151
|
Hessen E, Kirsebom BE, Eriksson CM, Eliassen CF, Nakling AE, Bråthen G, Waterloo KK, Aarsland D, Fladby T. In Brief Neuropsychological Assessment, Amnestic Mild Cognitive Impairment (MCI) Is associated with Cerebrospinal Fluid Biomarkers for Cognitive Decline in Contrast to the Prevailing NIA-AA MCI Criterion. J Alzheimers Dis 2020; 67:715-723. [PMID: 30614807 PMCID: PMC6398834 DOI: 10.3233/jad-180964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: In the care of persons with cognitive problems, it is important to use a valid mild cognitive impairment (MCI) criterion that discriminates well between normal and pathological aging. Objective: To find the brief neuropsychological screening criterion that best correlates with cerebrospinal fluid (CSF) biomarkers for cognitive decline and dementia in persons seeking help for cognitive problems. Methods: 452 consecutively recruited patients (age 40–80 years) from memory-clinics in the Norwegian national multicentre longitudinal study Dementia Disease Initiation were included. CSF data as well as full data from brief neuropsychological screening were available for all patients. Results: Amnestic MCI, including at least one memory test below T-score 40, outperformed the conventional US National Institute on Aging-Alzheimer’s Association (NIA-AA) MCI criterion. Only amnestic MCI was significantly associated with biomarker pattern of NIA-AA stage 2 (low CSF Aβ42 concentrations and elevated tau) in multivariate regression analysis. Conclusions: The finding that amnestic MCI based on brief neuropsychological assessment is significantly associated with CSF biomarkers for cognitive decline and Alzheimer’s disease is in accordance with longitudinal studies that find memory impairment; both in itself and especially in combination with other cognitive deficit to constitute a risk factor for subsequent cognitive decline and dementia. The prevalence of pathological biomarkers for Alzheimer’s disease is common in the elderly and the clinical significance of present findings depend on longitudinal validation.
Collapse
Affiliation(s)
- Erik Hessen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Psychology, University of Oslo, Oslo, Norway
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway.,Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø
| | - Cecilia Magdalena Eriksson
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Psychology, University of Oslo, Oslo, Norway.,Department of Geriatric Psychiatry, Akershus University Hospital, Lørenskog, Norway
| | - Carl Fredrik Eliassen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Psychology, University of Oslo, Oslo, Norway
| | | | - Geir Bråthen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Heath Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Knut K Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway.,Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø
| | - Dag Aarsland
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Center for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| |
Collapse
|
152
|
Alm KH, Faria AV, Moghekar A, Pettigrew C, Soldan A, Mori S, Albert M, Bakker A. Medial temporal lobe white matter pathway variability is associated with individual differences in episodic memory in cognitively normal older adults. Neurobiol Aging 2020; 87:78-88. [PMID: 31874745 PMCID: PMC7064393 DOI: 10.1016/j.neurobiolaging.2019.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/01/2019] [Accepted: 11/16/2019] [Indexed: 11/29/2022]
Abstract
Significant evidence demonstrates that aging is associated with variability in cognitive performance, even among individuals who are cognitively normal. In this study, we examined measures from magnetic resonance imaging and cerebrospinal fluid (CSF) to investigate which measures, alone or in combination, were associated with individual differences in episodic memory performance. Using hierarchical linear regressions, we compared the ability of diffusion tensor imaging (DTI) metrics, CSF measures of amyloid and tau, and gray matter volumes to explain variability in memory performance in a cohort of cognitively normal older adults. Measures of DTI microstructure were significantly associated with variance in memory performance, even after accounting for the contribution of the CSF and magnetic resonance imaging gray matter volume measures. Significant associations were found between DTI measures of the hippocampal cingulum and fornix with individual differences in memory. No such relationships were found between memory performance and CSF markers or gray matter volumes. These findings suggest that DTI metrics may be useful in identifying changes associated with aging or age-related diseases.
Collapse
Affiliation(s)
- Kylie H Alm
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andreia V Faria
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
153
|
Papp KV, Buckley R, Mormino E, Maruff P, Villemagne VL, Masters C, Johnson KA, Rentz DM, Sperling RA, Amariglio RE. Clinical meaningfulness of subtle cognitive decline on longitudinal testing in preclinical AD. Alzheimers Dement 2020; 16:552-560. [PMID: 31759879 PMCID: PMC7067681 DOI: 10.1016/j.jalz.2019.09.074] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Demonstrating the "clinical meaningfulness" of slowing early cognitive decline in clinically normal (CN) older adults with elevated amyloid-β (Aβ+) is critical for Alzheimer's disease secondary prevention trials and for understanding early cognitive progression. METHODS Cox regression analyses were used to determine whether 3-year slopes on the preclinical Alzheimer's cognitive composite predicted MCI diagnosis and global Clinical Dementia Rating>0 in 267 Aβ+ CN individuals participating in the Harvard Aging Brain Study, Australian Imaging, Biomarker and Lifestyle Study, and Alzheimer's Disease Neuroimaging Initiative. RESULTS Steeper preclinical Alzheimer's cognitive composite decline over 3 years was associated with increased risk for MCI diagnosis and global Clinical Dementia Rating>0 in the following years across all cohorts. Hazard ratios using meta-analytic estimates were 5.47 (95% CI: 3.25-9.18) for MCI diagnosis and 4.49 (95% CI: 2.84-7.09) for Clinical Dementia Rating>0 in those with subtle decline (>-.14 to -.26 preclinical Alzheimer's cognitive composite standard deviations/year) on longitudinal cognitive testing. DISCUSSION Early "subtle cognitive decline" among Aβ+ CN on a sensitive cognitive composite demonstrably increases risk for imminent clinical disease progression and functional impairment.
Collapse
Affiliation(s)
- Kathryn V. Papp
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- CogState, Ltd, Melbourne, Victoria, Australia
| | - Victor L. Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Victoria, Australia
| | - Colin Masters
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Keith A. Johnson
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dorene M. Rentz
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Reisa A. Sperling
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rebecca E. Amariglio
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
154
|
Levine TF, Allison SL, Stojanovic M, Fagan AM, Morris JC, Head D. Spatial navigation ability predicts progression of dementia symptomatology. Alzheimers Dement 2020; 16:491-500. [PMID: 32043719 DOI: 10.1002/alz.12031] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/22/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Spatial navigation deficits are observed in Alzheimer's disease cross-sectionally, but prediction of longitudinal clinical decline has been less examined. METHODS Cognitive mapping (CM) was assessed in 95 participants and route learning (RL) was assessed in 65 participants at baseline. Clinical progression over an average of 4 to 5 years was assessed using the clinical dementia rating (CDR) scale. Relative predictive ability was compared to episodic memory, hippocampus, and cerebrospinal fluid biomarkers (phosphorylated tau/amyloid β 42 (ptau181 /Aβ42 ) ratio). RESULTS CM and RL were predictors of clinical progression (P's < 0.032). All measures, except RL-Learning remained predictors with episodic memory in models (P's < 0.048). Only RL-Retrieval remained a predictor when ptau181 /Aβ42 was included (P < 0.001). CM interacted with hippocampus and ptau181 /Aβ42 in prediction (P's < 0.013). CM, RL, and episodic memory evidenced strong diagnostic accuracy (area under the curve (AUC) = 0.894, 0.794, and 0.735, respectively); CM tended to perform better than episodic memory (P = 0.056). DISCUSSION Baseline spatial navigation performance may be appropriate for assessing risk of clinical progression.
Collapse
Affiliation(s)
- Taylor F Levine
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Samantha L Allison
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Marta Stojanovic
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Anne M Fagan
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, Missouri.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, Missouri.,Neurology Department, Washington University in St. Louis, St. Louis, Missouri
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, Missouri.,Neurology Department, Washington University in St. Louis, St. Louis, Missouri
| | - Denise Head
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri.,Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, Missouri.,Radiology Department, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
155
|
Waki T, Tanaka-Mizuno S, Takashima N, Takechi H, Hayakawa T, Miura K, Ueshima H, Kita Y, Dodge HH. Waist Circumference and Domain-Specific Cognitive Function Among Non-Demented Japanese Older Adults Stratified by Sex: Results from the Takashima Cognition Study. J Alzheimers Dis 2020; 73:887-896. [DOI: 10.3233/jad-190395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Takashi Waki
- Department of Medical Statistics, Shiga University of Medical Science, Otsu, Japan
| | - Sachiko Tanaka-Mizuno
- Department of Medical Statistics, Shiga University of Medical Science, Otsu, Japan
- The Center for Data Science Education and Research, Shiga University, Hikone, Japan
| | - Naoyuki Takashima
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
- Department of Public Health, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Hajime Takechi
- Department of Geriatrics and Cognitive Disorders, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takehito Hayakawa
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
- Research Center for Social Studies of Health and Community, Ritsumeikan University, Kyoto, Japan
| | - Katsuyuki Miura
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
| | - Hirotsugu Ueshima
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
| | - Yoshikuni Kita
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
- Faculty of Nursing Science, Tsuruga Nursing University, Tsuruga, Japan
| | - Hiroko H. Dodge
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
- Department of Neurology, Layton Aging and Alzheimer’s Disease Center, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, Michigan Alzheimer’s Disease Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
156
|
|
157
|
Thomas KR, Bangen KJ, Weigand AJ, Edmonds EC, Wong CG, Cooper S, Delano-Wood L, Bondi MW. Objective subtle cognitive difficulties predict future amyloid accumulation and neurodegeneration. Neurology 2020; 94:e397-e406. [PMID: 31888974 PMCID: PMC7079691 DOI: 10.1212/wnl.0000000000008838] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To determine the temporal sequence of objectively defined subtle cognitive difficulties (Obj-SCD) in relation to amyloidosis and neurodegeneration, the current study examined the trajectories of amyloid PET and medial temporal neurodegeneration in participants with Obj-SCD relative to cognitively normal (CN) and mild cognitive impairment (MCI) groups. METHOD A total of 747 Alzheimer's Disease Neuroimaging Initiative participants (305 CN, 153 Obj-SCD, 289 MCI) underwent neuropsychological testing and serial amyloid PET and structural MRI examinations. Linear mixed effects models examined 4-year rate of change in cortical 18F-florbetapir PET, entorhinal cortex thickness, and hippocampal volume in those classified as Obj-SCD and MCI relative to CN. RESULT Amyloid accumulation was faster in the Obj-SCD group than in the CN group; the MCI and CN groups did not significantly differ from each other. The Obj-SCD and MCI groups both demonstrated faster entorhinal cortical thinning relative to the CN group; only the MCI group exhibited faster hippocampal atrophy than CN participants. CONCLUSION Relative to CN participants, Obj-SCD was associated with faster amyloid accumulation and selective vulnerability of entorhinal cortical thinning, whereas MCI was associated with faster entorhinal and hippocampal atrophy. Findings suggest that Obj-SCD, operationally defined using sensitive neuropsychological measures, can be identified prior to or during the preclinical stage of amyloid deposition. Further, consistent with the Braak neurofibrillary staging scheme, Obj-SCD status may track with early entorhinal pathologic changes, whereas MCI may track with more widespread medial temporal change. Thus, Obj-SCD may be a sensitive and noninvasive predictor of encroaching amyloidosis and neurodegeneration, prior to frank cognitive impairment associated with MCI.
