151
|
Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 2009; 139:744-56. [PMID: 19914167 DOI: 10.1016/j.cell.2009.09.034] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/21/2009] [Accepted: 09/09/2009] [Indexed: 11/18/2022]
Abstract
ClpX is a AAA+ machine that uses the energy of ATP binding and hydrolysis to unfold native proteins and translocate unfolded polypeptides into the ClpP peptidase. The crystal structures presented here reveal striking asymmetry in ring hexamers of nucleotide-free and nucleotide-bound ClpX. Asymmetry arises from large changes in rotation between the large and small AAA+ domains of individual subunits. These differences prevent nucleotide binding to two subunits, generate a staggered arrangement of ClpX subunits and pore loops around the hexameric ring, and provide a mechanism for coupling conformational changes caused by ATP binding or hydrolysis in one subunit to flexing motions of the entire ring. Our structures explain numerous solution studies of ClpX function, predict mechanisms for pore elasticity during translocation of irregular polypeptides, and suggest how repetitive conformational changes might be coupled to mechanical work during the ATPase cycle of ClpX and related molecular machines.
Collapse
Affiliation(s)
- Steven E Glynn
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
152
|
Abstract
Helicases are molecular motors that move along and remodel DNA, RNA, and associated protein complexes. Helicases are often directional. By analyzing crystal structures in complexes with RNA and ATP analogs, Thomsen and Berger (2009) now elucidate the molecular basis for unidirectional motion by the hexameric RNA helicase Rho.
Collapse
|
153
|
Coupling ATP utilization to protein remodeling by ClpB, a hexameric AAA+ protein. Proc Natl Acad Sci U S A 2009; 106:22233-8. [PMID: 19940245 DOI: 10.1073/pnas.0911937106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ClpB and Hsp104 are members of the AAA+ (ATPases associated with various cellular activities) family of proteins and are molecular machines involved in thermotolerance. They are hexameric proteins containing 12 ATP binding sites with two sites per protomer. ClpB and Hsp104 possess some innate protein remodeling activities; however, they require the collaboration of the DnaK/Hsp70 chaperone system to disaggregate and reactivate insoluble aggregated proteins. We investigated the mechanism by which ClpB couples ATP utilization to protein remodeling with and without the DnaK system. When wild-type ClpB, which is unable to remodel proteins alone in the presence of ATP, was mixed with a ClpB mutant that is unable to hydrolyze ATP, the heterohexamers surprisingly gained protein remodeling activity. Optimal protein remodeling by the heterohexamers in the absence of the DnaK system required approximately three active and three inactive protomers. In addition, the location of the active and inactive ATP binding sites in the hexamer was not important. The results suggest that in the absence of the DnaK system, ClpB acts by a probabilistic mechanism. However, when we measured protein disaggregation by ClpB heterohexamers in conjunction with the DnaK system, incorporation of a single inactive ClpB subunit blocked activity, supporting a sequential mechanism of ATP utilization. Taken together, the results suggest that the mechanism of ATP utilization by ClpB is adaptable and can vary depending on the specific substrate and the presence of the DnaK system.
Collapse
|
154
|
Thomsen ND, Berger JM. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 2009; 139:523-34. [PMID: 19879839 PMCID: PMC2772833 DOI: 10.1016/j.cell.2009.08.043] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/13/2009] [Accepted: 08/18/2009] [Indexed: 01/07/2023]
Abstract
Hexameric helicases couple ATP hydrolysis to processive separation of nucleic acid duplexes, a process critical for gene expression, DNA replication, and repair. All hexameric helicases fall into two families with opposing translocation polarities: the 3'-->5' AAA+ and 5'-->3' RecA-like enzymes. To understand how a RecA-like hexameric helicase engages and translocates along substrate, we determined the structure of the E. coli Rho transcription termination factor bound to RNA and nucleotide. Interior nucleic acid-binding elements spiral around six bases of RNA in a manner unexpectedly reminiscent of an AAA+ helicase, the papillomavirus E1 protein. Four distinct ATP-binding states, representing potential catalytic intermediates, are coupled to RNA positioning through a complex allosteric network. Comparative studies with E1 suggest that RecA and AAA+ hexameric helicases use different portions of their chemomechanical cycle for translocating nucleic acid and track in opposite directions by reversing the firing order of ATPase sites around the hexameric ring. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
Collapse
Affiliation(s)
- Nathan D. Thomsen
- Department of Molecular and Cell Biology, Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - James M. Berger
- Department of Molecular and Cell Biology, Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA,Correspondence:
| |
Collapse
|
155
|
Abstract
The eukaryotic MCM2-7 complex is recruited onto origins of replication during the G1 phase of the cell cycle and acts as the main helicase at the replication fork during the S phase. Over the last few years a number of structural reports on MCM proteins using both electron microscopy and protein crystallography have been published. The crystal structures of two (almost) full-length archaeal homologs provide the first atomic pictures of a MCM helicase. However one of the structures is at low resolution and the other is of an inactive MCM. Moreover, both proteins are monomeric in the crystal, whereas the activity of the complex is critically dependent on oligomerization. Lower resolution structures derived from electron microscopy studies are therefore crucial to complement the crystallographic analysis and to assemble the multimeric complex that is active in the cell. A critical analysis of all the structural results elucidates the potential conformational changes and dynamic behavior of MCM helicase to provide a first insight into the gamut of molecular configurations adopted during the processes of DNA melting and unwinding.
Collapse
|
156
|
Abstract
Replisomes are the protein assemblies that replicate DNA. They function as molecular motors to catalyze template-mediated polymerization of nucleotides, unwinding of DNA, the synthesis of RNA primers, and the assembly of proteins on DNA. The replisome of bacteriophage T7 contains a minimum of proteins, thus facilitating its study. This review describes the molecular motors and coordination of their activities, with emphasis on the T7 replisome. Nucleotide selection, movement of the polymerase, binding of the processivity factor, unwinding of DNA, and RNA primer synthesis all require conformational changes and protein contacts. Lagging-strand synthesis is mediated via a replication loop whose formation and resolution is dictated by switches to yield Okazaki fragments of discrete size. Both strands are synthesized at identical rates, controlled by a molecular brake that halts leading-strand synthesis during primer synthesis. The helicase serves as a reservoir for polymerases that can initiate DNA synthesis at the replication fork. We comment on the differences in other systems where applicable.
Collapse
Affiliation(s)
- Samir M Hamdan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
157
|
Zhu B, Lee SJ, Richardson CC. An in trans interaction at the interface of the helicase and primase domains of the hexameric gene 4 protein of bacteriophage T7 modulates their activities. J Biol Chem 2009; 284:23842-51. [PMID: 19574219 DOI: 10.1074/jbc.m109.026104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA helicase and primase are essential for DNA replication. The helicase unwinds the DNA to provide single-stranded templates for DNA polymerase. The primase catalyzes the synthesis of oligoribonucleotides for the initiation of lagging strand synthesis. The two activities reside in a single polypeptide encoded by gene 4 of bacteriophage T7. Their coexistence within the same polypeptide facilitates their coordination during DNA replication. One surface of helix E within the helicase domain is positioned to interact with the primase domain and the linker connecting the two domains within the functional hexamer. The interaction occurs in trans such that helix E interacts with the primase domain and the linker of the adjacent subunit. Most alterations of residues on the surface of helix E (Arg(404), Lys(408), Tyr(411), and Gly(415)) eliminate the ability of the altered proteins to complement growth of T7 phage lacking gene 4. Both Tyr(411) and Gly(415) are important in oligomerization of the protein. Alterations G415V and K408A simultaneously influence helicase and primase activities in opposite manners that mimic events observed during coordinated DNA synthesis. The results suggest that Asp(263) located in the linker of one subunit can interact with Tyr(411), Lys(408), or Arg(404) in helix E of the adjacent subunit depending on the oligomerization state. Thus the switch in contacts between Asp(263) and its three interacting residues in helix E of the adjacent subunit results in conformational changes that modulate helicase and primase activity.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
158
|
Barkow SR, Levchenko I, Baker TA, Sauer RT. Polypeptide translocation by the AAA+ ClpXP protease machine. CHEMISTRY & BIOLOGY 2009; 16:605-12. [PMID: 19549599 PMCID: PMC2718738 DOI: 10.1016/j.chembiol.2009.05.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/21/2009] [Accepted: 05/08/2009] [Indexed: 11/23/2022]
Abstract
In the AAA+ ClpXP protease, ClpX uses repeated cycles of ATP hydrolysis to pull native proteins apart and to translocate the denatured polypeptide into ClpP for degradation. Here, we probe polypeptide features important for translocation. ClpXP degrades diverse synthetic peptide substrates despite major differences in side-chain chirality, size, and polarity. Moreover, translocation occurs without a peptide -NH and with 10 methylenes between successive peptide bonds. Pulling on homopolymeric tracts of glycine, proline, and lysine also allows efficient ClpXP degradation of a stably folded protein. Thus, minimal chemical features of a polypeptide chain are sufficient for translocation and protein unfolding by the ClpX machine. These results suggest that the translocation pore of ClpX is highly elastic, allowing interactions with a wide range of chemical groups, a feature likely to be shared by many AAA+ unfoldases.
