151
|
Wang G, Kang MX, Lu WJ, Chen Y, Zhang B, Wu YL. MACC1: A potential molecule associated with pancreatic cancer metastasis and chemoresistance. Oncol Lett 2012. [PMID: 23205101 DOI: 10.3892/ol.2012.784] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It has been suggested that the newly identified metastasis-associated in colon cancer-1 (MACC1) oncogene is involved in the progression and metastasis of cancer. Several studies have indicated that MACC1 has potential as a novel biomarker. In this study, we aimed to investigate the functions and serum expression levels of MACC1 in pancreatic cancer patients. Blood serum samples from 60 cancer patients and 49 controls were analyzed for serum MACC1 by ELISA. The results revealed that high expression levels of MACC1 were correlated with lymph node metastasis, distant metastasis and a later TNM stage. Inhibition of MACC1 by siRNAs significantly suppressed pancreatic cancer cell proliferation and migration. Furthermore, it was found that the downregulation of MACC1 sensitized pancreatic cancer cells to gemcitabine treatment through the inhibition of the Ras/ERK signaling pathway. Our findings suggest that MACC1 may aid in the diagnosis of pancreatic cancer and serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Gang Wang
- Department of Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Cancer Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | | | | | | | | | | |
Collapse
|
152
|
Abstract
INTRODUCTION Under normal conditions, hepatocyte growth factor (HGF)-induced activation of its cell surface receptor, the Met tyrosine kinase (TK), is tightly regulated by paracrine ligand delivery, ligand activation at the target cell surface, and ligand-activated receptor internalization and degradation. Despite these controls, HGF/Met signaling contributes to oncogenesis and tumor progression in several cancers and promotes aggressive cellular invasiveness that is strongly linked to tumor metastasis. AREA COVERED The prevalence of HGF/Met pathway activation in human malignancies has driven rapid growth in cancer drug development programs. The authors review Met structure and function, the basic properties of HGF/Met pathway antagonists now in preclinical and clinical development, as well as the latest clinical trial results. EXPERT OPINION Clinical trials with HGF/Met pathway antagonists show that as a class these agents are well tolerated. Although widespread efficacy was not seen in several completed Phase II studies, promising results have been reported in lung, gastric, prostate and papillary renal cancer patients treated with these agents. The main challenges facing the effective use of HGF/Met-targeted antagonists for cancer treatment are optimal patient selection, diagnostic and pharmacodynamic biomarker development, and the identification and testing of optimal therapy combinations. The wealth of basic information, analytical reagents, and model systems available concerning HGF/Met oncogenic signaling will continue to be invaluable in meeting these challenges and moving expeditiously toward more effective disease control.
Collapse
Affiliation(s)
- Fabiola Cecchi
- National Cancer Institute, National Institutes of Health, Center for Cancer Research, Urologic Oncology Branch, 10 Center Drive MSC 1107, Bethesda, MD 20892-1107, USA.
| | | | | |
Collapse
|
153
|
McDonald CB, Bhat V, Mikles DC, Deegan BJ, Seldeen KL, Farooq A. Bivalent binding drives the formation of the Grb2-Gab1 signaling complex in a noncooperative manner. FEBS J 2012; 279:2156-73. [PMID: 22536782 DOI: 10.1111/j.1742-4658.2012.08600.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the growth factor receptor binder 2 (Grb2)-Grb2-associated binder (Gab)1 macromolecular complex mediates a multitude of cellular signaling cascades, the molecular basis of its assembly has hitherto remained largely elusive. Herein, using an array of biophysical techniques, we show that, whereas Grb2 exists in a monomer-dimer equilibrium, the proline-rich (PR) domain of Gab1 is a monomer in solution. Of particular interest is the observation that although the PR domain appears to be structurally disordered, it nonetheless adopts a more or less compact conformation reminiscent of natively folded globular proteins. Importantly, the structurally flexible conformation of the PR domain appears to facilitate the binding of Gab1 to Grb2 with a 1:2 stoichiometry. More specifically, the formation of the Grb2-Gab1 signaling complex is driven via a bivalent interaction through the binding of the C-terminal homology 3 (cSH3) domain within each monomer of Grb2 homodimer to two distinct RXXK motifs, herein designated G1 and G2, located within the PR domain of Gab1. Strikingly, in spite of the key role of bivalency in driving this macromolecular assembly, the cSH3 domains bind to the G1 and G2 motifs in an independent manner with zero cooperativity. Taken together, our findings shed new light on the physicochemical forces driving the assembly of a key macromolecular signaling complex that is relevant to cellular health and disease.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry & Molecular Biology and the USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
154
|
Abstract
Abl kinases are prototypic cytoplasmic tyrosine kinases and are involved in a variety of chromosomal aberrations in different cancers. This causes the expression of Abl fusion proteins, such as Bcr-Abl, that are constitutively activated and drivers of tumorigenesis. Over the past decades, biochemical and functional studies on the molecular mechanisms of Abl regulation have gone hand in hand with progression of our structural understanding of autoinhibited and active Abl conformations. In parallel, Abl oncoproteins have become prime molecular targets for cancer therapy, using adenosine triphosphate (ATP)-competitive kinase inhibitors, such as imatinib. Abl-targeting drugs serve as a paradigm for our understanding of kinase inhibitor action, specificity, and resistance development. In this review article, I will review the molecular mechanisms that are responsible for the regulation of Abl kinase activity and how oncogenic Abl fusions signal. Furthermore, past and ongoing efforts to target Abl oncoproteins using ATP-competitive and allosteric inhibitors, as well as future possibilities using combination therapy, will be discussed.
Collapse
Affiliation(s)
- Oliver Hantschel
- École polytechnique fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| |
Collapse
|
155
|
McDonald CB, Balke JE, Bhat V, Mikles DC, Deegan BJ, Seldeen KL, Farooq A. Multivalent binding and facilitated diffusion account for the formation of the Grb2-Sos1 signaling complex in a cooperative manner. Biochemistry 2012; 51:2122-35. [PMID: 22360309 DOI: 10.1021/bi3000534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite its key role in driving cellular growth and proliferation through receptor tyrosine kinase (RTK) signaling, the Grb2-Sos1 macromolecular interaction remains poorly understood in mechanistic terms. Herein, using an array of biophysical methods, we provide evidence that although the Grb2 adaptor can potentially bind to all four PXψPXR motifs (designated herein S1-S4) located within the Sos1 guanine nucleotide exchange factor, the formation of the Grb2-Sos1 signaling complex occurs with a 2:1 stoichiometry. Strikingly, such bivalent binding appears to be driven by the association of the Grb2 homodimer to only two of four potential PXψPXR motifs within Sos1 at any one time. Of particular interest is the observation that of a possible six pairwise combinations in which S1-S4 motifs may act in concert for the docking of the Grb2 homodimer through bivalent binding, only S1 and S3, S1 and S4, S2 and S4, and S3 and S4 do so, while pairwise combinations of sites S1 and S2 and sites S2 and S3 appear to afford only monovalent binding. This salient observation implicates the role of local physical constraints in fine-tuning the conformational heterogeneity of the Grb2-Sos1 signaling complex. Importantly, the presence of multiple binding sites within Sos1 appears to provide a physical route for Grb2 to hop in a flip-flop manner from one site to the next through facilitated diffusion, and such rapid exchange forms the basis of positive cooperativity driving the bivalent binding of Grb2 to Sos1 with high affinity. Collectively, our study sheds new light on the assembly of a key macromolecular signaling complex central to cellular machinery in health and disease.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry and Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
Biological cells accomplish their physiological functions using interconnected networks of genes, proteins, and other biomolecules. Most interactions in biological signaling networks, such as bimolecular association or covalent modification, can be modeled in a physically realistic manner using elementary reaction kinetics. However, the size and combinatorial complexity of such reaction networks have hindered such a mechanistic approach, leading many to conclude that it is premature and to adopt alternative statistical or phenomenological approaches. The recent development of rule-based modeling languages, such as BioNetGen (BNG) and Kappa, enables the precise and succinct encoding of large reaction networks. Coupled with complementary advances in simulation methods, these languages circumvent the combinatorial barrier and allow mechanistic modeling on a much larger scale than previously possible. These languages are also intuitive to the biologist and accessible to the novice modeler. In this chapter, we provide a self-contained tutorial on modeling signal transduction networks using the BNG Language and related software tools. We review the basic syntax of the language and show how biochemical knowledge can be articulated using reaction rules, which can be used to capture a broad range of biochemical and biophysical phenomena in a concise and modular way. A model of ligand-activated receptor dimerization is examined, with a detailed treatment of each step of the modeling process. Sections discussing modeling theory, implicit and explicit model assumptions, and model parameterization are included, with special focus on retaining biophysical realism and avoiding common pitfalls. We also discuss the more advanced case of compartmental modeling using the compartmental extension to BioNetGen. In addition, we provide a comprehensive set of example reaction rules that cover the various aspects of signal transduction, from signaling at the membrane to gene regulation. The reader can modify these reaction rules to model their own systems of interest.