Collapse
Affiliation(s)
- Kelsey R Thomas
- From Veterans Affairs San Diego Healthcare System (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.); Department of Psychiatry (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.), University of California, San Diego, School of Medicine, La Jolla; and San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology (A.J.W.)
| | - Katherine J Bangen
- From Veterans Affairs San Diego Healthcare System (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.); Department of Psychiatry (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.), University of California, San Diego, School of Medicine, La Jolla; and San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology (A.J.W.)
| | - Alexandra J Weigand
- From Veterans Affairs San Diego Healthcare System (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.); Department of Psychiatry (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.), University of California, San Diego, School of Medicine, La Jolla; and San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology (A.J.W.)
| | - Emily C Edmonds
- From Veterans Affairs San Diego Healthcare System (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.); Department of Psychiatry (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.), University of California, San Diego, School of Medicine, La Jolla; and San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology (A.J.W.)
| | - Christina G Wong
- From Veterans Affairs San Diego Healthcare System (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.); Department of Psychiatry (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.), University of California, San Diego, School of Medicine, La Jolla; and San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology (A.J.W.)
| | - Shanna Cooper
- From Veterans Affairs San Diego Healthcare System (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.); Department of Psychiatry (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.), University of California, San Diego, School of Medicine, La Jolla; and San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology (A.J.W.)
| | - Lisa Delano-Wood
- From Veterans Affairs San Diego Healthcare System (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.); Department of Psychiatry (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.), University of California, San Diego, School of Medicine, La Jolla; and San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology (A.J.W.)
| | - Mark W Bondi
- From Veterans Affairs San Diego Healthcare System (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.); Department of Psychiatry (K.R.T., K.J.B., A.J.W., E.C.E., C.G.W., S.C., L.D.-W., M.W.B.), University of California, San Diego, School of Medicine, La Jolla; and San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology (A.J.W.).
| |
Collapse
|
158
|
Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 2020; 27:18. [PMID: 31906949 PMCID: PMC6943903 DOI: 10.1186/s12929-019-0609-7] [Citation(s) in RCA: 422] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer disease (AD) accounts for 60-70% of dementia cases. Given the seriousness of the disease and continual increase in patient numbers, developing effective therapies to treat AD has become urgent. Presently, the drugs available for AD treatment, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate receptor, can only inhibit dementia symptoms for a limited period of time but cannot stop or reverse disease progression. On the basis of the amyloid hypothesis, many global drug companies have conducted many clinical trials on amyloid clearing therapy but without success. Thus, the amyloid hypothesis may not be completely feasible. The number of anti-amyloid trials decreased in 2019, which might be a turning point. An in-depth and comprehensive understanding of the contribution of amyloid beta and other factors of AD is crucial for developing novel pharmacotherapies.In ongoing clinical trials, researchers have developed and are testing several possible interventions aimed at various targets, including anti-amyloid and anti-tau interventions, neurotransmitter modification, anti-neuroinflammation and neuroprotection interventions, and cognitive enhancement, and interventions to relieve behavioral psychological symptoms. In this article, we present the current state of clinical trials for AD at clinicaltrials.gov. We reviewed the underlying mechanisms of these trials, tried to understand the reason why prior clinical trials failed, and analyzed the future trend of AD clinical trials.
Collapse
Affiliation(s)
- Li-Kai Huang
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, National Health Research Institute, Taipei, Taiwan
| | - Shu-Ping Chao
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, National Health Research Institute, Taipei, Taiwan.
- Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
159
|
Stricker NH, Lundt ES, Albertson SM, Machulda MM, Pudumjee SB, Kremers WK, Jack CR, Knopman DS, Petersen RC, Mielke MM. Diagnostic and Prognostic Accuracy of the Cogstate Brief Battery and Auditory Verbal Learning Test in Preclinical Alzheimer's Disease and Incident Mild Cognitive Impairment: Implications for Defining Subtle Objective Cognitive Impairment. J Alzheimers Dis 2020; 76:261-274. [PMID: 32538841 PMCID: PMC7546579 DOI: 10.3233/jad-200087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND There are detectable cognitive differences in cognitively unimpaired (CU) individuals with preclinical Alzheimer's disease (AD). OBJECTIVE To determine whether cross-sectional performance on the Cogstate Brief Battery (CBB) and Auditory Verbal Learning Test (AVLT) could identify 1) CU participants with preclinical AD defined by neuroimaging biomarkers of amyloid and tau, and 2) incident mild cognitive impairment (MCI)/dementia. METHOD CU participants age 50+ were eligible if they had 1) amyloid (A) and tau (T) imaging within two years of their baseline CBB or 2) at least one follow-up visit. AUROC analyses assessed the ability of measures to differentiate groups. We explored the frequency of cross-sectional subtle objective cognitive impairment (sOBJ) defined as performance ≤-1 SD on CBB Learning/Working Memory Composite (Lrn/WM) or AVLT delayed recall using age-corrected normative data. RESULTS A+T+ (n = 33, mean age 79.5) and A+T- (n = 61, mean age 77.8) participants were older than A-T- participants (n = 146, mean age 66.3), and comparable on sex and education. Lrn/WM did not differentiate A + T+or A+T- from A-T- participants. AVLT differentiated both A+T+ and A+T- from A-T- participants; 45% of A+T+ and 25% of A+T- participants met sOBJ criteria. The follow-up cohort included 150 CU individuals who converted to MCI/dementia and 450 age, sex, and education matched controls. Lrn/WM and AVLT differentiated between stable and converter CU participants. CONCLUSION Among CU participants, AVLT helped differentiate A+T+ and A+T- from A-T- participants. The CBB did not differentiate biomarker subgroups, but showed potential for predicting incident MCI/dementia. Results inform future definitions of sOBJ.
Collapse
Affiliation(s)
- Nikki H. Stricker
- Division of Neurocognitive Disorders, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily S. Lundt
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Sabrina M. Albertson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M. Machulda
- Division of Neurocognitive Disorders, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shehroo B. Pudumjee
- Division of Neurocognitive Disorders, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Walter K. Kremers
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
160
|
Aschenbrenner AJ, Gordon BA, Fagan AM, Schindler SE, Balota DA, Morris JC, Hassenstab JJ. Neurofilament Light Predicts Decline in Attention but Not Episodic Memory in Preclinical Alzheimer's Disease. J Alzheimers Dis 2020; 74:1119-1129. [PMID: 32144992 PMCID: PMC7183899 DOI: 10.3233/jad-200018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cerebrospinal fluid tau and neurofilament light (NfL) are two biomarkers of neurodegeneration in Alzheimer's disease. Previous reports have shown that the influence of tau on cognitive decline depends on levels of amyloid burden whereas NfL predicts decline independently of amyloid. Most studies use a global cognitive composite as the primary outcome, and it is unknown if critical cognitive domain scores are similarly sensitive to rates of decline due to neurodegeneration. OBJECTIVE To examine the unique contribution of amyloid, tau, and NfL to rates of cognitive decline in multiple cognitive composites in a cognitively healthy, middle-aged to older adult cohort. METHODS A total of 255 participants (55% female; mean age = 66.2 years, range = 42.5-86.7 years) completed CSF studies and serial cognitive assessments to measure global cognition, episodic memory, and attentional control. Linear mixed effects models were used to examine rates of change on each composite score as a function of baseline biomarker levels. RESULTS Total tau predicted decline in attention regardless of amyloid status, but the relationship to global cognition and episodic memory was dependent on amyloid, replicating prior literature. NfL predicted decline in attention and global cognition, but not memory, and this effect was independent of amyloid status. CONCLUSIONS These findings suggest that NfL can be used to monitor cognitive decline in aging and Alzheimer's disease and that an attentional control composite may be a better outcome for tracking general neurodegenerative effects on cognition.
Collapse
Affiliation(s)
- Andrew J Aschenbrenner
- Charles F. and Joanne Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian A Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne M Fagan
- Charles F. and Joanne Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne E Schindler
- Charles F. and Joanne Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David A Balota
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - John C Morris
- Charles F. and Joanne Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason J Hassenstab
- Charles F. and Joanne Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
161
|
Ribbe M, Kern S, Börjesson Hansson A, Östling S, Zetterberg H, Blennow K, Skoog I. Amyloid β42 and Total Tau Levels in Cerebrospinal Fluid Associate with Survival in an 85-Year-Old Population-Based Cohort Followed until Death. Dement Geriatr Cogn Disord 2019; 47:114-124. [PMID: 30970371 DOI: 10.1159/000499066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/21/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dementia of Alzheimer's type (AD) is related to decreased survival. It is not clear whether also biological markers of AD are related to mortality. Low levels of amyloid beta-42 (Aβ42) and high levels of total tau (T-tau) protein in cerebrospinal fluid (CSF) are established biomarkers for AD. OBJECTIVE Our aim was to investigate whether levels of Aβ42 and T-tau are associated with survival among octogenarians independently of dementia status. METHODS Sixty-five 85-year-olds underwent lumbar puncture and were followed with repeated neuropsychiatric examinations until death. RESULTS Lower CSF Aβ42 (p = 0.010) and higher CSF T-tau (p = 0.005) at the age of 85 were associated with lower survival independently of dementia status at baseline and follow-up. Low CSF Aβ42 and high CSF T-tau were also related to baseline dementia at the age of 85 years, and lower CSF Aβ42 with increased dementia incidence during the first 3 years of follow-up. CONCLUSIONS Biological markers of AD are associated with mortality in octogenarians. The reason for this needs further study. Our findings highlight the importance to consider the competing risk of death when evaluating biological markers of AD in the very old.