Collapse
Affiliation(s)
- Sarah R. Barkow
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Igor Levchenko
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tania A. Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Robert T. Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
159
|
Wendler P, Shorter J, Snead D, Plisson C, Clare DK, Lindquist S, Saibil HR. Motor mechanism for protein threading through Hsp104. Mol Cell 2009; 34:81-92. [PMID: 19362537 PMCID: PMC2689388 DOI: 10.1016/j.molcel.2009.02.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/29/2008] [Accepted: 02/25/2009] [Indexed: 12/04/2022]
Abstract
The protein-remodeling machine Hsp104 dissolves amorphous aggregates as well as ordered amyloid assemblies such as yeast prions. Force generation originates from a tandem AAA+ (ATPases associated with various cellular activities) cassette, but the mechanism and allostery of this action remain to be established. Our cryoelectron microscopy maps of Hsp104 hexamers reveal substantial domain movements upon ATP binding and hydrolysis in the first nucleotide-binding domain (NBD1). Fitting atomic models of Hsp104 domains to the EM density maps plus supporting biochemical measurements show how the domain movements displace sites bearing the substrate-binding tyrosine loops. This provides the structural basis for N- to C-terminal substrate threading through the central cavity, enabling a clockwise handover of substrate in the NBD1 ring and coordinated substrate binding between NBD1 and NBD2. Asymmetric reconstructions of Hsp104 in the presence of ATPγS or ATP support sequential rather than concerted ATP hydrolysis in the NBD1 ring.
Collapse
Affiliation(s)
- Petra Wendler
- Department of Crystallography, Birkbeck College, London, UK
| | | | | | | | | | | | | |
Collapse
|
160
|
Rescue of bacteriophage T7 DNA polymerase of low processivity by suppressor mutations affecting gene 3 endonuclease. J Virol 2009; 83:8418-27. [PMID: 19535436 DOI: 10.1128/jvi.00855-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA polymerase encoded by gene 5 (gp5) of bacteriophage T7 has low processivity, dissociating after the incorporation of a few nucleotides. Upon binding to its processivity factor, Escherichia coli thioredoxin (Trx), the processivity is increased to approximately 800 nucleotides per binding event. Several interactions between gp5/Trx and DNA are required for processive DNA synthesis. A basic region in T7 DNA polymerase (residues K587, K589, R590, and R591) is located in proximity to the 5' overhang of the template strand. Replacement of these residues with asparagines results in a threefold reduction of the polymerization activity on primed M13 single-stranded DNA. The altered gp5/Trx exhibits a 10-fold reduction in its ability to support growth of T7 phage lacking gene 5. However, T7 phages that grow at a similar rate provided with either wild-type or altered polymerase emerge. Most of the suppressor phages contain genetic changes in or around the coding region for gene 3, an endonuclease. Altered gene 3 proteins derived from suppressor strains show reduced catalytic activity and are inefficient in complementing growth of T7 phage lacking gene 3. Results from this study reveal that defects in processivity of DNA polymerase can be suppressed by reducing endonuclease activity.
Collapse
|
161
|
Samuels M, Gulati G, Shin JH, Opara R, McSweeney E, Sekedat M, Long S, Kelman Z, Jeruzalmi D. A biochemically active MCM-like helicase in Bacillus cereus. Nucleic Acids Res 2009; 37:4441-52. [PMID: 19474351 PMCID: PMC2715239 DOI: 10.1093/nar/gkp376] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mini-chromosome maintenance (MCM) proteins serve as the replicative helicases in archaea and eukaryotes. Interestingly, an MCM homolog was identified, by BLAST analysis, within a phage integrated in the bacterium Bacillus cereus (Bc). BcMCM is only related to the AAA region of MCM-helicases; the typical amino-terminus is missing and is replaced by a segment with weak homology to primases. We show that BcMCM displays 3′→5′ helicase and ssDNA-stimulated ATPase activity, properties that arise from its conserved AAA domain. Isolated BcMCM is a monomer in solution but likely forms the functional oligomer in vivo. We found that the BcMCM amino-terminus can bind ssDNA and harbors a zinc atom, both hallmarks of the typical MCM amino-terminus. No BcMCM-catalyzed primase activity could be detected. We propose that the divergent amino-terminus of BcMCM is a paralog of the corresponding region of MCM-helicases. A divergent amino terminus makes BcMCM a useful model for typical MCM-helicases since it accomplishes the same function using an apparently unrelated structure.
Collapse
Affiliation(s)
- Martin Samuels
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Sakakibara N, Kelman LM, Kelman Z. Unwinding the structure and function of the archaeal MCM helicase. Mol Microbiol 2009; 72:286-96. [DOI: 10.1111/j.1365-2958.2009.06663.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
163
|
Satapathy AK, Crampton DJ, Beauchamp BB, Richardson CC. Promiscuous usage of nucleotides by the DNA helicase of bacteriophage T7: determinants of nucleotide specificity. J Biol Chem 2009; 284:14286-95. [PMID: 19297330 DOI: 10.1074/jbc.m900557200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multifunctional protein encoded by gene 4 of bacteriophage T7 (gp4) provides both helicase and primase activity at the replication fork. T7 DNA helicase preferentially utilizes dTTP to unwind duplex DNA in vitro but also hydrolyzes other nucleotides, some of which do not support helicase activity. Very little is known regarding the architecture of the nucleotide binding site in determining nucleotide specificity. Crystal structures of the T7 helicase domain with bound dATP or dTTP identified Arg-363 and Arg-504 as potential determinants of the specificity for dATP and dTTP. Arg-363 is in close proximity to the sugar of the bound dATP, whereas Arg-504 makes a hydrogen bridge with the base of bound dTTP. T7 helicase has a serine at position 319, whereas bacterial helicases that use rATP have a threonine in the comparable position. Therefore, in the present study we have examined the role of these residues (Arg-363, Arg-504, and Ser-319) in determining nucleotide specificity. Our results show that Arg-363 is responsible for dATP, dCTP, and dGTP hydrolysis, whereas Arg-504 and Ser-319 confer dTTP specificity. Helicase-R504A hydrolyzes dCTP far better than wild-type helicase, and the hydrolysis of dCTP fuels unwinding of DNA. Substitution of threonine for serine 319 reduces the rate of hydrolysis of dTTP without affecting the rate of dATP hydrolysis. We propose that different nucleotides bind to the nucleotide binding site of T7 helicase by an induced fit mechanism. We also present evidence that T7 helicase uses the energy derived from the hydrolysis of dATP in addition to dTTP for mediating DNA unwinding.
Collapse
Affiliation(s)
- Ajit K Satapathy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
164
|
Moffitt JR, Chemla YR, Aathavan K, Grimes S, Jardine PJ, Anderson DL, Bustamante C. Intersubunit coordination in a homomeric ring ATPase. Nature 2009; 457:446-50. [PMID: 19129763 PMCID: PMC2716090 DOI: 10.1038/nature07637] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 11/11/2008] [Indexed: 12/22/2022]
Abstract
Homomeric ring ATPases perform many vital and varied tasks in the cell, ranging from chromosome segregation to protein degradation. Here we report the direct observation of the intersubunit coordination and step size of such a ring ATPase, the double-stranded-DNA packaging motor in the bacteriophage phi29. Using high-resolution optical tweezers, we find that packaging occurs in increments of 10 base pairs (bp). Statistical analysis of the preceding dwell times reveals that multiple ATPs bind during each dwell, and application of high force reveals that these 10-bp increments are composed of four 2.5-bp steps. These results indicate that the hydrolysis cycles of the individual subunits are highly coordinated by means of a mechanism novel for ring ATPases. Furthermore, a step size that is a non-integer number of base pairs demands new models for motor-DNA interactions.
