151
|
Mechanism to control the cell lysis and the cell survival strategy in stationary phase under heat stress. SPRINGERPLUS 2015; 4:599. [PMID: 26543734 PMCID: PMC4627973 DOI: 10.1186/s40064-015-1415-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 10/07/2015] [Indexed: 11/10/2022]
Abstract
An array of stress signals triggering the bacterial cellular stress response is well known in Escherichia coli and other bacteria. Heat stress is usually sensed through the misfolded outer membrane porin (OMP) precursors in the periplasm, resulting in the activation of σ(E) (encoded by rpoE), which binds to RNA polymerase to start the transcription of genes required for responding against the heat stress signal. At the elevated temperatures, σ(E) also serves as the transcription factor for σ(H) (the main heat shock sigma factor, encoded by rpoH), which is involved in the expression of several genes whose products deal with the cytoplasmic unfolded proteins. Besides, oxidative stress in form of the reactive oxygen species (ROS) that accumulate due to heat stress, has been found to give rise to viable but non-culturable (VBNC) cells at the early stationary phase, which is in turn lysed by the σ(E)-dependent process. Such lysis of the defective cells may generate nutrients for the remaining population to survive with the capacity of formation of colony forming units (CFUs). σ(H) is also known to regulate the transcription of the major heat shock proteins (HSPs) required for heat shock response (HSR) resulting in cellular survival. Present review concentrated on the cellular survival against heat stress employing the harmonized impact of σ(E) and σ(H) regulons and the HSPs as well as their inter connectivity towards the maintenance of cellular survival.
Collapse
|
152
|
Leneveu-Jenvrin C, Bouffartigues E, Maillot O, Cornelis P, Feuilloley MGJ, Connil N, Chevalier S. Expression of the translocator protein (TSPO) from Pseudomonas fluorescens Pf0-1 requires the stress regulatory sigma factors AlgU and RpoH. Front Microbiol 2015; 6:1023. [PMID: 26441945 PMCID: PMC4585239 DOI: 10.3389/fmicb.2015.01023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is an evolutionary conserved protein that is found in many Eukarya, Archae, and Bacteria, in which it plays several important functions including for example membrane biogenesis, signaling, and stress response. A tspo homolog gene has been identified in several members of the Pseudomonas genus, among which the soil bacterium P. fluorescens Pf0-1. In this bacterium, the tspo gene is located in the vicinity of a putative hybrid histidine kinase-encoding gene. Since tspo has been involved in water stress related response in plants, we explored the effects of hyperosmolarity and temperature on P. fluorescens Pf0-1 tspo expression using a strategy based on lux-reporter fusions. We show that the two genes Pfl01_2810 and tspo are co-transcribed forming a transcription unit. The expression of this operon is growth phase-dependent and is increased in response to high concentrations of NaCl, sucrose and to a D-cycloserine treatment, which are conditions leading to activity of the major cell wall stress responsive extracytoplasmic sigma factor AlgU. Interestingly, the promoter region activity is strongly lowered in a P. aeruginosa algU mutant, suggesting that AlgU may be involved at least partly in the molecular mechanism leading to Pfl01_2810-tspo expression. In silico analysis of this promoter region failed to detect an AlgU consensus binding site; however, a putative binding site for the heat shock response RpoH sigma factor was detected. Accordingly, the promoter activity of the region containing this sequence is increased in response to high growth temperature and slightly lowered in a P. aeruginosa rpoH mutant strain. Taken together, our data suggest that P. fluorescens tspo gene may belong at least partly to the cell wall stress response.
Collapse
Affiliation(s)
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Nathalie Connil
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| |
Collapse
|
153
|
Zhang Z, Kuipers G, Niemiec Ł, Baumgarten T, Slotboom DJ, de Gier JW, Hjelm A. High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG. Microb Cell Fact 2015; 14:142. [PMID: 26377812 PMCID: PMC4574001 DOI: 10.1186/s12934-015-0328-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/28/2015] [Indexed: 11/17/2022] Open
Abstract
Background For membrane protein production, the Escherichia coli T7 RNA polymerase (T7 RNAP)-based protein production strain BL21(DE3) in combination with T7-promoter based expression vectors is widely used. Cells are routinely cultured in Lysogeny broth (LB medium) and expression of the chromosomally localized t7rnap gene is governed by the isopropyl-β-d-1-thiogalactopyranoside (IPTG) inducible lacUV5 promoter. The T7 RNAP drives the expression of the plasmid borne gene encoding the recombinant membrane protein. Production of membrane proteins in the cytoplasmic membrane rather than in inclusion bodies in a misfolded state is usually preferred, but often hampered due to saturation of the capacity of the Sec-translocon, resulting in low yields. Results Contrary to expectation we observed that omission of IPTG from BL21(DE3) cells cultured in LB medium can lead to significantly higher membrane protein production yields than when IPTG is added. In the complete absence of IPTG cultures stably produce membrane proteins in the cytoplasmic membrane, whereas upon the addition of IPTG membrane proteins aggregate in the cytoplasm and non-producing clones are selected for. Furthermore, in the absence of IPTG, membrane proteins are produced at a lower rate than in the presence of IPTG. These observations indicate that in the absence of IPTG the Sec-translocon capacity is not/hardly saturated, leading to enhanced membrane protein production yields in the cytoplasmic membrane. Importantly, for more than half of the targets tested the yields obtained using un-induced BL21(DE3) cells were higher than the yields obtained in the widely used membrane protein production strains C41(DE3) and C43(DE3). Since most secretory proteins reach the periplasm via the Sec-translocon, we also monitored the production of three secretory recombinant proteins in the periplasm of BL21(DE3) cells in the presence and absence of IPTG. For all three targets tested omitting IPTG led to the highest production levels in the periplasm. Conclusions Omission of IPTG from BL21(DE3) cells cultured in LB medium provides a very cost- and time effective alternative for the production of membrane and secretory proteins. Therefore, we recommend that this condition is incorporated in membrane- and secretory protein production screens. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0328-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91, Stockholm, Sweden.
| | | | - Łukasz Niemiec
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91, Stockholm, Sweden.
| | - Thomas Baumgarten
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91, Stockholm, Sweden.
| | - Dirk Jan Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91, Stockholm, Sweden.
| | - Anna Hjelm
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
154
|
Hayrapetyan H, Tempelaars M, Nierop Groot M, Abee T. Bacillus cereus ATCC 14579 RpoN (Sigma 54) Is a Pleiotropic Regulator of Growth, Carbohydrate Metabolism, Motility, Biofilm Formation and Toxin Production. PLoS One 2015; 10:e0134872. [PMID: 26241851 PMCID: PMC4524646 DOI: 10.1371/journal.pone.0134872] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
Sigma 54 is a transcriptional regulator predicted to play a role in physical interaction of bacteria with their environment, including virulence and biofilm formation. In order to study the role of Sigma 54 in Bacillus cereus, a comparative transcriptome and phenotypic study was performed using B. cereus ATCC 14579 WT, a markerless rpoN deletion mutant, and its complemented strain. The mutant was impaired in many different cellular functions including low temperature and anaerobic growth, carbohydrate metabolism, sporulation and toxin production. Additionally, the mutant showed lack of motility and biofilm formation at air-liquid interphase, and this correlated with absence of flagella, as flagella staining showed only WT and complemented strain to be highly flagellated. Comparative transcriptome analysis of cells harvested at selected time points during growth in aerated and static conditions in BHI revealed large differences in gene expression associated with loss of phenotypes, including significant down regulation of genes in the mutant encoding enzymes involved in degradation of branched chain amino acids, carbohydrate transport and metabolism, flagella synthesis and virulence factors. Our study provides evidence for a pleiotropic role of Sigma 54 in B. cereus supporting its adaptive response and survival in a range of conditions and environments.
