151
|
Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II. Molecules 2014; 19:1481-511. [PMID: 24473209 PMCID: PMC4350670 DOI: 10.3390/molecules19021481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications of the heptad repeat sequences in the C-terminal domain (CTD) of RNA polymerase II (Pol II) are well recognized for their roles in coordinating transcription with other nuclear processes that impinge upon transcription by the Pol II machinery; and this is primarily achieved through CTD interactions with the various nuclear factors. The identification of novel modifications on new regulatory sites of the CTD suggests that, instead of an independent action for all modifications on CTD, a combinatorial effect is in operation. In this review we focus on two well-characterized modifications of the CTD, namely serine phosphorylation and prolyl isomerization, and discuss the complex interplay between the enzymes modifying their respective regulatory sites. We summarize the current understanding of how the prolyl isomerization state of the CTD dictates the specificity of writers (CTD kinases), erasers (CTD phosphatases) and readers (CTD binding proteins) and how that correlates to transcription status. Subtle changes in prolyl isomerization states cannot be detected at the primary sequence level, we describe the methods that have been utilized to investigate this mode of regulation. Finally, a general model of how prolyl isomerization regulates the phosphorylation state of CTD, and therefore transcription-coupled processes, is proposed.
Collapse
|
152
|
Lu J, Wong V, Zhang Y, Tran T, Zhao L, Xia A, Xia T, Qi X. Distinct conformational transition patterns of noncoding 7SK snRNA and HIV TAR RNAs upon Tat binding. Biochemistry 2014; 53:675-81. [PMID: 24422492 PMCID: PMC3985858 DOI: 10.1021/bi401131z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Noncoding 7SK snRNA is believed to play an important role in the recruitment of P-TEFb by viral protein Tat to stimulate HIV processive transcription. Because HIV-2 TAR RNA and 7SK both evolved to feature a dinucleotide bulge region, compared to the trinucleotide bulge for HIV-1 TAR, ultrafast time-resolved fluorescence spectroscopy has been used to probe the conformational landscape of HIV-2 TAR and 7SK-SL4 RNA to monitor the conformational changes upon Tat binding. Our studies demonstrate that both HIV-1/2 TAR and 7SK-SL4 sample heterogeneous ensembles in the free state and undergo distinct conformational transitions upon Tat binding. These findings provide exquisite knowledge on the conformational complexity and intricate mechanism of molecular recognition and pave the way for drug design and discovery that incorporate dynamics information.
Collapse
Affiliation(s)
- Jia Lu
- Department of Molecular and Cell Biology, The University of Texas at Dallas , Richardson, Texas 75080, United States
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Schreieck A, Easter AD, Etzold S, Wiederhold K, Lidschreiber M, Cramer P, Passmore LA. RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nat Struct Mol Biol 2014; 21:175-179. [PMID: 24413056 PMCID: PMC3917824 DOI: 10.1038/nsmb.2753] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
At the 3′ end of protein-coding genes, RNA polymerase (Pol) II is dephosphorylated at tyrosine (Tyr1) residues of its C-terminal domain (CTD). In addition, the associated cleavage and polyadenylation (pA) factor (CPF) cleaves the transcript and adds a polyA tail. Whether these events are coordinated and how they lead to transcription termination remains poorly understood. Here we show that CPF from Saccharomyces cerevisiae is a Pol II CTD phosphatase and that the CPF subunit Glc7 dephosphorylates Tyr1 in vitro. In vivo, the activity of Glc7 is required for normal Tyr1 dephosphorylation at the pA site, for recruitment of termination factors Pcf11 and Rtt103, and for normal Pol II termination. These results show that transcription termination involves Tyr1 dephosphorylation of the CTD and indicate that pre-mRNA processing by CPF and transcription termination are coupled via Glc7-dependent Pol II Tyr1 dephosphorylation.
Collapse
Affiliation(s)
- Amelie Schreieck
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ashley D Easter
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Stefanie Etzold
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Wiederhold
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Michael Lidschreiber
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Patrick Cramer
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lori A Passmore
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
154
|
Structural basis for the recognition of RNA polymerase II C-terminal domain by CREPT and p15RS. SCIENCE CHINA-LIFE SCIENCES 2014; 57:97-106. [PMID: 24399136 DOI: 10.1007/s11427-013-4589-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/19/2013] [Indexed: 10/25/2022]
Abstract
CREPT and p15RS are two recently identified homologous proteins that regulate cell proliferation in an opposite way and are closely related to human cancer development. Both CREPT and p15RS consist of an N-terminal RPR domain and a C-terminal domain with high sequence homology. The transcription enhancement by CREPT is attributed to its interaction with RNA polymerase II (Pol II). Here we provide biochemical and structural evidence to support and extend this molecular mechanism. Through fluorescence polarization analysis, we show that the RPR domains of CREPT and p15RS (CREPT-RPR and p15RS-RPR) bind to different Pol II C-terminal domain (CTD) phosphoisoforms with similar affinity and specificity. We also determined the crystal structure of p15RS-RPR. Sequence and structural comparisons with RPR domain of Rtt103, a homolog of CREPT and p15RS in yeast, reveal structural basis for the similar binding profile of CREPT-RPR and p15RS-RPR with Pol II CTD. We also determined the crystal structure of the C-terminal domain of CREPT (CREPT-CTD), which is a long rod-like dimer and each monomer adopts a coiled-coil structure. We propose that dimerization through the C-terminal domain enhances the binding strength between CREPT or p15RS with Pol II by increasing binding avidity. Our results collectively reveal the respective roles of N-terminal RPR domain and C-terminal domain of CREPT and p15RS in recognizing RNA Pol II.
Collapse
|
155
|
Nagaike T, Manley JL. In vitro analysis of transcriptional activators and polyadenylation. Methods Mol Biol 2014; 1125:65-74. [PMID: 24590780 DOI: 10.1007/978-1-62703-971-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In vitro assays have provided a valuable tool to study the mechanism of 3' processing of eukaryotic mRNA precursors and have contributed a great deal to the identification of factors that carry out and regulate 3' processing. Previously, we have shown that transcriptional activators directly enhance polyadenylation by utilizing in vitro transcription-coupled polyadenylation with the prototypical transcription activator GAL4-VP16. In this chapter, we describe a detailed protocol for this assay, which will be useful in examining potential roles for other transcription-related factors in 3' processing and other questions related to the coupling of transcription and mRNA polyadenylation.