Collapse
Affiliation(s)
- Jeffrey R. Moffitt
- Department of Physics and Jason L. Choy Memorial Laboratory of Single-Molecule Biophysics, Berkeley, CA 94720
| | - Yann R. Chemla
- Department of Physics and Jason L. Choy Memorial Laboratory of Single-Molecule Biophysics, Berkeley, CA 94720
| | - K. Aathavan
- Biophysics Graduate Group, University of California, Berkeley, CA 94720
| | - Shelley Grimes
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455
| | - Paul J. Jardine
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455
| | - Dwight L. Anderson
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455
| | - Carlos Bustamante
- Department of Physics and Jason L. Choy Memorial Laboratory of Single-Molecule Biophysics, Berkeley, CA 94720
- Biophysics Graduate Group, University of California, Berkeley, CA 94720
- Departments of Molecular and Cell Biology, Chemistry, and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
165
|
Abstract
DNA unwinding and polymerization are complex processes involving many intermediate species in the reactions. Our understanding of these processes is limited because the rates of the reactions or the existence of intermediate species is not apparent without specially designed experimental techniques and data analysis procedures. In this chapter we describe how pre-steady state and single-turnover measurements analyzed by model-based methods can be used for estimating the elementary rate constants. Using the hexameric helicase and the DNA polymerase from bacteriophage T7 as model systems, we provide stepwise procedures for measuring the kinetics of the reactions they catalyze based on radioactivity and fluorescence. We also describe analysis of the experimental measurements using publicly available models and software gfit ( http://gfit.sf.net ).
Collapse
|
166
|
Rajagopal V, Patel SS. Viral Helicases. VIRAL GENOME REPLICATION 2009. [PMCID: PMC7121818 DOI: 10.1007/b135974_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Helicases are motor proteins that use the free energy of NTP hydrolysis to catalyze the unwinding of duplex nucleic acids. Helicases participate in almost all processes involving nucleic acids. Their action is critical for replication, recombination, repair, transcription, translation, splicing, mRNA editing, chromatin remodeling, transport, and degradation (Matson and Kaiser-Rogers 1990; Matson et al. 1994; Mendonca et al. 1995; Luking et al. 1998).
Collapse
|
167
|
Lo YH, Tsai KL, Sun YJ, Chen WT, Huang CY, Hsiao CD. The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA. Nucleic Acids Res 2008; 37:804-14. [PMID: 19074952 PMCID: PMC2647316 DOI: 10.1093/nar/gkn999] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA helicases are motor proteins that play essential roles in DNA replication, repair and recombination. In the replicative hexameric helicase, the fundamental reaction is the unwinding of duplex DNA; however, our understanding of this function remains vague due to insufficient structural information. Here, we report two crystal structures of the DnaB-family replicative helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in the apo-form and bound to single-stranded DNA (ssDNA). The GkDnaC–ssDNA complex structure reveals that three symmetrical basic grooves on the interior surface of the hexamer individually encircle ssDNA. The ssDNA-binding pockets in this structure are directed toward the N-terminal domain collar of the hexameric ring, thus orienting the ssDNA toward the DnaG primase to facilitate the synthesis of short RNA primers. These findings provide insight into the mechanism of ssDNA binding and provide a working model to establish a novel mechanism for DNA translocation at the replication fork.
Collapse
Affiliation(s)
- Yu-Hua Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | | | | | | | | | | |
Collapse
|
168
|
Heddle JG. Protein cages, rings and tubes: useful components of future nanodevices? Nanotechnol Sci Appl 2008; 1:67-78. [PMID: 24198461 PMCID: PMC3781744 DOI: 10.2147/nsa.s4092] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
There is a great deal of interest in the possibility that complex nanoscale devices can be designed and engineered. Such devices will lead to the development of new materials, electronics and smart drugs. Producing complex nanoscale devices, however will present many challenges and the components of such devices will require a number of special features. Devices will be engineered to incorporate desired functionalities but, because of the difficulties of controlling matter precisely at the nanoscale with current technology, the nanodevice components must self-assemble. In addition, nanocomponents that are to have wide applicability in various devices must have enough flexibility to integrate into a large number of potentially very different environments. These challenges are daunting and complex, and artificial nanodevices have not yet been constructed. However, the existence of nanomachines in nature in the form of proteins (eg, enzymes) suggests that they will be possible to produce. As the material from which nature's nanomachines are made, proteins seem ideal to form the basis of engineered components of such nanodevices. Initially, engineering projects may focus on building blocks such as rings, cages and tubes, examples of which exist in nature and may act as a useful start point for modification and further development. This review focuses on the recent research and possible future development of such protein building blocks.
Collapse
Affiliation(s)
- Jonathan G Heddle
- Global Edge Institute, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama Kanagawa, Japan
| |
Collapse
|
169
|
Shin JH, Heo GY, Kelman Z. The Methanothermobacter thermautotrophicus MCM helicase is active as a hexameric ring. J Biol Chem 2008; 284:540-546. [PMID: 19001412 DOI: 10.1074/jbc.m806803200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The minichromosome maintenance (MCM) complex is thought to function as the replicative helicase in archaea and eukarya. The structure of the single MCM protein homologue from the archaeon Methanothermobacter thermautotrophicus is not yet clear, and hexameric, heptameric, octameric, and dodecameric structures, open rings, and filamentous structures have been reported. Using a combination of biochemical and structural analysis, it is shown here that the M. thermautotrophicus MCM helicase is active as a hexamer.
Collapse
Affiliation(s)
- Jae-Ho Shin
- Division of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Kyungpook National University, 1370 Sankyuk-Dong, Daegu 702-701, Republic of Korea and the University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, Rockville, Maryland 20850
| | - Gun-Young Heo
- Division of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Kyungpook National University, 1370 Sankyuk-Dong, Daegu 702-701, Republic of Korea and the University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, Rockville, Maryland 20850
| | - Zvi Kelman
- Division of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Kyungpook National University, 1370 Sankyuk-Dong, Daegu 702-701, Republic of Korea and the University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, Rockville, Maryland 20850.
| |
Collapse
|
170
|
Martin A, Baker TA, Sauer RT. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat Struct Mol Biol 2008; 15:1147-51. [PMID: 18931677 PMCID: PMC2610342 DOI: 10.1038/nsmb.1503] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 09/24/2008] [Indexed: 11/18/2022]
Abstract
Proteolytic AAA+ unfoldases use ATP hydrolysis to power conformational changes that mechanically denature protein substrates and then translocate the polypeptide through a narrow pore into a degradation chamber. We show that a tyrosine residue in a pore loop of the hexameric ClpX unfoldase links ATP hydrolysis to mechanical work by gripping substrates during unfolding and translocation. Removal of the aromatic ring in even a few ClpX subunits results in slippage, frequent failure to denature the substrate and an enormous increase in the energetic cost of substrate unfolding. The tyrosine residue is part of a conserved aromatic-hydrophobic motif, and the effects of mutations in both residues vary with the nucleotide state of the resident subunit. These results support a model in which nucleotide-dependent conformational changes in these pore loops drive substrate translocation and unfolding, with the aromatic ring transmitting force to the polypeptide substrate.
Collapse
Affiliation(s)
- Andreas Martin
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
171
|
Kanter DM, Bruck I, Kaplan DL. Mcm subunits can assemble into two different active unwinding complexes. J Biol Chem 2008; 283:31172-82. [PMID: 18801730 DOI: 10.1074/jbc.m804686200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The replication fork helicase in eukaryotes is a large complex that is composed of Mcm2-7, Cdc45, and GINS. The Mcm2-7 proteins form a heterohexameric ring that hydrolyzes ATP and provide the motor function for this unwinding complex. A comprehensive study of how individual Mcm subunit biochemical activities relate to unwinding function has not been accomplished. We studied the mechanism of the Mcm4-Mcm6-Mcm7 complex, a useful model system because this complex has helicase activity in vitro. We separately purified each of three Mcm subunits until they were each nuclease-free, and we then examined the biochemical properties of different combinations of Mcm subunits. We found that Mcm4 and Mcm7 form an active unwinding assembly. The addition of Mcm6 to Mcm4/Mcm7 results in the formation of an active Mcm4/Mcm6/Mcm7 helicase assembly. The Mcm4-Mcm7 complex forms a ringed-shaped hexamer that unwinds DNA with 3' to 5' polarity by a steric exclusion mechanism, similar to Mcm4/Mcm6/Mcm7. The Mcm4-Mcm7 complex has a high level of ATPase activity that is further stimulated by DNA. The ability of different Mcm mixtures to form rings or exhibit DNA stimulation of ATPase activity correlates with the ability of these complexes to unwind DNA. The Mcm4/Mcm7 and Mcm4/Mcm6/Mcm7 assemblies can open to load onto circular DNA to initiate unwinding. We conclude that the Mcm subunits are surprisingly flexible and dynamic in their ability to interact with one another to form active unwinding complexes.