Collapse
Affiliation(s)
- Hasmik Hayrapetyan
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
| | - Marcel Tempelaars
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
| | - Masja Nierop Groot
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- Food and Biobased research, Wageningen UR, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
155
|
Pelzer A, Schwarz C, Knapp A, Wirtz A, Wilhelm S, Smits S, Schmitt L, Funken H, Jaeger KE. Functional expression, purification, and biochemical properties of subtilase SprP from Pseudomonas aeruginosa. Microbiologyopen 2015; 4:743-52. [PMID: 26175208 PMCID: PMC4618607 DOI: 10.1002/mbo3.275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/30/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022] Open
Abstract
The Pseudomonas aeruginosa genome encodes a variety of different proteolytic enzymes several of which play an important role as virulence factors. Interestingly, only two of these proteases are predicted to belong to the subtilase family and we have recently studied the physiological role of the subtilase SprP. Here, we describe the functional overexpression of SprP in Escherichia coli using a novel expression and secretion system. We show that SprP is autocatalytically activated by proteolysis and exhibits optimal activity at 50°C in a pH range of 7-8. We also demonstrate a significant increase in sprP promoter activity upon growth of P. aeruginosa at 43°C indicating a role for SprP in heat shock response.
Collapse
Affiliation(s)
- Alexander Pelzer
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426, Juelich, Germany
| | - Christian Schwarz
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, D-40225, Duesseldorf, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426, Juelich, Germany
| | - Astrid Wirtz
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426, Juelich, Germany
| | - Susanne Wilhelm
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426, Juelich, Germany
| | - Sander Smits
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, D-40225, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, D-40225, Duesseldorf, Germany
| | - Horst Funken
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426, Juelich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426, Juelich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Juelich GmbH, D-52426, Juelich, Germany
| |
Collapse
|
156
|
Kumar CMS, Mande SC, Mahajan G. Multiple chaperonins in bacteria--novel functions and non-canonical behaviors. Cell Stress Chaperones 2015; 20:555-74. [PMID: 25986150 PMCID: PMC4463927 DOI: 10.1007/s12192-015-0598-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/05/2023] Open
Abstract
Chaperonins are a class of molecular chaperones that assemble into a large double ring architecture with each ring constituting seven to nine subunits and enclosing a cavity for substrate encapsulation. The well-studied Escherichia coli chaperonin GroEL binds non-native substrates and encapsulates them in the cavity thereby sequestering the substrates from unfavorable conditions and allowing the substrates to fold. Using this mechanism, GroEL assists folding of about 10-15 % of cellular proteins. Surprisingly, about 30 % of the bacteria express multiple chaperonin genes. The presence of multiple chaperonins raises questions on whether they increase general chaperoning ability in the cell or have developed specific novel cellular roles. Although the latter view is widely supported, evidence for the former is beginning to appear. Some of these chaperonins can functionally replace GroEL in E. coli and are generally indispensable, while others are ineffective and likewise are dispensable. Additionally, moonlighting functions for several chaperonins have been demonstrated, indicating a functional diversity among the chaperonins. Furthermore, proteomic studies have identified diverse substrate pools for multiple chaperonins. We review the current perception on multiple chaperonins and their physiological and functional specificities.
Collapse
Affiliation(s)
- C M Santosh Kumar
- Laboratory of Structural Biology, National Centre for Cell Science, Pune, 411007, India,
| | | | | |
Collapse
|
157
|
Maisch T. Resistance in antimicrobial photodynamic inactivation of bacteria. Photochem Photobiol Sci 2015; 14:1518-26. [PMID: 26098395 DOI: 10.1039/c5pp00037h] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibiotics have increasingly lost their impact to kill bacteria efficiently during the last 10 years. The emergence and dissemination of superbugs with resistance to multiple antibiotic classes have occurred among Gram-positive and Gram-negative strains including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter strains. These six superbugs can "escape" more or less any single kind of antibiotic treatment. That means bacteria are very good at developing resistance against antibiotics in a short time. One new approach is called photodynamic antimicrobial chemotherapy (PACT) which already has demonstrated an efficient antimicrobial efficacy among multi-resistant bacteria. Until now it has been questionable if bacteria can develop resistance against PACT. This perspective summarises the current knowledge about the susceptibility of bacteria towards oxidative stress and sheds some light on possible strategies of the development of photodynamic inactivation of bacteria (PACT)-induced oxidative stress resistance by bacteria.
Collapse
Affiliation(s)
- Tim Maisch
- Department of Dermatology, Antimicrobial Photodynamic and Cold Plasma Research Unit, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
158
|
Finka A, Sharma SK, Goloubinoff P. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front Mol Biosci 2015; 2:29. [PMID: 26097841 PMCID: PMC4456865 DOI: 10.3389/fmolb.2015.00029] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Members of the HSP70/HSP110 family (HSP70s) form a central hub of the chaperone network controlling all aspects of proteostasis in bacteria and the ATP-containing compartments of eukaryotic cells. The heat-inducible form HSP70 (HSPA1A) and its major cognates, cytosolic HSC70 (HSPA8), endoplasmic reticulum BIP (HSPA5), mitochondrial mHSP70 (HSPA9) and related HSP110s (HSPHs), contribute about 3% of the total protein mass of human cells. The HSP70s carry out a plethora of housekeeping cellular functions, such as assisting proper de novo folding, assembly and disassembly of protein complexes, pulling polypeptides out of the ribosome and across membrane pores, activating and inactivating signaling proteins and controlling their degradation. The HSP70s can induce structural changes in alternatively folded protein conformers, such as clathrin cages, hormone receptors and transcription factors, thereby regulating vesicular trafficking, hormone signaling and cell differentiation in development and cancer. To carry so diverse cellular housekeeping and stress-related functions, the HSP70s act as ATP-fuelled unfolding nanomachines capable of switching polypeptides between different folded states. During stress, the HSP70s can bind (hold) and prevent the aggregation of misfolding proteins and thereafter act alone or in collaboration with other unfolding chaperones to solubilize protein aggregates. Here, we discuss the common ATP-dependent mechanisms of holding, unfolding-by-clamping and unfolding-by-entropic pulling, by which the HSP70s can apparently convert various alternatively folded and misfolded polypeptides into differently active conformers. Understanding how HSP70s can prevent the formation of cytotoxic protein aggregates, pull, unfold, and solubilize them into harmless species is central to the design of therapies against protein conformational diseases.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland ; Laboratoire de Biophysique Statistique, School of Basic Sciences, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
159
|
Sato H, Nakasone K, Yoshida T, Kato C, Maruyama T. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea. Extremophiles 2015; 19:751-62. [PMID: 25982740 DOI: 10.1007/s00792-015-0751-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/26/2015] [Indexed: 11/30/2022]
Abstract
When non-extremophiles encounter extreme environmental conditions, which are natural for the extremophiles, stress reactions, e.g., expression of heat shock proteins (HSPs), are thought to be induced for survival. To understand how the extremophiles live in such extreme environments, we studied the effects of high hydrostatic pressure on cellular contents of HSPs and their mRNAs during growth in a piezophilic bacterium, Shewanella violacea. HSPs increased at high hydrostatic pressures even when optimal for growth. The mRNAs and proteins of these HSPs significantly increased at higher hydrostatic pressure in S. violacea. In the non-piezophilic Escherichia coli, however, their mRNAs decreased, while their proteins did not change. Several transcriptional start sites (TSSs) for HSP genes were determined by the primer extension method and some of them showed hydrostatic pressure-dependent increase of the mRNAs. A major refolding target of one of the HSPs, chaperonin, at high hydrostatic pressure was shown to be RplB, a subunit of the 50S ribosome. These results suggested that in S. violacea, HSPs play essential roles, e.g., maintaining protein complex machinery including ribosomes, in the growth and viability at high hydrostatic pressure, and that, in their expression, the transcription is under the control of σ(32).