Collapse
Affiliation(s)
- Takashi Nagaike
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba-shi, Ibaraki, Japan
| | | |
Collapse
|
156
|
Lenstra TL, Tudek A, Clauder S, Xu Z, Pachis ST, van Leenen D, Kemmeren P, Steinmetz LM, Libri D, Holstege FCP. The role of Ctk1 kinase in termination of small non-coding RNAs. PLoS One 2013; 8:e80495. [PMID: 24324601 PMCID: PMC3851182 DOI: 10.1371/journal.pone.0080495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/03/2013] [Indexed: 11/18/2022] Open
Abstract
Transcription termination in Saccharomyces cerevisiae can be performed by at least two distinct pathways and is influenced by the phosphorylation status of the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II). Late termination of mRNAs is performed by the CPF/CF complex, the recruitment of which is dependent on CTD-Ser2 phosphorylation (Ser2P). Early termination of shorter cryptic unstable transcripts (CUTs) and small nucleolar/nuclear RNAs (sno/snRNAs) is performed by the Nrd1-Nab3-Sen1 (NNS) complex that binds phosphorylated CTD-Ser5 (Ser5P) via the CTD-interacting domain (CID) of Nrd1p. In this study, mutants of the different termination pathways were compared by genome-wide expression analysis. Surprisingly, the expression changes observed upon loss of the CTD-Ser2 kinase Ctk1p are more similar to those derived from alterations in the Ser5P-dependent NNS pathway, than from loss of CTD-Ser2P binding factors. Tiling array analysis of ctk1Δ cells reveals readthrough at snoRNAs, at many cryptic unstable transcripts (CUTs) and stable uncharacterized transcripts (SUTs), but only at some mRNAs. Despite the suggested predominant role in termination of mRNAs, we observed that a CTK1 deletion or a Pol II CTD mutant lacking all Ser2 positions does not result in a global mRNA termination defect. Rather, termination defects in these strains are widely observed at NNS-dependent genes. These results indicate that Ctk1p and Ser2 CTD phosphorylation have a wide impact in termination of small non-coding RNAs but only affect a subset of mRNA coding genes.
Collapse
Affiliation(s)
- Tineke L. Lenstra
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Agnieszka Tudek
- LEA Laboratory of Nuclear RNA Metabolism, Centre de de Génétique Moléculaire, C.N.R.S.-UPR3404, Gif sur Yvette, France
| | - Sandra Clauder
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Zhenyu Xu
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Spyridon T. Pachis
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dik van Leenen
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick Kemmeren
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Domenico Libri
- LEA Laboratory of Nuclear RNA Metabolism, Centre de de Génétique Moléculaire, C.N.R.S.-UPR3404, Gif sur Yvette, France
- * E-mail: (DL); (FCPH)
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (DL); (FCPH)
| |
Collapse
|
157
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
158
|
Heo DH, Yoo I, Kong J, Lidschreiber M, Mayer A, Choi BY, Hahn Y, Cramer P, Buratowski S, Kim M. The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome. J Biol Chem 2013; 288:36676-90. [PMID: 24196955 DOI: 10.1074/jbc.m113.508267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA polymerase II (RNApII) C-terminal domain (CTD)-interacting domain (CID) proteins are involved in two distinct RNApII termination pathways and recognize different phosphorylated forms of CTD. To investigate the role of differential CTD-CID interactions in the choice of termination pathway, we altered the CTD-binding specificity of Nrd1 by domain swapping. Nrd1 with the CID from Rtt103 (Nrd1(CID(Rtt103))) causes read-through transcription at many genes, but can also trigger termination where multiple Nrd1/Nab3-binding sites and the Ser(P)-2 CTD co-exist. Therefore, CTD-CID interactions target specific termination complexes to help choose an RNApII termination pathway. Interactions of Nrd1 with both CTD and nascent transcripts contribute to efficient termination by the Nrd1 complex. Surprisingly, replacing the Nrd1 CID with that from Rtt103 reduces binding to Rrp6/Trf4, and RNA transcripts terminated by Nrd1(CID(Rtt103)) are predominantly processed by core exosome. Thus, the Nrd1 CID couples Ser(P)-5 CTD not only to termination, but also to RNA processing by the nuclear exosome.
Collapse
Affiliation(s)
- Dong-hyuk Heo
- From the Center for RNA Research, Institute for Basic Science and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Dronamraju R, Strahl BD. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation. Nucleic Acids Res 2013; 42:870-81. [PMID: 24163256 PMCID: PMC3902893 DOI: 10.1093/nar/gkt1003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II is sequentially modified for recruitment of numerous accessory factors during transcription. One such factor is Spt6, which couples transcription elongation with histone chaperone activity and the regulation of H3 lysine 36 methylation. Here, we show that CTD association of Spt6 is required for Ser2 CTD phosphorylation and for the protein stability of Ctk1 (the major Ser2 CTD kinase). We also find that Spt6 associates with Ctk1, and, unexpectedly, Ctk1 and Ser2 CTD phosphorylation are required for the stability of Spt6-thus revealing a Spt6-Ctk1 feed-forward loop that robustly maintains Ser2 phosphorylation during transcription. In addition, we find that the BUR kinase and the polymerase associated factor transcription complex function upstream of the Spt6-Ctk1 loop, most likely by recruiting Spt6 to the CTD at the onset of transcription. Consistent with requirement of Spt6 in histone gene expression and nucleosome deposition, mutation or deletion of members of the Spt6-Ctk1 loop leads to global loss of histone H3 and sensitivity to hydroxyurea. In sum, these results elucidate a new control mechanism for the regulation of RNAPII CTD phosphorylation during transcription elongation that is likely to be highly conserved.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
160
|
Ou M, Sandri-Goldin RM. Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral transcription. PLoS One 2013; 8:e79007. [PMID: 24205359 PMCID: PMC3799718 DOI: 10.1371/journal.pone.0079007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/26/2013] [Indexed: 01/01/2023] Open
Abstract
During herpes simplex virus 1 (HSV-1) infection there is a loss of the serine-2 phosphorylated form of RNA polymerase II (RNAP II) found in elongation complexes. This occurs in part because RNAP II undergoes ubiquitination and proteasomal degradation during times of highly active viral transcription, which may result from stalled elongating complexes. In addition, a viral protein, ICP22, was reported to trigger a loss of serine-2 RNAP II. These findings have led to some speculation that the serine-2 phosphorylated form of RNAP II may not be required for HSV-1 transcription, although this form is required for cellular transcription elongation and RNA processing. Cellular kinase cdk9 phosphorylates serine-2 in the C-terminal domain (CTD) of RNAP II. To determine if serine-2 phosphorylated RNAP II is required for HSV-1 transcription, we inhibited cdk9 during HSV-1 infection and measured viral gene expression. Inhibition was achieved by adding cdk9 inhibitors 5,6-dichlorobenzimidazone-1-β-D-ribofuranoside (DRB) or flavopiridol (FVP) or by expression of a dominant–negative cdk9 or HEXIM1, which in conjunction with 7SK snRNA inhibits cdk9 in complex with cyclin 1. Here we report that inhibition of cdk9 resulted in decreased viral yields and levels of late proteins, poor formation of viral transcription-replication compartments, reduced levels of poly(A)+ mRNA and decreased RNA synthesis as measured by uptake of 5-bromouridine into nascent RNA. Importantly, a global reduction in viral mRNAs was seen as determined by microarray analysis. We conclude that serine-2 phosphorylation of the CTD of RNAP II is required for HSV-1 transcription.