Collapse
Affiliation(s)
- Diane M Kanter
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | |
Collapse
|
172
|
Cox JM, Li H, Wood EA, Chitteni-Pattu S, Inman RB, Cox MM. Defective dissociation of a "slow" RecA mutant protein imparts an Escherichia coli growth defect. J Biol Chem 2008; 283:24909-21. [PMID: 18603529 PMCID: PMC2529011 DOI: 10.1074/jbc.m803934200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/03/2008] [Indexed: 11/06/2022] Open
Abstract
The RecA and some related proteins possess a simple motif, called (KR)X(KR), that (in RecA) consists of two lysine residues at positions 248 and 250 at the subunit-subunit interface. This study and previous work implicate this RecA motif in the following: (a) catalyzing ATP hydrolysis in trans,(b) coordinating the ATP hydrolytic cycles of adjacent subunits, (c) governing the rate of ATP hydrolysis, and (d) coupling the ATP hydrolysis to work (in this case DNA strand exchange). The conservative K250R mutation leaves RecA nucleoprotein filament formation largely intact. However, ATP hydrolysis is slowed to less than 15% of the wild-type rate. DNA strand exchange is also slowed commensurate with the rate of ATP hydrolysis. The results reinforce the idea of a tight coupling between ATP hydrolysis and DNA strand exchange. When a plasmid-borne RecA K250R protein is expressed in a cell otherwise lacking RecA protein, the growth of the cells is severely curtailed. The slow growth defect is alleviated in cells lacking RecFOR function, suggesting that the defect reflects loading of RecA at stalled replication forks. Suppressors occur as recA gene alterations, and their properties indicate that limited dissociation by RecA K250R confers the slow growth phenotype. Overall, the results suggest that recombinational DNA repair is a common occurrence in cells. RecA protein plays a sufficiently intimate role in the bacterial cell cycle that its properties can limit the growth rate of a bacterial culture.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin
53706-1544
| |
Collapse
|
173
|
Thomsen ND, Berger JM. Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Mol Microbiol 2008; 69:1071-90. [PMID: 18647240 PMCID: PMC2538554 DOI: 10.1111/j.1365-2958.2008.06364.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many fundamental cellular processes depend on enzymes that utilize chemical energy to catalyse unfavourable reactions. Certain classes of ATPases provide a particularly vivid example of the process of energy conversion, employing cycles of nucleotide turnover to move and/or rearrange biological polymers such as proteins and nucleic acids. Four well-characterized classes of ATP-dependent protein/nucleic acid translocases and remodelling factors are found in all three domains of life (bacteria, archaea and eukarya): additional strand catalytic 'E' (ASCE) P-loop NTPases, GHL proteins, actin-fold enzymes and chaperonins. These unrelated protein superfamilies have each evolved the ability to couple ATP binding and hydrolysis to the generation of motion and force along or within their substrates. The past several years have witnessed the emergence of a wealth of structural data that help explain how such molecular engines link nucleotide turnover to conformational change. In this review, we highlight several recent advances to illustrate some of the mechanisms by which each family of ATP-dependent motors facilitates the rearrangement and movement of proteins, protein complexes and nucleic acids.
Collapse
Affiliation(s)
- Nathan D. Thomsen
- Quantitative Biology Institute and Dept. of Molecular and Cell Biology, 374D Stanley Hall #3220, University of California at Berkeley, Berkeley, CA 94720
| | - James M. Berger
- Quantitative Biology Institute and Dept. of Molecular and Cell Biology, 374D Stanley Hall #3220, University of California at Berkeley, Berkeley, CA 94720
| |
Collapse
|
174
|
Matsushima Y, Farr CL, Fan L, Kaguni LS. Physiological and biochemical defects in carboxyl-terminal mutants of mitochondrial DNA helicase. J Biol Chem 2008; 283:23964-71. [PMID: 18593709 DOI: 10.1074/jbc.m803674200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA helicase, also called Twinkle, is essential for mtDNA maintenance. Its helicase domain shares high homology with helicases from superfamily 4. Structural analyses of helicases from this family indicate that carboxyl-terminal residues contribute to NTP hydrolysis required for translocation and DNA unwinding, yet genetic and biochemical information is very limited. Here, we evaluate the effects of overexpression in Drosophila cell culture of variants carrying a series of deletion and alanine substitution mutations in the carboxyl terminus and identify critical residues between amino acids 572 and 596 of the 613 amino acid polypeptide that are essential for mitochondrial DNA helicase function in vivo. Likewise, amino acid substitution mutants K574A, R576A, Y577A, F588A, and F595A show dose-dependent dominant-negative phenotypes. Arg-576 and Phe-588 are analogous to the arginine finger and base stack of other helicases, including the bacteriophage T7 gene 4 protein and bacterial DnaB helicase, respectively. We show here that representative human recombinant proteins that are analogous to the alanine substitution mutants exhibit defects in nucleotide hydrolysis. Our findings may be applicable to understand the role of the carboxyl-terminal region in superfamily 4 DNA helicases in general.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | | | |
Collapse
|
175
|
Evidence for a structural relationship between BRCT domains and the helicase domains of the replication initiators encoded by the Polyomaviridae and Papillomaviridae families of DNA tumor viruses. J Virol 2008; 82:8849-62. [PMID: 18579587 DOI: 10.1128/jvi.00553-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of DNA tumor viruses have provided important insights into fundamental cellular processes and oncogenic transformation. They have revealed, for example, that upon expression of virally encoded proteins, cellular pathways involved in DNA repair and cell cycle control are disrupted. Herein, evidence is presented that BRCT-related regions are present in the helicase domains of the viral initiators encoded by the Polyomaviridae and Papillomaviridae viral families. Of interest, BRCT domains in cellular proteins recruit factors involved in diverse pathways, including DNA repair and the regulation of cell cycle progression. Therefore, the viral BRCT-related regions may compete with host BRCT domains for particular cellular ligands, a process that would help to explain the pleiotropic effects associated with infections with many DNA tumor viruses.
Collapse
|
176
|
Communication between subunits critical to DNA binding by hexameric helicase of bacteriophage T7. Proc Natl Acad Sci U S A 2008; 105:8908-13. [PMID: 18574147 DOI: 10.1073/pnas.0802732105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA helicase encoded by bacteriophage T7 consists of six identical subunits that form a ring through which the DNA passes. Binding of ssDNA is a prior step to translocation and unwinding of DNA by the helicase. Arg-493 is located at a conserved structural motif within the interior cavity of the helicase and plays an important role in DNA binding. Replacement of Arg-493 with lysine or histidine reduces the ability of the helicase to bind DNA, hydrolyze dTTP, and unwind dsDNA. In contrast, replacement of Arg-493 with glutamine abolishes these activities, suggesting that positive charge at the position is essential. Based on the crystallographic structure of the helicase, Asp-468 is in the range to form a hydrogen bonding with Arg-493 on the adjacent subunit. In vivo complementation results indicate that an interaction between Asp-468 and Arg-493 is critical for a functional helicase and those residues can be swapped without losing the helicase activity. This study suggests that hydrogen bonding between Arg-493 and Asp-468 from adjacent subunits is critical for DNA binding ability of the T7 hexameric helicase.
Collapse
|
177
|
Biswas T, Tsodikov OV. Hexameric ring structure of the N-terminal domain of Mycobacterium tuberculosis DnaB helicase. FEBS J 2008; 275:3064-71. [PMID: 18479467 DOI: 10.1111/j.1742-4658.2008.06460.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hexameric DnaB helicase unwinds the DNA double helix during replication of genetic material in bacteria. DnaB is an essential bacterial protein; therefore, it is an important potential target for antibacterial drug discovery. We report a crystal structure of the N-terminal region of DnaB from the pathogen Mycobacterium tuberculosis (MtDnaBn), determined at 2.0 A resolution. This structure provides atomic resolution details of formation of the hexameric ring of DnaB by two distinct interfaces. An extensive hydrophobic interface stabilizes a dimer of MtDnaBn by forming a four-helix bundle. The other, less extensive, interface is formed between the dimers, connecting three of them into a hexameric ring. On the basis of crystal packing interactions between MtDnaBn rings, we suggest a model of a helicase-primase complex that explains previously observed effects of DnaB mutations on DNA priming.
Collapse
Affiliation(s)
- Tapan Biswas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
178
|
Lohman TM, Tomko EJ, Wu CG. Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 2008; 9:391-401. [PMID: 18414490 DOI: 10.1038/nrm2394] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Helicases and nucleic acid translocases are motor proteins that have essential roles in nearly all aspects of nucleic acid metabolism, ranging from DNA replication to chromatin remodelling. Fuelled by the binding and hydrolysis of nucleoside triphosphates, helicases move along nucleic acid filaments and separate double-stranded DNA into their complementary single strands. Recent evidence indicates that the ability to simply translocate along single-stranded DNA is, in many cases, insufficient for helicase activity. For some of these enzymes, self assembly and/or interactions with accessory proteins seem to regulate their translocase and helicase activities.