Collapse
Affiliation(s)
- John A P Sekar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
157
|
Pagano MA, Tibaldi E, Gringeri E, Brunati AM. Tyrosine phosphorylation and liver regeneration: A glance at intracellular transducers. IUBMB Life 2011; 64:27-35. [DOI: 10.1002/iub.576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/15/2011] [Indexed: 12/30/2022]
|
158
|
Gab adapter proteins as therapeutic targets for hematologic disease. Adv Hematol 2011; 2012:380635. [PMID: 22216034 PMCID: PMC3246295 DOI: 10.1155/2012/380635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 12/19/2022] Open
Abstract
The Grb-2 associated binder (Gab) family of scaffolding/adaptor/docking proteins is a group of three molecules with significant roles in cytokine receptor signaling. Gabs possess structural motifs for phosphorylation-dependent receptor recruitment, Grb2 binding, and activation of downstream signaling pathways through p85 and SHP-2. In addition, Gabs participate in hematopoiesis and regulation of immune response which can be aberrantly activated in cancer and inflammation. The multifunctionality of Gab adapters might suggest that they would be too difficult to consider as candidates for “targeted” therapy. However, the one drug/one target approach is giving way to the concept of one drug/multiple target approach since few cancers are addicted to a single signaling molecule for survival and combination drug therapies can be problematic. In this paper, we cover recent findings on Gab multi-functionality, binding partners, and their role in hematological malignancy and examine the concept of Gab-targeted therapy.
Collapse
|
159
|
Gao J, Inagaki Y, Song P, Qu X, Kokudo N, Tang W. Targeting c-Met as a promising strategy for the treatment of hepatocellular carcinoma. Pharmacol Res 2011; 65:23-30. [PMID: 22138044 DOI: 10.1016/j.phrs.2011.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a severe condition that is found worldwide. Liver transplantation, surgical resection, and local-regional therapy such as transarterial chemoembolization have made great progress and play a dominant role in HCC management. However, the high frequency of tumor recurrence and/or metastasis after those treatments acquires systematic drug intervention. The approval of sorafenib, an agent that targets receptor tyrosine kinases (RTKs), as the first effective drug for systemic treatment of HCC represents a milestone in treatment of this disease. As a typical member of the RTK family, c-Met represents an intriguing target for cancer therapy. However, the role of the c-Met signal transduction pathway is less unambiguous in HCC pathology, giving rise to concerns about the feasibility of utilizing c-Met targeting approaches for HCC treatment. Recently, studies on des-γ-carboxy prothrombin, an abnormal cytokine secreted by HCC cells, by the current authors and other researchers have highlighted the critical role of c-Met signaling in HCC progression. This review takes a second look at the c-Met signal transduction pathway and discusses the possibility of targeting c-Met as a therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China
| | | | | | | | | | | |
Collapse
|
160
|
Wang Y, Sheng Q, Spillman MA, Behbakht K, Gu H. Gab2 regulates the migratory behaviors and E-cadherin expression via activation of the PI3K pathway in ovarian cancer cells. Oncogene 2011; 31:2512-20. [PMID: 21996746 PMCID: PMC3262088 DOI: 10.1038/onc.2011.435] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ovarian cancer, the most deadly gynecologic malignancy, is often diagnosed late and at the advanced stage when the cancer cells have already migrated and invaded into other tissues and organs. Better understanding of the mechanism of metastasis in ovarian cancer cells is essential to the design of effective therapy. In this study, we investigated the function of scaffolding adaptor protein Gab2 in ovarian cancer cells. Gab2 is found to be overexpressed in a subset of ovarian tumors and cancer cell lines. Gab2 expression mainly regulates the migratory behaviors of ovarian cancer cells. Overexpression of Gab2 promotes the migration and invasion, and down-regulates E-cadherin expression in ovarian cancer cells with low-Gab2 expression. Conversely, knockdown of Gab2 expression inhibits the migration and invasion, and promotes E-cadherin expression in ovarian cancer cells with high-Gab2 expression. By expressing Gab2 wild type and Gab2 mutants that are defective in activation the PI3K and Shp2-Erk pathways, we find that Gab2 inhibits E-cadherin expression and enhances the expression of Zeb1, a transcription factor involved in epithelial-to-mesenchymal transition (EMT), and cell migration and invasion through the activation of the PI3K pathway. Knockdown of Zeb1 expression blocks Gab2-induced suppression of E-cadherin expression and increase in cell invasion. LY294002 and GDC-0941, inhibitors of PI3K, or Rapamycin, an inhibitor of PI3K downstream target mTOR, can reverse the effects of Gab2 on migration and invasion. Overall, our studies reveal that Gab2 overexpression, via activation of the PI3K-Zeb1 pathway, promotes characteristics of EMT in ovarian cancer cells.
Collapse
Affiliation(s)
- Y Wang
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | | |
Collapse
|
161
|
Simister PC, Feller SM. Order and disorder in large multi-site docking proteins of the Gab family--implications for signalling complex formation and inhibitor design strategies. MOLECULAR BIOSYSTEMS 2011; 8:33-46. [PMID: 21935523 DOI: 10.1039/c1mb05272a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Large multi-site docking (LMD) proteins of the Gab, IRS, FRS, DOK and Cas families consist of one or two folded N-terminal domains, followed by a predominantly disordered C-terminal extension. Their primary function is to provide a docking platform for signalling molecules (including PI3K, PLC, Grb2, Crk, RasGAP, SHP2) in intracellular signal transmission from activated cell-surface receptors, to which they become coupled. A detailed analysis of the structural nature and intrinsic disorder propensity of LMD proteins, with Gab proteins as specific examples, is presented. By primary sequence analysis and literature review the varying levels of disorder and hidden order are predicted, revealing properties and a physical architecture that help to explain their biological function and characteristics, common for network hub proteins. The virulence factor, CagA, from Helicobacter pylori is able to mimic Gab function once injected by this human pathogen into stomach epithelial cells. Its predicted differential structure is compared to Gab1 with respect to its functional mimicry. Lastly, we discuss how LMD proteins, in particular Gab1 and Gab2, and their protein partners, such as SH2 and SH3 domain-containing adaptors like Grb2, might qualify for future anti-cancer strategies in developing protein-protein interaction (PPI) inhibitors towards binary interactors consisting of an intrinsically disordered epitope and a structured domain surface.
Collapse
Affiliation(s)
- Philip C Simister
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
162
|
Gab2 promotes colony-stimulating factor 1-regulated macrophage expansion via alternate effectors at different stages of development. Mol Cell Biol 2011; 31:4563-81. [PMID: 21930791 DOI: 10.1128/mcb.05706-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colony-stimulating factor 1 (CSF-1) receptor (CSF-1R, or macrophage CSF receptor [M-CSFR]) is the primary regulator of the proliferation, survival, and differentiation of mononuclear phagocytes (MNPs), but the critical CSF-1 signals for these functions are unclear. The scaffold protein Gab2 is a major tyrosyl phosphoprotein in the CSF-1R signaling network. Here we demonstrate that Gab2 deficiency results in profoundly defective expansion of CSF-1R-dependent MNP progenitors in the bone marrow, through decreased proliferation and survival. Reconstitution and phospho-flow studies show that downstream of CSF-1R, Gab2 uses phosphatidylinositol 3-kinase (PI3K)-Akt and extracellular signal-regulated kinase (Erk) to regulate MNP progenitor expansion. Unexpectedly, Gab2 ablation enhances Jun N-terminal protein kinase 1 (JNK1) phosphorylation in differentiated MNPs but reduces their proliferation; inhibition of JNK signaling or reduction of JNK1 levels restores proliferation. MNP recruitment to inflammatory sites and the corresponding bone marrow response is strongly impaired in Gab2-deficient mice. Our data provide genetic and biochemical evidence that CSF-1R, through Gab2, utilizes different effectors at different stages of MNP development to promote their expansion.
Collapse
|
163
|
Nishida K, Yamasaki S, Hasegawa A, Iwamatsu A, Koseki H, Hirano T. Gab2, via PI-3K, Regulates ARF1 in FcεRI-Mediated Granule Translocation and Mast Cell Degranulation. THE JOURNAL OF IMMUNOLOGY 2011; 187:932-41. [DOI: 10.4049/jimmunol.1100360] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
164
|
Adams JR, Schachter NF, Liu JC, Zacksenhaus E, Egan SE. Elevated PI3K signaling drives multiple breast cancer subtypes. Oncotarget 2011; 2:435-47. [PMID: 21646685 PMCID: PMC3248195 DOI: 10.18632/oncotarget.285] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Most human breast tumors have mutations that elevate signaling through a key metabolic pathway that is induced by insulin and a number of growth factors. This pathway serves to activate an enzyme known as phosphatidylinositol 3' kinase (PI3K) as well as to regulate proteins that signal in response to lipid products of PI3K. The specific mutations that activate this pathway in breast cancer can occur in genes coding for tyrosine kinase receptors, adaptor proteins linked to PI3K, catalytic and regulatory subunits of PI3K, serine/threonine kinases that function downstream of PI3K, and also phosphatidylinositol 3' phosphatase tumor suppressors that function to antagonize this pathway. While each genetic change results in net elevation of PI3K pathway signaling, and all major breast cancer subtypes show pathway activation, the specific mutation(s) involved in any one tumor may play an important role in defining tumor subtype, prognosis and even sensitivity to therapy. Here, we describe mouse models of breast cancer with elevated PI3K signaling, and how they may be used to guide development of novel therapeutics.