Collapse
Affiliation(s)
- Mark Ou
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, United States of America
| | - Rozanne M. Sandri-Goldin
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
161
|
Chen T, Cui P, Chen H, Ali S, Zhang S, Xiong L. A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis. PLoS Genet 2013; 9:e1003875. [PMID: 24146632 PMCID: PMC3798263 DOI: 10.1371/journal.pgen.1003875] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. Pre-mRNA processing, including 5′ capping, splicing, and 3′ polyadenylation, is critical for gene expression and is closely coupled with transcription. Phosphorylated carboxyl terminal domain (CTD) of RNA Polymerase II (RNAP II) serves as a platform for the recruitment of pre-mRNA processing factors, yet other components involved in the recruitment are less known. In a genetic study of stress signal transduction in Arabidopsis, we isolated a KH-domain RNA-binding protein HOS5 that plays important roles in stress gene regulation and stress tolerance. We found that HOS5 interacts with FIERY2/CTD phosphatase-like 1 (FRY2/CPL1) and they both also interact with two novel splicing factors, RS40 and RS41, in nuclear speckles. In fry2 mutants, HOS5 was unable to be recruited to nuclear speckles but rather was mainly localized in the nucleoplasm. Mutants in these genes have similar stress-sensitive phenotypes. Transcriptome analyses identified significant intron retention in many stress-related genes in these mutants under salt stress conditions. Our study reveals that, in addition to RNAP II, the CTD phosphatase may also recruit specific splicing factors and RNA binding proteins to regulate the co-transcriptional processing of certain transcripts to deal with environmental stresses.
Collapse
Affiliation(s)
- Tao Chen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Peng Cui
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hao Chen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shahjahan Ali
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shoudong Zhang
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Liming Xiong
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- * E-mail:
| |
Collapse
|
162
|
Non-structural proteins of arthropod-borne bunyaviruses: roles and functions. Viruses 2013; 5:2447-68. [PMID: 24100888 PMCID: PMC3814597 DOI: 10.3390/v5102447] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/20/2013] [Accepted: 09/25/2013] [Indexed: 12/24/2022] Open
Abstract
Viruses within the Bunyaviridae family are tri-segmented, negative-stranded RNA viruses. The family includes several emerging and re-emerging viruses of humans, animals and plants, such as Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, La Crosse virus, Schmallenberg virus and tomato spotted wilt virus. Many bunyaviruses are arthropod-borne, so-called arboviruses. Depending on the genus, bunyaviruses encode, in addition to the RNA-dependent RNA polymerase and the different structural proteins, one or several non-structural proteins. These non-structural proteins are not always essential for virus growth and replication but can play an important role in viral pathogenesis through their interaction with the host innate immune system. In this review, we will summarize current knowledge and understanding of insect-borne bunyavirus non-structural protein function(s) in vertebrate, plant and arthropod.
Collapse
|
163
|
Suh H, Hazelbaker DZ, Soares LM, Buratowski S. The C-terminal domain of Rpb1 functions on other RNA polymerase II subunits. Mol Cell 2013; 51:850-8. [PMID: 24035501 DOI: 10.1016/j.molcel.2013.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/09/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
The C-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II (RNApII), coordinates recruitment of RNA- and chromatin-modifying factors to transcription complexes. It is unclear whether the CTD communicates with the catalytic core region of Rpb1 and thus must be physically connected, or instead can function as an independent domain. To address this question, CTD was transferred to other RNApII subunits. Fusions to Rpb4 or Rpb6, two RNApII subunits located near the original position of CTD, support viability in a strain carrying a truncated Rpb1. In contrast, CTD fusion to Rpb9 on the other side of RNApII does not. Rpb4-CTD and Rpb6-CTD proteins are functional for phosphorylation and recruitment of various factors, albeit with some restrictions and minor defects. Normal CTD functions are not transferred to RNApI or RNApIII by Rbp6-CTD. These results show that, with some spatial constraints, CTD can function even when disconnected from Rpb1.
Collapse
Affiliation(s)
- Hyunsuk Suh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
164
|
Burke SJ, Updegraff BL, Bellich RM, Goff MR, Lu D, Minkin SC, Karlstad MD, Collier JJ. Regulation of iNOS gene transcription by IL-1β and IFN-γ requires a coactivator exchange mechanism. Mol Endocrinol 2013; 27:1724-42. [PMID: 24014650 DOI: 10.1210/me.2013-1159] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The proinflammatory cytokines IL-1β and IFN-γ decrease functional islet β-cell mass in part through the increased expression of specific genes, such as inducible nitric oxide synthase (iNOS). Dysregulated iNOS protein accumulation leads to overproduction of nitric oxide, which induces DNA damage, impairs β-cell function, and ultimately diminishes cellular viability. However, the transcriptional mechanisms underlying cytokine-mediated expression of the iNOS gene are not completely understood. Herein, we demonstrated that individual mutations within the proximal and distal nuclear factor-κB sites impaired cytokine-mediated transcriptional activation. Surprisingly, mutating IFN-γ-activated site (GAS) elements in the iNOS gene promoter, which are classically responsive to IFN-γ, modulated transcriptional sensitivity to IL-1β. Transcriptional sensitivity to IL-1β was increased by generation of a consensus GAS element and decreased correspondingly with 1 or 2 nucleotide divergences from the consensus sequence. The nuclear factor-κB subunits p65 and p50 bound to the κB response elements in an IL-1β-dependent manner. IL-1β also promoted binding of serine-phosphorylated signal transducer and activator of transcription-1 (STAT1) (Ser727) but not tyrosine-phosphorylated STAT1 (Tyr701) to GAS elements. However, phosphorylation at Tyr701 was required for IFN-γ to potentiate the IL-1β response. Furthermore, coactivator p300 and coactivator arginine methyltransferase were recruited to the iNOS gene promoter with concomitant displacement of the coactivator CREB-binding protein in cells exposed to IL-1β. Moreover, these coordinated changes in factor recruitment were associated with alterations in acetylation, methylation, and phosphorylation of histone proteins. We conclude that p65 and STAT1 cooperate to control iNOS gene transcription in response to proinflammatory cytokines by a coactivator exchange mechanism. This increase in transcription is also associated with signal-specific chromatin remodeling that leads to RNA polymerase II recruitment and phosphorylation.
Collapse
Affiliation(s)
- Susan J Burke
- Department of Nutrition, University of Tennessee, 1215 Cumberland Avenue, 229 JHB, Knoxville, Tennessee 37996-1920.
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Cap completion and C-terminal repeat domain kinase recruitment underlie the initiation-elongation transition of RNA polymerase II. Mol Cell Biol 2013; 33:3805-16. [PMID: 23878398 DOI: 10.1128/mcb.00361-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
After transcription initiation, RNA polymerase (Pol) II escapes from the promoter and recruits elongation factors. The molecular basis for the initiation-elongation factor exchange during this transition remains poorly understood. Here, we used chromatin immunoprecipitation (ChIP) to elucidate the initiation-elongation transition of Pol II in the budding yeast Saccharomyces cerevisiae. We show that the early Pol II elongation factor Spt5 contributes to stable recruitment of the mRNA capping enzymes Cet1, Ceg1, and Abd1. Genome-wide occupancy for Cet1 and Ceg1 is restricted to the transcription start site (TSS), whereas occupancy for Abd1 peaks at ~110 nucleotides downstream, and occupancy for the cap-binding complex (CBC) rises subsequently. Abd1 and CBC are important for recruitment of the kinases Ctk1 and Bur1, which promote elongation and capping enzyme release. These results suggest that cap completion stimulates productive Pol II elongation.
