crystals of the iron oxide magnetite allowing the organism to use geomagnetic field lines for navigation. A key player in this process is the HtrA/DegP family protease MamE. In its absence, Magnetospirillum magneticum str AMB-1 is able to form magnetosome membranes but not magnetite crystals, a defect previously linked to the mislocalization of magnetosome proteins. In this work we use a directed genetic approach to find that MamE, and another predicted magnetosome-associated protease, MamO, likely function as proteases in vivo. However, as opposed to the complete loss of mamE where no biomineralization is observed, the protease-deficient variant of this protein still supports the initiation and formation of small, 20 nm-sized crystals of magnetite, too small to hold a permanent magnetic dipole moment. This analysis also reveals that MamE is a bifunctional protein with a protease-independent role in magnetosome protein localization and a protease-dependent role in maturation of small magnetite crystals. Together, these results imply the existence of a previously unrecognized 'checkpoint' in biomineralization where MamE moderates the completion of magnetite formation and thus committal to magneto-aerotaxis as the organism's dominant mode of navigating the environment.
Collapse
Affiliation(s)
- Anna Quinlan
- University of California Berkeley, Department of Molecular and Cell Biology, 111 Koshland Hall, Berkeley, CA 94720
| | - Dorothée Murat
- University of California Berkeley, Department of Plant and Microbial Biology, 111 Koshland Hall, Berkeley, CA 94720
| | - Hojatollah Vali
- McGill University, Department of Anatomy and Cell Biology, 3640 University Street, Montreal, Quebec H3A 2B2
| | - Arash Komeili
- University of California Berkeley, Department of Molecular and Cell Biology, 111 Koshland Hall, Berkeley, CA 94720
- University of California Berkeley, Department of Plant and Microbial Biology, 111 Koshland Hall, Berkeley, CA 94720
| |
Collapse
|
160
|
Shapiro OH, Hatzenpichler R, Buckley DH, Zinder SH, Orphan VJ. Multicellular photo-magnetotactic bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:233-238. [PMID: 23761255 DOI: 10.1111/j.1758-2229.2010.00215.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multicellular magnetotactic bacteria (MMB) are unique microorganisms typically comprised of 10-40 bacterial cells arranged around a central acellular compartment. Their life cycle has no known unicellular stage and division occurs by separation of a single MMB aggregate into two identical offspring. In this study, South-seeking multicellular magnetotactic bacteria (ssMMB) were enriched from a New England salt marsh. When exposed to light, ssMMB reversed their magnetotactic behaviour to become North-seeking. The exposure time needed to generate the reversal response varied with light wavelength and intensity. Extensive exposure to light appeared to be lethal. This is the first report of a Northern hemisphere MMB displaying South-seeking behaviour and the first time a MMB is found to exhibit photo-magnetotaxis. We suggest that this mechanism enables ssMMB to optimize their location with regard to chemical gradients and light intensities, and propose a model to explain the peculiar balance between photo- and magnetotaxis.
Collapse
Affiliation(s)
- Orr H Shapiro
- Microbial Diversity Course, Marine Biological Laboratory, Woods Hole, MA 02543, USA Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel Department of Microbial Ecology, University of Vienna, Vienna, A-1090, AustriaDepartments of Crop and Soil Sciences Microbiology, Cornell University, Ithaca, NY 14853, USA Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
161
|
Fischer A, Schmitz M, Aichmayer B, Fratzl P, Faivre D. Structural purity of magnetite nanoparticles in magnetotactic bacteria. J R Soc Interface 2011; 8:1011-8. [PMID: 21247944 PMCID: PMC3104334 DOI: 10.1098/rsif.2010.0576] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Magnetosome biomineralization and chain formation in magnetotactic bacteria are two processes that are highly controlled at the cellular level in order to form cellular magnetic dipoles. However, even if the magnetosome chains are well characterized, controversial results about the microstructure of magnetosomes were obtained and its possible influence in the formation of the magnetic dipole is to be specified. For the first time, the microstructure of intracellular magnetosomes was investigated using high-resolution synchrotron X-ray diffraction. Significant differences in the lattice parameter were found between intracellular magnetosomes from cultured magnetotactic bacteria and isolated ones. Through comparison with abiotic control materials of similar size, we show that this difference can be associated with different oxidation states and that the biogenic nanomagnetite is stoichiometric, i.e. structurally pure whereas isolated magnetosomes are slightly oxidized. The hierarchical structuring of the magnetosome chain thus starts with the formation of structurally pure magnetite nanoparticles that in turn might influence the magnetic property of the magnetosome chains.
Collapse
Affiliation(s)
- Anna Fischer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, , Science Park Golm, 14424 Potsdam, Germany
| | | | | | | | | |
Collapse
|
162
|
Baumgartner J, Faivre D. Magnetite biomineralization in bacteria. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 52:3-27. [PMID: 21877261 DOI: 10.1007/978-3-642-21230-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetotactic bacteria are able to biomineralize magnetic crystals in intracellular organelles, so-called "magnetosomes." These particles exhibit species- and strain-specific size and morphology. They are of great interest for biomimetic nanotechnological and biotechnological research due to their fine-tuned magnetic properties and because they challenge our understanding of the classical principles of crystallization. Magnetotactic bacteria use these highly optimized particles, which form chains within the bacterial cells, as a magnetic field actuator, enabling them to navigate. In this chapter, we discuss the current biological and chemical knowledge of magnetite biomineralization in these bacteria. We highlight the extraordinary properties of magnetosomes and some resulting potential applications.