Collapse
Affiliation(s)
- Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
179
|
Enemark EJ, Joshua-Tor L. On helicases and other motor proteins. Curr Opin Struct Biol 2008; 18:243-57. [PMID: 18329872 PMCID: PMC2396192 DOI: 10.1016/j.sbi.2008.01.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 01/30/2023]
Abstract
Helicases are molecular machines that utilize energy derived from ATP hydrolysis to move along nucleic acids and to separate base-paired nucleotides. The movement of the helicase can also be described as a stationary helicase that pumps nucleic acid. Recent structural data for the hexameric E1 helicase of papillomavirus in complex with single-stranded DNA and MgADP has provided a detailed atomic and mechanistic picture of its ATP-driven DNA translocation. The structural and mechanistic features of this helicase are compared with the hexameric helicase prototypes T7gp4 and SV40 T-antigen. The ATP-binding site architectures of these proteins are structurally similar to the sites of other prototypical ATP-driven motors such as F1-ATPase, suggesting related roles for the individual site residues in the ATPase activity.
Collapse
Affiliation(s)
- Eric J. Enemark
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| | - Leemor Joshua-Tor
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
| |
Collapse
|
180
|
Gribun A, Cheung KLY, Huen J, Ortega J, Houry WA. Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex. J Mol Biol 2008; 376:1320-33. [PMID: 18234224 DOI: 10.1016/j.jmb.2007.12.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/17/2007] [Accepted: 12/19/2007] [Indexed: 11/20/2022]
Abstract
Rvb1 and Rvb2 are highly conserved proteins present in archaea and eukaryotes. These proteins are members of a large superfamily of ATPases associated with diverse cellular activities--the AAA(+) superfamily. The Rvbs have been found in multiprotein complexes that have wide ranges of functions, including DNA repair, transcription, chromatin remodeling, ribosomal RNA processing, and small nucleolar RNA accumulation. Here we show that yeast Rvb1 and Rvb2 form a heterohexameric ring structure rather than the double-hexameric ring structure proposed to be formed by the human proteins. The yeast Rvb1/2 complex has enhanced ATPase activity compared with the individual Rvb proteins; furthermore, the ATPase activity of the Rvb1/2 complex is further increased in the presence of double-stranded DNA with 5' or 3' overhangs. The yeast Rvb1/2 ring undergoes nucleotide-dependent conformational changes as observed by electron microscopy. In addition, consistent with a role for these proteins in chromatin remodeling and DNA repair, the yeast Rvb1/2 complex exhibits DNA helicase activity with a preference for unwinding in the 5'-to-3' direction. The individual Rvb proteins also exhibit helicase activity, albeit weaker than that of the Rvb1/2 complex. These results clearly establish the yeast Rvb1/2 complex as a heterohexameric ATP-dependent DNA helicase and highlight the possible roles played by the Rvb proteins within multiprotein complexes.
Collapse
Affiliation(s)
- Anna Gribun
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
181
|
Martin A, Baker TA, Sauer RT. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Mol Cell 2008; 29:441-50. [PMID: 18313382 PMCID: PMC2323458 DOI: 10.1016/j.molcel.2008.02.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/30/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
Abstract
ClpX, an archetypal proteolytic AAA+ unfoldase, must engage the ssrA tags of appropriate substrates prior to ATP-dependent unfolding and translocation of the denatured polypeptide into ClpP for degradation. Here, specificity-transplant and disulfide-crosslinking experiments reveal that the ssrA tag interacts with different loops that form the top, middle, and lower portions of the central channel of the ClpX hexamer. Our results support a two-step binding mechanism, in which the top loop serves as a specificity filter and the remaining loops form a binding site for the peptide tag relatively deep within the pore. Crosslinking experiments suggest a staggered arrangement of pore loops in the hexamer and nucleotide-dependent changes in pore-loop conformations. This mechanism of initial tag binding would allow ATP-dependent conformational changes in one or more pore loops to drive peptide translocation, force unfolding, and mediate threading of the denatured protein through the ClpX pore.
Collapse
Affiliation(s)
- Andreas Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
182
|
Werbeck ND, Schlee S, Reinstein J. Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB. J Mol Biol 2008; 378:178-90. [PMID: 18343405 DOI: 10.1016/j.jmb.2008.02.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 10/22/2022]
Abstract
The bacterial AAA+ protein ClpB and its eukaryotic homologue Hsp104 ensure thermotolerance of their respective organisms by reactivating aggregated proteins in cooperation with the Hsp70/Hsp40 chaperone system. Like many members of the AAA+ superfamily, the ClpB protomers form ringlike homohexameric complexes. The mechanical energy necessary to disentangle protein aggregates is provided by ATP hydrolysis at the two nucleotide-binding domains of each monomer. Previous studies on ClpB and Hsp104 show a complex interplay of domains and subunits resulting in homotypic and heterotypic cooperativity. Using mutations in the Walker A and Walker B nucleotide-binding motifs in combination with mixing experiments we investigated the degree of inter-subunit coupling with respect to different aspects of the ClpB working cycle. We find that subunits are tightly coupled with regard to ATPase and chaperone activity, but no coupling can be observed for ADP binding. Comparison of the data with statistical calculations suggests that for double Walker mutants, approximately two in six subunits are sufficient to abolish chaperone and ATPase activity completely. In further experiments, we determined the dynamics of subunit reshuffling. Our results show that ClpB forms a very dynamic complex, reshuffling subunits on a timescale comparable to steady-state ATP hydrolysis. We propose that this could be a protection mechanism to prevent very stable aggregates from becoming suicide inhibitors for ClpB.
Collapse
Affiliation(s)
- Nicolas D Werbeck
- Max-Planck-Institute for Medical Research, Department of Biomolecular Mechanisms, Jahnstrasse 29 D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
183
|
Yang Y, Dou SX, Ren H, Wang PY, Zhang XD, Qian M, Pan BY, Xi XG. Evidence for a functional dimeric form of the PcrA helicase in DNA unwinding. Nucleic Acids Res 2008; 36:1976-89. [PMID: 18276648 PMCID: PMC2346599 DOI: 10.1093/nar/gkm1174] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PcrA helicase, a member of the superfamily 1, is an essential enzyme in many bacteria. The first crystal structures of helicases were obtained with PcrA. Based on structural and biochemical studies, it was proposed and then generally believed that PcrA is a monomeric helicase that unwinds DNA by an inchworm mechanism. But a functional state of PcrA from unwinding kinetics studies has been lacking. In this work, we studied the kinetic mechanism of PcrA-catalysed DNA unwinding with fluorometric stopped-flow method under both single- and multiple-turnover conditions. It was found that the PcrA-catalysed DNA unwinding depended strongly on the PcrA concentration as well as on the 3′-ssDNA tail length of the substrate, indicating that an oligomerization was indispensable for efficient unwinding. Study of the effect of ATP concentration on the unwinding rate gave a Hill coefficient of ∼2, suggesting strongly that PcrA functions as a dimer. It was further determined that PcrA unwound DNA with a step size of 4 bp and a rate of ∼9 steps per second. Surprisingly, it was observed that PcrA unwound 12-bp duplex substrates much less efficiently than 16-bp ones, highlighting the importance of protein-DNA duplex interaction in the helicase activity. From the present studies, it is concluded that PcrA is a dimeric helicase with a low processivity in vitro. Implications of the experimental results for the DNA unwinding mechanism of PcrA are discussed.
Collapse
Affiliation(s)
- Ye Yang
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Kainov DE, Mancini EJ, Telenius J, Lísal J, Grimes JM, Bamford DH, Stuart DI, Tuma R. Structural basis of mechanochemical coupling in a hexameric molecular motor. J Biol Chem 2008; 283:3607-3617. [PMID: 18057007 DOI: 10.1074/jbc.m706366200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The P4 protein of bacteriophage phi12 is a hexameric molecular motor closely related to superfamily 4 helicases. P4 converts chemical energy from ATP hydrolysis into mechanical work, to translocate single-stranded RNA into a viral capsid. The molecular basis of mechanochemical coupling, i.e. how small approximately 1 A changes in the ATP-binding site are amplified into nanometer scale motion along the nucleic acid, is not understood at the atomic level. Here we study in atomic detail the mechanochemical coupling using structural and biochemical analyses of P4 mutants. We show that a conserved region, consisting of superfamily 4 helicase motifs H3 and H4 and loop L2, constitutes the moving lever of the motor. The lever tip encompasses an RNA-binding site that moves along the mechanical reaction coordinate. The lever is flanked by gamma-phosphate sensors (Asn-234 and Ser-252) that report the nucleotide state of neighboring subunits and control the lever position. Insertion of an arginine finger (Arg-279) into the neighboring catalytic site is concomitant with lever movement and commences ATP hydrolysis. This ensures cooperative sequential hydrolysis that is tightly coupled to mechanical motion. Given the structural conservation, the mutated residues may play similar roles in other hexameric helicases and related molecular motors.