Collapse
Affiliation(s)
- Hiroshi Sato
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midoriku, Yokohama, 226-8501, Japan
| | | | | | | | | |
Collapse
|
160
|
Affiliation(s)
- Máire Begley
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland;
| | - Colin Hill
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland;
| |
Collapse
|
161
|
Eltzov E, Cohen A, Marks RS. Bioluminescent Liquid Light Guide Pad Biosensor for Indoor Air Toxicity Monitoring. Anal Chem 2015; 87:3655-61. [DOI: 10.1021/ac5038208] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evgeni Eltzov
- The
Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- School
of Material Science and Engineering, Nanyang Technology University, Nanyang Avenue, 639798, Singapore
| | - Avital Cohen
- The
Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Robert S. Marks
- The
Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National
Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The
Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
162
|
Liu Y, Gill A, McMullen L, Gänzle MG. Variation in heat and pressure resistance of verotoxigenic and nontoxigenic Escherichia coli. J Food Prot 2015; 78:111-20. [PMID: 25581185 DOI: 10.4315/0362-028x.jfp-14-267] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study evaluated the heat and pressure resistance of 112 strains of Escherichia coli, including 102 strains of verotoxigenic E. coli (VTEC) representing 23 serotypes and four phylogenetic groups. In an initial screening, the heat and pressure resistance of 100 strains, including 94 VTEC strains, were tested in phosphate-buffered saline (PBS). Treatment at 60°C for 5 min reduced cell counts by 2.0 to 5.5 log CFU/ml; treatment at 600 MPa for 3 min at 25°C reduced the cell counts by 1.1 to 5.5 log CFU/ml. Heat or pressure resistance did not correlate to the phylogenetic group or the serotype. A smaller group of E. coli strains was evaluated for heat and pressure resistance in Luria-Bertani (LB) broth. Generally, the levels of heat resistance of E. coli strains in LB and PBS were similar; however, the levels of pressure resistance observed for treatments in LB broth or PBS were variable. The cell counts of pressure-resistant strains of VTEC were reduced by less than 1.5 log CFU/ml after treatment at 600 MPa for 3 min. E. coli strains were also treated with 600 MPa for 3 min in ground beef or inoculated into beef patties and grilled to 63 or 71°C. The cell counts of the VTEC E. coli O26:H11 strain 05-6544 were reduced by 2 log CFU/g by pressure treatment in ground beef. The cell counts of the heat-resistant E. coli strain AW1.7 were reduced by 1.4 and 3.4 log CFU/g in beef patties grilled to internal temperatures of 63 and 71°C, respectively. The cell counts of E. coli 05-6544 were reduced by less than 3 and 6 log CFU/g in beef patties grilled to internal temperatures of 63 and 71°C, respectively. To study whether the composition of the beef patties influenced heat resistance, E. coli strains AW1.7, AW1.7 Δ pHR1, MG1655, and LMM1030 were mixed into beef patties containing 15 or 35% fat and 0 or 2% NaCl, and the patties were grilled to an internal temperature of 63°C. The highest heat resistance of E. coli was observed in patties containing 15% fat and 2% NaCl.
Collapse
Affiliation(s)
- Yang Liu
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Alex Gill
- Health Canada/Sante Canada, Microbiology Research Division, Bureau of Microbial Hazards, Ottawa, Canada
| | - Lynn McMullen
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael G Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada; School of Food and Pharmaceutical Engineering, Hubei University of Technology, Wuhan, People's Republic of China.
| |
Collapse
|
163
|
Fu X, Liang W, Du P, Yan M, Kan B. Transcript changes in Vibrio cholerae in response to salt stress. Gut Pathog 2014; 6:47. [PMID: 25589902 PMCID: PMC4293811 DOI: 10.1186/s13099-014-0047-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/13/2014] [Indexed: 11/23/2022] Open
Abstract
Vibrio cholerae, which is a serious human intestinal pathogen, often resides and thrives in estuaries but requires major self-regulation to overcome intestinal hyperosmotic stress or high salt stress in water and food. In the present study, we selected multiple O1 and O139 group V. cholerae strains that were isolated from different regions and during different years to study their salt tolerance. Based on the mechanisms that other bacteria use to respond to high salt stress, we selected salt stress-response related genes to study the mechanisms which V. cholerae responds to high salt stress. V. cholerae strains showed salt-resistance characteristics that varied in salt concentrations from 4% to 6%. However, group O1 and group O139 showed no significant difference in the degree of salt tolerance. The primary responses of bacteria to salt stress, including Na+ exclusion, K+ uptake and glutamate biosynthesis, were observed in V. cholerae strains. In addition, some sigma factors were up-regulated in V. cholerae strains, suggesting that V. cholerae may recruit common sigma factors to achieve an active salt stress response. However, some changes in gene transcript levels in response to salt stress in V. cholerae were strain-specific. In particular, hierarchical clustering of differentially expressed genes indicated that transcript levels of these genes were correlated with the degree of salt tolerance. Therefore, elevated transcript levels of some genes, including sigma factors and genes involved in peptidoglycan biosynthesis, may be due to the salt tolerance of strains. In addition, high salt-tolerant strains may recruit common as well as additional sigma factors to activate the salt stress response.
Collapse
Affiliation(s)
- Xiuping Fu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Weili Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Pengcheng Du
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Meiying Yan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| |
Collapse
|
164
|
Xiong H, Yang Y, Hu XP, He YM, Ma BG. Sequence determinants of prokaryotic gene expression level under heat stress. Gene 2014; 551:92-102. [PMID: 25168890 DOI: 10.1016/j.gene.2014.08.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
Prokaryotic gene expression is environment-dependent and temperature plays an important role in shaping the gene expression profile. Revealing the regulation mechanisms of gene expression pertaining to temperature has attracted tremendous efforts in recent years particularly owning to the yielding of transcriptome and proteome data by high-throughput techniques. However, most of the previous works concentrated on the characterization of the gene expression profile of individual organism and little effort has been made to disclose the commonality among organisms, especially for the gene sequence features. In this report, we collected the transcriptome and proteome data measured under heat stress condition from recently published literature and studied the sequence determinants for the expression level of heat-responsive genes on multiple layers. Our results showed that there indeed exist commonness and consistent patterns of the sequence features among organisms for the differentially expressed genes under heat stress condition. Some features are attributed to the requirement of thermostability while some are dominated by gene function. The revealed sequence determinants of bacterial gene expression level under heat stress complement the knowledge about the regulation factors of prokaryotic gene expression responding to the change of environmental conditions. Furthermore, comparisons to thermophilic adaption have been performed to reveal the similarity and dissimilarity of the sequence determinants for the response to heat stress and for the adaption to high habitat temperature, which elucidates the complex landscape of gene expression related to the same physical factor of temperature.
Collapse
Affiliation(s)
- Heng Xiong
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Yang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Pan Hu
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Ming He
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin-Guang Ma
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
165
|
Jia Q, Luo Y, Fan D, Ma P, Ma X, Xue W. The different roles of chaperone teams on over-expression of human-like collagen in recombinant Escherichia coli. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
166
|
Inoue Y, Baker MAB, Fukuoka H, Takahashi H, Berry RM, Ishijima A. Temperature dependences of torque generation and membrane voltage in the bacterial flagellar motor. Biophys J 2014; 105:2801-10. [PMID: 24359752 DOI: 10.1016/j.bpj.2013.09.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/17/2013] [Accepted: 09/23/2013] [Indexed: 11/30/2022] Open
Abstract
In their natural habitats bacteria are frequently exposed to sudden changes in temperature that have been shown to affect their swimming. With our believed to be new methods of rapid temperature control for single-molecule microscopy, we measured here the thermal response of the Na(+)-driven chimeric motor expressed in Escherichia coli cells. Motor torque at low load (0.35 μm bead) increased linearly with temperature, twofold between 15°C and 40°C, and torque at high load (1.0 μm bead) was independent of temperature, as reported for the H(+)-driven motor. Single cell membrane voltages were measured by fluorescence imaging and these were almost constant (∼120 mV) over the same temperature range. When the motor was heated above 40°C for 1-2 min the torque at high load dropped reversibly, recovering upon cooling below 40°C. This response was repeatable over as many as 10 heating cycles. Both increases and decreases in torque showed stepwise torque changes with unitary size ∼150 pN nm, close to the torque of a single stator at room temperature (∼180 pN nm), indicating that dynamic stator dissociation occurs at high temperature, with rebinding upon cooling. Our results suggest that the temperature-dependent assembly of stators is a general feature of flagellar motors.