Collapse
Affiliation(s)
- Jens Baumgartner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | |
Collapse
|
163
|
Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microb Cell Fact 2010; 9:99. [PMID: 21144001 PMCID: PMC3019156 DOI: 10.1186/1475-2859-9-99] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/12/2010] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Magnetotactic bacteria have long intrigued researchers because they synthesize intracellular nano-scale (40-100 nm) magnetic particles composed of Fe3O4, termed magnetosomes. Current research focuses on the molecular mechanisms of bacterial magnetosome formation and its practical applications in biotechnology and medicine. Practical applications of magnetosomes are based on their ferrimagnetism, nanoscale size, narrow size distribution, dispersal ability, and membrane-bound structure. However, the applications of magnetosomes have not yet been developed commercially, mainly because magnetotactic bacteria are difficult to cultivate and consistent, high yields of magnetosomes have not yet been achieved. RESULTS We report a chemostat culture technique based on pH-stat feeding that yields a high cell density of Magnetospirillum gryphiswaldense strain MSR-1 in an auto-fermentor. In a large-scale fermentor, the magnetosome yield was significantly increased by adjusting the stirring rate and airflow which regulates the level of dissolved oxygen (DO). Low concentration of sodium lactate (2.3 mmol l-1) in the culture medium resulted in more rapid cell growth and higher magnetosome yield than high concentration of lactate (20 mmol l-1). The optical density of M. gryphiswaldense cells reached 12 OD565 nm after 36 hr culture in a 42 L fermentor. Magnetosome yield and productivity were 83.23 ± 5.36 mg l-1 (dry weight) and 55.49 mg l-1 day-1, respectively, which were 1.99 and 3.32 times higher than the corresponding values in our previous study. CONCLUSIONS Compared to previously reported methods, our culture technique with the MSR-1 strain significantly increased cell density, cell yield, and magnetosome yield in a shorter time window and thus reduced the cost of production. The cell density and magnetosome yield reported here are the highest so far achieved with a magnetotactic bacteria. Refinement of this technique will enable further increase of cell density and magnetosome yield.
Collapse
|
164
|
Phototaxis in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1 is independent of magnetic fields. Appl Microbiol Biotechnol 2010; 90:269-75. [DOI: 10.1007/s00253-010-3017-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 11/09/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
|
165
|
Lefèvre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA. Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol 2010; 13:538-49. [PMID: 20977572 DOI: 10.1111/j.1462-2920.2010.02361.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A magnetotactic bacterium, designated strain LO-1, of the Nitrospirae phylum was detected and concentrated from a number of freshwater and slightly brackish aquatic environments in southern Nevada. The closest phylogenetic relative to LO-1 is Candidatus Magnetobacterium bavaricum based on a 91.2% identity in their 16S rRNA gene sequence. Chemical and cell profiles of a microcosm containing water and sediment show that cells of strain LO-1 are confined to the oxic-anoxic interface and the upper regions of the anaerobic zone which in this case, occurred in the sediment. This microorganism is relatively large, ovoid in morphology and usually biomineralizes three braid-like bundles of multiple chains of bullet-shaped magnetosomes that appeared to be enclosed in a magnetosome membrane. Cells of LO-1 had an unusual three-layered unit membrane cell wall and contained several types of inclusions, some of which are sulfur-rich. Strain LO-1 is motile by means of a single bundle of sheathed flagella and exhibits the typical 'wobbling' motility and helical swimming ('flight') path of the magnetotactic cocci. This study and reports from others suggest that LO-1-like organisms are widespread in sediments of freshwater to brackish natural aquatic environments.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA
| | | | | | | | | |
Collapse
|
166
|
Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res Microbiol 2010; 161:276-83. [DOI: 10.1016/j.resmic.2010.02.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/15/2010] [Accepted: 02/03/2010] [Indexed: 11/22/2022]
|
167
|
Jimenez-Lopez C, Romanek CS, Bazylinski DA. Magnetite as a prokaryotic biomarker: A review. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jg001152] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Christopher S. Romanek
- NASA Astrobiology Institute and Department of Earth and Environmental Sciences; University of Kentucky; Lexington Kentucky USA
| | | |
Collapse
|
168
|
Jogler C, Niebler M, Lin W, Kube M, Wanner G, Kolinko S, Stief P, Beck AJ, de Beer D, Petersen N, Pan Y, Amann R, Reinhardt R, Schüler D. Cultivation-independent characterization of ‘Candidatus Magnetobacterium bavaricum’ via ultrastructural, geochemical, ecological and metagenomic methods. Environ Microbiol 2010; 12:2466-78. [DOI: 10.1111/j.1462-2920.2010.02220.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
169
|
Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior. Appl Environ Microbiol 2010; 76:3220-7. [PMID: 20363801 DOI: 10.1128/aem.00408-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic multicellular prokaryotes (MMPs) are unique magnetotactic bacteria of the Deltaproteobacteria class and the first found to biomineralize the magnetic mineral greigite (Fe(3)S(4)). Thus far they have been reported only from marine habitats. We questioned whether MMPs exist in low-saline, nonmarine environments. MMPs were observed in samples from shallow springs in the Great Boiling Springs geothermal field and Pyramid Lake, both located in northwestern Nevada. The temperature at all sites was ambient, and salinities ranged from 5 to 11 ppt. These MMPs were not magnetotactic and did not contain magnetosomes (called nMMPs here). nMMPs ranged from 7 to 11 microm in diameter, were composed of about 40 to 60 Gram-negative cells, and were motile by numerous flagella that covered each cell on one side, characteristics similar to those of MMPs. 16S rRNA gene sequences of nMMPs show that they form a separate phylogenetic branch within the MMP group in the Deltaproteobacteria class, probably representing a single species. nMMPs exhibited a negative phototactic behavior to white light and to wavelengths of < or =480 nm (blue). We devised a "light racetrack" to exploit this behavior, which was used to photoconcentrate nMMPs for specific purposes (e.g., DNA extraction) even though their numbers were low in the sample. Our results show that the unique morphology of the MMP is not restricted to marine and magnetotactic prokaryotes. Discovery of nonmagnetotactic forms of the MMP might support the hypothesis that acquisition of the magnetosome genes involves horizontal gene transfer. To our knowledge, this is the first report of phototaxis in bacteria of the Deltaproteobacteria class.