Collapse
Affiliation(s)
- Mats Ribbe
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden, .,Department of Neuropsychiatry Epidemiology, Mölndal, Sweden,
| | - Silke Kern
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neuropsychiatry Epidemiology, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anne Börjesson Hansson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neuropsychiatry Epidemiology, Mölndal, Sweden
| | - Svante Östling
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neuropsychiatry Epidemiology, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ingmar Skoog
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neuropsychiatry Epidemiology, Mölndal, Sweden
| |
Collapse
|
162
|
Vemuri P, Lesnick TG, Knopman DS, Przybelski SA, Reid RI, Mielke MM, Graff‐Radford J, Lowe VJ, Machulda MM, Petersen RC, Jack CR. Amyloid, Vascular, and Resilience Pathways Associated with Cognitive Aging. Ann Neurol 2019; 86:866-877. [PMID: 31509621 PMCID: PMC6899909 DOI: 10.1002/ana.25600] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/17/2019] [Accepted: 09/08/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the multifactorial processes underlying cognitive aging based on the hypothesis that multiple causal pathways and mechanisms (amyloid, vascular, and resilience) influence longitudinal cognitive decline in each individual through worsening brain health. METHODS We identified 1,230 elderly subjects (aged ≥50 years) with an average of 4.9 years of clinical follow-up and with amyloid positron emission tomography, diffusion tensor imaging, and structural magnetic resonance imaging scans from the population-based Mayo Clinic Study of Aging. We examined imaging markers of amyloid and brain health (white matter microstructural integrity and cortical thinning), systemic vascular health preceding the imaging markers, and early to midlife intellectual enrichment to predict longitudinal cognitive trajectories. We used latent growth curve models for modeling longitudinal cognitive decline. RESULTS All the pathways (amyloid, vascular, resilience) converged through their effects on cortical thinning and worsening cognition and together explained patterns in cognitive decline. Resilience and vascular pathways (aging process, sex differences, education/occupation, and systemic vascular health) had significant impact on white matter microstructural integrity. Education/occupation levels contributed to white matter integrity through systemic vascular health. Worsening white matter integrity contributed to significant cortical thinning and subsequently longitudinal cognitive decline. Baseline amyloidosis contributed to a significant proportion of cognitive decline that accelerated with longer follow-up times, and its primary impact was through cortical thinning. INTERPRETATION We developed an integrated framework to help explain the dynamic and complex process of cognitive aging by considering key causal pathways. Such an approach is important for both better comprehension of cognitive aging processes and will aid in the development of successful intervention strategies. ANN NEUROL 2019;86:866-877.
Collapse
Affiliation(s)
| | | | | | | | - Robert I. Reid
- Department of Information TechnologyMayo ClinicRochesterMN
| | - Michelle M. Mielke
- Department of Health Sciences ResearchMayo ClinicRochesterMN
- Department of NeurologyMayo ClinicRochesterMN
| | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMN
| | | | | | | |
Collapse
|
163
|
Kern S, Syrjanen JA, Blennow K, Zetterberg H, Skoog I, Waern M, Hagen CE, van Harten AC, Knopman DS, Jack CR, Petersen RC, Mielke MM. Association of Cerebrospinal Fluid Neurofilament Light Protein With Risk of Mild Cognitive Impairment Among Individuals Without Cognitive Impairment. JAMA Neurol 2019; 76:187-193. [PMID: 30419087 DOI: 10.1001/jamaneurol.2018.3459] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Accumulating data suggest that elevated cerebrospinal fluid (CSF) neurofilament light (NfL) and neurogranin (Ng) levels are associated with cognitive decline and may be useful markers of neurodegeneration. However, to our knowledge, previous studies have not assessed these CSF markers in the community, evaluated them with regards to risk of mild cognitive impairment (MCI), or compared their prognostic value with CSF total tau (T-tau) or phosphorylated tau (P-tau). Objective To determine (1) whether CSF NfL and Ng levels were associated with risk of MCI, (2) the effect size of these markers compared with CSF T-tau or P-tau for risk of MCI, and (3) whether CSF amyloid-β (Aβ42) modified these associations. Design, Setting and Participants The analyses included 648 participants without cognitive impairment who were enrolled into the prospective population-based Mayo Clinic Study of Aging between January 2004 and December 2015 with available CSF data and at least 1 follow-up visit. Participants were followed up for a median of 3.8 years (interquartile range, 2.6-5.4 years). The CSF NfL and Ng levels were measured using an in-house sandwich enzyme-linked immunosorbent assay. The CSF Aβ42, T-tau, and P-tau levels were measured with automated electrochemiluminescence immunoassays. Cox proportional hazards models, with age as the timescale, were used to assess the association between CSF NfL, Ng, Aβ42, T-tau, or P-tau with risk of MCI after adjusting for sex, education, apolipoprotein E genotype, and the Charlson comorbidity index. To examine CSF Aβ42 as an effect modifier, it was categorized into tertiles; the bottom tertile was defined as having elevated brain amyloid. Main Outcomes and Measures Risk of MCI. Results At baseline, the median age of the 648 participants without cognitive impairment was 72.3 years (range, 50.7-95.3 years) and 366 (56.5%) were men; 96 (14.8%) developed incident MCI. Compared with the bottom quartile, the top quartile of CSF NfL was associated with a 3.1-fold increased risk of MCI (hazard ratio, 3.13; 95% CI, 1.36-7.18) in multivariate models. Neither CSF T-tau, P-tau, nor Ng was associated with risk of MCI. There was no interaction between Aβ42 and CSF NfL for risk of MCI. Conclusions and Relevance Elevated CSF NfL levels but not CSF T-tau, P-tau or Ng are a risk factor for MCI in a community population and are independent of brain amyloid.
Collapse
Affiliation(s)
- Silke Kern
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,University of Gothenburg, Mölndal, Sweden
| | - Jeremy A Syrjanen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the Institute of Neurology, University College London, Queen Square, London, England.,United Kingdom Dementia Research Institute at University College London, London, England
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,University of Gothenburg, Mölndal, Sweden
| | - Margda Waern
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,University of Gothenburg, Mölndal, Sweden
| | - Clinton E Hagen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Argonde C van Harten
- Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | | | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
164
|
Espay AJ, Vizcarra JA, Marsili L, Lang AE, Simon DK, Merola A, Josephs KA, Fasano A, Morgante F, Savica R, Greenamyre JT, Cambi F, Yamasaki TR, Tanner CM, Gan-Or Z, Litvan I, Mata IF, Zabetian CP, Brundin P, Fernandez HH, Standaert DG, Kauffman MA, Schwarzschild MA, Sardi SP, Sherer T, Perry G, Leverenz JB. Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology 2019; 92:329-337. [PMID: 30745444 DOI: 10.1212/wnl.0000000000006926] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022] Open
Abstract
The gold standard for a definitive diagnosis of Parkinson disease (PD) is the pathologic finding of aggregated α-synuclein into Lewy bodies and for Alzheimer disease (AD) aggregated amyloid into plaques and hyperphosphorylated tau into tangles. Implicit in this clinicopathologic-based nosology is the assumption that pathologic protein aggregation at autopsy reflects pathogenesis at disease onset. While these aggregates may in exceptional cases be on a causal pathway in humans (e.g., aggregated α-synuclein in SNCA gene multiplication or aggregated β-amyloid in APP mutations), their near universality at postmortem in sporadic PD and AD suggests they may alternatively represent common outcomes from upstream mechanisms or compensatory responses to cellular stress in order to delay cell death. These 3 conceptual frameworks of protein aggregation (pathogenic, epiphenomenon, protective) are difficult to resolve because of the inability to probe brain tissue in real time. Whereas animal models, in which neither PD nor AD occur in natural states, consistently support a pathogenic role of protein aggregation, indirect evidence from human studies does not. We hypothesize that (1) current biomarkers of protein aggregates may be relevant to common pathology but not to subgroup pathogenesis and (2) disease-modifying treatments targeting oligomers or fibrils might be futile or deleterious because these proteins are epiphenomena or protective in the human brain under molecular stress. Future precision medicine efforts for molecular targeting of neurodegenerative diseases may require analyses not anchored on current clinicopathologic criteria but instead on biological signals generated from large deeply phenotyped aging populations or from smaller but well-defined genetic-molecular cohorts.
Collapse
Affiliation(s)
- Alberto J Espay
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio.
| | - Joaquin A Vizcarra
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Luca Marsili
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Anthony E Lang
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - David K Simon
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Aristide Merola
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Keith A Josephs
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Alfonso Fasano
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Francesca Morgante
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Rodolfo Savica
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - J Timothy Greenamyre
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Franca Cambi
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Tritia R Yamasaki
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Caroline M Tanner
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Ziv Gan-Or
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Irene Litvan
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Ignacio F Mata
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Cyrus P Zabetian
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Patrik Brundin
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Hubert H Fernandez
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - David G Standaert
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Marcelo A Kauffman
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Michael A Schwarzschild
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - S Pablo Sardi
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - Todd Sherer
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - George Perry
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| | - James B Leverenz
- From the UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders (A.J.E., J.A.V., L.M., A.M.), Department of Neurology, University of Cincinnati, OH; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (A.E.L., A.F.), Toronto Western Hospital, University of Toronto; Krembil Research Institute (A.E.L., A.F.), Toronto, Canada; Parkinson's Disease and Movement Disorders Center (D.K.S.), Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; College of Medicine (K.A.J.), Mayo Clinic, Rochester, MN; Institute of Molecular and Clinical Sciences (F.M.), St George's University of London, UK; Division of Movement Disorders (R.S.), Department of Neurology and Department of Health Science Research, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology and the Pittsburgh Institute for Neurodegenerative Diseases (J.T.G., F.C.), University of Pittsburgh, PA; Department of Neurology (T.R.Y.), University of Kentucky, Lexington; Parkinson's Disease Research, Education and Clinical Center (C.M.T.), Neurology, San Francisco Veterans Affairs Medical Center; Department of Neurology (C.M.T.), University of California-San Francisco; Department of Neurology & Neurosurgery, Montreal Neurological Institute, and Department of Human Genetics (Z.G.-O.), McGill University, Canada; Parkinson & Other Movement Disorders Center UC San Diego (I.L.), Department of Neurosciences, Altman Clinical Translational Research Institute, La Jolla, CA; VA Puget Sound Health Care System and Department of Neurology (I.F.M., CP.Z.), University of Washington, Seattle; Department of Neurology (I.F.M.), University of Washington School of Medicine, Seattle; Center for Neurodegenerative Science (P.B.), Van Andel Research Institute, Grand Rapids, MI; Center for Neurological Restoration (H.H.F.) and Lou Ruvo Center for Brain Health, Neurological Institute (J.B.L.), Cleveland Clinic, OH; Department of Neurology (D.G.S.), University of Alabama at Birmingham; Consultorio y Laboratorio de Neurogenética (M.A.K.), Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA; Programa de Medicina de Precision y Genomica Clinica (M.A.K.), Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina; Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston; Division of Neuroscience (S.P.S.), Sanofi-Genzyme, Framingham, MA; Michael J. Fox Foundation for Parkinson's Research (T.S.), New York, NY; and College of Sciences (G.P.), University of Texas at San Antonio
| |
Collapse
|
165
|
Pereira JB, van Westen D, Stomrud E, Strandberg TO, Volpe G, Westman E, Hansson O. Abnormal Structural Brain Connectome in Individuals with Preclinical Alzheimer's Disease. Cereb Cortex 2019; 28:3638-3649. [PMID: 29028937 DOI: 10.1093/cercor/bhx236] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease has a long preclinical phase during which amyloid pathology and neurodegeneration accumulate in the brain without producing overt cognitive deficits. It is currently unclear whether these early disease stages are associated with a progressive disruption in the communication between brain regions that subsequently leads to cognitive decline and dementia. In this study we assessed the organization of structural networks in cognitively normal (CN) individuals harboring amyloid pathology (A+N-), neurodegeneration (A-N+), or both (A+N+) from the prospective and longitudinal Swedish BioFINDER study. We combined graph theory with diffusion tensor imaging to investigate integration, segregation, and centrality measures in the brain connectome in the previous groups. At baseline, our findings revealed a disrupted network topology characterized by longer paths, lower efficiency, increased clustering and modularity in CN A-N+ and CN A+N+, but not in CN A+N-. After 2 years, CN A+N+ showed significant abnormalities in all global network measures, whereas CN A-N+ only showed abnormalities in the global efficiency. Network connectivity and organization were associated with memory in CN A+N+ individuals. Altogether, our findings suggest that amyloid pathology is not sufficient to disrupt structural network topology, whereas neurodegeneration is.