Collapse
|
166
|
Wang W, Yao X, Huang Y, Hu X, Liu R, Hou D, Chen R, Wang G. Mediator MED23 regulates basal transcription in vivo via an interaction with P-TEFb. Transcription 2013; 4:39-51. [PMID: 23340209 DOI: 10.4161/trns.22874] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Mediator is a multi-subunit complex that transduces regulatory information from transcription regulators to the RNA polymerase II apparatus. Growing evidence suggests that Mediator plays roles in multiple stages of eukaryotic transcription, including elongation. However, the detailed mechanism by which Mediator regulates elongation remains elusive. In this study, we demonstrate that Mediator MED23 subunit controls a basal level of transcription by recruiting elongation factor P-TEFb, via an interaction with its CDK9 subunit. The mRNA level of Egr1, a MED23-controlled model gene, is reduced 4-5 fold in Med23 (-/-) ES cells under an unstimulated condition, but Med23-deficiency does not alter the occupancies of RNAP II, GTFs, Mediator complex, or activator ELK1 at the Egr1 promoter. Instead, Med23 depletion results in a significant decrease in P-TEFb and RNAP II (Ser2P) binding at the coding region, but no changes for several other elongation regulators, such as DSIF and NELF. ChIP-seq revealed that Med23-deficiency partially reduced the P-TEFb occupancy at a set of MED23-regulated gene promoters. Further, we demonstrate that MED23 interacts with CDK9 in vivo and in vitro. Collectively, these results provide the mechanistic insight into how Mediator promotes RNAP II into transcription elongation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
168
|
Abstract
Cyclin-dependent kinases (CDKs) play a central role in governing eukaryotic cell division. It is becoming clear that the transcription cycle of RNA polymerase II (RNAP II) is also regulated by CDKs; in metazoans, the cell cycle and transcriptional CDK networks even share an upstream activating kinase, which is itself a CDK. From recent chemical-genetic analyses we know that CDKs and their substrates control events both early in transcription (the transition from initiation to elongation) and late (3' end formation and transcription termination). Moreover, mutual dependence on CDK activity might couple the "beginning" and "end" of the cycle, to ensure the fidelity of mRNA maturation and the efficient recycling of RNAP II from sites of termination to the transcription start site (TSS). As is the case for CDKs involved in cell cycle regulation, different transcriptional CDKs act in defined sequence on multiple substrates. These phosphorylations are likely to influence gene expression by several mechanisms, including direct, allosteric effects on the transcription machinery, co-transcriptional recruitment of proteins needed for mRNA-capping, splicing and 3' end maturation, dependent on multisite phosphorylation of the RNAP II C-terminal domain (CTD) and, perhaps, direct regulation of RNA-processing or histone-modifying machinery. Here we review these recent advances, and preview the emerging challenges for transcription-cycle research.
Collapse
Affiliation(s)
- Miriam Sansó
- Department of Structural and Chemical Biology; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | | |
Collapse
|
169
|
Burke SJ, Goff MR, Lu D, Proud D, Karlstad MD, Collier JJ. Synergistic Expression of the CXCL10 Gene in Response to IL-1β and IFN-γ Involves NF-κB, Phosphorylation of STAT1 at Tyr701, and Acetylation of Histones H3 and H4. THE JOURNAL OF IMMUNOLOGY 2013; 191:323-36. [DOI: 10.4049/jimmunol.1300344] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
170
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
171
|
Mukundan B, Ansari A. Srb5/Med18-mediated termination of transcription is dependent on gene looping. J Biol Chem 2013; 288:11384-94. [PMID: 23476016 PMCID: PMC3630880 DOI: 10.1074/jbc.m112.446773] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/21/2013] [Indexed: 11/06/2022] Open
Abstract
We have earlier demonstrated the involvement of Mediator subunit Srb5/Med18 in the termination of transcription for a subset of genes in yeast. Srb5/Med18 could affect termination either indirectly by modulating CTD-Ser(2) phosphorylation near the 3' end of a gene or directly by physically interacting with the cleavage and polyadenylation factor or cleavage factor 1 (CF1) complex and facilitating their recruitment to the terminator region. Here, we show that the CTD-Ser(2) phosphorylation pattern on Srb5/Med18-dependent genes remains unchanged in the absence of Srb5 in cells. Coimmunoprecipitation analysis revealed the physical interaction of Srb5/Med18 with the CF1 complex. No such interaction of Srb5/Med18 with the cleavage and polyadenylation factor complex, however, could be detected. The Srb5/Med18-CF1 interaction was not observed in the looping defective sua7-1 strain. Srb5/Med18 cross-linking to the 3' end of genes was also abolished in the sua7-1 strain. Chromosome conformation capture analysis revealed that the looped architecture of Srb5/Med18-dependent genes was abrogated in srb5(-) cells. Furthermore, Srb5-dependent termination of transcription was compromised in the looping defective sua7-1 cells. The overall conclusion of these results is that gene looping plays a crucial role in Srb5/Med18 facilitated termination of transcription, and the looped gene architecture may have a general role in termination of transcription in budding yeast.
Collapse
Affiliation(s)
- Banupriya Mukundan
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Athar Ansari
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
172
|
Winsor TS, Bartkowiak B, Bennett CB, Greenleaf AL. A DNA damage response system associated with the phosphoCTD of elongating RNA polymerase II. PLoS One 2013; 8:e60909. [PMID: 23613755 PMCID: PMC3629013 DOI: 10.1371/journal.pone.0060909] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/04/2013] [Indexed: 01/22/2023] Open
Abstract
RNA polymerase II translocates across much of the genome and since it can be blocked by many kinds of DNA lesions, detects DNA damage proficiently; it thereby contributes to DNA repair and to normal levels of DNA damage resistance. However, the components and mechanisms that respond to polymerase blockage are largely unknown, except in the case of UV-induced damage that is corrected by nucleotide excision repair. Because elongating RNAPII carries with it numerous proteins that bind to its hyperphosphorylated CTD, we tested for effects of interfering with this binding. We find that expressing a decoy CTD-carrying protein in the nucleus, but not in the cytoplasm, leads to reduced DNA damage resistance. Likewise, inducing aberrant phosphorylation of the CTD, by deleting CTK1, reduces damage resistance and also alters rates of homologous recombination-mediated repair. In line with these results, extant data sets reveal a remarkable, highly significant overlap between phosphoCTD-associating protein genes and DNA damage-resistance genes. For one well-known phosphoCTD-associating protein, the histone methyltransferase Set2, we demonstrate a role in DNA damage resistance, and we show that this role requires the phosphoCTD binding ability of Set2; surprisingly, Set2’s role in damage resistance does not depend on its catalytic activity. To explain all of these observations, we posit the existence of a CTD-Associated DNA damage Response (CAR) system, organized around the phosphoCTD of elongating RNAPII and comprising a subset of phosphoCTD-associating proteins.