Collapse
|
170
|
Geelhoed JS, Kleerebezem R, Sorokin DY, Stams AJM, van Loosdrecht MCM. Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetospirillum strain J10 and Magnetospirillum gryphiswaldense. Environ Microbiol 2010; 12:1031-40. [PMID: 20105221 DOI: 10.1111/j.1462-2920.2009.02148.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetotactic bacteria are present at the oxic-anoxic transition zone where opposing gradients of oxygen and reduced sulfur and iron exist. Growth of non-magnetotactic lithoautotrophic Magnetospirillum strain J10 and its close relative magnetotactic Magnetospirillum gryphiswaldense was characterized in microaerobic continuous culture. Both strains were able to grow in mixotrophic (acetate + sulfide) and autotrophic (sulfide or thiosulfate) conditions. Autotrophically growing cells completely converted sulfide or thiosulfate to sulfate and produced 7.5 g dry weight per mol substrate at a maximum observed growth rate of 0.09 h(-1) for strain J10 and 0.07 h(-1) for M. gryphiswaldense. The respiratory activity for acetate was repressed in autotrophic and also in mixotrophic cultures, suggesting acetate was used as C-source in the latter. We have estimated the proportions of substrate used for assimilatory processes and evaluated the biomass yields per mol dissimilated substrate. The yield for lithoheterotrophic growth using acetate as the C-source was approximately twice the autotrophic growth yield and very similar to the heterotrophic yield, showing the importance of reduced sulfur compounds for growth. In the draft genome sequence of M. gryphiswaldense homologues of genes encoding a partial sulfur-oxidizing (Sox) enzyme system and reverse dissimilatory sulfite reductase (Dsr) were identified, which may be involved in the oxidation of sulfide and thiosulfate. Magnetospirillum gryphiswaldense is the first freshwater magnetotactic species for which autotrophic growth is shown.
Collapse
Affiliation(s)
- Jeanine S Geelhoed
- Environmental Biotechnology, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands.
| | | | | | | | | |
Collapse
|
171
|
Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification. Appl Environ Microbiol 2010; 76:1480-5. [PMID: 20081000 DOI: 10.1128/aem.02124-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria comprise a phylogenetically diverse group that is capable of synthesizing intracellular magnetic particles. Although various morphotypes of magnetotactic bacteria have been observed in the environment, bacterial strains available in pure culture are currently limited to a few genera due to difficulties in their enrichment and cultivation. In order to obtain genetic information from uncultured magnetotactic bacteria, a genome preparation method that involves magnetic separation of cells, flow cytometry, and multiple displacement amplification (MDA) using phi29 polymerase was used in this study. The conditions for the MDA reaction using samples containing 1 to 100 cells were evaluated using a pure-culture magnetotactic bacterium, "Magnetospirillum magneticum AMB-1," whose complete genome sequence is available. Uniform gene amplification was confirmed by quantitative PCR (Q-PCR) when 100 cells were used as a template. This method was then applied for genome preparation of uncultured magnetotactic bacteria from complex bacterial communities in an aquatic environment. A sample containing 100 cells of the uncultured magnetotactic coccus was prepared by magnetic cell separation and flow cytometry and used as an MDA template. 16S rRNA sequence analysis of the MDA product from these 100 cells revealed that the amplified genomic DNA was from a single species of magnetotactic bacterium that was phylogenetically affiliated with magnetotactic cocci in the Alphaproteobacteria. The combined use of magnetic separation, flow cytometry, and MDA provides a new strategy to access individual genetic information from magnetotactic bacteria in environmental samples.
Collapse
|
172
|
Lin W, Pan Y. Temporal variation of magnetotactic bacterial communities in two freshwater sediment microcosms. FEMS Microbiol Lett 2009; 302:85-92. [PMID: 19909346 DOI: 10.1111/j.1574-6968.2009.01838.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Magnetotactic bacteria (MTB), which can mineralize nanosized magnetite or greigite crystals within cells, play important roles in biogeochemical processes, for example iron and sulfur cycling, and depositional remanent magnetization acquisitions. Despite decades of research, the knowledge of MTB distribution and ecology is still limited. In the present study, we investigated the temporal variation of MTB communities in freshwater sediment microcosms based on 16S rRNA genes and unifrac analyses. Two microcosms (MY8 and MY11) collected from two separate sites in Lake Miyun (Beijing, China) were analyzed. The majority of retrieved sequences belonged to alphaproteobacterial magnetotactic cocci in both microcosms (representing 64.29% of clones from MY8 and 100% of clones from MY11), whereas so-called 'Magnetobacterium bavaricum'-like MTB affiliated within Nitrospira phylum were exclusively found in microcosm MY8. Over a 3-month period, the temporal variation of MTB communities was evident in both microcosms. In addition, the phylogenetic discrepancy of MTB communities between two microcosms is more prominent than that of the same microcosm at different times, implying adaptation of MTB phylogenetic lineages to specific microenvironments. Among the physical-chemical parameters measured, a strong correlation was shown between nitrate and the main genetic variability of MTB communities, indicating that nitrate may influence the occurrence of MTB phylogenetic lineages in natural environments.
Collapse
Affiliation(s)
- Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
173
|
Reduced efficiency of magnetotaxis in magnetotactic coccoid bacteria in higher than geomagnetic fields. Biophys J 2009; 97:986-91. [PMID: 19686645 DOI: 10.1016/j.bpj.2009.06.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/09/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022] Open
Abstract
Magnetotactic bacteria are microorganisms that orient and migrate along magnetic field lines. The classical model of polar magnetotaxis predicts that the field-parallel migration velocity of magnetotactic bacteria increases monotonically with the strength of an applied magnetic field. We here test this model experimentally on magnetotactic coccoid bacteria that swim along helical trajectories. It turns out that the contribution of the field-parallel migration velocity decreases with increasing field strength from 0.1 to 1.5 mT. This unexpected observation can be explained and reproduced in a mathematical model under the assumption that the magnetosome chain is inclined with respect to the flagellar propulsion axis. The magnetic disadvantage, however, becomes apparent only in stronger than geomagnetic fields, which suggests that magnetotaxis is optimized under geomagnetic field conditions. It is therefore not beneficial for these bacteria to increase their intracellular magnetic dipole moment beyond the value needed to overcome Brownian motion in geomagnetic field conditions.