Collapse
Affiliation(s)
- Joana B Pereira
- Division of Clinical Geriatrics, Neurobiology, Care Sciences and Society Department, Karolinska Institutet, Stockholm, Sweden
| | - Danielle van Westen
- Department of Clinical Sciences Lund, Diagnostic radiology, Lund University, Lund, Sweden.,Imaging and Function, Skåne University Health Care, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Tor Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Giovanni Volpe
- Department of Physics, Göteborg University, Göteborg, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Neurobiology, Care Sciences and Society Department, Karolinska Institutet, Stockholm, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
166
|
Butterfield DA, Boyd-Kimball D. Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem 2019; 151:459-487. [PMID: 30216447 PMCID: PMC6417976 DOI: 10.1111/jnc.14589] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder associated with aging and characterized pathologically by the presence of senile plaques, neurofibrillary tangles, and neurite and synapse loss. Amyloid beta-peptide (1-42) [Aβ(1-42)], a major component of senile plaques, is neurotoxic and induces oxidative stress in vitro and in vivo. Redox proteomics has been used to identify proteins oxidatively modified by Aβ(1-42) in vitro and in vivo. In this review, we discuss these proteins in the context of those identified to be oxidatively modified in animal models of AD, and human studies including familial AD, pre-clinical AD (PCAD), mild cognitive impairment (MCI), early AD, late AD, Down syndrome (DS), and DS with AD (DS/AD). These redox proteomics studies indicate that Aβ(1-42)-mediated oxidative stress occurs early in AD pathogenesis and results in altered antioxidant and cellular detoxification defenses, decreased energy yielding metabolism and mitochondrial dysfunction, excitotoxicity, loss of synaptic plasticity and cell structure, neuroinflammation, impaired protein folding and degradation, and altered signal transduction. Improved access to biomarker imaging and the identification of lifestyle interventions or treatments to reduce Aβ production could be beneficial in preventing or delaying the progression of AD. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601
| |
Collapse
|
167
|
Schindler SE, Bollinger JG, Ovod V, Mawuenyega KG, Li Y, Gordon BA, Holtzman DM, Morris JC, Benzinger TLS, Xiong C, Fagan AM, Bateman RJ. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 2019; 93:e1647-e1659. [PMID: 31371569 PMCID: PMC6946467 DOI: 10.1212/wnl.0000000000008081] [Citation(s) in RCA: 537] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/17/2019] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE We examined whether plasma β-amyloid (Aβ)42/Aβ40, as measured by a high-precision assay, accurately diagnosed brain amyloidosis using amyloid PET or CSF p-tau181/Aβ42 as reference standards. METHODS Using an immunoprecipitation and liquid chromatography-mass spectrometry assay, we measured Aβ42/Aβ40 in plasma and CSF samples from 158 mostly cognitively normal individuals that were collected within 18 months of an amyloid PET scan. RESULTS Plasma Aβ42/Aβ40 had a high correspondence with amyloid PET status (receiver operating characteristic area under the curve [AUC] 0.88, 95% confidence interval [CI] 0.82-0.93) and CSF p-tau181/Aβ42 (AUC 0.85, 95% CI 0.79-0.92). The combination of plasma Aβ42/Aβ40, age, and APOE ε4 status had a very high correspondence with amyloid PET (AUC 0.94, 95% CI 0.90-0.97). Individuals with a negative amyloid PET scan at baseline and a positive plasma Aβ42/Aβ40 (<0.1218) had a 15-fold greater risk of conversion to amyloid PET-positive compared to individuals with a negative plasma Aβ42/Aβ40 (p = 0.01). CONCLUSIONS Plasma Aβ42/Aβ40, especially when combined with age and APOE ε4 status, accurately diagnoses brain amyloidosis and can be used to screen cognitively normal individuals for brain amyloidosis. Individuals with a negative amyloid PET scan and positive plasma Aβ42/Aβ40 are at increased risk for converting to amyloid PET-positive. Plasma Aβ42/Aβ40 could be used in prevention trials to screen for individuals likely to be amyloid PET-positive and at risk for Alzheimer disease dementia. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that plasma Aβ42/Aβ40 levels accurately determine amyloid PET status in cognitively normal research participants.
Collapse
Affiliation(s)
- Suzanne E Schindler
- From the Department of Neurology (S.E.S., J.G.B., V.O., K.G.M., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Knight Alzheimer's Disease Research Center (S.E.S., B.A.G., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Division of Biostatistics (Y.L., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (D.M.H., A.M.F., R.J.B.), Washington University School of Medicine, St. Louis, MO
| | - James G Bollinger
- From the Department of Neurology (S.E.S., J.G.B., V.O., K.G.M., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Knight Alzheimer's Disease Research Center (S.E.S., B.A.G., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Division of Biostatistics (Y.L., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (D.M.H., A.M.F., R.J.B.), Washington University School of Medicine, St. Louis, MO
| | - Vitaliy Ovod
- From the Department of Neurology (S.E.S., J.G.B., V.O., K.G.M., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Knight Alzheimer's Disease Research Center (S.E.S., B.A.G., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Division of Biostatistics (Y.L., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (D.M.H., A.M.F., R.J.B.), Washington University School of Medicine, St. Louis, MO
| | - Kwasi G Mawuenyega
- From the Department of Neurology (S.E.S., J.G.B., V.O., K.G.M., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Knight Alzheimer's Disease Research Center (S.E.S., B.A.G., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Division of Biostatistics (Y.L., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (D.M.H., A.M.F., R.J.B.), Washington University School of Medicine, St. Louis, MO
| | - Yan Li
- From the Department of Neurology (S.E.S., J.G.B., V.O., K.G.M., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Knight Alzheimer's Disease Research Center (S.E.S., B.A.G., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Division of Biostatistics (Y.L., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (D.M.H., A.M.F., R.J.B.), Washington University School of Medicine, St. Louis, MO
| | - Brian A Gordon
- From the Department of Neurology (S.E.S., J.G.B., V.O., K.G.M., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Knight Alzheimer's Disease Research Center (S.E.S., B.A.G., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Division of Biostatistics (Y.L., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (D.M.H., A.M.F., R.J.B.), Washington University School of Medicine, St. Louis, MO
| | - David M Holtzman
- From the Department of Neurology (S.E.S., J.G.B., V.O., K.G.M., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Knight Alzheimer's Disease Research Center (S.E.S., B.A.G., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Division of Biostatistics (Y.L., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (D.M.H., A.M.F., R.J.B.), Washington University School of Medicine, St. Louis, MO
| | - John C Morris
- From the Department of Neurology (S.E.S., J.G.B., V.O., K.G.M., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Knight Alzheimer's Disease Research Center (S.E.S., B.A.G., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Division of Biostatistics (Y.L., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (D.M.H., A.M.F., R.J.B.), Washington University School of Medicine, St. Louis, MO
| | - Tammie L S Benzinger
- From the Department of Neurology (S.E.S., J.G.B., V.O., K.G.M., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Knight Alzheimer's Disease Research Center (S.E.S., B.A.G., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Division of Biostatistics (Y.L., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (D.M.H., A.M.F., R.J.B.), Washington University School of Medicine, St. Louis, MO
| | - Chengjie Xiong
- From the Department of Neurology (S.E.S., J.G.B., V.O., K.G.M., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Knight Alzheimer's Disease Research Center (S.E.S., B.A.G., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Division of Biostatistics (Y.L., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (D.M.H., A.M.F., R.J.B.), Washington University School of Medicine, St. Louis, MO
| | - Anne M Fagan
- From the Department of Neurology (S.E.S., J.G.B., V.O., K.G.M., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Knight Alzheimer's Disease Research Center (S.E.S., B.A.G., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Division of Biostatistics (Y.L., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (D.M.H., A.M.F., R.J.B.), Washington University School of Medicine, St. Louis, MO
| | - Randall J Bateman
- From the Department of Neurology (S.E.S., J.G.B., V.O., K.G.M., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Knight Alzheimer's Disease Research Center (S.E.S., B.A.G., D.M.H., J.C.M., T.L.S.B., C.X., A.M.F., R.J.B.), Division of Biostatistics (Y.L., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (D.M.H., A.M.F., R.J.B.), Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
168
|
Roberts RO, Aakre JA, Kremers WK, Vassilaki M, Knopman DS, Mielke MM, Alhurani R, Geda YE, Machulda MM, Coloma P, Schauble B, Lowe VJ, Jack CR, Petersen RC. Prevalence and Outcomes of Amyloid Positivity Among Persons Without Dementia in a Longitudinal, Population-Based Setting. JAMA Neurol 2019; 75:970-979. [PMID: 29710225 DOI: 10.1001/jamaneurol.2018.0629] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Importance Brain amyloid deposition is a marker of Alzheimer disease (AD) pathology. The population-based prevalence and outcomes of amyloid positivity in a population without dementia are important for understanding the trajectory of amyloid positivity to clinically significant outcomes and for designing AD prevention trials. Objective To determine prevalence and outcomes of amyloid positivity in a population without dementia. Design, Setting, and Participants In the prospective, population-based Mayo Clinic Study of Aging in Olmsted County, Minnesota, participants without dementia were randomly selected from the county population and were clinically and cognitively evaluated at baseline and every 15 months from August 1, 2008, to September 18, 2018. They were also invited to undergo carbon11-Pittburgh compound B positron emission tomography (PET) imaging. Exposures Amyloid positivity (defined as a standardized uptake value ratio >1.42 on PET). Main Outcomes and Measures Prevalence of amyloid positivity in the Olmsted County population without dementia and risk of progression from no cognitive impairment (ie, normal cognition for age) to incident amnestic MCI (aMCI) and from MCI or aMCI to incident AD dementia. Results Of 3894 participants, 1671 underwent PET imaging and were included in the study; 2198 did not undergo imaging, and 25 were excluded for other reasons. The mean (SD) age of participants was 71.3 (9.8) years; 892 (53.4%) were men, and 179 (10.7%) had prevalent MCI. The prevalence of amyloid positivity without cognitive impairment in the population without dementia increased from 2.7% (95% CI, 0.5% to 4.9%) in persons aged 50 to 59 years to 41.3% (95% CI, 33.4% to 49.2%) in those aged 80 to 89 years at baseline. Prevalence of amyloid-positive MCI in the population without dementia increased from 0% in persons aged 50 to 59 years to 16.4% (95% CI, 10.3% to 22.5%) in those aged 80 to 89 years. The incident aMCI risk increased more than 2-fold in participants without cognitive impairment who were amyloid positive vs those who were amyloid negative (hazard ratio [HR], 2.26; 95% CI, 1.52 to 3.35; P < .001). The risk of AD dementia was 1.86 (95% CI, 0.89 to 3.88; P = .10) for amyloid-positive participants with MCI vs amyloid-negative participants with MCI, 1.63 (95% CI, 0.78 to 3.41; P = .20) for participants with aMCI who were amyloid positive vs amyloid negative, and 2.56 (95% CI, 1.35 to 4.88; P = .004) for amyloid-positive participants who were either without cognitive impairment or had aMCI vs those who were amyloid negative. Global cognitive and memory domain z scores declined significantly in amyloid-positive individuals during follow-up. The mean (SD) follow-up time from baseline was 3.7 (1.9) years to incident aMCI and 3.8 (2.0) years to incident AD dementia. Conclusions and Relevance Population-based prevalence of amyloid-positive status and progression rates of amyloid positivity provide valid information for designing AD prevention trials and assessing the public health outcomes of AD prevention and interventions.