Collapse
Affiliation(s)
- Yuichi Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Japan
| | | | - Hajime Fukuoka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Japan
| | - Richard M Berry
- Clarendon Laboratory, Oxford University, Oxford, United Kingdom
| | - Akihiko Ishijima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Japan.
| |
Collapse
|
167
|
Selection of Escherichia coli heat shock promoters toward their application as stress probes. J Biotechnol 2014; 188:61-71. [PMID: 25128614 DOI: 10.1016/j.jbiotec.2014.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/24/2014] [Accepted: 08/05/2014] [Indexed: 02/04/2023]
Abstract
The mechanism of heat shock response of Escherichia coli can be explored to program novel biological functions. In this study, the strongest heat shock promoters were identified by microarray experiments conducted at different temperatures (37°C and 45°C, 5min). The promoters of the genes ibpA, dnaK and fxsA were selected and validated by RT-qPCR. These promoters were used to construct and characterize stress probes using green fluorescence protein (GFP). Cellular stress levels were evaluated in experiments conducted at different shock temperatures during several exposure times. It was concluded that the strength of the promoter is not the only relevant factor in the construction of an efficient stress probe. Furthermore, it was found to be crucial to test and optimize the ribosome binding site (RBS) in order to obtain translational efficiency that balances the transcription levels previously verified by microarrays and RT-qPCR. These heat shock promoters can be used to trigger in situ gene expression of newly constructed biosynthetic pathways.
Collapse
|
168
|
Sorci L, Ruggieri S, Raffaelli N. NAD homeostasis in the bacterial response to DNA/RNA damage. DNA Repair (Amst) 2014; 23:17-26. [PMID: 25127744 DOI: 10.1016/j.dnarep.2014.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 12/12/2022]
Abstract
In mammals, NAD represents a nodal point for metabolic regulation, and its availability is critical to genome stability. Several NAD-consuming enzymes are induced in various stress conditions and the consequent NAD decline is generally accompanied by the activation of NAD biosynthetic pathways to guarantee NAD homeostasis. In the bacterial world a similar scenario has only recently begun to surface. Here we review the current knowledge on the involvement of NAD homeostasis in bacterial stress response mechanisms. In particular, we focus on the participation of both NAD-consuming enzymes (DNA ligase, mono(ADP-ribosyl) transferase, sirtuins, and RNA 2'-phosphotransferase) and NAD biosynthetic enzymes (both de novo, and recycling enzymes) in the response to DNA/RNA damage. As further supporting evidence for such a link, a genomic context analysis is presented showing several conserved associations between NAD homeostasis and stress responsive genes.
Collapse
Affiliation(s)
- Leonardo Sorci
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silverio Ruggieri
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
169
|
Shen Q, Jangam PM, Soni KA, Nannapaneni R, Schilling W, Silva JL. Low, medium, and high heat tolerant strains of Listeria monocytogenes and increased heat stress resistance after exposure to sublethal heat. J Food Prot 2014; 77:1298-307. [PMID: 25198590 DOI: 10.4315/0362-028x.jfp-13-423] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A group of 37 strains representing all 13 serotypes of Listeria monocytogenes with an initial cell density of 10(7) CFU/ml were analyzed for their heat tolerance at 60°C for 10 min. These L. monocytogenes strains were categorized into three heat tolerance groups: low (<2 log CFU/ml survival), medium (2 to 4 log CFU/ml survival), and high (4 to 6 log CFU/ml survival). Serotype 1/2a strains had relatively low heat tolerance; seven of the eight tested strains were classified as low heat tolerant. Of the two serotype 1/2b strains tested, one was very heat sensitive (not detectable) and the other was very heat resistant (5.4 log CFU/ml survival). Among the 16 serotype 4b strains, survival ranged from not detectable to 4 log CFU/ml. When one L. monocytogenes strain from each heat tolerance group was subjected to sublethal heat stress at 48°C for 30 or 60 min, the survival of heat-stressed cells at 60°C for 10 min increased by 5 log CFU/ml (D60°C-values nearly doubled) compared with the nonstressed control cells. Sublethal heat stress at 48°C for 60 or 90 min increased the lag phase of L. monocytogenes in tryptic soy broth supplemented with 0.6% yeast extract at room temperature by 3 to 5 h compared with nonstressed control cells. The heat stress adaptation in L. monocytogenes was reversed after 2 h at room temperature but was maintained for up to 24 h at 4°C. Our results indicate a high diversity in heat tolerance among strains of L. monocytogenes, and once acquired this heat stress adaptation persists after cooling, which should be taken into account while conducting risk analyses for this pathogen.
Collapse
Affiliation(s)
- Qian Shen
- Department of Food Science, Nutrition and Health Promotion, P.O. Box 9805, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Priyanka M Jangam
- Department of Food Science, Nutrition and Health Promotion, P.O. Box 9805, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Kamlesh A Soni
- Department of Food Science, Nutrition and Health Promotion, P.O. Box 9805, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Ramakrishna Nannapaneni
- Department of Food Science, Nutrition and Health Promotion, P.O. Box 9805, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | - Wes Schilling
- Department of Food Science, Nutrition and Health Promotion, P.O. Box 9805, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Juan L Silva
- Department of Food Science, Nutrition and Health Promotion, P.O. Box 9805, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
170
|
Predictive Microbiology. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
171
|
Chakraborty A, Mukherjee S, Chattopadhyay R, Roy S, Chakrabarti S. Conformational Adaptation in the E. coli Sigma 32 Protein in Response to Heat Shock. J Phys Chem B 2014; 118:4793-802. [DOI: 10.1021/jp501272n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abhijit Chakraborty
- Division of Structural Biology
and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Srijata Mukherjee
- Division of Structural Biology
and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Ruchira Chattopadhyay
- Division of Structural Biology
and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Siddhartha Roy
- Division of Structural Biology
and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Saikat Chakrabarti
- Division of Structural Biology
and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| |
Collapse
|
172
|
Hsu SY, Lin YS, Li SJ, Lee WC. Co-expression of a heat shock transcription factor to improve conformational quality of recombinant protein in Escherichia coli. J Biosci Bioeng 2014; 118:242-8. [PMID: 24656305 DOI: 10.1016/j.jbiosc.2014.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
A co-expression system was established in Escherichia coli for enhancing the cellular expression of heat shock transcription factor, sigma 32 (σ(32)). A Shine-Dalgarno sequence and the rpoH gene of E. coli, which encodes σ(32), were cloned into a bacterial plasmid containing a gene fusion encoding a doubly tagged N-acetyl-d-neuraminic acid aldolase (GST-Neu5Ac aldolase-5R). After the IPTG induction, a substantially higher level of sigma 32 was observed up to 3 h in the co-expression cells, but an enhancement in the solubility of target protein was manifest only in the first hour. Nevertheless, the co-expression of sigma 32 led to higher level of Neu5Ac aldolase enzymatic activity in both the soluble and insoluble (inclusion body) fractions. The Neu5Ac aldolase activity of the supernatant from the lysate of cells co-expressing GST-Neu5Ac aldolase-5R and recombinant σ(32) was 3.4-fold higher at 3 h postinduction than that in cells overexpressing GST-Neu5Ac aldolase-5R in the absence of recombinantly expressed σ(32). The results of acrylamide quenching indicated that the conformational quality of the fusion protein was improved by the co-expression of recombinant σ(32). Thus, the increased level of intracellular σ(32) might have created favorable conditions for the proper folding of recombinant proteins through the cooperative effects of chaperones/heat shock proteins expressed by the E. coli host, which resulted in smaller inclusion bodies, improved conformational quality and a higher specific activity of the overexpressed GST-Neu5Ac aldolase-5R protein.