Collapse
|
174
|
Geelhoed JS, Sorokin DY, Epping E, Tourova TP, Banciu HL, Muyzer G, Stams AJM, van Loosdrecht MCM. Microbial sulfide oxidation in the oxic-anoxic transition zone of freshwater sediment: involvement of lithoautotrophic Magnetospirillum strain J10. FEMS Microbiol Ecol 2009; 70:54-65. [PMID: 19659746 DOI: 10.1111/j.1574-6941.2009.00739.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The oxic-anoxic transition zone (OATZ) of freshwater sediments, where opposing gradients exist of reduced iron and sulfide with oxygen, creates a suitable environment for microorganisms that derive energy from the oxidation of iron or sulfide. Gradient microcosms incubated with freshwater sediment showed rapid microbial turnover of sulfide and oxygen compared with sterile systems. Microcosms with FeS as a substrate also showed growth at the OATZ and subsequent dilution series resulted in the isolation of three novel strains, of which strain J10 grows chemolithoautotrophically with reduced sulfur compounds under microaerobic conditions. All three strains are motile spirilla with bipolar flagella, related to the genera Magnetospirillum and Dechlorospirillum within the Alphaproteobacteria. Strain J10 is closely related to Magnetospirillum gryphiswaldense and is the first strain in this genus found to be capable of autotrophic growth. Thiosulfate was oxidized completely to sulfate, with a yield of 4 g protein mol(-1) thiosulfate, and autotrophic growth was evidenced by incorporation of (13)C derived from bicarbonate into biomass. A putative gene encoding ribulose 1,5-bisphosphate carboxylase/oxygenase type II was identified in strain J10, suggesting that the Calvin-Benson-Bassham cycle is used for autotrophic growth. Analogous genes are also present in other magnetospirilla, and in the autotrophically growing alphaproteobacterium magnetic vibrio MV-1.
Collapse
Affiliation(s)
- Jeanine S Geelhoed
- Department of Biotechnology, Environmental Biotechnology, Delft University of Technology, Delft, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Lefèvre CT, Song T, Yonnet JP, Wu LF. Characterization of bacterial magnetotactic behaviors by using a magnetospectrophotometry assay. Appl Environ Microbiol 2009; 75:3835-41. [PMID: 19376916 PMCID: PMC2698362 DOI: 10.1128/aem.00165-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/06/2009] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria have the unique capacity of synthesizing intracellular single-domain magnetic particles called magnetosomes. The magnetosomes are usually organized in a chain that allows the bacteria to align and swim along geomagnetic field lines, a behavior called magnetotaxis. Two mechanisms of magnetotaxis have been described. Axial magnetotactic cells swim in both directions along magnetic field lines. In contrast, polar magnetotactic cells swim either parallel to the geomagnetic field lines toward the North Pole (north seeking) or antiparallel toward the South Pole (south seeking). In this study, we used a magnetospectrophotometry (MSP) assay to characterize both the axial magnetotaxis of "Magnetospirillum magneticum" strain AMB-1 and the polar magnetotaxis of magneto-ovoid strain MO-1. Two pairs of Helmholtz coils were mounted onto the cuvette holder of a common laboratory spectrophotometer to generate two mutually perpendicular homogeneous magnetic fields parallel or perpendicular to the light beam. The application of magnetic fields allowed measurements of the change in light scattering resulting from cell alignment in a magnetic field or in absorbance due to bacteria swimming across the light beam. Our results showed that MSP is a powerful tool for the determination of bacterial magnetism and the analysis of alignment and swimming of magnetotactic bacteria in magnetic fields. Moreover, this assay allowed us to characterize south-seeking derivatives and non-magnetosome-bearing strains obtained from north-seeking MO-1 cultures. Our results suggest that oxygen is a determinant factor that controls magnetotactic behavior.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- Université de la Méditerranée, Institut de Microbiologie de la Méditerranée, CNRS, Marseille, France
| | | | | | | |
Collapse
|
176
|
Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 2009; 75:4835-52. [PMID: 19465526 DOI: 10.1128/aem.02874-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine bacterium strain MC-1 is a member of the alpha subgroup of the proteobacteria that contains the magnetotactic cocci and was the first member of this group to be cultured axenically. The magnetotactic cocci are not closely related to any other known alphaproteobacteria and are only distantly related to other magnetotactic bacteria. The genome of MC-1 contains an extensive (102 kb) magnetosome island that includes numerous genes that are conserved among all known magnetotactic bacteria, as well as some genes that are unique. Interestingly, certain genes that encode proteins considered to be important in magnetosome assembly (mamJ and mamW) are absent from the genome of MC-1. Magnetotactic cocci exhibit polar magneto-aerotaxis, and the MC-1 genome contains a relatively large number of identified chemotaxis genes. Although MC-1 is capable of both autotrophic and heterotrophic growth, it does not appear to be metabolically versatile, with heterotrophic growth confined to the utilization of acetate. Central carbon metabolism is encoded by genes for the citric acid cycle (oxidative and reductive), glycolysis, and gluconeogenesis. The genome also reveals the presence or absence of specific genes involved in the nitrogen, sulfur, iron, and phosphate metabolism of MC-1, allowing us to infer the presence or absence of specific biochemical pathways in strain MC-1. The pathways inferred from the MC-1 genome provide important information regarding central metabolism in this strain that could provide insights useful for the isolation and cultivation of new magnetotactic bacterial strains, in particular strains of other magnetotactic cocci.
Collapse
|
177
|
Uncultivated magnetotactic cocci from yuandadu park in beijing, china. Appl Environ Microbiol 2009; 75:4046-52. [PMID: 19376904 DOI: 10.1128/aem.00247-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we investigated a group of uncultivated magnetotactic cocci, which was magnetically isolated from a freshwater pond in Beijing, China. Light and transmission electron microscopy showed that these cocci ranged from 1.5 to 2.5 microm and contained two to four chains of magnetite magnetosomes, which sometimes were partially disorganized. Overall, the size of the disorganized magnetosomes was significantly smaller than that arranged in chains. All characterized magnetosome crystals were elongated (shape factor = 0.64) and fall into the single-domain size range (30 to 115 nm). Comparative 16S rRNA gene sequence analysis and fluorescence in situ hybridization showed that the enriched bacteria were a virtually homogeneous population and represented a novel lineage in the Alphaproteobacteria. The closest cultivated relative was magnetotactic coccoid strain MC-1 (88% sequence identity). First-order reversal curve diagrams revealed that these cocci had relatively strong magnetic interactions compared to the single-chain magnetotactic bacteria. Low-temperature magnetic measurements showed that the Verwey transition of them was approximately 108 K, confirming magnetite magnetosomes, and the delta ratio delta(FC)/delta(ZFC) was >2. Based on the structure, phylogenetic position and magnetic properties, the enriched magnetotactic cocci of Alphaproteobacteria are provisionally named as "Candidatus Magnetococcus yuandaducum."