Collapse
Affiliation(s)
- Rosebud O Roberts
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Jeremiah A Aakre
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Walter K Kremers
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Maria Vassilaki
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Rabe Alhurani
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Yonas E Geda
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Department of Psychiatry and Psychology and Neurology, Mayo Clinic, Scottsdale, Arizona
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Preciosa Coloma
- Real World Data Science, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | - Ronald C Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
169
|
Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019; 179:312-339. [PMID: 31564456 PMCID: PMC6778042 DOI: 10.1016/j.cell.2019.09.001] [Citation(s) in RCA: 1824] [Impact Index Per Article: 304.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer disease (AD) is a heterogeneous disease with a complex pathobiology. The presence of extracellular β-amyloid deposition as neuritic plaques and intracellular accumulation of hyperphosphorylated tau as neurofibrillary tangles remains the primary neuropathologic criteria for AD diagnosis. However, a number of recent fundamental discoveries highlight important pathological roles for other critical cellular and molecular processes. Despite this, no disease-modifying treatment currently exists, and numerous phase 3 clinical trials have failed to demonstrate benefits. Here, we review recent advances in our understanding of AD pathobiology and discuss current treatment strategies, highlighting recent clinical trials and opportunities for developing future disease-modifying therapies.
Collapse
Affiliation(s)
- Justin M Long
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
170
|
Gordon BA, Tijms BM. Elevated tau PET signal depends on abnormal amyloid levels and is uncommon in unimpaired individuals. Brain 2019; 142:2903-2904. [PMID: 31560059 DOI: 10.1093/brain/awz278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This scientific commentary refers to ‘The bivariate distribution of amyloid-β and tau: relationship with established neurocognitive clinical syndromes’, by Jack et al. (doi:10.1093/brain/awz268).
Collapse
Affiliation(s)
- Brian A Gordon
- Department of Radiology, Washington University, St. Louis MO, USA
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, The Netherlands
| |
Collapse
|
171
|
Jack CR, Therneau TM, Weigand SD, Wiste HJ, Knopman DS, Vemuri P, Lowe VJ, Mielke MM, Roberts RO, Machulda MM, Graff-Radford J, Jones DT, Schwarz CG, Gunter JL, Senjem ML, Rocca WA, Petersen RC. Prevalence of Biologically vs Clinically Defined Alzheimer Spectrum Entities Using the National Institute on Aging-Alzheimer's Association Research Framework. JAMA Neurol 2019; 76:1174-1183. [PMID: 31305929 PMCID: PMC6632154 DOI: 10.1001/jamaneurol.2019.1971] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Importance A National Institute on Aging-Alzheimer's Association (NIA-AA) workgroup recently published a research framework in which Alzheimer disease is defined by neuropathologic or biomarker evidence of β-amyloid plaques and tau tangles and not by clinical symptoms. Objectives To estimate the sex- and age-specific prevalence of 3 imaging biomarker-based definitions of the Alzheimer disease spectrum from the NIA-AA research framework and to compare these entities with clinically defined diagnostic entities commonly linked with Alzheimer disease. Design, Setting, and Participants The Mayo Clinic Study of Aging (MCSA) is a population-based cohort study of cognitive aging in Olmsted County, Minnesota. The MCSA in-person participants (n = 4660) and passively ascertained (ie, through the medical record rather than in-person) individuals with dementia (n = 553) aged 60 to 89 years were included. Subsets underwent amyloid positron emission tomography (PET) (n = 1524) or both amyloid and tau PET (n = 576). Therefore, this study included 3 nested cohorts examined between November 29, 2004, and June 5, 2018. Data were analyzed between February 19, 2018, and March 26, 2019. Main Outcomes and Measures The sex- and age-specific prevalence of the following 3 biologically defined diagnostic entities was estimated: Alzheimer continuum (abnormal amyloid regardless of tau status), Alzheimer pathologic change (abnormal amyloid but normal tau), and Alzheimer disease (abnormal amyloid and tau). These were compared with the prevalence of 3 clinically defined diagnostic groups (mild cognitive impairment or dementia, dementia, and clinically defined probable Alzheimer disease). Results The median (interquartile range) age was 77 (72-83) years in the clinical cohort (n = 5213 participants), 77 (70-83) years in the amyloid PET cohort (n = 1524 participants), and 77 (69-83) years in the tau PET cohort (n = 576 participants). There were roughly equal numbers of women and men. The prevalence of all diagnostic entities (biological and clinical) increased rapidly with age, with the exception of Alzheimer pathologic change. The prevalence of biological Alzheimer disease was greater than clinically defined probable Alzheimer disease for women and men. Among women, these values were 10% (95% CI, 6%-14%) vs 1% (95% CI, 1%-1%) at age 70 years and 33% (95% CI, 25%-41%) vs 10% (95% CI, 9%-12%) at age 85 years (P < .001). Among men, these values were 9% (95% CI, 5%-12%) vs 1% (95% CI, 0%-1%) at age 70 years and 31% (95% CI, 24%-38%) vs 9% (95% CI, 8%-11%) at age 85 years (P < .001). The only notable difference by sex was a greater prevalence of the mild cognitive impairment or dementia clinical category among men than women. Conclusions and Relevance Results of this study suggest that biologically defined Alzheimer disease is more prevalent than clinically defined probable Alzheimer disease at any age and is 3 times more prevalent at age 85 years among both women and men. This difference is mostly driven by asymptomatic individuals with biological Alzheimer disease. These findings illustrate the magnitude of the consequences on public health that potentially exist by intervening with disease-specific treatments to prevent symptom onset.
Collapse
Affiliation(s)
| | - Terry M. Therneau
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Stephen D. Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Heather J. Wiste
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | | | - Val J. Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michelle M. Mielke
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | | | - David T. Jones
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Walter A. Rocca
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Ronald C. Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
172
|
de Wilde A, van der Flier WM, Pelkmans W, Bouwman F, Verwer J, Groot C, van Buchem MM, Zwan M, Ossenkoppele R, Yaqub M, Kunneman M, Smets EMA, Barkhof F, Lammertsma AA, Stephens A, van Lier E, Biessels GJ, van Berckel BN, Scheltens P. Association of Amyloid Positron Emission Tomography With Changes in Diagnosis and Patient Treatment in an Unselected Memory Clinic Cohort: The ABIDE Project. JAMA Neurol 2019; 75:1062-1070. [PMID: 29889941 DOI: 10.1001/jamaneurol.2018.1346] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Previous studies have evaluated the diagnostic effect of amyloid positron emission tomography (PET) in selected research cohorts. However, these research populations do not reflect daily practice, thus hampering clinical implementation of amyloid imaging. Objective To evaluate the association of amyloid PET with changes in diagnosis, diagnostic confidence, treatment, and patients' experiences in an unselected memory clinic cohort. Design, Setting, and Participants Amyloid PET using fluoride-18 florbetaben was offered to 866 patients who visited the tertiary memory clinic at the VU University Medical Center between January 2015 and December 2016 as part of their routine diagnostic dementia workup. Of these patients, 476 (55%) were included, 32 (4%) were excluded, and 358 (41%) did not participate. To enrich this sample, 31 patients with mild cognitive impairment from the University Medical Center Utrecht memory clinic were included. For each patient, neurologists determined a preamyloid and postamyloid PET diagnosis that existed of both a clinical syndrome (dementia, mild cognitive impairment, or subjective cognitive decline) and a suspected etiology (Alzheimer disease [AD] or non-AD), with a confidence level ranging from 0% to 100%. In addition, the neurologist determined patient treatment in terms of ancillary investigations, medication, and care. Each patient received a clinical follow-up 1 year after being scanned. Main Outcomes and Measures Primary outcome measures were post-PET changes in diagnosis, diagnostic confidence, and patient treatment. Results Of the 507 patients (mean [SD] age, 65 (8) years; 201 women [39%]; mean [SD] Mini-Mental State Examination score, 25 [4]), 164 (32%) had AD dementia, 70 (14%) non-AD dementia, 114 (23%) mild cognitive impairment, and 159 (31%) subjective cognitive decline. Amyloid PET results were positive for 242 patients (48%). The suspected etiology changed for 125 patients (25%) after undergoing amyloid PET, more often due to a negative (82 of 265 [31%]) than a positive (43 of 242 [18%]) PET result (P < .01). Post-PET changes in suspected etiology occurred more frequently in patients older (>65 years) than younger (<65 years) than the typical age at onset of 65 years (74 of 257 [29%] vs 51 of 250 [20%]; P < .05). Mean diagnostic confidence (SD) increased from 80 (13) to 89 (13%) (P < .001). In 123 patients (24%), there was a change in patient treatment post-PET, mostly related to additional investigations and therapy. Conclusions and Relevance This prospective diagnostic study provides a bridge between validating amyloid PET in a research setting and implementing this diagnostic tool in daily clinical practice. Both amyloid-positive and amyloid-negative results had substantial associations with changes in diagnosis and treatment, both in patients with and without dementia.