Collapse
Affiliation(s)
- Tiffany Sabin Winsor
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bartlomiej Bartkowiak
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Craig B. Bennett
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Arno L. Greenleaf
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
173
|
Abel EV, Basile KJ, Kugel CH, Witkiewicz AK, Le K, Amaravadi RK, Karakousis GC, Xu X, Xu W, Schuchter LM, Lee JB, Ertel A, Fortina P, Aplin AE. Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J Clin Invest 2013; 123:2155-68. [PMID: 23543055 DOI: 10.1172/jci65780] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 02/04/2013] [Indexed: 12/22/2022] Open
Abstract
The mechanisms underlying adaptive resistance of melanoma to targeted therapies remain unclear. By combining ChIP sequencing with microarray-based gene profiling, we determined that ERBB3 is upregulated by FOXD3, a transcription factor that promotes resistance to RAF inhibitors in melanoma. Enhanced ERBB3 signaling promoted resistance to RAF pathway inhibitors in cultured melanoma cell lines and in mouse xenograft models. ERBB3 signaling was dependent on ERBB2; targeting ERBB2 with lapatinib in combination with the RAF inhibitor PLX4720 reduced tumor burden and extended latency of tumor regrowth in vivo versus PLX4720 alone. These results suggest that enhanced ERBB3 signaling may serve as a mechanism of adaptive resistance to RAF and MEK inhibitors in melanoma and that cotargeting this pathway may enhance the clinical efficacy and extend the therapeutic duration of RAF inhibitors.
Collapse
Affiliation(s)
- Ethan V Abel
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Taube R, Peterlin BM. Lost in transcription: molecular mechanisms that control HIV latency. Viruses 2013; 5:902-27. [PMID: 23518577 PMCID: PMC3705304 DOI: 10.3390/v5030902] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 02/06/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) has limited the replication and spread of the human immunodeficiency virus (HIV). However, despite treatment, HIV infection persists in latently infected reservoirs, and once therapy is interrupted, viral replication rebounds quickly. Extensive efforts are being directed at eliminating these cell reservoirs. This feat can be achieved by reactivating latent HIV while administering drugs that prevent new rounds of infection and allow the immune system to clear the virus. However, current approaches to HIV eradication have not been effective. Moreover, as HIV latency is multifactorial, the significance of each of its molecular mechanisms is still under debate. Among these, transcriptional repression as a result of reduced levels and activity of the positive transcription elongation factor b (P-TEFb: CDK9/cyclin T) plays a significant role. Therefore, increasing levels of P-TEFb expression and activity is an excellent strategy to stimulate viral gene expression. This review summarizes the multiple steps that cause HIV to enter into latency. It positions the interplay between transcriptionally active and inactive host transcriptional activators and their viral partner Tat as valid targets for the development of new strategies to reactivate latent viral gene expression and eradicate HIV.
Collapse
Affiliation(s)
- Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +972-8-6479858; Fax: +972-8-6479953
| | - Boris Matija Peterlin
- Department of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California at San Francisco, San Francisco, CA 94143, USA; E-Mail:
- Department of Virology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
175
|
DNA looping facilitates targeting of a chromatin remodeling enzyme. Mol Cell 2013; 50:93-103. [PMID: 23478442 DOI: 10.1016/j.molcel.2013.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/15/2013] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
Abstract
ATP-dependent chromatin remodeling enzymes are highly abundant and play pivotal roles regulating DNA-dependent processes. The mechanisms by which they are targeted to specific loci have not been well understood on a genome-wide scale. Here, we present evidence that a major targeting mechanism for the Isw2 chromatin remodeling enzyme to specific genomic loci is through sequence-specific transcription factor (TF)-dependent recruitment. Unexpectedly, Isw2 is recruited in a TF-dependent fashion to a large number of loci without TF binding sites. Using the 3C assay, we show that Isw2 can be targeted by Ume6- and TFIIB-dependent DNA looping. These results identify DNA looping as a mechanism for the recruitment of a chromatin remodeling enzyme and define a function for DNA looping. We also present evidence suggesting that Ume6-dependent DNA looping is involved in chromatin remodeling and transcriptional repression, revealing a mechanism by which the three-dimensional folding of chromatin affects DNA-dependent processes.
Collapse
|
176
|
Mosley AL, Hunter GO, Sardiu ME, Smolle M, Workman JL, Florens L, Washburn MP. Quantitative proteomics demonstrates that the RNA polymerase II subunits Rpb4 and Rpb7 dissociate during transcriptional elongation. Mol Cell Proteomics 2013; 12:1530-8. [PMID: 23418395 DOI: 10.1074/mcp.m112.024034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic RNA polymerase II (RNAPII) is a 12-subunit enzyme that is responsible for the transcription of messenger RNA. Two of the subunits of RNA polymerase II, Rpb4 and Rpb7, have been shown to dissociate from the enzyme under a number of specific laboratory conditions. However, a biological context for the dissociation of Rpb4 and Rpb7 has not been identified. We have found that Rpb4/7 dissociate from RNAPII upon interaction with specific transcriptional elongation-associated proteins that are recruited to the hyperphosphorylated form of the C-terminal domain. However, the dissociation of Rpb4/7 is likely short lived because a significant level of free Rpb4/7 was not detected by quantitative proteomic analyses. In addition, we have found that RNAPII that is isolated through Rpb7 is depleted in serine 2 C-terminal domain phosphorylation. In contrast to previous reports, these data indicate that Rpb4/7 are dispensable during specific stages of transcriptional elongation in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
177
|
Ribavirin-induced intracellular GTP depletion activates transcription elongation in coagulation factor VII gene expression. Biochem J 2013; 449:231-9. [PMID: 23050902 DOI: 10.1042/bj20121286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coagulation FVII (Factor VII) is a vitamin K-dependent glycoprotein synthesized in hepatocytes. It was reported previously that FVII gene (F7) expression was up-regulated by ribavirin treatment in hepatitis C virus-infected haemophilia patients; however, its precise mechanism is still unknown. In the present study, we investigated the molecular mechanism of ribavirin-induced up-regulation of F7 expression in HepG2 (human hepatoma cell line). We found that intracellular GTP depletion by ribavirin as well as other IMPDH (inosine-5'-monophosphate dehydrogenase) inhibitors, such as mycophenolic acid and 6-mercaptopurine, up-regulated F7 expression. FVII mRNA transcription was mainly enhanced by accelerated transcription elongation, which was mediated by the P-TEFb (positive-transcription elongation factor b) complex, rather than by promoter activation. Ribavirin unregulated ELL (eleven-nineteen lysine-rich leukaemia) 3 mRNA expression before F7 up-regulation. We observed that ribavirin enhanced ELL3 recruitment to F7, whereas knockdown of ELL3 diminished ribavirin-induced FVII mRNA up-regulation. Ribavirin also enhanced recruitment of CDK9 (cyclin-dependent kinase 9) and AFF4 to F7. These data suggest that ribavirin-induced intracellular GTP depletion recruits a super elongation complex containing P-TEFb, AFF4 and ELL3, to F7, and modulates FVII mRNA transcription elongation. Collectively, we have elucidated a basal mechanism for ribavirin-induced FVII mRNA up-regulation by acceleration of transcription elongation, which may be crucial in understanding its pleiotropic functions in vivo.