Collapse
Affiliation(s)
- Shao-Yen Hsu
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi 621, Taiwan
| | - Yu-Sheng Lin
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi 621, Taiwan
| | - Shu-Jyuan Li
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi 621, Taiwan
| | - Wen-Chien Lee
- Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Chiayi 621, Taiwan.
| |
Collapse
|
173
|
Treviño-Quintanilla LG, Freyre-González JA, Martínez-Flores I. Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability. Curr Genomics 2014; 14:378-87. [PMID: 24396271 PMCID: PMC3861889 DOI: 10.2174/1389202911314060007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 11/22/2022] Open
Abstract
In bacteria, transcriptional regulation is a key step in cellular gene expression. All bacteria contain a core RNA polymerase that is catalytically competent but requires an additional σ factor for specific promoter recognition and correct transcriptional initiation. The RNAP core is not able to selectively bind to a given σ factor. In contrast, different σ factors have different affinities for the RNAP core. As a consequence, the concentration of alternate σ factors requires strict regulation in order to properly control the delicate interplay among them, which favors the competence for the RNAP core. This control is archived by different σ/anti-σ controlling mechanisms that shape complex regulatory networks and cascades, and enable the response to sudden environmental cues, whose global understanding is a current challenge for systems biology. Although there have been a number of excellent studies on each of these σ/anti-σ post-transcriptional regulatory systems, no comprehensive comparison of these mechanisms in a single model organism has been conducted. Here, we survey all these systems in E. coli dissecting and analyzing their inner workings and highlightin their differences. Then, following an integral approach, we identify their commonalities and outline some of the principles exploited by the cell to effectively and globally reprogram the transcriptional machinery. These principles provide guidelines for developing biological synthetic circuits enabling an efficient and robust response to sudden stimuli.
Collapse
Affiliation(s)
- Luis Gerardo Treviño-Quintanilla
- Departamento de Tecnología Ambiental, Universidad Politécnica del Estado de Morelos. Blvd. Cuauhnáhuac 566, Col. Lomas del Texcal, 62550. Jiutepec, Morelos, México
| | - Julio Augusto Freyre-González
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Av. Universidad s/n, Col. Chamilpa, 62210. Cuernavaca, Morelos, México
| | - Irma Martínez-Flores
- Departamento de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Apdo. Postal 510-3, 62250. Cuernavaca, Morelos, México
| |
Collapse
|
174
|
McQuillan JS, Shaw AM. Differential gene regulation in the Ag nanoparticle and Ag(+)-induced silver stress response in Escherichia coli: a full transcriptomic profile. Nanotoxicology 2014; 8 Suppl 1:177-84. [PMID: 24392705 DOI: 10.3109/17435390.2013.870243] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report the whole-transcriptome response of Escherichia coli bacteria to acute treatment with silver nanoparticles (AgNPs) or silver ions [Ag(I)] as silver nitrate using gene expression microarrays. In total, 188 genes were regulated by both silver treatments, 161 were up-regulated and 27 were down-regulated. Significant regulation was observed for heat shock response genes in line with protein denaturation associated with protein structure vulnerability indicating Ag(I)-labile -SH bonds. Disruption to iron-sulphur clusters led to the positive regulation of iron-sulphur assembly systems and the expression of genes for iron and sulphate homeostasis. Further, Ag ions induced a redox stress response associated with large (>600-fold) up-regulation of the E. coli soxS transcriptional regulator gene. Ag(I) is isoelectronic with Cu(I), and genes associated with copper homeostasis were positively regulated indicating Ag(I)-activation of copper signalling. Differential gene expression was observed for the silver nitrate and AgNP silver delivery. Nanoparticle delivery of Ag(I) induced the differential regulation of 379 genes; 309 genes were uniquely regulated by silver nanoparticles and 70 genes were uniquely regulated by silver nitrate. The differential silver nanoparticle-silver nitrate response indicates that the toxic effect of labile Ag(I) in the system depends upon the mechanism of delivery to the target cell.
Collapse
Affiliation(s)
- Jonathan S McQuillan
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , UK
| | | |
Collapse
|
175
|
Quantifying the Effects of Frequency and Amplitude of Periodic Oxygen-Related Stress on Recombinant Protein Production in Pichia pastoris. Bioengineering (Basel) 2013. [DOI: 10.3390/bioengineering1010047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
176
|
Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota. Appl Environ Microbiol 2013; 80:478-85. [PMID: 24212578 DOI: 10.1128/aem.02472-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identified Clostridiales, Bacteroidaceae, and Lactobacillaceae species as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged to Lactobacillus spp., 155 belonged to Clostridium spp., and 66 belonged to Streptococcus spp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.
Collapse
|
177
|
Jonas K, Liu J, Chien P, Laub MT. Proteotoxic stress induces a cell-cycle arrest by stimulating Lon to degrade the replication initiator DnaA. Cell 2013; 154:623-36. [PMID: 23911325 DOI: 10.1016/j.cell.2013.06.034] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/15/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. Cells often delay replication in the face of stressful conditions, but the underlying mechanisms remain incompletely defined. Here, we demonstrate in Caulobacter crescentus that proteotoxic stress induces a cell-cycle arrest by triggering the degradation of DnaA, the conserved replication initiator. A depletion of available Hsp70 chaperone, DnaK, either through genetic manipulation or heat shock, induces synthesis of the Lon protease, which can directly degrade DnaA. Unexpectedly, we find that unfolded proteins, which accumulate following a loss of DnaK, also allosterically activate Lon to degrade DnaA, thereby ensuring a cell-cycle arrest. Our work reveals a mechanism for regulating DNA replication under adverse growth conditions. Additionally, our data indicate that unfolded proteins can actively and directly alter substrate recognition by cellular proteases.
Collapse
Affiliation(s)
- Kristina Jonas
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
178
|
Weng RR, Shu HW, Chin SW, Kao Y, Chen TW, Liao CC, Tsay YG, Ng WV. OMICS in ecology: systems level analyses of Halobacterium salinarum reveal large-scale temperature-mediated changes and a requirement of CctA for thermotolerance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 18:65-80. [PMID: 24147786 DOI: 10.1089/omi.2012.0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Halobacterium salinarum is an extremely halophilic archaeon that inhabits high-salinity aqueous environments in which the temperature can range widely, both daily and seasonally. An OMICS analysis of the 37°C and 49°C proteomes and transcriptomes for revealing the biomodules affected by temperature is reported here. Analysis of those genes/proteins displaying dramatic changes provided a clue to the coordinated changes in the expression of genes within five arCOG biological clusters. When proteins that exhibited minor changes in their spectral counts and insignificant p values were also examined, the apparent influence of the elevated temperatures on conserved chaperones, metabolism, translation, and other biomodules became more obvious. For instance, increases in all eight conserved chaperones and three arginine deiminase pathway enzymes and reductions in most tricarboxylic acid (TCA) cycle enzymes and ribosomal proteins suggest that complex system responses occurred as the temperature changed. When the requirement for the four proteins that showed the greatest induction at 49°C was analyzed, only CctA (chaperonin subunit α), but not Hsp5, DpsA, or VNG1187G, was essential for thermotolerance. Environmental stimuli and other perturbations may induce many minor gene expression changes. Simultaneous analysis of the genes exhibiting dramatic or minor changes in expression may facilitate the detection of systems level responses.