Collapse
Affiliation(s)
- Arno de Wilde
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands.,Department of Epidemiology & Biostatistics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Wiesje Pelkmans
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Femke Bouwman
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Jurre Verwer
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Colin Groot
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Marieke M van Buchem
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Marissa Zwan
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Rik Ossenkoppele
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands.,Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Maqsood Yaqub
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Marleen Kunneman
- Department of Medical Psychology, Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ellen M A Smets
- Department of Medical Psychology, Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, London, England
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bart N van Berckel
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands.,Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Philip Scheltens
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
173
|
Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju YES. Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease. JAMA Neurol 2019; 75:582-590. [PMID: 29379963 DOI: 10.1001/jamaneurol.2017.4719] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Circadian rhythm disturbances occur in symptomatic Alzheimer disease (AD) and have been hypothesized to contribute to disease pathogenesis. However, it is unknown whether circadian changes occur during the presymptomatic phase of the disease. Objective To examine the associations between circadian function, aging, and preclinical AD pathology in cognitively normal adults. Design, Setting, and Participants This cross-sectional study was conducted using community volunteers from the Knight Alzheimer's Disease Research Center at Washington University in St Louis. Cognitively normal participants (n = 205) underwent 7 to 14 days of actigraphy in their home environment between 2010 and 2012, in addition to clinical assessment, amyloid imaging with Pittsburgh Compound B (PiB), and cerebrospinal fluid biomarker collection. Data collected from 3 years before to 6 months after actigraphy were included. Sixteen participants were excluded owing to incomplete data collection. Main Outcomes and Measures Circadian rhythm analysis was performed on actigraphy data using 3 methods: cosinor, nonparametric, and empirical mode decomposition. Preclinical AD was assessed by longitudinal clinical assessment, amyloid imaging with PiB, and cerebrospinal fluid biomarker collection. Results Data from 189 participants were included in the analyses. The mean (SD) age was 66.6 (8.3) years, and 121 participants (64%) were women. Older age (β = .247; P = .003) and male sex (β = .170; P = .04), in the absence of amyloid pathology, were associated with a significant increase in intradaily variability, a nonparametric measure of rest-activity rhythm fragmentation, as well as decreased amplitude by several measures. After correction for age and sex, the presence of preclinical amyloid plaque pathology, assessed by positive PiB imaging (mean [SD], 0.804 [0.187] for PiB negative vs 0.875 [0.178] for PiB positive; P = .05) or increasing cerebrospinal fluid phosphorylated-tau to amyloid β 42 ratio (β = .231; P = .008), was associated with increased intradaily variability, indicating rest-activity rhythm fragmentation. Conclusions and Relevance Preclinical AD is associated with rest-activity rhythm fragmentation, independent of age or sex. Aging was also associated with circadian dysfunction independently of preclinical AD pathology, particularly in men. The presence of circadian rhythm abnormalities in the preclinical phase of AD suggests that circadian dysfunction could contribute to early disease pathogenesis or serve as a biomarker of preclinical disease.
Collapse
Affiliation(s)
- Erik S Musiek
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri
| | - Meghana Bhimasani
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Margaret A Zangrilli
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri
| | - Yo-El S Ju
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
174
|
Multidomain intervention and/or omega-3 in nondemented elderly subjects according to amyloid status. Alzheimers Dement 2019; 15:1392-1401. [PMID: 31558366 DOI: 10.1016/j.jalz.2019.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/02/2019] [Accepted: 07/14/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The Multidomain Alzheimer Preventive Trial (MAPT) assessed the efficacy of omega-3 fatty acid supplementation, a multidomain intervention (MI), or a combination of both on cognition. Impact according to cerebral amyloid status was evaluated by PET scan. METHODS Participants were nondemented and had memory complaints, limitation in one instrumental activity of daily living, or slow gait. The primary outcome was a change from baseline in 36 months measured with a cognitive composite Z score. RESULTS No effect was observed on cognition in the negative amyloid group (n = 167). In the positive amyloid group (n = 102), we observed a difference of 0.708 and 0.471 in the cognitive composite score between the MI plus omega-3 fatty acid group, the MI alone group, and the placebo group, respectively. DISCUSSION MI alone or in combination with omega-3 fatty acids was associated with improved primary cognitive outcome in subjects with positive amyloid status. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01513252.
Collapse
|
175
|
Eruysal E, Ravdin L, Kamel H, Iadecola C, Ishii M. Plasma lipocalin-2 levels in the preclinical stage of Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:646-653. [PMID: 31517027 PMCID: PMC6733778 DOI: 10.1016/j.dadm.2019.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Introduction Lipocalin-2 is an acute-phase protein with pleotropic functions that has been implicated in several diseases including Alzheimer's disease (AD). However, it is unknown if circulating lipocalin-2 levels are altered in the preclinical stage of AD, where AD pathology has accumulated but cognition remains relatively intact. Methods In this cross-sectional study, we used an immunoassay to measure plasma lipocalin-2 levels in cognitively normal (Clinical Dementia Rating 0) elderly individuals. 38 of 156 subjects were classified as preclinical AD by cerebrospinal fluid criteria. Results Plasma lipocalin-2 levels were higher in preclinical AD compared with control subjects and associated with cerebrospinal fluid amyloid-beta42 levels but not cerebrospinal fluid tau or phosphorylated-tau181 levels. Exploratory analyses revealed that plasma lipocalin-2 was associated with executive function but not episodic memory. Discussion Collectively, these results raise the possibility that circulating lipocalin-2 is involved early in AD pathogenesis and may represent an early blood biomarker of amyloid-beta pathology.
Collapse
Affiliation(s)
- Emily Eruysal
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lisa Ravdin
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Hooman Kamel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Makoto Ishii
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
176
|
Zhao Y, Tudorascu DL, Lopez OL, Cohen AD, Mathis CA, Aizenstein HJ, Price JC, Kuller LH, Kamboh MI, DeKosky ST, Klunk WE, Snitz BE. Amyloid β Deposition and Suspected Non-Alzheimer Pathophysiology and Cognitive Decline Patterns for 12 Years in Oldest Old Participants Without Dementia. JAMA Neurol 2019; 75:88-96. [PMID: 29114732 DOI: 10.1001/jamaneurol.2017.3029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Importance The prevalence of pathologic conditions of the brain associated with Alzheimer disease increases strongly with age. Little is known about the distribution and clinical significance of preclinical biomarker staging in the oldest old, when most individuals without dementia are likely to have positive biomarkers. Objective To compare the patterns of long-term cognitive decline in multiple domains by preclinical biomarker status in the oldest old without dementia. Design, Setting, and Participants A longitudinal observational study with a mean (SD) of 12.2 (2.2) years (range 7.2-15.1 years) of follow-up was conducted in an academic medical center from August 24, 2000, to January 14, 2016, including and extending observations from the Ginkgo Evaluation of Memory study. A total of 197 adults who had completed the Ginkgo Evaluation of Memory study, were free of dementia, and were able to undergo magnetic resonance imaging were eligible for a neuroimaging study in 2009. Of these patients, 175 were included in the present analyses; 140 (80%) were cognitively normal and 35 (20%) had mild cognitive impairment. Main Outcomes and Measures Biomarker groups included amyloid β negative (Aβ-)/neurodegeneration negative (ND-), amyloid β positive (Aβ+)/ND-, Aβ-/neurodegeneration positive (ND+), and Aβ+/ND+ based on Pittsburgh Compound B retention and hippocampal volume in 2009. Participants completed baseline neuropsychological testing from 2000 to 2002 and annual testing from 2004 to 2016. Domains included memory, executive function, language, visual-spatial reasoning, and attention and psychomotor speed. Slopes of decline were evaluated with linear mixed models adjusted for age, sex, and years of education. Results Of the 175 participants (71 women and 104 men), at imaging, mean (SD) age was 86.0 (2.9) years (range, 82-95 years). A total of 42 participants (24.0%) were Aβ-/ND-, 32 (18.3%) were Aβ+/ND-, 35 (20.0%) were Aβ-/ND+, and 66 (37.7%) were Aβ+/ND+. On all cognitive measures, the Aβ+/ND+ group showed the steepest decline. Compared with the Aβ-/ND- group, the amyloid deposition alone (Aβ+/ND-) group showed faster decline on tests of verbal and visual memory (-0.3513; 95% CI, -0.5269 to -0.1756), executive function (0.0158; 95% CI, 0.0013-0.0303), and language (-0.1934; 95% CI, -0.3520 to -0.0348). The Aβ-/ND+ group showed faster visual memory decline than the Aβ-/ND- reference group (-0.3007; 95% CI, -0.4736 to -0.1279). Conclusions and Relevance In the oldest old without dementia, presence of either or both Aβ and hippocampal atrophy is typical (>75%). Isolated hippocampal volume atrophy is associated only with greater decline in memory. However, isolated Aβ is associated with decline in memory plus language and executive functions. These findings suggest different underlying pathophysiologic processes in the Aβ+/ND- and Aβ-/ND+ groups.