Collapse
Affiliation(s)
- Jessica R. Adams
- 1 Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 101 College St., East Tower
- 2 The Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nathan F. Schachter
- 1 Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 101 College St., East Tower
- 2 The Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeff C. Liu
- 3 Division of Cell and Molecular Biology, Toronto General Research Institute–University Health Network, Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- 3 Division of Cell and Molecular Biology, Toronto General Research Institute–University Health Network, Toronto, Ontario, Canada
- 4 The Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sean E. Egan
- 1 Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 101 College St., East Tower
- 2 The Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
165
|
Lemarié CA, Lehoux S. The Gift of Gab1 (Grb-2-Associated Binder 1). Arterioscler Thromb Vasc Biol 2011; 31:956-7. [DOI: 10.1161/atvbaha.111.225987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Stéphanie Lehoux
- From Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
166
|
Xu XL, Wang X, Chen ZL, Jin M, Yang W, Zhao GF, Li JW. Overexpression of Grb2-associated binder 2 in human lung cancer. Int J Biol Sci 2011; 7:496-504. [PMID: 21552417 PMCID: PMC3088873 DOI: 10.7150/ijbs.7.496] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/10/2011] [Indexed: 11/25/2022] Open
Abstract
Objective: Grb2-associated binder 2 (Gab2), a member of the family of Gab scaffolding adaptors, transmits and amplifies the signals from receptor tyrosine kinases. A recent study demonstrated that Gab2 was over-expressed in breast cancers and metastatic melanomas, and Gab2 was an oncogenic protein. However, the roles of Gab2 in lung cancers are largely unknown. Method: In this study, to investigate whether Gab2 expression could be a characteristic of lung cancers, we analyzed the expression of Gab2 in 88 lung frozen tissue samples and 122 paraffin-embedded tissue specimens, using quantitative real-time-PCR, immunohistochemistry and western blot. Results: We found that the positive expression rate of Gab2 in the tumor tissues, as detected by immunohistochemistry, 62.5% in squamous cell cancers, 51.35% in adenocarcinomas, and 75% in other types of lung cancers, was significantly higher than that (12%) in normal lung tissues. The mRNA expression detected by quantitative real-time-PCR and protein expression detected by western blotting in different groups were consistent with the immunohistochemical results. Conclusion: Our data indicate that Gab2 is over-expressed in malignant lung tissues compared with that in normal lung tissues, and suggest that Gab2 expression may play a role in lung cancer development.
Collapse
Affiliation(s)
- Xiu-Li Xu
- Department of Pathology, Tianjin Medical University, Heping District, Tianjin 300070, China
| | | | | | | | | | | | | |
Collapse
|
167
|
De Bacco F, Luraghi P, Medico E, Reato G, Girolami F, Perera T, Gabriele P, Comoglio PM, Boccaccio C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J Natl Cancer Inst 2011; 103:645-61. [PMID: 21464397 DOI: 10.1093/jnci/djr093] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ionizing radiation (IR) is effectively used in cancer therapy. However, in subsets of patients, a few radioresistant cancer cells survive and cause disease relapse with metastatic progression. The MET oncogene encodes the hepatocyte growth factor (HGF) receptor and is known to drive "invasive growth", a regenerative and prosurvival program unduly activated in metastasis. METHODS Human tumor cell lines (MDA-MB-231, MDA-MB-435S, U251) were subjected to therapeutic doses of IR. MET mRNA, and protein expression and signal transduction were compared in treated and untreated cells, and the involvement of the DNA-damage sensor ataxia telangiectasia mutated (ATM) and the transcription factor nuclear factor kappa B (NF-κB) in activating MET transcription were analyzed by immunoblotting, chromatin immunoprecipitation, and use of NF-κB silencing RNA (siRNA). Cell invasiveness was measured in wound healing and transwell assays, and cell survival was measured in viability and clonogenic assays. MET was inhibited by siRNA or small-molecule kinase inhibitors (PHA665752 or JNJ-38877605). Combinations of MET-targeted therapy and radiotherapy were assessed in MDA-MB-231 and U251 xenografts (n = 5-6 mice per group). All P values were from two-sided tests. RESULTS After irradiation, MET expression in cell lines was increased up to fivefold via activation of ATM and NF-κB. MET overexpression increased ligand-independent MET phosphorylation and signal transduction, and rendered cells more sensitive to HGF. Irradiated cells became more invasive via a MET-dependent mechanism that was further enhanced in the presence of HGF. MET silencing by siRNA or inhibition of its kinase activity by treatment with PHA665752 or JNJ-38877605 counteracted radiation-induced invasiveness, promoted apoptosis, and prevented cells from resuming proliferation after irradiation in vitro. Treatment with MET inhibitors enhanced the efficacy of IR to stop the growth of or to induce the regression of xenografts (eg, at day 13, U251 xenografts, mean volume increase relative to mean tumor volume at day 0: vehicle = 438%, 5 Gy IR = 151%, 5 Gy IR + JNJ-38877605 = 76%; difference, IR vs JNJ-38877604 + IR = 75%, 95% CI = 59% to 91%, P = .01). CONCLUSION IR induces overexpression and activity of the MET oncogene through the ATM-NF-κB signaling pathway; MET, in turn, promotes cell invasion and protects cells from apoptosis, thus supporting radioresistance. Drugs targeting MET increase tumor cell radiosensitivity and prevent radiation-induced invasiveness.
Collapse
Affiliation(s)
- Francesca De Bacco
- IRCC-Institute for Cancer Research at Candiolo, University of Turin Medical School, Candiolo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Shioyama W, Nakaoka Y, Higuchi K, Minami T, Taniyama Y, Nishida K, Kidoya H, Sonobe T, Naito H, Arita Y, Hashimoto T, Kuroda T, Fujio Y, Shirai M, Takakura N, Morishita R, Yamauchi-Takihara K, Kodama T, Hirano T, Mochizuki N, Komuro I. Docking Protein Gab1 Is an Essential Component of Postnatal Angiogenesis After Ischemia via HGF/c-Met Signaling. Circ Res 2011; 108:664-75. [DOI: 10.1161/circresaha.110.232223] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rationale:
Grb2-associated binder (Gab) docking proteins, consisting of Gab1, Gab2, and Gab3, have crucial roles in growth factor–dependent signaling. Various proangiogenic growth factors regulate angiogenesis and endothelial function. However, the roles of Gab proteins in angiogenesis remain elusive.
Objective:
To elucidate the role of Gab proteins in postnatal angiogenesis.
Methods and Results:
Endothelium-specific Gab1 knockout (Gab1ECKO) mice were viable and showed no obvious defects in vascular development. Therefore, we analyzed a hindlimb ischemia (HLI) model of control, Gab1ECKO, or conventional Gab2 knockout (Gab2KO) mice. Intriguingly, impaired blood flow recovery and necrosis in the operated limb was observed in all of Gab1ECKO, but not in control or Gab2KO mice. Among several proangiogenic growth factors, hepatocyte growth factor (HGF) induced the most prominent tyrosine phosphorylation of Gab1 and subsequent complex formation of Gab1 with SHP2 (Src homology-2–containing protein tyrosine phosphatase 2) and phosphatidylinositol 3-kinase subunit p85 in human endothelial cells (ECs). Gab1-SHP2 complex was required for HGF-induced migration and proliferation of ECs via extracellular signal-regulated kinase (ERK)1/2 pathway and for HGF-induced stabilization of ECs via ERK5. In contrast, Gab1-p85 complex regulated activation of AKT and contributed partially to migration of ECs after HGF stimulation. Microarray analysis demonstrated that HGF upregulated angiogenesis-related genes such as
KLF2
(Krüppel-like factor 2) and
Egr1
(early growth response 1) via Gab1-SHP2 complex in human ECs. In Gab1ECKO mice, gene transfer of vascular endothelial growth factor, but not HGF, improved blood flow recovery and ameliorated limb necrosis after HLI.
Conclusion:
Gab1 is essential for postnatal angiogenesis after ischemia via HGF/c-Met signaling.