Collapse
|
178
|
Xie J, Chen K, Chen X. Production, Modification and Bio-Applications of Magnetic Nanoparticles Gestated by Magnetotactic Bacteria. NANO RESEARCH 2009; 2:261-278. [PMID: 20631916 PMCID: PMC2902887 DOI: 10.1007/s12274-009-9025-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 05/25/2023]
Abstract
Magnetotactic bacteria (MTB) were first discovered by Richard P. Blakemore in 1975, and this led to the discovery of a wide collection of microorganisms with similar features i.e., the ability to internalize Fe and convert it into magnetic nanoparticles, in the form of either magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4)). Studies showed that these particles are highly crystalline, monodisperse, bioengineerable and have high magnetism that is comparable to those made by advanced synthetic methods, making them candidate materials for a broad range of bio-applications. In this review article, the history of the discovery of MTB and subsequent efforts to elucidate the mechanisms behind the magnetosome formation are briefly covered. The focus is on how to utilize the knowledge gained from fundamental studies to fabricate functional MTB nanoparticles (MTB-NPs) that are capable of tackling real biomedical problems.
Collapse
Affiliation(s)
- Jin Xie
- Department of Radiology, Bio-X Program, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| | | | | |
Collapse
|
179
|
Lefèvre CT, Bernadac A, Yu-Zhang K, Pradel N, Wu LF. Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ Microbiol 2009; 11:1646-57. [PMID: 19220399 DOI: 10.1111/j.1462-2920.2009.01887.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The widespread magnetotactic bacteria have the peculiar capacity of navigation along the geomagnetic field. Despite their ubiquitous distribution, only few axenic cultures have been obtained worldwide. In this study, we reported the first axenic culture of magnetotactic bacteria isolated from the Mediterranean Sea. This magneto-ovoid strain MO-1 grew in chemically defined O(2) gradient minimal media at the oxic-anoxic transition zone. It is phylogenetically related to Magnetococcus sp. MC-1 but might represent a novel genus of Proteobacteria. Pulsed-field gel electrophoresis analysis indicated that the genome size of the MO-1 strain is 5 ± 0.5 Mb, with four rRNA operons. Each cell synthesizes about 17 magnetosomes within a single chain, two phosphorous-oxygen-rich globules and one to seven lipid storage granules. The magnetosomes chain seems to divide in the centre during cell division giving rise to two daughter cells with an approximately equal number of magnetosomes. The MO-1 cell possesses two bundles of seven individual flagella that were enveloped in a unique sheath. They swam towards the north pole with a velocity up to 300 μm per second with frequent change from right-hand to left-hand helical trajectory. Using a magneto-spectrophotometry assay we showed that MO-1 flagella were powered by both proton-motive force and sodium ion gradient, which is a rare feature among bacteria.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- Laboratoire de Chimie Bactérienne, Université de la Méditerranée Aix-Marseille II, France
| | | | | | | | | |
Collapse
|
180
|
Ardelean I, Moisescu C, Ignat M, Constantin M, Virgolici M. Magnetospirillum Gryphiswaldense:Fundamentals and Applications. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10818532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
181
|
Affiliation(s)
- Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | | |
Collapse
|
182
|
Abstract
Thanks to the work of Terrance J. Beveridge and other pioneers in the field of metal-microbe interactions, prokaryotes are well known to sequester metals and other ions intracellularly in various forms. These forms range from poorly ordered deposits of metals to well-ordered mineral crystals. Studies on well-ordered crystalline structures have generally focused on intracellular organelles produced by magnetotactic bacteria that are ubiquitous in terrestrial and marine environments that precipitate Fe(3)O(4) or Fe(3)S(4), Fe-bearing minerals that have magnetic properties and are enclosed in intracellular membranes. In contrast, studies on less-well ordered minerals have focused on Fe-, As-, Mn-, Au-, Se- and Cd-precipitates that occur intracellularly. The biological and environmental function of these particles remains a matter of debate.
Collapse
Affiliation(s)
- K J Edwards
- Geomicrobiology Group, Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089-0371, USA.
| | | |
Collapse
|
183
|
Pan H, Zhu K, Song T, Yu-Zhang K, Lefèvre C, Xing S, Liu M, Zhao S, Xiao T, Wu LF. Characterization of a homogeneous taxonomic group of marine magnetotactic cocci within a low tide zone in the China Sea. Environ Microbiol 2008; 10:1158-64. [DOI: 10.1111/j.1462-2920.2007.01532.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
184
|
Felfoul O, Mohammadi M, Martel S. Magnetic resonance imaging of Fe3O4 nanoparticles embedded in living magnetotactic bacteria for potential use as carriers for in vivo applications. ACTA ACUST UNITED AC 2008; 2007:1463-6. [PMID: 18002242 DOI: 10.1109/iembs.2007.4352576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
MC-1 Magnetotactic Bacteria (MTB) are studied for their potential use as bio-carriers for drug delivery. The exploitation of the flagella combined with nanoparticles magnetite or magnetosomes chain embedded in each bacterium and used to change the swimming direction of each MTB through magnetotaxis provide both propulsion and steering in small diameters blood vessels. But for guiding these MTB towards a target, being capable to image these living bacteria in vivo using an existing medical imaging modality is essential. Here, it is shown that the magnetosomes embedded in each MTB can be used to track the displacement of these bacteria using an MRI system. In fact, these magnetosomes disturb the local magnetic field affecting T1 and T2-relaxation times during MRI. MR T1-weighted and T2-weighted images as well as T2-relaxivity of MTB are studied in order to validate the possibility of monitoring MTB drug delivery operations using a clinical MR scanner. This study proves that MTB affect much more the T2-relaxation than T1-relaxation rate and can be though as a negative contrast agent. The signal decay in the T2-weighted images is found to change proportionally to the bacterial concentration. These results show that a bacterial concentration of 2.2x10(7) cells/mL can be detected using a T2-weighted image, which is very encouraging to further investigate the application of MTB for in vivo applications.