Collapse
Affiliation(s)
- Yujing Zhao
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dana L Tudorascu
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Julie C Price
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania.,now with the Department of Radiology, Massachusetts General Hospital, Boston
| | - Lewis H Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - William E Klunk
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
177
|
Application of an amyloid and tau classification system in subcortical vascular cognitive impairment patients. Eur J Nucl Med Mol Imaging 2019; 47:292-303. [DOI: 10.1007/s00259-019-04498-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
178
|
|
179
|
Ito D, Hashizume A, Hijikata Y, Yamada S, Iguchi Y, Iida M, Kishimoto Y, Moriyoshi H, Hirakawa A, Katsuno M. Elevated serum creatine kinase in the early stage of sporadic amyotrophic lateral sclerosis. J Neurol 2019; 266:2952-2961. [PMID: 31456060 DOI: 10.1007/s00415-019-09507-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To assess the changes of muscle-related biomarkers at the early stage of amyotrophic lateral sclerosis, and to confirm these findings in an experimental animal model. METHODS Thirty-nine subjects with sporadic amyotrophic lateral sclerosis and 20 healthy controls were enrolled and longitudinally evaluated. We evaluated serum creatine kinase and creatinine levels and appendicular lean soft-tissue mass using dual X-ray absorptiometry. The levels of biomarkers at early ALS stages were estimated using linear mixed models with unstructured correlation and random intercepts. We also analyzed the longitudinal changes of serum creatine kinase and creatinine, together with the mRNA levels of acetylcholine receptor subunit γ (Chrng) and muscle-associated receptor tyrosine kinase, markers of denervation, in the gastrocnemius muscle of superoxide dismutase 1 (SOD1)G93A transgenic mice, an animal model of amyotrophic lateral sclerosis. RESULTS The estimated levels of creatine kinase were higher in subjects with amyotrophic lateral sclerosis at the early stage than in healthy controls, although the estimated appendicular lean soft-tissue mass and creatinine levels were equivalent between both groups, suggesting that the elevation of creatine kinase precedes both muscular atrophy and subjective motor symptoms in sporadic amyotrophic lateral sclerosis. In SOD1G93A mice, the serum levels of creatine kinase were elevated at 9 weeks of age (peri-onset) when Chrng started to be up-regulated, and were then down-regulated at 15 weeks of age, consistent with the clinical data from patients with sporadic amyotrophic lateral sclerosis. INTERPRETATION Creatine kinase elevation precedes muscular atrophy and reflects muscle denervation at the early stage.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Yasuhiro Hijikata
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Madoka Iida
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yoshiyuki Kishimoto
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hideyuki Moriyoshi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
180
|
Dang C, Harrington KD, Lim YY, Ames D, Hassenstab J, Laws SM, Yassi N, Hickey M, Rainey-Smith S, Robertson J, Sohrabi HR, Salvado O, Weinborn M, Villemagne VL, Rowe CC, Masters CL, Maruff P. Relationship Between Amyloid-β Positivity and Progression to Mild Cognitive Impairment or Dementia over 8 Years in Cognitively Normal Older Adults. J Alzheimers Dis 2019; 65:1313-1325. [PMID: 30149452 DOI: 10.3233/jad-180507] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Preclinical Alzheimer's disease (AD) is defined by cerebral amyloid-β positivity (Aβ+) in cognitively normal (CN) older adults. OBJECTIVE To estimate the risk of progression to the symptomatic stages of AD due to PET Aβ+ and the extent that progression was influenced by other demographic, genetic, and clinical characteristics in a large prospective study. METHODS Fine-Gray subdistribution modeling was used to examine the risk of progression from CN to MCI/dementia due to Aβ+, APOEɛ4 carriage, and their interaction in the Australian Imaging, Biomarkers and Lifestyle (AIBL) flagship study of aging CN cohort (n = 599) over 8 years. RESULTS 17.7% Aβ+ and 8.1% Aβ-progressed over 8 years (OR: 2.43). Risk of progression for Aβ+ was 65-104% greater than Aβ-. Aβ+ APOEɛ4 carriers were at 348% greater risk than all other participants. Significant risk factors of progression in Aβ+ were age (HR: 1.05), PET SUVR (HR: 2.49) and APOE ɛ4 carriage (HR: 2.63); only age was a significant risk factor in Aβ-(HR: 1.09). Aβ-progressors were not near the threshold for Aβ+. These relationships were not moderated by hypertension, diabetes, obesity, or stroke/TIA. CONCLUSION Aβ+ is an important prognostic marker for progression from CN to MCI/dementia in older adults and APOEɛ4 carriage provides further predictive value in the presence of Aβ+. These data suggest that Aβ-associated clinical progression is consistent with clinical-pathological models of AD, whereas progression in the absence of elevated Aβ deposition may be the result of neuropathological processes other than AD that accumulate with age.
Collapse
Affiliation(s)
- Christa Dang
- Department of Obstetrics and Gynaecology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Karra D Harrington
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Cooperative Research Centre for Mental Health, Parkville, VIC, Australia
| | - Yen Ying Lim
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - David Ames
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, The University of Melbourne, Parkville, VIC, Australia.,National Ageing Research Institute, Parkville, VIC, Australia
| | - Jason Hassenstab
- Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Simon M Laws
- Cooperative Research Centre for Mental Health, Parkville, VIC, Australia.,Collaborative Genomics Group, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Nawaf Yassi
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Medicine and Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.,Australian Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, Western Australia, Australia
| | - Joanne Robertson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.,School of Psychiatry and Clinical Neurosciences, University of WA, Nedlands, Western Australia, Australia
| | - Olivier Salvado
- CSIRO Health and Biosecurity, the Australian eHealth Research Centre, Brisbane, QLD, Australia
| | - Michael Weinborn
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.,Australian Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, Western Australia, Australia.,School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Victor L Villemagne
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia.,Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia.,Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,CogState Ltd., Melbourne, VIC, Australia
| | | |
Collapse
|
181
|
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduct Target Ther 2019; 4:29. [PMID: 31637009 PMCID: PMC6799833 DOI: 10.1038/s41392-019-0063-8] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss along with neuropsychiatric symptoms and a decline in activities of daily life. Its main pathological features are cerebral atrophy, amyloid plaques, and neurofibrillary tangles in the brains of patients. There are various descriptive hypotheses regarding the causes of AD, including the cholinergic hypothesis, amyloid hypothesis, tau propagation hypothesis, mitochondrial cascade hypothesis, calcium homeostasis hypothesis, neurovascular hypothesis, inflammatory hypothesis, metal ion hypothesis, and lymphatic system hypothesis. However, the ultimate etiology of AD remains obscure. In this review, we discuss the main hypotheses of AD and related clinical trials. Wealthy puzzles and lessons have made it possible to develop explanatory theories and identify potential strategies for therapeutic interventions for AD. The combination of hypometabolism and autophagy deficiency is likely to be a causative factor for AD. We further propose that fluoxetine, a selective serotonin reuptake inhibitor, has the potential to treat AD.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yi Xie
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
182
|
Biomarker-Based Signature of Alzheimer's Disease in Pre-MCI Individuals. Brain Sci 2019; 9:brainsci9090213. [PMID: 31450744 PMCID: PMC6769621 DOI: 10.3390/brainsci9090213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) pathology begins decades before the onset of clinical symptoms. It is recognized as a clinicobiological entity, being detectable in vivo independently of the clinical stage by means of pathophysiological biomarkers. Accordingly, neuropathological studies that were carried out on healthy elderly subjects, with or without subjective experience of cognitive decline, reported evidence of AD pathology in a high proportion of cases. At present, mild cognitive impairment (MCI) represents the only clinically diagnosed pre-dementia stage. Several attempts have been carried out to detect AD as early as possible, when subtle cognitive alterations, still not fulfilling MCI criteria, appear. Importantly, pre-MCI individuals showing the positivity of pathophysiological AD biomarkers show a risk of progression similar to MCI patients. In view of successful treatment with disease modifying agents, in a clinical setting, a timely diagnosis is mandatory. In clinical routine, biomarkers assessment should be taken into consideration whenever a subject with subtle cognitive deficits (pre-MCI), who is aware of his/her decline, requests to know the cause of such disturbances. In this review, we report the available neuropsychological and biomarkers data that characterize the pre-MCI patients, thus proposing pre-MCI as the first clinical manifestation of AD.
Collapse
|
183
|
Wittenberg R, Knapp M, Karagiannidou M, Dickson J, Schott JM. Economic impacts of introducing diagnostics for mild cognitive impairment Alzheimer's disease patients. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:382-387. [PMID: 31463360 PMCID: PMC6709060 DOI: 10.1016/j.trci.2019.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Disease-modifying treatments for Alzheimer's disease (AD) are likely to be offered only to patients with molecular evidence for Alzheimer pathology and expanded to patients with prodromal AD. We calculated the potential future costs of expanding the number of positron emission tomography (PET) and cerebrospinal fluid (CSF) tests in the United Kingdom. METHODS We conducted a focused literature review and consulted experts to obtain information on the current use of PET and CSF to diagnose prodromal AD, staffing and equipment requirements for these tests, and associated costs. RESULTS We estimate annual costs of 100,000 extra amyloid PET scans and 100,000 extra CSF tests at £113 million and £48 million, respectively; these costs are likely to be higher in the first year. DISCUSSION The budgetary impacts are not insignificant but are small in comparison to the likely market price of any disease-modifying treatments or to the probable costs of missed or inaccurate diagnosis.
Collapse
Affiliation(s)
- Raphael Wittenberg
- Care Policy and Evaluation Centre, London School of Economics and Political Science, London, United Kingdom
| | - Martin Knapp
- Care Policy and Evaluation Centre, London School of Economics and Political Science, London, United Kingdom
| | - Maria Karagiannidou
- Care Policy and Evaluation Centre, London School of Economics and Political Science, London, United Kingdom
| | - John Dickson
- Institute of Nuclear Medicine, University College Hospital, London, United Kingdom
| | - Jonathan M. Schott
- Dementia Research Centre, University College London, London, United Kingdom
| |
Collapse
|
184
|
Tudela R, Muñoz-Moreno E, Sala-Llonch R, López-Gil X, Soria G. Resting State Networks in the TgF344-AD Rat Model of Alzheimer's Disease Are Altered From Early Stages. Front Aging Neurosci 2019; 11:213. [PMID: 31440158 PMCID: PMC6694297 DOI: 10.3389/fnagi.2019.00213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
A better and non-invasive characterization of the preclinical phases of Alzheimer's disease (AD) is important to advance its diagnosis and obtain more effective benefits from potential treatments. The TgF344-AD rat model has been well characterized and shows molecular, behavioral and brain connectivity alterations that resemble the silent period of the pathology. Our aim was to longitudinally investigate functional brain connectivity in established resting-state networks (RSNs) obtained by independent component analysis (ICA) in a cohort of TgF344-AD and control rats every 3 months, from 5 to 18 months of age, to cover different stages of the disease. Before each acquisition, working memory performance was evaluated by the delayed non match-to-sample (DNMS) task. Differences in the temporal evolution were observed between groups in the amplitude and shape of the somatosensorial and sensorimotor networks but not in the whole default mode network (DMN). Subsequent high dimensional ICA analysis showed early alterations in the anterior DMN subnetwork activity of TgF344-AD rats compared to controls. Performance of DNMS task was positively correlated with somatosensorial network at 5 months of age in the wild-type (WT) animals but not in the Tg-F344 rats. At different time points, DMN showed negative correlation with cognitive performance in the control group while in the transgenic group the correlation was positive. In addition, behavioral differences observed at 5 months of age correlated with alterations in the posterior DMN subnetwork. We have demonstrated that functional connectivity using ICA represents a useful biomarker also in animal models of AD such as the TgF344AD rats, as it allows the identification of alterations associated with the progression of the disease, detecting differences in specific networks even at very early stages.