Collapse
Affiliation(s)
- Denis E Kainov
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter P. O. Box 65, Helsinki FIN-00014, Finland
| | - Erika J Mancini
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Jelena Telenius
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter P. O. Box 65, Helsinki FIN-00014, Finland
| | - Jiří Lísal
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter P. O. Box 65, Helsinki FIN-00014, Finland
| | - Jonathan M Grimes
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Dennis H Bamford
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter P. O. Box 65, Helsinki FIN-00014, Finland
| | - David I Stuart
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, United Kingdom.
| | - Roman Tuma
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter P. O. Box 65, Helsinki FIN-00014, Finland.
| |
Collapse
|
185
|
Bazzicalupi C, Bencini A, Bianchi A, Faggi E, Giorgi C, Santarelli S, Valtancoli B. Polyfunctional binding of thymidine 5'-triphosphate with a synthetic polyammonium receptor containing aromatic groups. Crystal structure of the nucleotide-receptor adduct. J Am Chem Soc 2008; 130:2440-1. [PMID: 18247619 DOI: 10.1021/ja7106977] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carla Bazzicalupi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | | | | | | | | | | | | |
Collapse
|
186
|
The structure of a DnaB-family replicative helicase and its interactions with primase. Nat Struct Mol Biol 2007; 15:94-100. [PMID: 18157148 DOI: 10.1038/nsmb1356] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 12/04/2007] [Indexed: 11/08/2022]
Abstract
Helicases are essential enzymes for DNA replication, a fundamental process in all living organisms. The DnaB family are hexameric replicative helicases that unwind duplex DNA and coordinate with RNA primase and other proteins at the replication fork in prokaryotes. Here, we report the full-length crystal structure of G40P, a DnaB family helicase. The hexamer complex reveals an unusual architectural feature and a new type of assembly mechanism. The hexamer has two tiers: a three-fold symmetric N-terminal tier and a six-fold symmetric C-terminal tier. Monomers with two different conformations, termed cis and trans, come together to provide a topological solution for the dual symmetry within a hexamer. Structure-guided mutational studies indicate an important role for the N-terminal tier in binding primase and regulating primase-mediated stimulation of helicase activity. This study provides insights into the structural and functional interplay between G40P helicase and DnaG primase.
Collapse
|
187
|
Bailey S, Eliason WK, Steitz TA. Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science 2007; 318:459-63. [PMID: 17947583 DOI: 10.1126/science.1147353] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The complex between the DnaB helicase and the DnaG primase unwinds duplex DNA at the eubacterial replication fork and synthesizes the Okazaki RNA primers. The crystal structures of hexameric DnaB and its complex with the helicase binding domain (HBD) of DnaG reveal that within the hexamer the two domains of DnaB pack with strikingly different symmetries to form a distinct two-layered ring structure. Each of three bound HBDs stabilizes the DnaB hexamer in a conformation that may increase its processivity. Three positive, conserved electrostatic patches on the N-terminal domain of DnaB may also serve as a binding site for DNA and thereby guide the DNA to a DnaG active site.
Collapse
Affiliation(s)
- Scott Bailey
- Department of Molecular Biophysics and Biochemistry and Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
188
|
Moreau MJ, McGeoch AT, Lowe AR, Itzhaki LS, Bell SD. ATPase site architecture and helicase mechanism of an archaeal MCM. Mol Cell 2007; 28:304-14. [PMID: 17964268 DOI: 10.1016/j.molcel.2007.08.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/27/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
Abstract
The subunits of the presumptive replicative helicase of archaea and eukaryotes, the MCM complex, are members of the AAA+ (ATPase-associated with various cellular activities) family of ATPases. Proteins within this family harness the chemical energy of ATP hydrolysis to perform a broad range of cellular processes. Here, we investigate the function of the AAA+ site in the mini-chromosome maintenance (MCM) complex of the archaeon Sulfolobus solfataricus (SsoMCM). We find that SsoMCM has an unusual active-site architecture, with a unique blend of features previously found only in distinct families of AAA+ proteins. We additionally describe a series of mutant doping experiments to investigate the mechanistic basis of intersubunit coordination in the generation of helicase activity. Our results indicate that MCM can tolerate catalytically inactive subunits and still function as a helicase, leading us to propose a semisequential model for helicase activity of this complex.
Collapse
Affiliation(s)
- Matthew J Moreau
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge, CB2 2XZ, UK
| | | | | | | | | |
Collapse
|
189
|
Sanders CM, Kovalevskiy OV, Sizov D, Lebedev AA, Isupov MN, Antson AA. Papillomavirus E1 helicase assembly maintains an asymmetric state in the absence of DNA and nucleotide cofactors. Nucleic Acids Res 2007; 35:6451-7. [PMID: 17881379 PMCID: PMC2095799 DOI: 10.1093/nar/gkm705] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/25/2007] [Accepted: 08/26/2007] [Indexed: 01/07/2023] Open
Abstract
Concerted, stochastic and sequential mechanisms of action have been proposed for different hexameric AAA+ molecular motors. Here we report the crystal structure of the E1 helicase from bovine papillomavirus, where asymmetric assembly is for the first time observed in the absence of nucleotide cofactors and DNA. Surprisingly, the ATP-binding sites adopt specific conformations linked to positional changes in the DNA-binding hairpins, which follow a wave-like trajectory, as observed previously in the E1/DNA/ADP complex. The protein's assembly thus maintains such an asymmetric state in the absence of DNA and nucleotide cofactors, allowing consideration of the E1 helicase action as the propagation of a conformational wave around the protein ring. The data imply that the wave's propagation within the AAA+ domains is not necessarily coupled with a strictly sequential hydrolysis of ATP. Since a single ATP hydrolysis event would affect the whole hexamer, such events may simply serve to rectify the direction of the wave's motion.
Collapse
Affiliation(s)
- Cyril M. Sanders
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia, York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK, Taras Shevchenko Kiev State University, Biology Faculty, Virology Department, Glushkova Avenue 2, 03127 Kiev, Ukraine and Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Oleg V. Kovalevskiy
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia, York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK, Taras Shevchenko Kiev State University, Biology Faculty, Virology Department, Glushkova Avenue 2, 03127 Kiev, Ukraine and Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Dmytro Sizov
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia, York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK, Taras Shevchenko Kiev State University, Biology Faculty, Virology Department, Glushkova Avenue 2, 03127 Kiev, Ukraine and Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Andrey A. Lebedev
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia, York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK, Taras Shevchenko Kiev State University, Biology Faculty, Virology Department, Glushkova Avenue 2, 03127 Kiev, Ukraine and Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Michail N. Isupov
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia, York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK, Taras Shevchenko Kiev State University, Biology Faculty, Virology Department, Glushkova Avenue 2, 03127 Kiev, Ukraine and Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Alfred A. Antson
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia, York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK, Taras Shevchenko Kiev State University, Biology Faculty, Virology Department, Glushkova Avenue 2, 03127 Kiev, Ukraine and Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
190
|
Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 2007; 76:23-50. [PMID: 17506634 DOI: 10.1146/annurev.biochem.76.052305.115300] [Citation(s) in RCA: 987] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helicases and translocases are a ubiquitous, highly diverse group of proteins that perform an extraordinary variety of functions in cells. Consequently, this review sets out to define a nomenclature for these enzymes based on current knowledge of sequence, structure, and mechanism. Using previous definitions of helicase families as a basis, we delineate six superfamilies of enzymes, with examples of crystal structures where available, and discuss these structures in the context of biochemical data to outline our present understanding of helicase and translocase activity. As a result, each superfamily is subdivided, where appropriate, on the basis of mechanistic understanding, which we hope will provide a framework for classification of new superfamily members as they are discovered and characterized.
Collapse
Affiliation(s)
- Martin R Singleton
- Macromolecular Structure and Function Laboratory, The London Research Institute, London WC2A 3PX, United Kingdom.
| | | | | |
Collapse
|
191
|
Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg A. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol Cell 2007; 27:731-44. [PMID: 17803938 PMCID: PMC2083707 DOI: 10.1016/j.molcel.2007.06.033] [Citation(s) in RCA: 424] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 03/29/2007] [Accepted: 06/21/2007] [Indexed: 10/22/2022]
Abstract
The 20S proteasome functions in protein degradation in eukaryotes together with the 19S ATPases or in archaea with the homologous PAN ATPase complex. These ATPases contain a conserved C-terminal hydrophobic-tyrosine-X motif (HbYX). We show that these residues are essential for PAN to associate with the 20S and open its gated channel for substrate entry. Upon ATP binding, these C-terminal residues bind to pockets between the 20S's alpha subunits. Seven-residue or longer peptides from PAN's C terminus containing the HbYX motif also bind to these sites and induce gate opening in the 20S. Gate opening could be induced by C-terminal peptides from the 19S ATPase subunits, Rpt2, and Rpt5, but not by ones from PA28/26, which lack the HbYX motif and cause gate opening by distinct mechanisms. C-terminal residues in the 19S ATPases were also shown to be critical for gating and stability of 26S proteasomes. Thus, the C termini of the proteasomal ATPases function like a "key in a lock" to induce gate opening and allow substrate entry.