Collapse
Affiliation(s)
- Ouajdi Felfoul
- NanoRobotics Laboratory, Department of Computer Engineering and Institute of Biomedical Engineering, Ecole Polytechnique de Montréal (EPM), Campus of the Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
185
|
Lu Z, Martel S. Preliminary investigation of bio-carriers using magnetotactic bacteria. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2006:3415-8. [PMID: 17947027 DOI: 10.1109/iembs.2006.260299] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper proposes a novel micro-carrier based on magnetotactic bacteria (MTB). To confirm the feasibility of such carriers, the thrust force of the bacteria is evaluated. By measuring the swimming speed of MC-1 bacteria in an unbounded medium, a thrust of 4 pN generated by a single MC-1 bacterium is found. The effects on the MTB's swimming speed under the control of micro-electromagnets and influenced by the wall effects when each MTB is attached to a microbead are investigated.
Collapse
Affiliation(s)
- Zhao Lu
- Dept. of Comput. Eng., Univ. de Montreal, QUE, Canada
| | | |
Collapse
|
186
|
Lin W, Tian L, Li J, Pan Y. Does capillary racetrack-based enrichment reflect the diversity of uncultivated magnetotactic cocci in environmental samples? FEMS Microbiol Lett 2007; 279:202-6. [PMID: 18179585 DOI: 10.1111/j.1574-6968.2007.01029.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The racetrack-based PCR approach is widely used in phylogenetic analysis of magnetotactic bacteria (MTB), which are isolated from environmental samples using the capillary racetrack method. To evaluate whether the capillary racetrack-based enrichment can truly reflect the diversity of MTB in the targeted environmental sample, phylogenetic diversity studies of MTB enriched from the Miyun lake near Beijing were carried out, using both the capillary racetrack-based PCR and a modified metagenome-based PCR approach. Magnetotactic cocci were identified in the studied sample using both approaches. Comparative studies showed that three clusters of magnetotactic cocci were revealed by the modified metagenome-based PCR approach, while only one of them (e.g. MYG-22 sequence) was detected by the racetrack-based PCR approach from the studied sample. This suggests that the result of capillary racetrack-based enrichment might have been biased by the magnetotaxis of magnetotactic bacteria. It appears that the metagenome-based PCR approach better reflects the original diversity of MTB in the environmental sample.
Collapse
Affiliation(s)
- Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 Bei Tu Cheng Xi Road, Beijing, China
| | | | | | | |
Collapse
|
187
|
Bazylinski DA, Schübbe S. Controlled biomineralization by and applications of magnetotactic bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:21-62. [PMID: 17869601 DOI: 10.1016/s0065-2164(07)62002-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada 89154, USA
| | | |
Collapse
|
188
|
Abstract
AbstractThe ability to respond to magnetic fields is ubiquitous among the five kingdoms of organisms. Apart from the mechanisms that are at work in bacterial magnetotaxis, none of the innumerable magnetobiological effects are as yet completely understood in terms of their underlying physical principles. Physical theories on magnetoreception, which draw on classical electrodynamics as well as on quantum electrodynamics, have greatly advanced during the past twenty years, and provide a basis for biological experimentation. This review places major emphasis on theories, and magnetobiological effects that occur in response to weak and moderate magnetic fields, and that are not related to magnetotaxis and magnetosomes. While knowledge relating to bacterial magnetotaxis has advanced considerably during the past 27 years, the biology of other magnetic effects has remained largely on a phenomenological level, a fact that is partly due to a lack of model organisms and model responses; and in great part also to the circumstance that the biological community at large takes little notice of the field, and in particular of the available physical theories. We review the known magnetobiological effects for bacteria, protists and fungi, and try to show how the variegated empirical material could be approached in the framework of the available physical models.
Collapse
|
189
|
|
190
|
Abstract
Magnetotactic bacteria are a diverse group of microorganisms with the ability to use geomagnetic fields for direction sensing. This unique feat is accomplished with the help of magnetosomes, nanometer-sized magnetic crystals surrounded by a lipid bilayer membrane and organized into chains via a dedicated cytoskeleton within the cell. Because of the special properties of these magnetic crystals, magnetotactic bacteria have been exploited for a variety of applications in diverse disciplines from geobiology to biotechnology. In addition, magnetosomes have served as a powerful model system for the study of biomineralization and cell biology in bacteria. This review focuses on recent advances in understanding the molecular mechanisms of magnetosome formation and magnetite biomineralization.
Collapse
Affiliation(s)
- Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
191
|
Erglis K, Wen Q, Ose V, Zeltins A, Sharipo A, Janmey PA, Cēbers A. Dynamics of magnetotactic bacteria in a rotating magnetic field. Biophys J 2007; 93:1402-12. [PMID: 17526564 PMCID: PMC1929029 DOI: 10.1529/biophysj.107.107474] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 04/17/2007] [Indexed: 11/18/2022] Open
Abstract
The dynamics of the motile magnetotactic bacterium Magnetospirillum gryphiswaldense in a rotating magnetic field is investigated experimentally and analyzed by a theoretical model. These elongated bacteria are propelled by single flagella at each bacterial end and contain a magnetic filament formed by a linear assembly of approximately 40 ferromagnetic nanoparticles. The movements of the bacteria in suspension are analyzed by consideration of the orientation of their magnetic dipoles in the field, the hydrodynamic resistance of the bacteria, and the propulsive force of the flagella. Several novel features found in experiments include a velocity reversal during motion in the rotating field and an interesting diffusive wandering of the trajectory curvature centers. A new method to measure the magnetic moment of an individual bacterium is proposed based on the theory developed.
Collapse
|
192
|
Lee CS, Kim KK, Aslam Z, Lee ST. Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. Int J Syst Evol Microbiol 2007; 57:1775-1779. [PMID: 17684255 DOI: 10.1099/ijs.0.65086-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thiosulfate-oxidizing bacterium, designated strain LCS2T, was isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. The strain was found to comprise Gram-negative, non-motile, non-spore-forming rods that produced yellow-pigmented colonies on R2A agar. The strain contained Q-8 as the major ubiquinone and 17 : 1 iso ω9c, 15 : 0 iso and 17 : 0 iso as the major fatty acids. The G+C content of the genomic DNA was 64.6 mol%. The 16S rRNA gene sequence of strain LCS2T was found to be most similar to that of Rhodanobacter fulvus IAM 15025T (97.4 % similarity). The results of DNA–DNA hybridization and phenotypic analysis showed that strain LCS2T can be distinguished from all known Rhodanobacter species and therefore represents a novel species of the genus, for which the name Rhodanobacter thiooxydans sp. nov. is proposed. The type strain is LCS2T (=DSM 18863T =KCTC 12771T).