Collapse
Affiliation(s)
- Wataru Shioyama
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Yoshikazu Nakaoka
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Kaori Higuchi
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Takashi Minami
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Yoshiaki Taniyama
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Keigo Nishida
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Hiroyasu Kidoya
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Takashi Sonobe
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Hisamichi Naito
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Yoh Arita
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Takahiro Hashimoto
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Tadashi Kuroda
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Yasushi Fujio
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Mikiyasu Shirai
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Nobuyuki Takakura
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Ryuichi Morishita
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Keiko Yamauchi-Takihara
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Tatsuhiko Kodama
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Toshio Hirano
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Naoki Mochizuki
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| | - Issei Komuro
- From the Departments of Cardiovascular Medicine (W.S., Y.N., K.H., Y.A., T. Hashimoto, T. Kuroda, K.Y.-T., I.K.), Clinical Gene Therapy (Y.T., R.M.), and Advanced Cardiovascular Therapeutics (T. Kuroda), Osaka University Graduate School of Medicine, Suita; Research Center for Advanced Science and Technology (T.M., T. Kodama), University of Tokyo, Laboratory for System Biology and Medicine; Laboratory for Cytokine Signaling (K.N., T. Hirano), RIKEN Research Center for Allergy and Immunology,
| |
Collapse
|
169
|
Zhao J, Wang W, Ha CH, Kim JY, Wong C, Redmond EM, Hamik A, Jain MK, Feng GS, Jin ZG. Endothelial Grb2-associated binder 1 is crucial for postnatal angiogenesis. Arterioscler Thromb Vasc Biol 2011; 31:1016-23. [PMID: 21372298 DOI: 10.1161/atvbaha.111.224493] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Grb2-associated binder 1 (Gab1), a scaffolding adaptor protein, plays an important role in transmitting key signals that control cell growth, differentiation, and function from multiple tyrosine kinase receptors. The study was designed to investigate the role of endothelial Gab1 in angiogenesis and its underlying molecular mechanisms. METHODS AND RESULTS Using Cre-Lox recombination technology, we generated endothelial-specific Gab1 knockout (Gab1-ecKO) mice. Gab1-ecKO mice are viable and showed no obvious developmental defects in the vascular system. To analyze the role of Gab1 in postnatal angiogenesis, we used hindlimb ischemia and Matrigel plug models. We found that loss of endothelial Gab1 in mice dramatically impaired postnatal angiogenesis. Gab1-ecKO mice had impaired ischemia-initiated blood flow recovery, exhibited reduced angiogenesis, and were associated with marked limb necrosis. We further observed significant endothelial cell (EC) death in the ischemic hindlimb of Gab1-ecKO mice. Matrigel plug assay showed that hepatocyte growth factor (HGF)-mediated angiogenesis was inhibited in Gab1-ecKO mice. In vitro studies showed that Gab1 was required for HGF-induced EC migration, tube formation, and microvessel sprouting. Mechanistically, HGF stimulated Gab1 tyrosine phosphorylation in ECs, leading to activation of extracellular regulated MAP kinase 1/2 and Akt, which are angiogenic and survival signaling. CONCLUSIONS Gab1 is essential for postnatal angiogenesis through mediating angiogenic and survival signaling.
Collapse
Affiliation(s)
- Jinjing Zhao
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Zhong XL, Yu JT, Hou GY, Xing YY, Jiang H, Li Y, Tan L. Common variant in GAB2 is associated with late-onset Alzheimer's disease in Han Chinese. Clin Chim Acta 2011; 412:446-9. [DOI: 10.1016/j.cca.2010.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/05/2010] [Accepted: 11/16/2010] [Indexed: 12/23/2022]
|
171
|
Grb-2-associated binder 1 (Gab1) regulates postnatal ischemic and VEGF-induced angiogenesis through the protein kinase A-endothelial NOS pathway. Proc Natl Acad Sci U S A 2011; 108:2957-62. [PMID: 21282639 DOI: 10.1073/pnas.1009395108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular signaling mechanisms underlying postnatal angiogenesis are incompletely understood. Herein we show that Grb-2-associated binder 1 (Gab1) plays a critical role in ischemic and VEGF-induced angiogenesis. Endothelium-specific Gab1 KO (EGKO) mice displayed impaired angiogenesis in the ischemic hindlimb despite normal induction of VEGF expression. Matrigel plugs with VEGF implanted in EGKO mice induced fewer capillaries than those in control mice. The vessels and endothelial cells (ECs) derived from EGKO mice were defective in vascular sprouting and tube formation induced by VEGF. Biochemical analyses revealed a substantial reduction of endothelial NOS (eNOS) activation in Gab1-deficient vessels and ECs following VEGF stimulation. Interestingly, the phosphorylation of Akt, an enzyme known to promote VEGF-induced eNOS activation, was increased in Gab1-deficient vessels and ECs whereas protein kinase A (PKA) activity was significantly decreased. Introduction of an active form of PKA rescued VEGF-induced eNOS activation and tube formation in EGKO ECs. Reexpression of WT or mutant Gab1 molecules in EGKO ECs revealed requirement of Gab1/Shp2 association for the activation of PKA and eNOS. Taken together, these results identify Gab1 as a critical upstream signaling component in VEGF-induced eNOS activation and tube formation, which is dependent on PKA. Of note, this pathway is conserved in primary human ECs for VEGF-induced eNOS activation and tube formation, suggesting considerable potential in treatment of human ischemic diseases.
Collapse
|
172
|
McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms. J Mol Recognit 2010; 24:585-96. [PMID: 21472810 DOI: 10.1002/jmr.1080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/26/2010] [Accepted: 07/26/2010] [Indexed: 12/29/2022]
Abstract
A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry & Molecular Biology, USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
173
|
Matsuo K, Delibegovic M, Matsuo I, Nagata N, Liu S, Bettaieb A, Xi Y, Araki K, Yang W, Kahn BB, Neel BG, Haj FG. Altered glucose homeostasis in mice with liver-specific deletion of Src homology phosphatase 2. J Biol Chem 2010; 285:39750-8. [PMID: 20841350 DOI: 10.1074/jbc.m110.153734] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Src homology 2 domain-containing protein-tyrosine phosphatase Shp2 has been implicated in a variety of growth factor signaling pathways, but its role in insulin signaling has remained unresolved. In vitro studies suggest that Shp2 is both a negative and positive regulator of insulin signaling, although its physiological function in a number of peripheral insulin-responsive tissues remains unknown. To address the metabolic role of Shp2 in the liver, we generated mice with either chronic or acute hepatic Shp2 deletion using tissue-specific Cre-LoxP and adenoviral Cre approaches, respectively. We then analyzed insulin sensitivity, glucose tolerance, and insulin signaling in liver-specific Shp2-deficient and control mice. Mice with chronic Shp2 deletion exhibited improved insulin sensitivity and increased glucose tolerance compared with controls. Acute Shp2 deletion yielded comparable results, indicating that the observed metabolic effects are directly caused by the lack of Shp2 in the liver. These findings correlated with, and were most likely caused by, direct dephosphorylation of insulin receptor substrate (IRS)1/2 in the liver, accompanied by increased PI3K/Akt signaling. In contrast, insulin-induced ERK activation was dramatically attenuated, yet there was no effect on the putative ERK site on IRS1 (Ser(612)) or on S6 kinase 1 activity. These studies show that Shp2 is a negative regulator of hepatic insulin action, and its deletion enhances the activation of PI3K/Akt pathway downstream of the insulin receptor.
Collapse
Affiliation(s)
- Kosuke Matsuo
- Department of Nutrition, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Capitani N, Lucherini OM, Baldari CT. Negative regulation of immunoreceptor signaling by protein adapters: Shc proteins join the club. FEBS Lett 2010; 584:4915-22. [DOI: 10.1016/j.febslet.2010.08.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/23/2010] [Accepted: 08/31/2010] [Indexed: 11/26/2022]
|
175
|
A germline gain-of-function mutation in Ptpn11 (Shp-2) phosphatase induces myeloproliferative disease by aberrant activation of hematopoietic stem cells. Blood 2010; 116:3611-21. [PMID: 20651068 DOI: 10.1182/blood-2010-01-265652] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Germline and somatic gain-of-function mutations in tyrosine phosphatase PTPN11 (SHP-2) are associated with juvenile myelomonocytic leukemia (JMML), a myeloproliferative disease (MPD) of early childhood. The mechanism by which PTPN11 mutations induce this disease is not fully understood. Signaling partners that mediate the pathogenic effects of PTPN11 mutations have not been explored. Here we report that germ line mutation Ptpn11(D61G) in mice aberrantly accelerates hematopoietic stem cell (HSC) cycling, increases the stem cell pool, and elevates short-term and long-term repopulating capabilities, leading to the development of MPD. MPD is reproduced in primary and secondary recipient mice transplanted with Ptpn11(D61G/+) whole bone marrow cells or purified Lineage(-)Sca-1(+)c-Kit(+) cells, but not lineage committed progenitors. The deleterious effects of Ptpn11(D61G) mutation on HSCs are attributable to enhancing cytokine/growth factor signaling. The aberrant HSC activities caused by Ptpn11(D61G) mutation are largely corrected by deletion of Gab2, a prominent interacting protein and target of Shp-2 in cell signaling. As a result, MPD phenotypes are markedly ameliorated in Ptpn11(D61G/+)/Gab2(-/-) double mutant mice. Collectively, our data suggest that oncogenic Ptpn11 induces MPD by aberrant activation of HSCs. This study also identifies Gab2 as an important mediator for the pathogenic effects of Ptpn11 mutations.