Collapse
|
178
|
Schwartz JC, Ebmeier CC, Podell ER, Heimiller J, Taatjes DJ, Cech TR. FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2. Genes Dev 2013; 26:2690-5. [PMID: 23249733 DOI: 10.1101/gad.204602.112] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in the RNA-binding protein FUS (fused in sarcoma)/TLS have been shown to cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS), but the normal role of FUS is incompletely understood. We found that FUS binds the C-terminal domain (CTD) of RNA polymerase II (RNAP2) and prevents inappropriate hyperphosphorylation of Ser2 in the RNAP2 CTD at thousands of human genes. The loss of FUS leads to RNAP2 accumulation at the transcription start site and a shift in mRNA isoform expression toward early polyadenylation sites. Thus, in addition to its role in alternative RNA splicing, FUS has a general function in orchestrating CTD phosphorylation during RNAP2 transcription.
Collapse
|
179
|
Lee KM, Tarn WY. Coupling pre-mRNA processing to transcription on the RNA factory assembly line. RNA Biol 2013; 10:380-90. [PMID: 23392244 DOI: 10.4161/rna.23697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression.
Collapse
Affiliation(s)
- Kuo-Ming Lee
- Institute of Biomedical Sciences; Academia Sinica; Taipei, Taiwan
| | | |
Collapse
|
180
|
Rehfeld A, Plass M, Krogh A, Friis-Hansen L. Alterations in polyadenylation and its implications for endocrine disease. Front Endocrinol (Lausanne) 2013; 4:53. [PMID: 23658553 PMCID: PMC3647115 DOI: 10.3389/fendo.2013.00053] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with different 3' untranslated regions (3' UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3' UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for micro-RNAs and RNA-binding proteins. Implications of alterations in polyadenylation for endocrine disease: Alterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome, and many cancer diseases, including several types of endocrine tumor diseases. PERSPECTIVES Recent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A) site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. SUMMARY This review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field.
Collapse
Affiliation(s)
- Anders Rehfeld
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
| | - Mireya Plass
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Anders Krogh
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Lennart Friis-Hansen
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
- *Correspondence: Lennart Friis-Hansen, Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 4113, Blegdamsvej 9, DK2100 Copenhagen, Denmark. e-mail:
| |
Collapse
|
181
|
Gu B, Eick D, Bensaude O. CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Res 2012; 41:1591-603. [PMID: 23275552 PMCID: PMC3561981 DOI: 10.1093/nar/gks1327] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Co-transcriptional pre-mRNA processing relies on reversible phosphorylation of the carboxyl-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II (RNAP II). In this study, we replaced in live cells the endogenous Rpb1 by S2A Rpb1, where the second serines (Ser2) in the CTD heptapeptide repeats were switched to alanines, to prevent phosphorylation. Although slower, S2A RNAP II was able to transcribe. However, it failed to recruit splicing components such as U2AF65 and U2 snRNA to transcription sites, although the recruitment of U1 snRNA was not affected. As a consequence, co-transcriptional splicing was impaired. Interestingly, the magnitude of the S2A RNAP II splicing defect was promoter dependent. In addition, S2A RNAP II showed an impaired recruitment of the cleavage factor PCF11 to pre-mRNA and a defect in 3'-end RNA cleavage. These results suggest that CTD Ser2 plays critical roles in co-transcriptional pre-mRNA maturation in vivo: It likely recruits U2AF65 to ensure an efficient co-transcriptional splicing and facilitates the recruitment of pre-mRNA 3'-end processing factors to enhance 3'-end cleavage.
Collapse
Affiliation(s)
- Bo Gu
- Ecole Normale Supérieure, IBENS, 46, rue d'Ulm, Paris 75005, France
| | | | | |
Collapse
|
182
|
Buffa L, Saeed AM, Nawaz Z. Molecular mechanism of WW-domain binding protein-2 coactivation function in estrogen receptor signaling. IUBMB Life 2012; 65:76-84. [PMID: 23233354 DOI: 10.1002/iub.1105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
Abstract
The link between breast cancer and estrogen receptor (ER) is well established. The ER is a hormone-inducible transcription factor that, upon binding to its ligand, regulates the expression of a variety of genes mainly involved in cell proliferation and differentiation. Coactivators are proteins recruited by the hormone-activated receptor, which allow or enhance the ER transactivation functions by acting as chromatin remodeling enzymes or adaptors between ER and the transcriptional machinery. Our laboratory has previously identified the WW-domain binding protein-2 (WBP-2) as a bona fide coactivator of ER. However, the molecular mechanism underlying WBP-2 coactivation function was not clear yet. In this study, we explore and identify the mechanism by which WBP-2 acts as coactivator of ER. Our data show that WBP-2 is involved in the regulation of ER target genes, and its expression is required for the proper expression of some ER target genes. To clarify the molecular mechanism by which WBP-2 regulates ER function, we performed chromatin immunoprecipitation assays. We demonstrate here that WBP-2 binds to the ER target gene promoter pS2 promoter and is required for the binding of the phosphorylated form of RNA polymerase II (associated with active transcription/elongation) to the same promoter. Furthermore, we also show that WBP-2 is essential for the recruitment of the histone acetyl transferase p300, an important chromatin modifier enzyme and for histone acetylation at the same target region. Collectively, our data indicate that WBP-2 enhances ER transactivation function at certain genes by facilitating the recruitment and/or the stabilization of a histone modifier enzyme that favors a relaxed chromatin structure, permissive of transcription.
Collapse
Affiliation(s)
- Laura Buffa
- Braman Family Breast Cancer Institute / Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | |
Collapse
|
183
|
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-37. [PMID: 23028141 DOI: 10.1101/gad.200303.112] [Citation(s) in RCA: 495] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
184
|
Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23202475 DOI: 10.1016/j.bbagrm.2012.11.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) were originally identified as factors responsible for transcriptional inhibition by 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole (DRB) and were later found to control transcription elongation, together with P-TEFb, at the promoter-proximal region. Although there is ample evidence that these factors play roles throughout the genome, other data also suggest gene- or tissue-specific roles for these factors. In this review, we discuss how these apparently conflicting data can be reconciled. In light of recent findings, we also discuss the detailed mechanism by which these factors control the elongation process at the molecular level. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
185
|
Lenasi T, Barboric M. Mutual relationships between transcription and pre-mRNA processing in the synthesis of mRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012. [PMID: 23184646 DOI: 10.1002/wrna.1148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The generation of messenger RNA (mRNA) in eukaryotes is achieved by transcription from the DNA template and pre-mRNA processing reactions of capping, splicing, and polyadenylation. Although RNA polymerase II (RNAPII) catalyzes the synthesis of pre-mRNA, it also serves as a principal coordinator of the processing reactions in the course of transcription. In this review, we focus on the interplay between transcription and cotranscriptional pre-mRNA maturation events, mediated by the recruitment of RNA processing factors to differentially phosphorylated C-terminal domain of Rbp1, the largest subunit of RNAPII. Furthermore, we highlight the bidirectional nature of the interplay by discussing the impact of RNAPII kinetics on pre-mRNA processing as well as how the processing events reach back to different phases of gene transcription.