Collapse
Affiliation(s)
- Rueyhung Roc Weng
- 1 Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University , Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Lenz G, Ron EZ. Novel interaction between the major bacterial heat shock chaperone (GroESL) and an RNA chaperone (CspC). J Mol Biol 2013; 426:460-6. [PMID: 24148697 DOI: 10.1016/j.jmb.2013.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/13/2013] [Accepted: 10/14/2013] [Indexed: 01/16/2023]
Abstract
The heat shock response is one of the main global regulatory networks in all organisms and involves an increased cellular level of chaperones and proteases to enable correct protein folding and balanced growth. One of the major heat shock chaperones in Escherichia coli is GroESL, composed of GroES and GroEL (the bacterial Hsp10 and Hsp60 homologues), which is essential for refolding of misfolded proteins. GroESL was previously shown to play a role in the regulation of the heat shock response by promoting the proteolysis of the regulatory protein--sigma32 (RpoH), the heat shock transcription activator. Here we show the involvement of GroESL in another proteolytic process, this of the major RNA chaperone--CspC--that specifically stabilizes the transcripts of several stress-related genes. Evidence is provided for an interaction between GroESL and CspC that results in enhanced, temperature-dependent proteolysis of the latter. This interaction is of regulatory importance, as reduction in the cellular levels of CspC leads to a decrease in stability of the major heat shock gene transcripts.
Collapse
Affiliation(s)
- Gal Lenz
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eliora Z Ron
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; MIGAL, Galilee Research Center, Kiriat Shmone, Israel.
| |
Collapse
|
180
|
Québatte M, Dick MS, Kaever V, Schmidt A, Dehio C. Dual input control: activation of theBartonella henselae VirB/D4 type IV secretion system by the stringent sigma factor RpoH1 and the BatR/BatS two-component system. Mol Microbiol 2013; 90:756-75. [DOI: 10.1111/mmi.12396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Maxime Québatte
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| | - Mathias S. Dick
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| | - Volkhard Kaever
- Research Core Unit for Mass Spectrometry - Metabolomics; Institute of Pharmacology; Hannover Medical School; Hannover Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum; University of Basel; Basel Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| |
Collapse
|
181
|
Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013; 26:308-41. [PMID: 23554419 DOI: 10.1128/cmr.00066-12] [Citation(s) in RCA: 504] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success.
Collapse
|
182
|
Cray JA, Bell ANW, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE. The biology of habitat dominance; can microbes behave as weeds? Microb Biotechnol 2013; 6:453-92. [PMID: 23336673 PMCID: PMC3918151 DOI: 10.1111/1751-7915.12027] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/03/2012] [Indexed: 02/06/2023] Open
Abstract
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized--or at least partially vacant--habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.
Collapse
Affiliation(s)
- Jonathan A Cray
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Andrew N W Bell
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Prashanth Bhaganna
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Allen Y Mswaka
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - David J Timson
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - John E Hallsworth
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
183
|
Nonnative disulfide bond formation activates the σ32-dependent heat shock response in Escherichia coli. J Bacteriol 2013; 195:2807-16. [PMID: 23585533 DOI: 10.1128/jb.00127-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of nonnative disulfide bonds in the cytoplasm, so-called disulfide stress, is an integral component of oxidative stress. Quantification of the extent of disulfide bond formation in the cytoplasm of Escherichia coli revealed that disulfide stress is associated with oxidative stress caused by hydrogen peroxide, paraquat, and cadmium. To separate the impact of disulfide bond formation from unrelated effects of these oxidative stressors in subsequent experiments, we worked with two complementary approaches. We triggered disulfide stress either chemically by diamide treatment of cells or genetically in a mutant strain lacking the major disulfide-reducing systems TrxB and Gor. Studying the proteomic response of E. coli exposed to disulfide stress, we found that intracellular disulfide bond formation is a particularly strong inducer of the heat shock response. Real-time quantitative PCR experiments showed that disulfide stress induces the heat shock response in E. coli σ(32) dependently. However, unlike heat shock treatment, which induces these genes transiently, transcripts of σ(32)-dependent genes accumulated over time in disulfide stress-treated cells. Analyzing the stability of σ(32), we found that this constant induction can be attributed to an increase of the half-life of σ(32) upon disulfide stress. This is concomitant with aggregation of E. coli proteins treated with diamide. We conclude that oxidative stress triggers the heat shock response in E. coli σ(32) dependently. The component of oxidative stress responsible for the induction of heat shock genes is disulfide stress. Nonnative disulfide bond formation in the cytoplasm causes protein unfolding. This stabilizes σ(32) by preventing its DnaK- and FtsH-dependent degradation.
Collapse
|
184
|
Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microb Cell Fact 2013; 12:24. [PMID: 23497240 PMCID: PMC3605120 DOI: 10.1186/1475-2859-12-24] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/05/2013] [Indexed: 11/10/2022] Open
Abstract
Background In Escherichia coli many heterologous proteins are produced in the periplasm. To direct these proteins to the periplasm, they are equipped with an N-terminal signal sequence so that they can traverse the cytoplasmic membrane via the protein-conducting Sec-translocon. For poorly understood reasons, the production of heterologous secretory proteins is often toxic to the cell thereby limiting yields. To gain insight into the mechanism(s) that underlie this toxicity we produced two secretory heterologous proteins, super folder green fluorescent protein and a single-chain variable antibody fragment, in the Lemo21(DE3) strain. In this strain, the expression intensity of the gene encoding the target protein can be precisely controlled. Results Both SFGFP and the single-chain variable antibody fragment were equipped with a DsbA-derived signal sequence. Producing these proteins following different gene expression levels in Lemo21(DE3) allowed us to identify the optimal expression level for each target gene. Too high gene expression levels resulted in saturation of the Sec-translocon capacity as shown by hampered translocation of endogenous secretory proteins and a protein misfolding/aggregation problem in the cytoplasm. At the optimal gene expression levels, the negative effects of the production of the heterologous secretory proteins were minimized and yields in the periplasm were optimized. Conclusions Saturating the Sec-translocon capacity can be a major bottleneck hampering heterologous protein production in the periplasm. This bottleneck can be alleviated by harmonizing expression levels of the genes encoding the heterologous secretory proteins with the Sec-translocon capacity. Mechanistic insight into the production of proteins in the periplasm is key to optimizing yields in this compartment.
Collapse
|
185
|
Ashoub A, Beckhaus T, Berberich T, Karas M, Brüggemann W. Comparative analysis of barley leaf proteome as affected by drought stress. PLANTA 2013; 237:771-81. [PMID: 23129216 DOI: 10.1007/s00425-012-1798-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/17/2012] [Indexed: 05/22/2023]
Abstract
The adaptive response of Egyptian barley land races to drought stress was analyzed using difference gel electrophoresis (DIGE). Physiological measurements and proteome alterations of accession number 15141, drought tolerant, and accession number 15163, drought sensitive, were compared. Differentially expressed proteins were subjected to MALDI-TOF-MS analysis. Alterations in proteins related to the energy balance and chaperons were the most characteristic features to explain the differences between the drought-tolerant and the drought-sensitive accessions. Further alterations in the levels of proteins involved in metabolism, transcription and protein synthesis are also indicated.
Collapse
Affiliation(s)
- Ahmed Ashoub
- Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
186
|
Jazini M, Herwig C. Effects of temperature shifts and oscillations on recombinant protein production expressed in Escherichia coli. Bioprocess Biosyst Eng 2013; 36:1571-7. [PMID: 23423557 DOI: 10.1007/s00449-013-0927-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 02/08/2013] [Indexed: 12/01/2022]
Abstract
Escherichia coli is widely used host for the intracellular expression of many proteins. However, in some cases also secretion of protein from periplasm was observed. Improvement of both intracellular and extracellular production of recombinant protein in E. coli is an attractive goal in order to reduce production cost and increase process efficiency and economics. Since heat shock proteins in E. coli were reported to be helpful for protein refolding and hindering aggregation, in this work different types of single and periodic heat shocks were tested on lab scale to enhance intracellular and extracellular protein production. A single heat shock prior to induction and different oscillatory temperature variations during the induction phase were executed. The results showed that these variations influence protein production negatively. In other words, 45 and 50 % reduction in extracellular protein production were observed for the single heat shock and oscillated temperature between 35 and 40 °C, respectively. However, the oscillatory temperature approach introduced in this study is recommended as a tool to quantitatively analyze the effects of inhomogeneous temperature on cell physiology and productivity in large-scale bioreactors.