Collapse
Affiliation(s)
- Chang Soo Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon, Republic of Korea
| | - Kwang Kyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon, Republic of Korea
| | - Zubair Aslam
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon, Republic of Korea
| | - Sung-Taik Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon, Republic of Korea
| |
Collapse
|
193
|
Richter M, Kube M, Bazylinski DA, Lombardot T, Glöckner FO, Reinhardt R, Schüler D. Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J Bacteriol 2007; 189:4899-910. [PMID: 17449609 PMCID: PMC1913459 DOI: 10.1128/jb.00119-07] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a heterogeneous group of aquatic prokaryotes with a unique intracellular organelle, the magnetosome, which orients the cell along magnetic field lines. Magnetotaxis is a complex phenotype, which depends on the coordinate synthesis of magnetosomes and the ability to swim and orient along the direction caused by the interaction with the Earth's magnetic field. Although a number of putative magnetotaxis genes were recently identified within a conserved genomic magnetosome island (MAI) of several MTB, their functions have remained mostly unknown, and it was speculated that additional genes located outside the MAI might be involved in magnetosome formation and magnetotaxis. In order to identify genes specifically associated with the magnetotactic phenotype, we conducted comparisons between four sequenced magnetotactic Alphaproteobacteria including the nearly complete genome of Magnetospirillum gryphiswaldense strain MSR-1, the complete genome of Magnetospirillum magneticum strain AMB-1, the complete genome of the magnetic coccus MC-1, and the comparative-ready preliminary genome assembly of Magnetospirillum magnetotacticum strain MS-1 against an in-house database comprising 426 complete bacterial and archaeal genome sequences. A magnetobacterial core genome of about 891 genes was found shared by all four MTB. In addition to a set of approximately 152 genus-specific genes shared by the three Magnetospirillum strains, we identified 28 genes as group specific, i.e., which occur in all four analyzed MTB but exhibit no (MTB-specific genes) or only remote (MTB-related genes) similarity to any genes from nonmagnetotactic organisms and which besides various novel genes include nearly all mam and mms genes previously shown to control magnetosome formation. The MTB-specific and MTB-related genes to a large extent display synteny, partially encode previously unrecognized magnetosome membrane proteins, and are either located within (18 genes) or outside (10 genes) the MAI of M. gryphiswaldense. These genes, which represent less than 1% of the 4,268 open reading frames of the MSR-1 genome, as yet are mostly of unknown functions but are likely to be specifically involved in magnetotaxis and, thus, represent prime targets for future experimental analysis.
Collapse
Affiliation(s)
- Michael Richter
- Microbial Genomics Group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
194
|
Silva KT, Abreu F, Almeida FP, Keim CN, Farina M, Lins U. Flagellar apparatus of south-seeking many-celled magnetotactic prokaryotes. Microsc Res Tech 2007; 70:10-7. [PMID: 17019700 DOI: 10.1002/jemt.20380] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetotactic bacteria orient and migrate along geomagnetic field lines. Each cell contains membrane-enclosed, nano-scale, iron-mineral particles called magnetosomes that cause alignment of the cell in the geomagnetic field as the bacteria swim propelled by flagella. In this work we studied the ultrastructure of the flagellar apparatus in many-celled magnetotactic prokaryotes (MMP) that consist of several Gram-negative cells arranged radially around an acellular compartment. Flagella covered the organism surface, and were observed exclusively at the portion of each cell that faced the environment. The flagella were helical tubes never as long as a complete turn of the helix. Flagellar filaments varied in length from 0.9 to 3.8 micro m (average 2.4 +/- 0.5 micro m, n = 150) and in width from 12.0 to 19.5 nm (average 15.9 +/- 1.4 nm, n = 52), which is different from previous reports for similar microorganisms. At the base of the flagella, a curved hook structure slightly thicker than the flagellar filaments was observed. In freeze-fractured samples, macromolecular complexes about 50 nm in diameter, which possibly corresponded to part of the flagella basal body, were observed in both the P-face of the cytoplasmic membrane and the E-face of the outer membrane. Transmission electron microscopy showed that magnetosomes occurred in planar groups in the cytoplasm close and parallel to the organism surface. A striated structure, which could be involved in maintaining magnetosomes fixed in the cell, was usually observed running along magnetosome chains. The coordinated movement of the MMP depends on the interaction between the flagella of each cell with the flagella of adjacent cells of the microorganism.
Collapse
Affiliation(s)
- Karen Tavares Silva
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
195
|
Lins U, McCartney MR, Farina M, Frankel RB, Buseck PR. Crystal habits and magnetic microstructures of magnetosomes in coccoid magnetotactic bacteria. AN ACAD BRAS CIENC 2007; 78:463-74. [PMID: 16936936 DOI: 10.1590/s0001-37652006000300007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 02/17/2006] [Indexed: 11/21/2022] Open
Abstract
We report on the application of off-axis electron holography and high-resolution TEM to study the crystal habits of magnetosomes and magnetic microstructure in two coccoid morphotypes of magnetotactic bacteria collected from a brackish lagoon at Itaipu, Brazil. Itaipu-1, the larger coccoid organism, contains two separated chains of unusually large magnetosomes; the magnetosome crystals have roughly square projections, lengths up to 250 nm and are slightly elongated along [111] (width/length ratio of about 0.9). Itaipu-3 magnetosome crystals have lengths up to 120 nm, greater elongation along [111] (width/length approximately 0.6), and prominent corner facets. The results show that Itaipu-1 and Itaipu-3 magnetosome crystal habits are related, differing only in the relative sizes of their crystal facets. In both cases, the crystals are aligned with their [111] elongation axes parallel to the chain direction. In Itaipu-1, but not Itaipu-3, crystallographic positioning perpendicular to [111] of successive crystals in the magnetosome chain appears to be under biological control. Whereas the large magnetosomes in Itaipu-1 are metastable, single-magnetic domains, magnetosomes in Itaipu-3 are permanent, single-magnetic domains, as in most magnetotactic bacteria.