Collapse
Affiliation(s)
- Tina Lenasi
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
186
|
Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D. Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 2012; 151:859-870. [PMID: 23141542 DOI: 10.1016/j.cell.2012.09.039] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/08/2012] [Accepted: 09/30/2012] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are processed from primary transcripts that contain partially self-complementary foldbacks. As in animals, the core microprocessor in plants is a Dicer protein, DICER-LIKE1 (DCL1). Processing accuracy and strand selection is greatly enhanced through the RNA binding protein HYPONASTIC LEAVES 1 (HYL1) and the zinc finger protein SERRATE (SE). We have combined a luciferase-based genetic screen with whole-genome sequencing for rapid identification of new regulators of miRNA biogenesis and action. Among the first six mutants analyzed were three alleles of C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1)/FIERY2 (FRY2). In the miRNA processing complex, SE functions as a scaffold to mediate CPL1 interaction with HYL1, which needs to be dephosphorylated for optimal activity. In the absence of CPL1, HYL1 dephosphorylation and hence accurate processing and strand selection from miRNA duplexes are compromised. Our findings thus define a new regulatory step in plant miRNA biogenesis.
Collapse
Affiliation(s)
- Pablo A Manavella
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Jörg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Felix Ott
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Sascha Laubinger
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Mirita Franz
- Proteome Center, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Boris Macek
- Proteome Center, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
187
|
Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:174-85. [PMID: 23085255 PMCID: PMC3793857 DOI: 10.1016/j.bbagrm.2012.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
Termination of transcription by RNA polymerase II requires two distinct processes: The formation of a defined 3′ end of the transcribed RNA, as well as the disengagement of RNA polymerase from its DNA template. Both processes are intimately connected and equally pivotal in the process of functional messenger RNA production. However, research in recent years has elaborated how both processes can additionally be employed to control gene expression in qualitative and quantitative ways. This review embraces these new findings and attempts to paint a broader picture of how this final step in the transcription cycle is of critical importance to many aspects of gene regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Hannah E Mischo
- Cancer Research UK London Research Institute, Blanche Lane South Mimms, Herts, UK.
| | | |
Collapse
|
188
|
Sikorsky T, Hobor F, Krizanova E, Pasulka J, Kubicek K, Stefl R. Recognition of asymmetrically dimethylated arginine by TDRD3. Nucleic Acids Res 2012; 40:11748-55. [PMID: 23066109 PMCID: PMC3526276 DOI: 10.1093/nar/gks929] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Asymmetric dimethylarginine (aDMA) marks are placed on histones and the C-terminal domain (CTD) of RNA Polymerase II (RNAP II) and serve as a signal for recruitment of appropriate transcription and processing factors in coordination with transcription cycle. In contrast to other Tudor domain-containing proteins, Tudor domain-containing protein 3 (TDRD3) associates selectively with the aDMA marks but not with other methylarginine motifs. Here, we report the solution structure of the Tudor domain of TDRD3 bound to the asymmetrically dimethylated CTD. The structure and mutational analysis provide a molecular basis for how TDRD3 recognizes the aDMA mark. The unique aromatic cavity of the TDRD3 Tudor domain with a tyrosine in position 566 creates a selectivity filter for the aDMA residue. Our work contributes to the understanding of substrate selectivity rules of the Tudor aromatic cavity, which is an important structural motif for reading of methylation marks.
Collapse
Affiliation(s)
- Tomas Sikorsky
- CEITEC-Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
189
|
Jasnovidova O, Stefl R. The CTD code of RNA polymerase II: a structural view. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:1-16. [DOI: 10.1002/wrna.1138] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
190
|
Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II. Mol Cell Biol 2012; 32:4691-704. [PMID: 22988298 DOI: 10.1128/mcb.06267-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CrkRS (Cdc2-related kinase, Arg/Ser), or cyclin-dependent kinase 12 (CKD12), is a serine/threonine kinase believed to coordinate transcription and RNA splicing. While CDK12/CrkRS complexes were known to phosphorylate the C-terminal domain (CTD) of RNA polymerase II (RNA Pol II), the cyclin regulating this activity was not known. Using immunoprecipitation and mass spectrometry, we identified a 65-kDa isoform of cyclin K (cyclin K1) in endogenous CDK12/CrkRS protein complexes. We show that cyclin K1 complexes isolated from mammalian cells contain CDK12/CrkRS but do not contain CDK9, a presumed partner of cyclin K. Analysis of extensive RNA-Seq data shows that the 65-kDa cyclin K1 isoform is the predominantly expressed form across numerous tissue types. We also demonstrate that CDK12/CrkRS is dependent on cyclin K1 for its kinase activity and that small interfering RNA (siRNA) knockdown of CDK12/CrkRS or cyclin K1 has similar effects on the expression of a luciferase reporter gene. Our data suggest that cyclin K1 is the primary cyclin partner for CDK12/CrkRS and that cyclin K1 is required to activate CDK12/CrkRS to phosphorylate the CTD of RNA Pol II. These properties are consistent with a role of CDK12/CrkRS in regulating gene expression through phosphorylation of RNA Pol II.
Collapse
|
191
|
Mayer A, Heidemann M, Lidschreiber M, Schreieck A, Sun M, Hintermair C, Kremmer E, Eick D, Cramer P. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 2012; 336:1723-5. [PMID: 22745433 DOI: 10.1126/science.1219651] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In different phases of the transcription cycle, RNA polymerase (Pol) II recruits various factors via its C-terminal domain (CTD), which consists of conserved heptapeptide repeats with the sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7). We show that the CTD of transcribing yeast Pol II is phosphorylated at Tyr(1), in addition to Ser(2), Thr(4), Ser(5), and Ser(7). Tyr(1) phosphorylation stimulates binding of elongation factor Spt6 and impairs recruitment of termination factors Nrd1, Pcf11, and Rtt103. Tyr(1) phosphorylation levels rise downstream of the transcription start site and decrease before the polyadenylation site, largely excluding termination factors from gene bodies. These results show that CTD modifications trigger and block factor recruitment and lead to an extended CTD code that explains transcription cycle coordination on the basis of differential phosphorylation of Tyr(1), Ser(2), and Ser(5).
Collapse
Affiliation(s)
- Andreas Mayer
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
García A, Collin A, Calvo O. Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate. Mol Biol Cell 2012; 23:4297-312. [PMID: 22973055 PMCID: PMC3484106 DOI: 10.1091/mbc.e12-04-0331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transcriptional coactivator Sub1 has been implicated in several steps of mRNA metabolism in yeast, such as the activation of transcription, termination, and 3'-end formation. In addition, Sub1 globally regulates RNA polymerase II phosphorylation, and most recently it has been shown that it is a functional component of the preinitiation complex. Here we present evidence that Sub1 plays a significant role in transcription elongation by RNA polymerase II (RNAPII). We show that SUB1 genetically interacts with the gene encoding the elongation factor Spt5, that Sub1 influences Spt5 phosphorylation of the carboxy-terminal domain of RNAPII largest subunit by the kinase Bur1, and that both Sub1 and Spt5 copurify in the same complex, likely during early transcription elongation. Indeed, our data indicate that Sub1 influences Spt5-Rpb1 interaction. In addition, biochemical and molecular data show that Sub1 influences transcription elongation of constitutive and inducible genes and associates with coding regions in a transcription-dependent manner. Taken together, our results indicate that Sub1 associates with Spt5 and influences Spt5-Rpb1 complex levels and consequently transcription elongation rate.