Collapse
Affiliation(s)
- Mohammadhadi Jazini
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
187
|
Shimizu K. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN BIOCHEMISTRY 2013; 2013:645983. [PMID: 25937963 PMCID: PMC4393010 DOI: 10.1155/2013/645983] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Fukuoka, Iizuka 820-8502, Japan
- Institute of Advanced Bioscience, Keio University, Yamagata, Tsuruoka 997-0017, Japan
| |
Collapse
|
188
|
Van Impe J, Vercammen D, Van Derlinden E. Toward a next generation of predictive models: A systems biology primer. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
189
|
Golberg K, Pavlov V, Marks RS, Kushmaro A. Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. BIOFOULING 2013; 29:669-82. [PMID: 23777289 DOI: 10.1080/08927014.2013.796939] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Marine biofouling, the settlement of microorganisms and macroorganisms on structures submerged in seawater, although economically detrimental, is a successful strategy for survival in hostile environments, where coordinated bacterial communities establish biofilms via the regulation of quorum sensing (QS) communication systems. The inhibition of QS activity among bacteria isolated from different coral species was investigated to gain further insight into its potency in the attenuation, or even the prevention, of undesirable biofouling on marine organisms. It is hypothesized that coral mucus/microorganism interactions are competitive, suggesting that the dominant communities secrete QS disruptive compounds. One hundred and twenty bacterial isolates were collected from healthy coral species and screened for their ability to inhibit QS using three bioreporter strains. Approximately 12, 11, and 24% of the isolates exhibited anti-QS activity against Escherichia coli pSB1075, Chromobacterium violaceum CV026, and Agrobacterium tumefaciens KYC55 indicator strains, respectively. Isolates with positive activity against the bioluminescent monitor strains were scanned via a cytotoxic/genotoxic, E. coli TV1061 and DPD2794 antimicrobial panel. Isolates detected by C. violaceum CV026 and A. tumefaciens KYC55 reporter strains were tested for their ability to inhibit the growth of these reporter strains, which were found to be unaffected. Tests of the Favia sp. coral isolate Fav 2-50-7 (>98% similarity to Vibrio harveyi) for its ability to attenuate the formation of biofilm showed extensive inhibitory activity against biofilms of Pseudomonas aeruginosa and Acinetobacter baumannii. To ascertain the stability and general structure of the active compound, cell-free culture supernatants exposed to an increasing temperature gradient or to digestion by proteinase K, were shown to maintain potent QS attenuation and the ability to inhibit the growth of biofilms. Mass spectrometry confirmed the presence of a low molecular mass compound. The anti-QS strategy exemplified in the coral mucus is a model with potentially wide applications, including countering the ecological threat posed by biofilms. Manipulating synchronized bacterial behavior by detecting new QS inhibitors will facilitate the discovery of new antifouling compounds.
Collapse
Affiliation(s)
- Karina Golberg
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
190
|
Unfolded protein responses with or without unfolded proteins? Cells 2012; 1:926-50. [PMID: 24710536 PMCID: PMC3901143 DOI: 10.3390/cells1040926] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/15/2012] [Accepted: 10/22/2012] [Indexed: 01/08/2023] Open
Abstract
The endoplasmic reticulum (ER) is the site of secretory protein biogenesis. The ER quality control (QC) machinery, including chaperones, ensures the correct folding of secretory proteins. Mutant proteins and environmental stresses can overwhelm the available QC machinery. To prevent and resolve accumulation of misfolded secretory proteins in the ER, cells have evolved integral membrane sensors that orchestrate the Unfolded Protein Response (UPR). The sensors, Ire1p in yeast and IRE1, ATF6, and PERK in metazoans, bind the luminal ER chaperone BiP during homeostasis. As unfolded secretory proteins accumulate in the ER lumen, BiP releases, and the sensors activate. The mechanisms of activation and attenuation of the UPR sensors have exhibited unexpected complexity. A growing body of data supports a model in which Ire1p, and potentially IRE1, directly bind unfolded proteins as part of the activation process. However, evidence for an unfolded protein-independent mechanism has recently emerged, suggesting that UPR can be activated by multiple modes. Importantly, dysregulation of the UPR has been linked to human diseases including Type II diabetes, heart disease, and cancer. The existence of alternative regulatory pathways for UPR sensors raises the exciting possibility for the development of new classes of therapeutics for these medically important proteins.
Collapse
|
191
|
Optimizing Membrane Protein Overexpression in the Escherichia coli strain Lemo21(DE3). J Mol Biol 2012; 423:648-59. [DOI: 10.1016/j.jmb.2012.07.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 11/19/2022]
|
192
|
Kumar S, Rai AK, Mishra MN, Shukla M, Singh PK, Tripathi AK. RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7. MICROBIOLOGY-SGM 2012; 158:2891-2902. [PMID: 23023973 DOI: 10.1099/mic.0.062380-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria belonging to the Alphaproteobacteria normally harbour multiple copies of the heat shock sigma factor (known as σ(32), σ(H) or RpoH). Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours five copies of rpoH genes, one of which is an rpoH2 homologue. The genes around the rpoH2 locus in A. brasilense show synteny with that found in rhizobia. The rpoH2 of A. brasilense was able to complement the temperature-sensitive phenotype of the Escherichia coli rpoH mutant. Inactivation of rpoH2 in A. brasilense results in increased sensitivity to methylene blue and to triphenyl tetrazolium chloride (TTC). Exposure of A. brasilense to TTC and the singlet oxygen-generating agent methylene blue induced several-fold higher expression of rpoH2. Comparison of the proteome of A. brasilense with its rpoH2 deletion mutant and with an A. brasilense strain overexpressing rpoH2 revealed chaperone GroEL, elongation factors (Ef-Tu and EF-G), peptidyl prolyl isomerase, and peptide methionine sulfoxide reductase as the major proteins whose expression was controlled by RpoH2. Here, we show that the RpoH2 sigma factor-controlled photooxidative stress response in A. brasilense is similar to that in the photosynthetic bacterium Rhodobacter sphaeroides, but that RpoH2 is not involved in the detoxification of methylglyoxal in A. brasilense.
Collapse
Affiliation(s)
- Santosh Kumar
- Laboratory of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Ashutosh Kumar Rai
- Laboratory of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Mukti Nath Mishra
- Laboratory of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Mansi Shukla
- Laboratory of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | | | - Anil Kumar Tripathi
- Laboratory of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
193
|
Moll I, Engelberg-Kulka H. Selective translation during stress in Escherichia coli. Trends Biochem Sci 2012; 37:493-8. [PMID: 22939840 DOI: 10.1016/j.tibs.2012.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022]
Abstract
The bacterial stress response, a strategy to cope with environmental changes, is generally known to operate on the transcriptional level. Here, we discuss a novel paradigm for stress adaptation at the post-transcriptional level, based on the recent discovery of a stress-induced modified form of the translation machinery in Escherichia coli that is generated by MazF, the toxin component of the toxin-antitoxin (TA) module mazEF. Under stress, the induced endoribonuclease MazF removes the 3'-terminal 43 nucleotides of the 16S rRNA of ribosomes and, concomitantly, the 5'-untranslated regions (UTRs) of specific transcripts. This elegant mechanism enables selective translation due to the complementary effect of MazF on ribosomes and mRNAs, and also represents the first example of functional ribosome heterogeneity based on rRNA alteration.