Collapse
|
176
|
Abstract
Recent structural studies of receptor tyrosine kinases (RTKs) have revealed unexpected diversity in the mechanisms of their activation by growth factor ligands. Strategies for inducing dimerization by ligand binding are surprisingly diverse, as are mechanisms that couple this event to activation of the intracellular tyrosine kinase domains. As our understanding of these details becomes increasingly sophisticated, it provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases. Much remains to be learned, however, about the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses.
Collapse
Affiliation(s)
- Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA. <>
| | | |
Collapse
|
177
|
Pan XL, Ren RJ, Wang G, Tang HD, Chen SD. The Gab2 in signal transduction and its potential role in the pathogenesis of Alzheimer's disease. Neurosci Bull 2010; 26:241-6. [PMID: 20502503 PMCID: PMC5560293 DOI: 10.1007/s12264-010-1109-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 02/24/2010] [Indexed: 12/29/2022] Open
Abstract
The growth factor receptor-bound protein 2 (Grb2)-associated binder (Gab) proteins are intracellular scaffolding/docking molecules, and participate in multiple signaling pathways, usually acting as the downstream effector of protein-tyrosine kinases (PTKs)-triggered signal transduction pathway. When phosphorylated by PTKs, Gab proteins can recruit several signaling molecules (p85, SHP2, and Crk), and subsequently activate multiple transmitting signals that are critical for cell growth, survival, differentiation and apoptosis. Recently, it has been reported that Gab2 polymorphism is associated with the increase in the risk of Alzheimer's disease (AD) and is involved in the pathogenesis of AD. This review mainly focuses on the structure and function of Gab2 protein and its role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xiao-Ling Pan
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Ru-Jing Ren
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Gang Wang
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Hui-Dong Tang
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Sheng-Di Chen
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
- Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences and Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
178
|
Yamamoto N, Taniura H, Suzuki K. Insulin inhibits Aβ fibrillogenesis through a decrease of the GM1 ganglioside-rich microdomain in neuronal membranes. J Neurochem 2010; 113:628-36. [DOI: 10.1111/j.1471-4159.2010.06620.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
179
|
Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 2010; 459:793-806. [PMID: 20012875 DOI: 10.1007/s00424-009-0767-7] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 01/08/2023]
Abstract
Endothelial cells situated at the interface between blood and the vessel wall play a crucial role in controlling vascular tone and homeostasis, particularly in determining the expression of pro- and anti-atherosclerotic genes. Many of these effects are mediated by changes in the generation and release of the vasodilator nitric oxide (NO) in response to hemodynamic stimuli exerted on the luminal surface of endothelial cells by the streaming blood (shear stress) and the cyclic strain of the vascular wall. The endothelial NO synthase (eNOS) is activated in response to fluid shear stress and numerous agonists via cellular events such as; increased intracellular Ca(2+), interaction with substrate and co-factors, as well as adaptor and regulatory proteins, protein phosphorylation, and through shuttling between distinct sub-cellular domains. Dysregulation of these processes leads to attenuated eNOS activity and reduced NO output which is a characteristic feature of numerous patho-physiological disorders such as diabetes and atherosclerosis. This review summarizes some of the recent findings relating to the molecular events regulating eNOS activity.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University, Theodor Stern Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
180
|
Zheng Y, An H, Yao M, Hou J, Yu Y, Feng G, Cao X. Scaffolding adaptor protein Gab1 is required for TLR3/4- and RIG-I-mediated production of proinflammatory cytokines and type I IFN in macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 184:6447-56. [PMID: 20435932 DOI: 10.4049/jimmunol.0901750] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RIG-I-like helicases and TLRs are critical sensors in the induction of type I IFN and proinflammatory cytokines to initiate innate immunity against invading pathogens. However, the mechanisms for the full activation of TLR and RIG-I-triggered innate response remain to be fully investigated. Grb2-associated binder 1 (Gab1), a member of scaffolding/adaptor proteins, can mediate signal transduction from many receptors, however, whether and how Gab1 is required for TLR and RIG-I-triggered innate responses remain unknown. In this study, we demonstrated that Gab1 significantly enhances TLR4-, TLR3-, and RIG-I-triggered IL-6, IL-1beta, and IFN-alpha/beta production in macrophages. Gab1 knockdown in primary macrophages or Gab1 deficiency in mouse embryonic fibroblasts significantly suppresses TLR3/4- and RIG-I-triggered production of IL-6, IL-1beta, and IFN-alpha/beta. Consistently, Gab1 deficiency impairs vesicular stomatitis virus (VSV) infection-induced IFN-alpha/beta production. In addition to promoting both MyD88- and TLR/IL-1 receptor domain-containing adaptor protein inducing IFN-beta-dependent MAPKs and NF-kappaB activation, Gab1 enhances PI3K/Akt activation by directly binding p85 in TLR signaling and VSV infection. Accordingly, Gab1 inhibits VSV replication and VSV infection-induced cell damage by inducing type I IFNs and IFN-inducible gene expression via PI3K/Akt pathway. Therefore, Gab1 is needed for full activation of TLR3/4- and RIG-I-triggered innate responses by promoting activation of PI3K/Akt, MAPKs, and NF-kappaB pathways.
Collapse
Affiliation(s)
- Yuejuan Zheng
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
181
|
Abella JV, Vaillancourt R, Frigault MM, Ponzo MG, Zuo D, Sangwan V, Larose L, Park M. The Gab1 scaffold regulates RTK-dependent dorsal ruffle formation through the adaptor Nck. J Cell Sci 2010; 123:1306-19. [PMID: 20332103 DOI: 10.1242/jcs.062570] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The polarised distribution of signals downstream from receptor tyrosine kinases (RTKs) regulates fundamental cellular processes that control cell migration, growth and morphogenesis. It is poorly understood how RTKs are involved in the localised signalling and actin remodelling required for these processes. Here, we show that the Gab1 scaffold is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream from the Met, EGF and PDGF RTKs. Gab1 associates constitutively with the actin-nucleating factor N-WASP. Following RTK activation, Gab1 recruits Nck, an activator of N-WASP, into a signalling complex localised to dorsal ruffles. Formation of dorsal ruffles requires interaction between Gab1 and Nck, and also requires functional N-WASP. Epithelial cells expressing Gab1DeltaNck (Y407F) exhibit decreased Met-dependent Rac activation, fail to induce dorsal ruffles, and have impaired cell migration and epithelial remodelling. These data show that a Gab1-Nck signalling complex interacts with several RTKs to promote polarised actin remodelling and downstream biological responses.
Collapse
Affiliation(s)
- Jasmine V Abella
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Stevens L, McClelland L, Fricke A, Williamson M, Kuo I, Scott G. Plexin B1 suppresses c-Met in melanoma: a role for plexin B1 as a tumor-suppressor protein through regulation of c-Met. J Invest Dermatol 2010; 130:1636-45. [PMID: 20164843 DOI: 10.1038/jid.2010.13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Melanoma arises through complex genetic and epigenetic changes, resulting in uncontrolled proliferation, invasion, and metastatic disease. Semaphorins regulate axon guidance through interaction with their receptors, plexins and neuropilins. Plexin B1, the semaphorin 4D receptor, activates oncogenic receptors c-Met and ErbB-2 in several cell types, suggesting it promotes tumor growth through stimulation of these receptors. A study by Argast et al. has shown that plexin B1 is a tumor-suppressor protein for melanoma metastasis in a mouse model. In this report, we show that plexin B1 is lost in metastatic and deeply invasive melanoma in patient samples in vivo. Unexpectedly, introduction of plexin B1 into human melanoma cell lines suppressed, rather than activated, the oncogenic receptor, c-Met, by its ligand hepatocyte growth factor (HGF). Plexin B1 also activated Akt in melanoma. Plexin B1 significantly abrogated cell migration in response to HGF but rendered cells resistant to apoptosis by cisplatin. Plexin B1 is predicted to function as a classic tumor-suppressor protein in melanoma, in part through suppression of c-Met signaling and c-Met-dependent migration. However, because plexin B1 activates Akt, a multifunctional protein involved in tumor progression in several cancers, plexin B1 may function as a tumor promoter in melanomas not driven by c-Met activation.