Collapse
Affiliation(s)
- David M. Smith
- Harvard Medical School, Department of Cell Biology, 240 Longwood Ave. Boston, Massachusetts 02115
| | - Shih-Chung Chang
- Harvard Medical School, Department of Cell Biology, 240 Longwood Ave. Boston, Massachusetts 02115
| | - Soyeon Park
- Harvard Medical School, Department of Cell Biology, 240 Longwood Ave. Boston, Massachusetts 02115
| | - Daniel Finley
- Harvard Medical School, Department of Cell Biology, 240 Longwood Ave. Boston, Massachusetts 02115
| | | | - Alfred Goldberg
- Harvard Medical School, Department of Cell Biology, 240 Longwood Ave. Boston, Massachusetts 02115
| |
Collapse
|
192
|
Model for RuvAB-mediated branch migration of Holliday junctions. J Theor Biol 2007; 249:566-73. [PMID: 17919660 DOI: 10.1016/j.jtbi.2007.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 08/27/2007] [Accepted: 08/27/2007] [Indexed: 11/21/2022]
Abstract
During RuvAB-mediated Holliday-junction migration two opposite arms of double-stranded DNA (dsDNA) are driven to translocate unidirectional by two respective ring-like hexameric RuvB proteins. However, how the RuvB protein, powered by ATP hydrolysis, drives unidirectional translocation of dsDNA is not clear. Here a model is presented for this mechanochemical-coupling mechanism. In the model, the unidirectional translocation is resulted from both the ATP hydrolysis-induced rotation (power stroke) of the RuvB subunits and the passage of the strong DNA binding from the previous to next RuvB subunits during the sequential ATPase activities around the ring. Using the model, the relationship between the power-stroke size, the step size of DNA translocation and the ratio of the rotational rate of DNA over that of RuvB relative to RuvA is predicted.
Collapse
|
193
|
Chang YP, Wang G, Bermudez V, Hurwitz J, Chen XS. Crystal structure of the GINS complex and functional insights into its role in DNA replication. Proc Natl Acad Sci U S A 2007; 104:12685-90. [PMID: 17652513 PMCID: PMC1937527 DOI: 10.1073/pnas.0705558104] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The GINS complex, which contains the four subunits Sld5, Psf1, Psf2, and Psf3, is essential for both the initiation and progression of DNA replication in eukaryotes. GINS associates with the MCM2-7 complex and Cdc45 to activate the eukaryotic minichromosome maintenance helicase. It also appears to interact with and stimulate the polymerase activities of DNA polymerase epsilon and the DNA polymerase alpha-primase complex. To further understand the functional role of GINS, we determined the crystal structure of the full-length human GINS heterotetramer. Each of the four subunits has a major domain composed of an alpha-helical bundle-like structure. With the exception of Psf1, each of the other subunits has a small domain containing a three-stranded beta-sheet core. Each full-length protein in the crystal has unstructured regions that are all located on the surface of GINS and are probably involved in its interaction with other replication factors. The four subunits contact each other mainly through alpha-helices to form a ring-like tetramer with a central pore. This pore is partially plugged by a 16-residue peptide from the Psf3 N terminus, which is unique to some eukaryotic Psf3 proteins and is not required for tetramer formation. Removal of these N-terminal 16 residues of Psf3 from the GINS tetramer increases the opening of the pore by 80%, suggesting a mechanism by which accessibility to the pore may be regulated. The structural data presented here indicate that the GINS tetramer is a highly stable complex with multiple flexible surface regions.
Collapse
Affiliation(s)
- Y. Paul Chang
- *Graduate Program in Genetic, Molecular, and Cell Biology, and
- Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089; and
| | - Ganggang Wang
- Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089; and
| | - Vladimir Bermudez
- Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, Box 97, New York, NY 10021
| | - Jerard Hurwitz
- Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, Box 97, New York, NY 10021
- To whom correspondence may be addressed. E-mail: or
| | - Xiaojiang S. Chen
- *Graduate Program in Genetic, Molecular, and Cell Biology, and
- Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
194
|
Bailey S, Eliason WK, Steitz TA. The crystal structure of the Thermus aquaticus DnaB helicase monomer. Nucleic Acids Res 2007; 35:4728-36. [PMID: 17606462 PMCID: PMC1950529 DOI: 10.1093/nar/gkm507] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ring-shaped hexameric DnaB helicase unwinds duplex DNA at the replication fork of eubacteria. We have solved the crystal structure of the full-length Thermus aquaticus DnaB monomer, or possibly dimer, at 2.9 A resolution. DnaB is a highly flexible two domain protein. The C-terminal domain exhibits a RecA-like core fold and contains all the conserved sequence motifs that are characteristic of the DnaB helicase family. The N-terminal domain contains an additional helical hairpin that makes it larger than previously appreciated. Several DnaB mutations that modulate its interaction with primase are found in this hairpin. The similarity in the fold of the DnaB N-terminal domain with that of the C-terminal helicase-binding domain (HBD) of the DnaG primase also includes this hairpin. Comparison of hexameric homology models of DnaB with the structure of the papillomavirus E1 helicase suggests the two helicases may function through different mechanisms despite their sharing a common ancestor.
Collapse
Affiliation(s)
- Scott Bailey
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | - William K. Eliason
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Thomas A. Steitz
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
- *To whom correspondence should be addressed.+1 203 432 5619+1 203 432 3282
| |
Collapse
|
195
|
Johnson DS, Bai L, Smith BY, Patel SS, Wang MD. Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 2007; 129:1299-309. [PMID: 17604719 PMCID: PMC2699903 DOI: 10.1016/j.cell.2007.04.038] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 03/02/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
Helicases are molecular motors that separate DNA strands for efficient replication of genomes. We probed the kinetics of individual ring-shaped T7 helicase molecules as they unwound double-stranded DNA (dsDNA) or translocated on single-stranded DNA (ssDNA). A distinctive DNA sequence dependence was observed in the unwinding rate that correlated with the local DNA unzipping energy landscape. The unwinding rate increased approximately 10-fold (approaching the ssDNA translocation rate) when a destabilizing force on the DNA fork junction was increased from 5 to 11 pN. These observations reveal a fundamental difference between the mechanisms of ring-shaped and nonring-shaped helicases. The observed force-velocity and sequence dependence are not consistent with a simple passive unwinding model. However, an active unwinding model fully supports the data even though the helicase on its own does not unwind at its optimal rate. This work offers insights into possible ways helicase activity is enhanced by associated proteins.
Collapse
Affiliation(s)
- Daniel S. Johnson
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | - Lu Bai
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | - Benjamin Y. Smith
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | - Smita S. Patel
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | - Michelle D. Wang
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
196
|
Tato I, Matilla I, Arechaga I, Zunzunegui S, de la Cruz F, Cabezon E. The ATPase activity of the DNA transporter TrwB is modulated by protein TrwA: implications for a common assembly mechanism of DNA translocating motors. J Biol Chem 2007; 282:25569-76. [PMID: 17599913 DOI: 10.1074/jbc.m703464200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conjugative systems contain an essential integral membrane protein involved in DNA transport called the Type IV coupling protein (T4CP). The T4CP of conjugative plasmid R388 is TrwB, a DNA-dependent ATPase. Biochemical and structural data suggest that TrwB uses energy released from ATP hydrolysis to pump DNA through its central channel by a mechanism similar to that used by F1-ATPase or ring helicases. For DNA transport, TrwB couples the relaxosome (a DNA-protein complex) to the secretion channel. In this work we show that TrwA, a tetrameric oriT DNA-binding protein and a component of the R388 relaxosome, stimulates TrwBDeltaN70 ATPase activity, revealing a specific interaction between the two proteins. This interaction occurs via the TrwA C-terminal domain. A 68-kDa complex between TrwBDeltaN70 and TrwA C-terminal domain was observed by gel filtration chromatography, consistent with a 1:1 stoichiometry. Additionally, electron microscopy revealed the formation of oligomeric TrwB complexes in the presence, but not in the absence, of TrwA protein. TrwBDeltaN70 ATPase activity in the presence of TrwA was further enhanced by DNA. Interestingly, maximal ATPase rates were achieved with TrwA and different types of dsDNA substrates. This is consistent with a role of TrwA in facilitating the interaction between TrwB and DNA. Our findings provide a new insight into the mechanism by which TrwB recruits the relaxosome for DNA transport. The process resembles the mechanism used by other DNA-dependent molecular motors, such as the RuvA/RuvB system, to be targeted to the DNA followed by hexamer assembly.