Collapse
Affiliation(s)
- Alicia García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | |
Collapse
|
193
|
Ni Z, Olsen JB, Guo X, Zhong G, Ruan ED, Marcon E, Young P, Guo H, Li J, Moffat J, Emili A, Greenblatt JF. Control of the RNA polymerase II phosphorylation state in promoter regions by CTD interaction domain-containing proteins RPRD1A and RPRD1B. Transcription 2012; 2:237-42. [PMID: 22231121 DOI: 10.4161/trns.2.5.17803] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA polymerase II (RNAP II) C-terminal domain (CTD) phosphorylation is important for various transcription-related processes. Here, we identify by affinity purification and mass spectrometry three previously uncharacterized human CTD-interaction domain (CID)-containing proteins, RPRD1A, RPRD1B and RPRD2, which co-purify with RNAP II and three other RNAP II-associated proteins, RPAP2, GRINL1A and RECQL5, but not with the Mediator complex. RPRD1A and RPRD1B can accompany RNAP II from promoter regions to 3'-untranslated regions during transcription in vivo, predominantly interact with phosphorylated RNAP II, and can reduce CTD S5- and S7-phosphorylated RNAP II at target gene promoters. Thus, the RPRD proteins are likely to have multiple important roles in transcription.
Collapse
Affiliation(s)
- Zuyao Ni
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
The transcription initiation factor TFIIH is a remarkable protein complex that has a fundamental role in the transcription of protein-coding genes as well as during the DNA nucleotide excision repair pathway. The detailed understanding of how TFIIH functions to coordinate these two processes is also providing an explanation for the phenotypes observed in patients who bear mutations in some of the TFIIH subunits. In this way, studies of TFIIH have revealed tight molecular connections between transcription and DNA repair and have helped to define the concept of 'transcription diseases'.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UdS, BP 163, 67404 Illkirch Cedex, C. U., Strasbourg, France.
| | | |
Collapse
|
195
|
The transcription cycle in eukaryotes: From productive initiation to RNA polymerase II recycling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:391-400. [DOI: 10.1016/j.bbagrm.2012.01.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 01/03/2023]
|
196
|
Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J 2012; 31:2784-97. [PMID: 22549466 DOI: 10.1038/emboj.2012.123] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/12/2012] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic RNA polymerase II (Pol II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of the large subunit (Rpb1). Differential phosphorylation of Ser2, Ser5, and Ser7 in the 5' and 3' regions of genes coordinates the binding of transcription and RNA processing factors to the initiating and elongating polymerase complexes. Here, we report phosphorylation of Thr4 by Polo-like kinase 3 in mammalian cells. ChIPseq analyses indicate an increase of Thr4-P levels in the 3' region of genes occurring subsequently to an increase of Ser2-P levels. A Thr4/Ala mutant of Pol II displays a lethal phenotype. This mutant reveals a global defect in RNA elongation, while initiation is largely unaffected. Since Thr4 replacement mutants are viable in yeast we conclude that this amino acid has evolved an essential function(s) in the CTD of Pol II for gene transcription in mammalian cells.
Collapse
|
197
|
Abstract
The cyclin-dependent kinases (Cdks) regulate many cellular processes, including the cell cycle, neuronal development, transcription, and posttranscriptional processing. To perform their functions, Cdks bind to specific cyclin subunits to form a functional and active cyclin/Cdk complex. This review is focused on Cyclin K, which was originally considered an alternative subunit of Cdk9, and on its newly identified partners, Cdk12 and Cdk13. We briefly summarize research devoted to each of these proteins. We also discuss the proteins' functions in the regulation of gene expression via the phosphorylation of serine 2 in the C-terminal domain of RNA polymerase II, contributions to the maintenance of genome stability, and roles in the onset of human disease and embryo development.
Collapse
Affiliation(s)
- Jiri Kohoutek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic.
| | | |
Collapse
|
198
|
Bataille AR, Jeronimo C, Jacques PÉ, Laramée L, Fortin MÈ, Forest A, Bergeron M, Hanes SD, Robert F. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol Cell 2012; 45:158-70. [PMID: 22284676 DOI: 10.1016/j.molcel.2011.11.024] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/18/2011] [Accepted: 11/04/2011] [Indexed: 11/17/2022]
Abstract
Transcription by RNA polymerase II (RNAPII) is coupled to mRNA processing and chromatin modifications via the C-terminal domain (CTD) of its largest subunit, consisting of multiple repeats of the heptapeptide YSPTSPS. Pioneering studies showed that CTD serines are differentially phosphorylated along genes in a prescribed pattern during the transcription cycle. Genome-wide analyses challenged this idea, suggesting that this cycle is not uniform among different genes. Moreover, the respective role of enzymes responsible for CTD modifications remains controversial. Here, we systematically profiled the location of the RNAPII phosphoisoforms in wild-type cells and mutants for most CTD modifying enzymes. Together with results of in vitro assays, these data reveal a complex interplay between the modifying enzymes, and provide evidence that the CTD cycle is uniform across genes. We also identify Ssu72 as the Ser7 phosphatase and show that proline isomerization is a key regulator of CTD dephosphorylation at the end of genes.
Collapse
Affiliation(s)
- Alain R Bataille
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Zhang DW, Rodríguez-Molina JB, Tietjen JR, Nemec CM, Ansari AZ. Emerging Views on the CTD Code. GENETICS RESEARCH INTERNATIONAL 2012; 2012:347214. [PMID: 22567385 PMCID: PMC3335543 DOI: 10.1155/2012/347214] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the "CTD code" hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a "code." Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges.
Collapse
Affiliation(s)
- David W. Zhang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Juan B. Rodríguez-Molina
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Joshua R. Tietjen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Corey M. Nemec
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
200
|
Shukla S, Oberdoerffer S. Co-transcriptional regulation of alternative pre-mRNA splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:673-83. [PMID: 22326677 DOI: 10.1016/j.bbagrm.2012.01.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 12/22/2022]
Abstract
While studies of alternative pre-mRNA splicing regulation have typically focused on RNA-binding proteins and their target sequences within nascent message, it is becoming increasingly evident that mRNA splicing, RNA polymerase II (pol II) elongation and chromatin structure are intricately intertwined. The majority of introns in higher eukaryotes are excised prior to transcript release in a manner that is dependent on transcription through pol II. As a result of co-transcriptional splicing, variations in pol II elongation influence alternative splicing patterns, wherein a slower elongation rate is associated with increased inclusion of alternative exons within mature mRNA. Physiological barriers to pol II elongation, such as repressive chromatin structure, can thereby similarly impact splicing decisions. Surprisingly, pre-mRNA splicing can reciprocally influence pol II elongation and chromatin structure. Here, we highlight recent advances in co-transcriptional splicing that reveal an extensive network of coupling between splicing, transcription and chromatin remodeling complexes. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Mouse Cancer Genetics Program, NCI- Frederick, NIH, Frederick, MD 21702, USA
| | | |
Collapse
|