Collapse
Affiliation(s)
- Laurel Stevens
- Department of Dermatology, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14618, USA
| | | | | | | | | | | |
Collapse
|
183
|
Weng T, Mao F, Wang Y, Sun Q, Li R, Yang G, Zhang X, Luo J, Feng GS, Yang X. Osteoblastic molecular scaffold Gab1 is required for maintaining bone homeostasis. J Cell Sci 2010; 123:682-9. [PMID: 20124419 DOI: 10.1242/jcs.058396] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Grb2-associated binder 1 (Gab1), which serves as a scaffolding adaptor protein, plays a crucial role in transmitting key signals that control cell growth, differentiation and function from multiple receptors. However, its biological role in osteoblast activity and postnatal bone metabolism remains unclear. To elucidate the in vivo function of Gab1 in postnatal bone remodeling, we generated osteoblast-specific Gab1 knockout mice. Disruption of Gab1 expression in osteoblasts led to decreased trabecular bone mass with a reduced bone formation rate and a decreased bone resorption. Bones from Gab1 mutants also exhibited inferior mechanical properties. Moreover, primary osteoblasts from Gab1 mutant mice demonstrated markedly suppressed osteoblast mineralization, increased susceptibility to apoptosis and decreased expression of receptor activator of NF-kappaB ligand (RANKL). Activation of serine-threonine Akt kinase and extracellular signal-regulated kinase in response to insulin and insulin-like growth factor 1 was attenuated in Gab1 mutant osteoblasts. Our results show that Gab1-mediated signals in osteoblasts are crucial for normal postnatal bone homeostasis.
Collapse
Affiliation(s)
- Tujun Weng
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. Assembly of the Sos1-Grb2-Gab1 ternary signaling complex is under allosteric control. Arch Biochem Biophys 2009; 494:216-25. [PMID: 20005866 DOI: 10.1016/j.abb.2009.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 11/28/2022]
Abstract
Allostery has evolved as a form of local communication between interacting protein partners allowing them to quickly sense changes in their immediate vicinity in response to external cues. Herein, using isothermal titration calorimetry (ITC) in conjunction with circular dichroism (CD) and macromolecular modeling (MM), we show that the binding of Grb2 adaptor--a key signaling molecule involved in the activation of Ras GTPase--to its downstream partners Sos1 guanine nucleotide exchange factor and Gab1 docker is under tight allosteric regulation. Specifically, our findings reveal that the binding of one molecule of Sos1 to the nSH3 domain allosterically induces a conformational change within Grb2 such that the loading of a second molecule of Sos1 onto the cSH3 domain is blocked and, in so doing, allows Gab1 access to the cSH3 domain in an exclusively non-competitive manner to generate the Sos1-Grb2-Gab1 ternary signaling complex.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry & Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
185
|
Chan PC, Sudhakar JN, Lai CC, Chen HC. Differential phosphorylation of the docking protein Gab1 by c-Src and the hepatocyte growth factor receptor regulates different aspects of cell functions. Oncogene 2009; 29:698-710. [DOI: 10.1038/onc.2009.363] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
186
|
Bocanegra M, Bergamaschi A, Kim YH, Miller MA, Rajput AB, Kao J, Langerød A, Han W, Noh DY, Jeffrey SS, Huntsman DG, Børresen-Dale AL, Pollack JR. Focal amplification and oncogene dependency of GAB2 in breast cancer. Oncogene 2009; 29:774-9. [PMID: 19881546 DOI: 10.1038/onc.2009.364] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
DNA amplifications in breast cancer are frequent on chromosome 11q, in which multiple driver oncogenes likely reside in addition to cyclin D1 (CCND1). One such candidate, the scaffolding adapter protein, GRB2-associated binding protein 2 (GAB2), functions in ErbB signaling and was recently shown to enhance mammary epithelial cell proliferation, and metastasis of ERBB2 (HER2/neu)-driven murine breast cancer. However, the amplification status and function of GAB2 in the context of amplification remain undefined. In this study, by genomic profiling of 172 breast tumors, and fluorescence in situ hybridization validation in an independent set of 210 scorable cases, we observed focal amplification spanning GAB2 (11q14.1) independent of CCND1 (11q13.2) amplification, consistent with a driver role. Further, small interfering RNA (siRNA)-mediated knockdown of GAB2 in breast cancer lines (SUM52, SUM44PE and MDA468) with GAB2 amplification revealed a dependency on GAB2 for cell proliferation, cell-cycle progression, survival and invasion, likely mediated through altered phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling. GAB2 knockdown also reduced proliferation and survival in a cell line (BT474) with ERBB2 amplification, consistent with the possibility that GAB2 can function downstream of ERBB2. Our studies implicate focal amplification of GAB2 in breast carcinogenesis, and underscore an oncogenic role of scaffolding adapter proteins, and a potential new point of therapeutic intervention.
Collapse
Affiliation(s)
- M Bocanegra
- Department of Pathology, Stanford University, Stanford, CA 94305-5176, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Abstract
In this issue of Structure, Harkiolaki et al. use crystallography, peptide arrays and isothermal calorimetry to provide a detailed insight into the interaction between the C-terminal SH3 domain of adaptor protein Grb2 bound to the docking protein Gab2.
Collapse
Affiliation(s)
- Franziska U Wöhrle
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University, 79104 Freiburg, Germany
| | | | | |
Collapse
|
188
|
Wöhrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 2009; 7:22. [PMID: 19737390 PMCID: PMC2747914 DOI: 10.1186/1478-811x-7-22] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/08/2009] [Indexed: 01/13/2023] Open
Abstract
Since their discovery a little more than a decade ago, the docking proteins of the Gab/DOS family have emerged as important signalling elements in metazoans. Gab/DOS proteins integrate and amplify signals from a wide variety of sources including growth factor, cytokine and antigen receptors as well as cell adhesion molecules. They also contribute to signal diversification by channelling the information from activated receptors into signalling pathways with distinct biological functions. Recent approaches in protein biochemistry and systems biology have revealed that Gab proteins are subject to complex regulation by feed-forward and feedback phosphorylation events as well as protein-protein interactions. Thus, Gab/DOS docking proteins are at the centre of entire signalling subsystems and fulfil an important if not essential role in many physiological processes. Furthermore, aberrant signalling by Gab proteins has been increasingly linked to human diseases from various forms of neoplasia to Alzheimer's disease. In this review, we provide a detailed overview of the structure, effector functions, regulation and evolution of the Gab/DOS family. We also summarize recent findings implicating Gab proteins, in particular the Gab2 isoform, in leukaemia, solid tumours and other human diseases.
Collapse
Affiliation(s)
- Franziska U Wöhrle
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Germany.
| | | | | |
Collapse
|
189
|
Gab1 transduces PI3K-mediated erythropoietin signals to the Erk pathway and regulates erythropoietin-dependent proliferation and survival of erythroid cells. Cell Signal 2009; 21:1775-83. [PMID: 19665053 DOI: 10.1016/j.cellsig.2009.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/28/2009] [Accepted: 07/28/2009] [Indexed: 11/23/2022]
Abstract
In this study, we examined the biological functions of Gab1 in erythropoietin receptor (EPOR)-mediated signaling in vivo. Knockdown of Gab1 by the introduction of the Gab1 siRNA expression vector into F-36P human erythroleukemia (F-36P-Gab1-siRNA) cells resulted in a reduction of cell proliferation and survival in response to EPO. EPO-induced activation of Erk1/2 but not of Akt was significantly suppressed in F-36P-Gab1-siRNA cells compared with mock-transfected F-36P cells. The co-immunoprecipitation experiments revealed an EPO-enhanced association of Gab1 with the Grb2-SOS1 complex and SHP-2 in F-36P cells. A selective inhibitor of phosphatidylinositol 3-kinase (PI3K) LY294002 and short interfering RNA (siRNA) duplexes targeting the p85 regulatory subunit of PI3K (p85-siRNA) independently suppressed tyrosine phosphorylation of Gab1; its association with Grb2, SHP-2 and p85; and the activation of Erk in EPO-treated F-36P cells. LY294002 inhibited EPO-induced tyrosine phosphorylation of Gab1 and its association with Grb2 in human primary EPO-sensitive erythroid cells. The co-immunoprecipitation experiments using the Jak inhibitor AG490 or siRNA duplexes targeting Jak2 and in vitro binding experiments demonstrated that Jak2 regulated Gab1-mediated Erk activation through tyrosine phosphorylation of Gab1. Taken together, these results suggest that Gab1 couples PI3K-mediated EPO signals with the Ras/Erk pathway and that Gab1 plays an important role in EPOR-mediated signal transduction involved in the proliferation and survival of erythroid cells.