Collapse
Affiliation(s)
- Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria.
| | | |
Collapse
|
194
|
Zingaro KA, Terry Papoutsakis E. GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 2012; 15:196-205. [PMID: 22898718 DOI: 10.1016/j.ymben.2012.07.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Strain tolerance to toxic metabolites remains a limiting issue in the production of chemicals and biofuels using biological processes. Here we examined the impact of overexpressing the autologous GroESL chaperone system with its natural promoter on the tolerance of Escherichia coli to several toxic alcohols. Strain tolerance was examined using both a growth assay as well as viable cell counts employing a CFU (colony-forming unit) assay. GroESL over expression enhanced cell growth to all alcohols tested, including a 12-fold increase in total growth in 48-h cultures under 4% (v/v) ethanol, a 2.8-fold increase under 0.75% (v/v) n-butanol, a 3-fold increase under 1.25% (v/v) 2-butanol, and a 4-fold increase under 20% (v/v) 1,2,4-butanetriol. GroESL overexpression resulted in a 9-fold increase in CFU numbers compared to a plasmid control strain after 24h of culture under 6% (v/v) ethanol, and a 3.5-fold and 9-fold increase for culture under 1% (v/v) n-butanol and i-butanol, respectively. The toxicity of the alcohols was examined against their octanol-water partition coefficient, a measure commonly used to predict solvent toxicity. For both the control and the GroESL overexpressing strains, the calculated membrane concentration of each alcohol based on the octanol-water partition coefficient could be correlated, but with different patterns, to the impact of the various alcohols on cell growth, but not on cell viability (CFUs). Our data suggest a complex pattern of growth inhibition and differential protection by GroESL overexpression depending on the specific alcohol molecule. Overall, however, GroESL overexpression appears to provide molecule-agnostic tolerance to toxic chemicals.
Collapse
Affiliation(s)
- Kyle A Zingaro
- Department of Chemical Engineering & Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | | |
Collapse
|
195
|
From a ratchet mechanism to random fluctuations evolution of Hsp90's mechanochemical cycle. J Mol Biol 2012; 423:462-71. [PMID: 22878379 DOI: 10.1016/j.jmb.2012.07.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 07/05/2012] [Accepted: 07/31/2012] [Indexed: 11/22/2022]
Abstract
The 90-kDa heat shock proteins [heat shock protein 90 (Hsp90)] are a highly conserved ATP-dependent protein family, which can be found from prokaryotic to eukaryotic organisms. In general, Hsp90s are elongated dimers with N- and C-terminal dimerization sites. In a series of publications, we have recently shown that no successive mechanochemical cycle exists for yeast Hsp90 (yHsp90) in the absence of clients or cochaperones. Here, we resolve the mechanochemical cycle of the bacterial homologue HtpG by means of two- and three-color single-molecule FRET (Förster resonance energy transfer). Unlike yHsp90, the N-terminal dynamics of HtpG is strongly influenced by nucleotide binding and turnover-its reaction cycle is driven by a mechanical ratchet mechanism. However, the C-terminal dimerization site is mainly closed and not influenced by nucleotides. The direct comparison of both proteins shows that the Hsp90 machinery has developed to a more flexible and less nucleotide-controlled system during evolution.
Collapse
|
196
|
Silva F, Queiroz JA, Domingues FC. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 2012; 30:691-708. [DOI: 10.1016/j.biotechadv.2011.12.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/01/2011] [Accepted: 12/29/2011] [Indexed: 01/26/2023]
|
197
|
Yin H, Tang M, Zhou Z, Fu X, Shen L, Liang Y, Li Q, Liu H, Liu X. Distinctive heat-shock response of bioleaching microorganism Acidithiobacillus ferrooxidans observed using genome-wide microarray. Can J Microbiol 2012; 58:628-36. [PMID: 22524627 DOI: 10.1139/w2012-023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Temperature plays an important role in the heap bioleaching. The maldistribution of ventilation in the heap leads to local hyperthermia, which does exert a tremendous stress on bioleaching microbes. In this study, the genome-wide expression profiles of Acidithiobacillus ferrooxidans at 40 °C were detected using the microarray. The results showed that some classic proteases like Lon and small heat-shock proteins were not induced, and heat-inducible membrane proteins were suggested to be under the control of σ(E). Moreover, expression changes of energy metabolism are noteworthy, which is different from that in heterotrophic bacteria upon heat stress. The induced enzymes catalyzed the central carbon metabolism pathway that might mainly provide precursors of amino acids for protein synthesis. These results will deepen the understanding of the mechanisms of heat-shock response on autotrophic bacteria.
Collapse
Affiliation(s)
- Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Dilanji GE, Langebrake JB, De Leenheer P, Hagen SJ. Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. J Am Chem Soc 2012; 134:5618-26. [PMID: 22372494 DOI: 10.1021/ja211593q] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quorum sensing (QS) bacteria regulate gene expression collectively by exchanging diffusible signal molecules known as autoinducers. Although QS is often studied in well-stirred laboratory cultures, QS bacteria colonize many physically and chemically heterogeneous environments where signal molecules are transported primarily by diffusion. This raises questions of the effective distance range of QS and the degree to which colony behavior can be synchronized over such distances. We have combined experiments and modeling to investigate the spatiotemporal patterns of gene expression that develop in response to a diffusing autoinducer signal. We embedded a QS strain in a narrow agar lane and introduced exogenous autoinducer at one terminus of the lane. We then measured the expression of a QS reporter as a function of space and time as the autoinducer diffused along the lane. The diffusing signal readily activates the reporter over distances of ~1 cm on time scales of ~10 h. However, the patterns of activation are qualitatively unlike the familiar spreading patterns of simple diffusion, as the kinetics of response are surprisingly insensitive to the distance the signal has traveled. We were able to reproduce these patterns with a mathematical model that combines simple diffusion of the signal with logistic growth of the bacteria and cooperative activation of the reporter. In a wild-type QS strain, we also observed the propagation of a unique spatiotemporal excitation. Our results show that a chemical signal transported only by diffusion can be remarkably effective in synchronizing gene expression over macroscopic distances.
Collapse
Affiliation(s)
- Gabriel E Dilanji
- Department of Physics, University of Florida, Gainesville, Florida 32611-8440, United States
| | | | | | | |
Collapse
|
199
|
Roy SS, Patra M, Basu T, Dasgupta R, Bagchi A. Evolutionary analysis of prokaryotic heat-shock transcription regulatory protein σ³². Gene 2012; 495:49-55. [PMID: 22240312 DOI: 10.1016/j.gene.2011.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
Heat-stress to any living cell is known to trigger a universal defense response, called heat-shock response, with rapid induction of tens of different heat-shock proteins. Bacterial heat-shock genes are transcribed by the σ(32)-bound RNA polymerase instead of the normal σ(70)-bound RNA polymerase. In this study, the diversity in sequence, variation in secondary structure and function amongst the different functional regions of the proteobacterial σ(32) family of proteins, and their phylogenetic relationships have been analyzed. Bacterial σ(32) proteins can be subdivided into different functional regions which are referred to as regions 2, 3, and 4. There is a great deal of sequence conservation among the functional regions of proteobacterial σ(32) family of proteins though some mutations are also present in these regions. Region 2 is the most conserved one, while region 4 has comparatively more variable sequences. In the present work, we tried to explore the effects of mutations in these regions. Our study suggests that the sequence diversities due to natural mutations in the different regions of proteobacterial σ(32) family lead to different functions. So far, this study is the first bioinformatic approach towards the understanding of the mechanistic details of σ(32) family of proteins using the protein sequence information only. This study therefore may help in elucidating the hitherto unknown molecular mechanism of the functionalities of σ(32)family of proteins.
Collapse
Affiliation(s)
- Sourav Singha Roy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, India
| | | | | | | | | |
Collapse
|
200
|
Follonier S, Panke S, Zinn M. Pressure to kill or pressure to boost: a review on the various effects and applications of hydrostatic pressure in bacterial biotechnology. Appl Microbiol Biotechnol 2012; 93:1805-15. [DOI: 10.1007/s00253-011-3854-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/17/2011] [Accepted: 12/19/2011] [Indexed: 02/02/2023]
|