Collapse
Affiliation(s)
- Ulysses Lins
- Instituto de Microbiologia Professor Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | | | | | | | | |
Collapse
|
196
|
Frankel RB, Bazylinski DA. How magnetotactic bacteria make magnetosomes queue up. Trends Microbiol 2006; 14:329-31. [PMID: 16782341 DOI: 10.1016/j.tim.2006.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/26/2006] [Accepted: 06/07/2006] [Indexed: 11/18/2022]
Abstract
Magnetotactic bacteria contain chains of magnetosomes that comprise a permanent magnetic dipole in each cell. In two separate, recent papers, Scheffel et al. and Komeili et al. describe the roles of the proteins MamJ and MamK in magnetosome chain formation. Here, we describe the two studies and highlight questions that must be addressed in future investigations of how magnetotactic bacteria construct their magnetic compass needles.
Collapse
Affiliation(s)
- Richard B Frankel
- Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | | |
Collapse
|
197
|
Abstract
Sensing of magnetic fields by living organisms -- magnetosensing -- is best understood in magnetotactic bacteria. Recently work has provided new insight into the biogenesis of bacterial magnetosomes, and links these organelles to a newly recognized prokaryotic cytoskeletal filament which organizes magnetosomes into a sensory structure capable of aligning cells with the geomagnetic field.
Collapse
Affiliation(s)
- Craig Stephens
- Biology Department, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA.
| |
Collapse
|
198
|
von Rozycki T, Yen MR, Lende EE, Saier MH. The YedZ family: possible heme binding proteins that can be fused to transporters and electron carriers. J Mol Microbiol Biotechnol 2006; 8:129-40. [PMID: 16088215 DOI: 10.1159/000085786] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
YedZ of Escherichia coli is an integral 6 transmembrane spanning (TMS) protein of unknown function. We have identified homologues of YedZ in bacteria and animals but could not find homologues in Archaea or the other eukaryotic kingdoms. YedZ homologues exhibit conserved histidyl residues in their transmembrane domains that may function in heme binding. Some of the homologues encoded in the genomes of magnetotactic bacteria and cyanobacteria have YedZ domains fused to transport and electron transfer proteins, respectively. One of the animal homologues is the 6 TMS epithelial plasma membrane antigen of the prostate (STAMP1) that is overexpressed in prostate cancer. Animal homologues have YedZ domains fused C-terminal to homologues of coenzyme F420-dependent NADP oxidoreductases. YedZ homologues are shown to have arisen by intragenic triplication of a 2 TMS-encoding element. They exhibit slight but statistically significant sequence similarity to two families of putative heme export systems and one family of cytochrome-containing electron carriers. We propose that YedZ homologues function as heme-binding proteins that can facilitate or regulate oxidoreduction, transmembrane electron flow and transport.
Collapse
Affiliation(s)
- Torsten von Rozycki
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|
199
|
Williams TJ, Zhang CL, Scott JH, Bazylinski DA. Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 2006; 72:1322-9. [PMID: 16461683 PMCID: PMC1392968 DOI: 10.1128/aem.72.2.1322-1329.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Accepted: 11/30/2005] [Indexed: 11/20/2022] Open
Abstract
Strain MC-1 is a marine, microaerophilic, magnetite-producing, magnetotactic coccus phylogenetically affiliated with the alpha-Proteobacteria. Strain MC-1 grew chemolithotrophically with sulfide and thiosulfate as electron donors with HCO3-/CO2 as the sole carbon source. Experiments with cells grown microaerobically in liquid with thiosulfate and H14CO3-/14CO2 showed that all cell carbon was derived from H14CO3-/14CO2 and therefore that MC-1 is capable of chemolithoautotrophy. Cell extracts did not exhibit ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO) activity, nor were RubisCO genes found in the draft genome of MC-1. Thus, unlike other chemolithoautotrophic, magnetotactic bacteria, strain MC-1 does not appear to utilize the Calvin-Benson-Bassham cycle for autotrophy. Cell extracts did not exhibit carbon monoxide dehydrogenase activity, indicating that the acetyl-coenzyme A pathway also does not function in strain MC-1. The 13C content of whole cells of MC-1 relative to the 13C content of the inorganic carbon source (Deltadelta13C) was -11.4 per thousand. Cellular fatty acids showed enrichment of 13C relative to whole cells. Strain MC-1 cell extracts showed activities for several key enzymes of the reverse (reductive) tricarboxylic acid (rTCA) cycle including fumarate reductase, pyruvate:acceptor oxidoreductase and 2-oxoglutarate:acceptor oxidoreductase. Although ATP citrate lyase (another key enzyme of the rTCA cycle) activity was not detected in strain MC-1 using commonly used assays, cell extracts did cleave citrate, and the reaction was dependent upon the presence of ATP and coenzyme A. Thus, we infer the presence of an ATP-dependent citrate-cleaving mechanism. These results are consistent with the operation of the rTCA cycle in MC-1. Strain MC-1 appears to be the first known representative of the alpha-Proteobacteria to use the rTCA cycle for autotrophy.
Collapse
Affiliation(s)
- Timothy J Williams
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
200
|
Simmons SL, Bazylinski DA, Edwards KJ. South-seeking magnetotactic bacteria in the Northern Hemisphere. Science 2006; 311:371-4. [PMID: 16424338 DOI: 10.1126/science.1122843] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Magnetotactic bacteria contain membrane-bound intracellular iron crystals (magnetosomes) and respond to magnetic fields. Polar magnetotactic bacteria in vertical chemical gradients are thought to respond to high oxygen levels by swimming downward into areas with low or no oxygen (toward geomagnetic north in the Northern Hemisphere and geomagnetic south in the Southern Hemisphere). We identified populations of polar magnetotactic bacteria in the Northern Hemisphere that respond to high oxygen levels by swimming toward geomagnetic south, the opposite of all previously reported magnetotactic behavior. The percentage of magnetotactic bacteria with south polarity in the environment is positively correlated with higher redox potential. The coexistence of magnetotactic bacteria with opposing polarities in the same redox environment conflicts with current models of the adaptive value of magnetotaxis.
Collapse
Affiliation(s)
- Sheri L Simmons
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution (MIT-WHOI) Joint Program in Oceanography, Department of Marine Chemistry and Geochemistry, MS 52, WHOI, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|