Collapse
|
190
|
Tashiro K, Tsunematsu T, Okubo H, Ohta T, Sano E, Yamauchi E, Taniguchi H, Konishi H. GAREM, a novel adaptor protein for growth factor receptor-bound protein 2, contributes to cellular transformation through the activation of extracellular signal-regulated kinase signaling. J Biol Chem 2009; 284:20206-14. [PMID: 19509291 PMCID: PMC2740447 DOI: 10.1074/jbc.m109.021139] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/02/2009] [Indexed: 11/06/2022] Open
Abstract
Adaptor proteins for the various growth factor receptors play a crucial role in signal transduction through tyrosine phosphorylation. Several candidates for adaptor proteins with potential effects on the epidermal growth factor (EGF) receptor-mediated signaling pathway have been identified by recent phosphoproteomic studies. Here, we focus on a novel protein, GAREM (Grb2-associated and regulator of Erk/MAPK) as a downstream molecule of the EGF receptor. GAREM is phosphorylated at tyrosine 105 and 453 after EGF stimulation. Grb2 was identified as its binding partner, and the proline-rich motifs of GAREM are recognized by the N- and C-terminal SH3 domains of Grb2. In addition, the tyrosine phosphorylations of GAREM are necessary for its binding to Grb2. Because the amino acid sequence surrounding tyrosine 453 is similar to the immunoreceptor tyrosine-based inhibitory motif, Shp2, a positive regulator of Erk, binds to GAREM in this phosphorylation-dependent manner. Consequently, Erk activation in response to EGF stimulation is regulated by the expression of GAREM in COS-7 and HeLa cells, which occurs independent of the presence of other binding proteins, such as Gab1 and SOS, to the activated EGF receptor. Furthermore, the expression of GAREM has an effect on the transformation activity of cultured cells. Together, these findings suggest that GAREM plays a key role in the ligand-mediated signaling pathway of the EGF receptor and the tumorigenesis of cells.
Collapse
Affiliation(s)
- Kyoko Tashiro
- the Division of Disease Proteomics, Institute for Enzyme Research, the University of Tokushima, 3-15-18 Kuramotocho, Tokushima 770-8503, Japan
| | - Takumi Tsunematsu
- From the Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023 and
| | - Hiroko Okubo
- From the Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023 and
| | - Takeshi Ohta
- From the Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023 and
| | - Etsuko Sano
- the Division of Disease Proteomics, Institute for Enzyme Research, the University of Tokushima, 3-15-18 Kuramotocho, Tokushima 770-8503, Japan
| | - Emiko Yamauchi
- the Division of Disease Proteomics, Institute for Enzyme Research, the University of Tokushima, 3-15-18 Kuramotocho, Tokushima 770-8503, Japan
| | - Hisaaki Taniguchi
- the Division of Disease Proteomics, Institute for Enzyme Research, the University of Tokushima, 3-15-18 Kuramotocho, Tokushima 770-8503, Japan
| | - Hiroaki Konishi
- From the Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023 and
- the Division of Disease Proteomics, Institute for Enzyme Research, the University of Tokushima, 3-15-18 Kuramotocho, Tokushima 770-8503, Japan
| |
Collapse
|
191
|
Chernoff KA, Bordone L, Horst B, Simon K, Twadell W, Lee K, Cohen JA, Wang S, Silvers DN, Brunner G, Celebi JT. GAB2 amplifications refine molecular classification of melanoma. Clin Cancer Res 2009; 15:4288-91. [PMID: 19509136 PMCID: PMC2878201 DOI: 10.1158/1078-0432.ccr-09-0280] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Gain-of-function mutations in BRAF, NRAS, or KIT are associated with distinct melanoma subtypes with KIT mutations and/or copy number changes frequently observed among melanomas arising from sun-protected sites, such as acral skin (palms, soles, and nail bed) and mucous membranes. GAB2 has recently been implicated in melanoma pathogenesis, and increased copy numbers are found in a subset of melanomas. We sought to determine the association of increased copy numbers of GAB2 among melanoma subtypes in the context of genetic alterations in BRAF, NRAS, and KIT. EXPERIMENTAL DESIGN A total of 85 melanomas arising from sun-protected (n = 23) and sun-exposed sites (n = 62) were analyzed for copy number changes using array-based comparative genomic hybridization and for gain-of-function mutations in BRAF, NRAS, and KIT. RESULTS GAB2 amplifications were found in 9% of the cases and were associated with melanomas arising from acral and mucosal sites (P = 0.005). Increased copy numbers of the KIT locus were observed in 6% of the cases. The overall mutation frequencies for BRAF and NRAS were 43.5% and 14%, respectively, and were mutually exclusive. Among the acral and mucosal melanomas studied, the genetic alteration frequency was 26% for GAB2, 13% for KIT, 30% for BRAF, and 4% for NRAS. Importantly, the majority of GAB2 amplifications occurred independent from genetic events in BRAF, NRAS, and KIT. CONCLUSIONS GAB2 amplification is critical for melanomas arising from sun-protected sites. Genetic alterations in GAB2 will help refine the molecular classification of melanomas.
Collapse
Affiliation(s)
- Karen A. Chernoff
- Department of Dermatology, Mailman School of Public Health, Columbia University, New York, New York
| | - Lindsey Bordone
- Department of Dermatology, Mailman School of Public Health, Columbia University, New York, New York
| | - Basil Horst
- Department of Pathology, Mailman School of Public Health, Columbia University, New York, New York
| | - Katherine Simon
- Department of Dermatology, Mailman School of Public Health, Columbia University, New York, New York
| | - William Twadell
- Department of Pathology, Mailman School of Public Health, Columbia University, New York, New York
| | - Keagan Lee
- Department of Pathology, Mailman School of Public Health, Columbia University, New York, New York
| | - Jason A. Cohen
- Department of Pathology, Mailman School of Public Health, Columbia University, New York, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - David N. Silvers
- Department of Dermatology, Mailman School of Public Health, Columbia University, New York, New York
- Department of Pathology, Mailman School of Public Health, Columbia University, New York, New York
| | - Georg Brunner
- Department of Cancer Research, Fachklinik Hornheide, University of Müunster, Muünster, Germany
| | - Julide Tok Celebi
- Department of Dermatology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
192
|
Watanabe T, Tsuda M, Makino Y, Konstantinou T, Nishihara H, Majima T, Minami A, Feller SM, Tanaka S. Crk adaptor protein-induced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration. Cell Res 2009; 19:638-50. [PMID: 19350053 DOI: 10.1038/cr.2009.40] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Upon growth factor stimulation, the scaffold protein, Gab1, is tyrosine phosphorylated and subsequently the adaptor protein, Crk, transmits signals from Gab1. We have previously shown that Crk overexpression, which is detectable in various human cancers, induces tyrosine phosphorylation of Gab1 without extracellular stimuli. In the present study, the underlying mechanisms were further investigated. Mutational analyses of CrkII demonstrated that the SH2 domain, but not the SH3(N) or the regulatory Y221 residue of CrkII, is critical for the induction of Gab1-Y307 phosphorylation. SH2 mutation of CrkII also decreased the interaction with Gab1. In GST pull-down assay, Crk-SH2 bound to wild-type Gab1, whereas Crk-SH3(N) interacted with the Gab1 mutant, which lacks the clustered tyrosine region (residues 242-410). Tyrosine phosphorylation of Gab1 was induced by all Crk family proteins, but not other SH2-containing signalling adaptors. Src-family kinase inhibitor, PP2, abrogates Crk-induced tyrosine phosphorylations of Gab1. Y307 phosphorylation was undetectable in fibroblasts lacking Src, Yes, and Fyn, even upon overexpression of Crk, whereas cells lacking only Yes and Fyn still contained Gab1 with phosphorylated Y307. Furthermore, Crk induced the phosphorylation of Src-Y416; accordingly the interaction between Crk and Csk was increased. The Gab1-Y307F mutant failed to localize near the plasma membrane even upon HGF stimulation and decreased cell migration. Moreover, Gab1-Y307F disturbed the localization of Crk, FAK, and paxillin, which are the typical components of focal adhesions. Taken together, these results indicate that Crk facilitates tyrosine phosphorylation of Gab1-Y307 through Src, contributing to the organization of focal adhesions and enhanced cell migration, thereby possibly promoting human cancer development.
Collapse
Affiliation(s)
- Takuya Watanabe
- Laboratory of Molecular and Cellular Pathology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Distinct Binding Modes of Two Epitopes in Gab2 that Interact with the SH3C Domain of Grb2. Structure 2009; 17:809-22. [DOI: 10.1016/j.str.2009.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/11/2009] [Accepted: 03/20/2009] [Indexed: 01/11/2023]
|
194
|
Abstract
Osteoclasts, the primary cell type mediating bone resorption, are multinucleated, giant cells derived from hematopoietic cells of monocyte-macrophage lineage. Osteoclast activity is, in a large part, regulated by protein-tyrosine phosphorylation. While information about functional roles of several protein-tyrosine kinases (PTK), including c-Src, in osteoclastic resorption has been accumulated, little is known about the roles of protein-tyrosine phosphatases (PTPs) in regulation of osteoclast activity. Recent evidence implicates important regulatory roles for four PTPs (SHP-1, cyt-PTP-epsilon, PTP-PEST, and PTPoc) in osteoclasts. Cyt-PTP-epsilon, PTP-PEST, and PTP-oc are positive regulators of osteoclast activity, while SHP-1 is a negative regulator. Of these PTPs in osteoclasts, only PTP-oc is a positive regulator of c-Src PTK through dephosphorylation of the inhibitory phosphotyrosine-527 residue. Although some information about mechanisms of action of these PTPs to regulate osteoclast activity is reviewed in this article, much additional work is required to provide more comprehensive details about their functions in osteoclasts.