Collapse
Affiliation(s)
- Irantzu Tato
- Departamento de Biología Molecular, Universidad de Cantabria (UC) e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), 39011 Santander, Spain
| | | | | | | | | | | |
Collapse
|
197
|
Wanrooij S, Goffart S, Pohjoismäki JL, Yasukawa T, Spelbrink JN. Expression of catalytic mutants of the mtDNA helicase Twinkle and polymerase POLG causes distinct replication stalling phenotypes. Nucleic Acids Res 2007; 35:3238-51. [PMID: 17452351 PMCID: PMC1904276 DOI: 10.1093/nar/gkm215] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanism of mitochondrial DNA replication is a subject of intense debate. One model proposes a strand-asynchronous replication in which both strands of the circular genome are replicated semi-independently while the other model proposes both a bidirectional coupled leading- and lagging-strand synthesis mode and a unidirectional mode in which the lagging-strand is initially laid-down as RNA by an unknown mechanism (RITOLS mode). Both the strand-asynchronous and RITOLS model have in common a delayed synthesis of the DNA-lagging strand. Mitochondrial DNA is replicated by a limited set of proteins including DNA polymerase gamma (POLG) and the helicase Twinkle. Here, we report the effects of expression of various catalytically deficient mutants of POLG1 and Twinkle in human cell culture. Both groups of mutants reduced mitochondrial DNA copy number by severe replication stalling. However, the analysis showed that while induction of POLG1 mutants still displayed delayed lagging-strand synthesis, Twinkle-induced stalling resulted in maturated, essentially fully double-stranded DNA intermediates. In the latter case, limited inhibition of POLG with dideoxycytidine restored the delay between leading- and lagging-strand synthesis. The observed cause-effect relationship suggests that Twinkle-induced stalling increases lagging-strand initiation events and/or maturation mimicking conventional strand-coupled replication.
Collapse
Affiliation(s)
- Sjoerd Wanrooij
- Institute of Medical Technology and Tampere University Hospital, Tampere, Finland and MRC-Dunn Human Nutrition Unit, Wellcome Trust-MRC Building, Cambridge, UK
| | - Steffi Goffart
- Institute of Medical Technology and Tampere University Hospital, Tampere, Finland and MRC-Dunn Human Nutrition Unit, Wellcome Trust-MRC Building, Cambridge, UK
| | - Jaakko L.O. Pohjoismäki
- Institute of Medical Technology and Tampere University Hospital, Tampere, Finland and MRC-Dunn Human Nutrition Unit, Wellcome Trust-MRC Building, Cambridge, UK
| | - Takehiro Yasukawa
- Institute of Medical Technology and Tampere University Hospital, Tampere, Finland and MRC-Dunn Human Nutrition Unit, Wellcome Trust-MRC Building, Cambridge, UK
| | - Johannes N. Spelbrink
- Institute of Medical Technology and Tampere University Hospital, Tampere, Finland and MRC-Dunn Human Nutrition Unit, Wellcome Trust-MRC Building, Cambridge, UK
- *To whom correspondence should be addressed: Tel: +358 3 35518598; Fax: +358 3 35517710;
| |
Collapse
|
198
|
Xie P. On translocation mechanism of ring-shaped helicase along single-stranded DNA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:737-48. [PMID: 17499029 DOI: 10.1016/j.bbapap.2007.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/16/2007] [Accepted: 04/05/2007] [Indexed: 11/28/2022]
Abstract
The ring-shaped helicases represent one important group of helicases that can translocate along single-stranded (ss) DNA and unwinding double-stranded (ds) DNA by using the energy derived from NTP binding and hydrolysis. Despite intensive studies, the mechanism by which the ring-shaped helicase translocates along ssDNA and unwinds dsDNA remains undetermined. In order to understand their chemomechanical-coupling mechanism, two models on NTPase activities of the hexamers in the presence of DNA have been studied here. One model is assumed that, of the six nucleotide-binding sites, three are noncatalytic and three are catalytic. The other model is assumed that all the six nucleotide-binding sites are catalytic. In terms of the sequential NTPase activity around the ring and the previous determined crystal structure of bacteriophage T7 helicase it is shown that the obtained mechanical behaviors such as the ssDNA-translocation size and DNA-unwinding size per dTTPase cycle using the former model are in good quantitative agreement with the previous experimental results for T7 helicase. Moreover, the acceleration of DNA unwinding rate with the stimulation of DNA synthesis by DNA polymerase can also be well explained by using the former model. In contrast, the ssDNA-translocation size and DNA-unwinding size per dTTPase cycle obtained by using the latter model are not consistent with the experimental results for T7 helicase. Thus it is preferred that the former model is the appropriate one for the T7 helicase. Furthermore, using the former model some dynamic behaviors such as the rotational speeds of DNA relative to the T7 helicase when translocation along ssDNA and when unwinding dsDNA have been predicted, which are expected to test in order to further verify the model.
Collapse
Affiliation(s)
- Ping Xie
- Department of Physics, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
199
|
Ziebarth TD, Farr CL, Kaguni LS. Modular architecture of the hexameric human mitochondrial DNA helicase. J Mol Biol 2007; 367:1382-91. [PMID: 17324440 PMCID: PMC2711006 DOI: 10.1016/j.jmb.2007.01.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 01/19/2007] [Indexed: 11/29/2022]
Abstract
We have probed the structure of the human mitochondrial DNA helicase, an enzyme that uses the energy of nucleotide hydrolysis to unwind duplex DNA during mitochondrial DNA replication. This novel helicase shares substantial amino acid sequence and functional similarities with the bacteriophage T7 primase-helicase. We show in velocity sedimentation and gel filtration analyses that the mitochondrial DNA helicase exists as a hexamer. Limited proteolysis by trypsin results in the production of several stable fragments, and N-terminal sequencing reveals distinct N and C-terminal polypeptides that represent minimal structural domains. Physical analysis of the proteolytic products defines the region required to maintain oligomeric structure to reside within amino acid residues approximately 405-590. Truncations of the N and C termini affect differentially DNA-dependent ATPase activity, and whereas a C-terminal domain polypeptide is functional, an N-terminal domain polypeptide lacks ATPase activity. Sequence similarity and secondary structural alignments combined with biochemical data suggest that amino acid residue R609 serves as the putative arginine finger that is essential for ATPase activity in ring helicases. The hexameric conformation and modular architecture revealed in our study document that the mitochondrial DNA helicase and bacteriophage T7 primase-helicase share physical features. Our findings place the mitochondrial DNA helicase firmly in the DnaB-like family of replicative DNA helicases.
Collapse
Affiliation(s)
- Tawn D. Ziebarth
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48823 USA
| | - Carol L. Farr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48823 USA
| | - Laurie S. Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48823 USA
| |
Collapse
|
200
|
Chandran V, Poljak L, Vanzo NF, Leroy A, Miguel RN, Fernandez-Recio J, Parkinson J, Burns C, Carpousis AJ, Luisi BF. Recognition and cooperation between the ATP-dependent RNA helicase RhlB and ribonuclease RNase E. J Mol Biol 2007; 367:113-32. [PMID: 17234211 PMCID: PMC7610992 DOI: 10.1016/j.jmb.2006.12.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Revised: 11/26/2006] [Accepted: 12/07/2006] [Indexed: 12/21/2022]
Abstract
The Escherichia coli protein RhlB is an ATP-dependent motor that unfolds structured RNA for destruction by partner ribonucleases. In E. coli, and probably many other related gamma-proteobacteria, RhlB associates with the essential endoribonuclease RNase E as part of the multi-enzyme RNA degradosome assembly. The interaction with RNase E boosts RhlB's ATPase activity by an order of magnitude. Here, we examine the origins and implications of this effect. The location of the interaction sites on both RNase E and RhlB are refined and analysed using limited protease digestion, domain cross-linking and homology modelling. These data indicate that RhlB's carboxy-terminal RecA-like domain engages a segment of RNase E that is no greater than 64 residues. The interaction between RhlB and RNase E has two important consequences: first, the interaction itself stimulates the unwinding and ATPase activities of RhlB; second, RhlB gains proximity to two RNA-binding sites on RNase E, with which it cooperates to unwind RNA. Our homology model identifies a pattern of residues in RhlB that may be key for recognition of RNase E and which may communicate the activating effects. Our data also suggest that the association with RNase E may partially repress the RNA-binding activity of RhlB. This repression may in fact permit the interplay of the helicase and adjacent RNA binding segments as part of a process that steers substrates to either processing or destruction, depending on context, within the RNA degradosome assembly.
Collapse
Affiliation(s)
- Vidya Chandran
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Leonora Poljak
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Nathalie F. Vanzo
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Anne Leroy
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Ricardo Núñez Miguel
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Juan Fernandez-Recio
- Molecular Modelling and Bioinformatics Unit, Institute of Biomedical Research, Parc Cientific de Barcelona (IRB-PCB), C/Josep Samitier 1–5, 08028 Barcelona, Spain
| | - James Parkinson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Christopher Burns
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA
| | - Agamemnon J. Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|