Collapse
Affiliation(s)
- M. H.-C. Sheng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
| | - K.-H. W. Lau
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92350 USA
| |
Collapse
|
195
|
Naran S, Zhang X, Hughes SJ. Inhibition of HGF/MET as therapy for malignancy. Expert Opin Ther Targets 2009; 13:569-81. [DOI: 10.1517/14728220902853917] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
196
|
Systems-level interactions between insulin-EGF networks amplify mitogenic signaling. Mol Syst Biol 2009; 5:256. [PMID: 19357636 PMCID: PMC2683723 DOI: 10.1038/msb.2009.19] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 02/23/2009] [Indexed: 01/01/2023] Open
Abstract
Crosstalk mechanisms have not been studied as thoroughly as individual signaling pathways. We exploit experimental and computational approaches to reveal how a concordant interplay between the insulin and epidermal growth factor (EGF) signaling networks can potentiate mitogenic signaling. In HEK293 cells, insulin is a poor activator of the Ras/ERK (extracellular signal-regulated kinase) cascade, yet it enhances ERK activation by low EGF doses. We find that major crosstalk mechanisms that amplify ERK signaling are localized upstream of Ras and at the Ras/Raf level. Computational modeling unveils how critical network nodes, the adaptor proteins GAB1 and insulin receptor substrate (IRS), Src kinase, and phosphatase SHP2, convert insulin-induced increase in the phosphatidylinositol-3,4,5-triphosphate (PIP3) concentration into enhanced Ras/ERK activity. The model predicts and experiments confirm that insulin-induced amplification of mitogenic signaling is abolished by disrupting PIP3-mediated positive feedback via GAB1 and IRS. We demonstrate that GAB1 behaves as a non-linear amplifier of mitogenic responses and insulin endows EGF signaling with robustness to GAB1 suppression. Our results show the feasibility of using computational models to identify key target combinations and predict complex cellular responses to a mixture of external cues.
Collapse
|
197
|
Horst B, Gruvberger-Saal SK, Hopkins BD, Bordone L, Yang Y, Chernoff KA, Uzoma I, Schwipper V, Liebau J, Nowak NJ, Brunner G, Owens D, Rimm DL, Parsons R, Celebi JT. Gab2-mediated signaling promotes melanoma metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1524-33. [PMID: 19342374 PMCID: PMC2671382 DOI: 10.2353/ajpath.2009.080543] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 01/09/2009] [Indexed: 01/01/2023]
Abstract
Metastatic melanoma is a disease with a poor prognosis that currently lacks effective treatments. Critical biological features of metastasis include acquisition of migratory competence, growth factor independence, and invasive potential. In an attempt to identify genes that contribute to melanoma pathogenesis, a genome-wide search using bacterial artificial chromosome array comparative genomic hybridization and single nucleotide polymorphism arrays in a series of 64 metastatic melanoma samples and 20 melanoma cell lines identified increased copy numbers of Gab2 located on 11q14.1. Gab2 is an adaptor protein that potentiates the activation of the Ras-Erk and PI3K-Akt pathways and has recently been implicated in human cancer; however, its role in melanoma has not been explored. In this study, we found that Gab2 was either amplified (approximately 11%) and/or overexpressed (approximately 50%) in melanoma. Gab2 protein expression correlated with clinical melanoma progression, and higher levels of expression were seen in metastatic melanomas compared with primary melanoma and melanocytic nevi. We found that overexpression of Gab2 potentiates, whereas silencing of Gab2 reduces, migration and invasion of melanoma cells. Gab2 mediated the hyperactivation of Akt signaling in the absence of growth factors, whereas inhibition of the PI3K-Akt pathway decreased Gab2-mediated tumor cell migration and invasive potential. Gab2 overexpression resulted in enhanced tumor growth and metastatic potential in vivo. These studies demonstrate a previously undefined role for Gab2 in melanoma tumor progression and metastasis.
Collapse
Affiliation(s)
- Basil Horst
- Columbia University, Department of Pathology, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Pak4, a novel Gab1 binding partner, modulates cell migration and invasion by the Met receptor. Mol Cell Biol 2009; 29:3018-32. [PMID: 19289496 DOI: 10.1128/mcb.01286-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocyte growth factor (HGF), the ligand for the Met receptor tyrosine kinase, induces epithelial cell dispersal, invasion, and morphogenesis, events that require remodeling of the actin cytoskeleton. The scaffold protein Gab1 is essential for these biological responses downstream from Met. We have identified p21-activated kinase 4 (Pak4) as a novel Gab1-interacting protein. We show that in response to HGF, Gab1 and Pak4 associate and colocalize at the cell periphery within lamellipodia. The association between Pak4 and Gab1 is dependent on Gab1 phosphorylation but independent of Pak4 kinase activity. The interaction is mediated through a region in Gab1, which displays no homology to known Gab1 interaction motifs and through the guanine exchange factor-interacting domain of Pak4. In response to HGF, Gab1 and Pak4 synergize to enhance epithelial cell dispersal, migration, and invasion, whereas knockdown of Pak4 attenuates these responses. A Gab1 mutant unable to recruit Pak4 fails to promote epithelial cell dispersal and an invasive morphogenic program in response to HGF, demonstrating a physiological requirement for Gab1-Pak4 association. These data demonstrate a novel association between Gab1 and Pak4 and identify Pak4 as a key integrator of cell migration and invasive growth downstream from the Met receptor.
Collapse
|
199
|
Caron C, Spring K, Laramée M, Chabot C, Cloutier M, Gu H, Royal I. Non-redundant roles of the Gab1 and Gab2 scaffolding adapters in VEGF-mediated signalling, migration, and survival of endothelial cells. Cell Signal 2009; 21:943-53. [PMID: 19233262 DOI: 10.1016/j.cellsig.2009.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/02/2009] [Accepted: 02/10/2009] [Indexed: 01/07/2023]
Abstract
Gab1 was previously described as a positive modulator of Akt, Src, ERK1/2, endothelial cell migration, and capillary formation in response to vascular endothelial growth factor (VEGF). However, its involvement in endothelial cell survival, as well as the potential contribution of the other family member Gab2 to signalling and biological responses remained unknown. Here, we show that Gab2 is tyrosine phosphorylated in a Grb2-dependent manner downstream of activated VEGF receptor-2 (VEGFR2), and that it associates with signalling proteins including PI3K and SHP2, but apparently not with the receptor. Similarly to Gab1, over-expression of Gab2 induces endothelial cell migration in response to VEGF, whereas its depletion using siRNAs results in its reduction. Importantly, depletion of both Gab1 and Gab2 leads to an even greater inhibition of VEGF-induced cell migration. However, contrary to what has been reported for Gab1, the silencing of Gab2 results in increased Src, Akt and ERK1/2 activation, slightly reduced p38 phosphorylation, and up-regulation of Gab1 protein levels. Accordingly, re-expression of Gab2 in Gab2-/- fibroblasts leads to opposite results, suggesting that the modulation of both Gab2 and Gab1 expression in these conditions might contribute to the impaired signalling observed. Consistent with their opposite roles on Akt, the depletion of Gab1, but not of Gab2, results in reduced FOXO1 phosphorylation and VEGF-mediated endothelial cell survival. Mutation of VEGFR2 Y801 and Y1214, which abrogates the phosphorylation of Gab1, also correlates with inhibition of Akt. Altogether, these results underscore the non-redundant and essential roles of Gab1 and Gab2 in endothelial cells, and suggest major contributions of these proteins during in vivo angiogenesis.
Collapse
Affiliation(s)
- Christine Caron
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, 1560 rue Sherbrooke est, Montréal, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
200
|
Phosphorylation-dependent binding of 14-3-3 terminates signalling by the Gab2 docking protein. EMBO J 2009; 27:2305-16. [PMID: 19172738 DOI: 10.1038/emboj.2008.159] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Grb2-associated binder (Gab)2 functions downstream of a variety of receptor and cytoplasmic tyrosine kinases as a docking platform for specific signal transducers and performs important functions in both normal physiology and oncogenesis. Gab2 signalling is promoted by its association with specific receptors through the adaptor Grb2. However, the molecular mechanisms that attenuate Gab2 signals have remained unclear. We now demonstrate that growth factor-induced phosphorylation of Gab2 on two residues, S210 and T391, leads to recruitment of 14-3-3 proteins. Together, these events mediate negative-feedback regulation, as Gab2(S210A/T391A) exhibits sustained receptor association and signalling and promotes cell proliferation and transformation. Importantly, introduction of constitutive 14-3-3-binding sites into Gab2 renders it refractory to receptor activation, demonstrating that site-selective binding of 14-3-3 proteins is sufficient to terminate Gab2 signalling. Furthermore, this is associated with reduced binding of Grb2. This leads to a model where signal attenuation occurs because 14-3-3 promotes dissociation of Gab2 from Grb2, and thereby uncouples Gab2 from the receptor complex. This represents a novel regulatory mechanism with implications for diverse tyrosine kinase signalling systems.
Collapse
|