Collapse
Affiliation(s)
- Raúl Tudela
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Group of Biomedical Imaging, University of Barcelona, Barcelona, Spain
| | - Emma Muñoz-Moreno
- Experimental 7T MRI Unit, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Sala-Llonch
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Xavier López-Gil
- Experimental 7T MRI Unit, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Guadalupe Soria
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Group of Biomedical Imaging, University of Barcelona, Barcelona, Spain
- Experimental 7T MRI Unit, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
185
|
Yu JT, Li JQ, Suckling J, Feng L, Pan A, Wang YJ, Song B, Zhu SL, Li DH, Wang HF, Tan CC, Dong Q, Tan L, Mok V, Aisen PS, Weiner MM. Frequency and longitudinal clinical outcomes of Alzheimer's AT(N) biomarker profiles: A longitudinal study. Alzheimers Dement 2019; 15:1208-1217. [PMID: 31399333 DOI: 10.1016/j.jalz.2019.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION We aimed to estimate the frequency of each AT(N) (β-amyloid deposition [A], pathologic tau [T], and neurodegeneration [N]) profile in different clinical diagnosis groups and to describe the longitudinal change in clinical outcomes of individuals in each group. METHODS Longitudinal change in clinical outcomes and conversion risk of AT(N) profiles are assessed using linear mixed-effects models and multivariate Cox proportional-hazard models, respectively. RESULTS Participants with A+T+N+ showed faster clinical progression than those with A-T-N- and A+T±N-. Compared with A-T-N-, participants with A+T+N± had an increased risk of conversion from cognitively normal (CN) to incident prodromal stage of Alzheimer's disease (AD), and from MCI to AD dementia. A+T+N+ showed an increased conversion risk when compared with A+T±N-. DISCUSSION The 2018 research framework may provide prognostic information of clinical change and progression. It may also be useful for targeted recruitment of participants with AD into clinical trials.
Collapse
Affiliation(s)
- Jin-Tai Yu
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Medical Research Council and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Trust, Cambridge, UK
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bo Song
- College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, China
| | - Shan-Liang Zhu
- Research Center for Mathematical Modeling, School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China
| | - De-Hu Li
- Research Center for Mathematical Modeling, School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Therese Pei Fong Chow Research Center for Prevention of Dementia, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Michael M Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
186
|
Butterfield DA. Phosphoproteomics of Alzheimer disease brain: Insights into altered brain protein regulation of critical neuronal functions and their contributions to subsequent cognitive loss. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2031-2039. [PMID: 31167728 PMCID: PMC6602546 DOI: 10.1016/j.bbadis.2018.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer disease (AD) is the major locus of dementia worldwide. In the USA there are nearly 6 million persons with this disorder, and estimates of 13-20 million AD cases in the next three decades. The molecular bases for AD remain unknown, though processes involving amyloid beta-peptide as small oligomeric forms are gaining attention as known agents to both lead to oxidative stress and synaptic dysfunction associated with cognitive dysfunction in AD and its earlier forms, including amnestic mild cognitive impairment (MCI) and possibly preclinical Alzheimer disease (PCAD). Altered brain protein phosphorylation is a hallmark of AD, and phosphoproteomics offers an opportunity to identify these altered phosphoproteins in order to gain more insights into molecular mechanisms of neuronal dysfunction and death that lead to cognitive loss. This paper reviews what, to this author, are believed to be the known phosphoproteomics studies related to in vitro and in vivo models of AD as well as phosphoproteomics studies of brains from subjects with AD, and in at least one case in MCI and PCAD as well. The results of this review are discussed with relevance to new insights into AD brain protein dysregulation in critical neuronal functions and to potential therapeutic targets to slow, or in favorable cases, halt progression of this dementing disorder that affects millions of persons and their families worldwide.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
187
|
Smailagic N, Lafortune L, Kelly S, Hyde C, Brayne C. 18F-FDG PET for Prediction of Conversion to Alzheimer's Disease Dementia in People with Mild Cognitive Impairment: An Updated Systematic Review of Test Accuracy. J Alzheimers Dis 2019; 64:1175-1194. [PMID: 30010119 PMCID: PMC6218118 DOI: 10.3233/jad-171125] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: A previous Cochrane systematic review concluded there is insufficient evidence to support the routine use of 18F-FDG PET in clinical practice in people with mild cognitive impairment (MCI). Objectives: To update the evidence and reassess the accuracy of 18F-FDG-PET for detecting people with MCI at baseline who would clinically convert to Alzheimer’s disease (AD) dementia at follow-up. Methods: A systematic review including comprehensive search of electronic databases from January 2013 to July 2017, to update original searches (1999 to 2013). All key review steps, including quality assessment using QUADAS 2, were performed independently and blindly by two review authors. Meta-analysis could not be conducted due to heterogeneity across studies. Results: When all included studies were examined across all semi-quantitative and quantitative metrics, exploratory analysis for conversion of MCI to AD dementia (n = 24) showed highly variable accuracy; half the studies failed to meet four or more of the seven sets of QUADAS 2 criteria. Variable accuracy for all metrics was also found across eleven newly included studies published in the last 5 years (range: sensitivity 56–100%, specificity 24–100%). The most consistently high sensitivity and specificity values (approximately ≥80%) were reported for the sc-SPM (single case statistical parametric mapping) metric in 6 out of 8 studies. Conclusion: Systematic and comprehensive assessment of studies of 18FDG-PET for prediction of conversion from MCI to AD dementia reveals many studies have methodological limitations according to Cochrane diagnostic test accuracy gold standards, and shows accuracy remains highly variable, including in the most recent studies. There is some evidence, however, of higher and more consistent accuracy in studies using computer aided metrics, such as sc-SPM, in specialized clinical settings. Robust, methodologically sound prospective longitudinal cohort studies with long (≥5 years) follow-up, larger consecutive samples, and defined baseline threshold(s) are needed to test these promising results. Further evidence of the clinical validity and utility of 18F-FDG PET in people with MCI is needed.
Collapse
Affiliation(s)
- Nadja Smailagic
- Cambridge Institute of Public Health, Forvie Site, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Louise Lafortune
- Cambridge Institute of Public Health, Forvie Site, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Sarah Kelly
- Cambridge Institute of Public Health, Forvie Site, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Chris Hyde
- Exeter Test Group and South West CLAHRC, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| | - Carol Brayne
- Cambridge Institute of Public Health, Forvie Site, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
188
|
Brown CA, Schmitt FA, Smith CD, Gold BT. Distinct patterns of default mode and executive control network circuitry contribute to present and future executive function in older adults. Neuroimage 2019; 195:320-332. [PMID: 30953834 PMCID: PMC6536351 DOI: 10.1016/j.neuroimage.2019.03.073] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/16/2019] [Accepted: 03/30/2019] [Indexed: 11/26/2022] Open
Abstract
Executive function (EF) performance in older adults has been linked with functional and structural profiles within the executive control network (ECN) and default mode network (DMN), white matter hyperintensities (WMH) burden and levels of Alzheimer's disease (AD) pathology. Here, we simultaneously explored the unique contributions of these factors to baseline and longitudinal EF performance in older adults. Thirty-two cognitively normal (CN) older adults underwent neuropsychological testing at baseline and annually for three years. Neuroimaging and AD pathology measures were collected at baseline. Separate linear regression models were used to determine which of these variables predicted composite EF scores at baseline and/or average annual change in composite ΔEF scores over the three-year follow-up period. Results demonstrated that low DMN deactivation, high ECN activation and WMH burden were the main predictors of EF scores at baseline. In contrast, poor DMN and ECN WM microstructure and higher AD pathology predicted greater annual decline in EF scores. Subsequent mediation analysis demonstrated that DMN WM microstructure uniquely mediated the relationship between AD pathology and ΔEF. These results suggest that functional activation patterns within the DMN and ECN and WMHs contribute to baseline EF while structural connectivity within these networks impact longitudinal EF performance in older adults.
Collapse
Affiliation(s)
- Christopher A Brown
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA; Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA; Department of Psychiatry, University of Kentucky, Lexington, KY, 40536, USA
| | - Charles D Smith
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA; Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Brian T Gold
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
189
|
Insel PS, Weiner M, Mackin RS, Mormino E, Lim YY, Stomrud E, Palmqvist S, Masters CL, Maruff PT, Hansson O, Mattsson N. Determining clinically meaningful decline in preclinical Alzheimer disease. Neurology 2019; 93:e322-e333. [PMID: 31289148 PMCID: PMC6669933 DOI: 10.1212/wnl.0000000000007831] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/17/2019] [Indexed: 11/15/2022] Open
Abstract
Objective To determine the time required for a preclinical Alzheimer disease population to decline in a meaningful way, use estimates of decline to update previous clinical trial design assumptions, and identify factors that modify β-amyloid (Aβ)–related decline. Methods In 1,120 cognitively unimpaired individuals from 3 international cohorts, we estimated the relationship between Aβ status and longitudinal changes across multiple cognitive domains and assessed interactions between Aβ and baseline factors. Power analyses were performed to explore sample size as a function of treatment effect. Results Cognitively unimpaired Aβ+ participants approach mild cognitive impairment (MCI) levels of performance 6 years after baseline, on average. Achieving 80% power in a simulated 4-year treatment trial, assuming a 25% treatment effect, required 2,000 participants/group. Multiple factors interacted with Aβ to predict cognitive decline; however, these findings were all cohort-specific. Despite design differences across the cohorts, with large sample sizes and sufficient follow-up time, the Aβ+ groups declined consistently on cognitive composite measures. Conclusions A preclinical AD population declines to the cognitive performance of an early MCI population in 6 years. Slowing this rate of decline by 40%–50% delays clinically relevant impairment by 3 years—a potentially meaningful treatment effect. However, assuming a 40%–50% drug effect highlights the difficulties in preclinical AD trial design, as a more commonly assumed treatment effect of 25% results in a required sample size of 2,000/group. Designers of preclinical AD treatment trials need to prepare for larger and longer trials than are currently being considered. Interactions with Aβ status were inconsistent and not readily generalizable.
Collapse
Affiliation(s)
- Philip S Insel
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia.
| | - Michael Weiner
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - R Scott Mackin
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Elizabeth Mormino
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Yen Ying Lim
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Erik Stomrud
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Sebastian Palmqvist
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Colin L Masters
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Paul T Maruff
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Oskar Hansson
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Niklas Mattsson
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| |
Collapse
|
190
|
Vermunt L, Sikkes SAM, van den Hout A, Handels R, Bos I, van der Flier WM, Kern S, Ousset PJ, Maruff P, Skoog I, Verhey FRJ, Freund-Levi Y, Tsolaki M, Wallin ÅK, Olde Rikkert M, Soininen H, Spiru L, Zetterberg H, Blennow K, Scheltens P, Muniz-Terrera G, Visser PJ. Duration of preclinical, prodromal, and dementia stages of Alzheimer's disease in relation to age, sex, and APOE genotype. Alzheimers Dement 2019; 15:888-898. [PMID: 31164314 PMCID: PMC6646097 DOI: 10.1016/j.jalz.2019.04.001] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION We estimated the age-specific duration of the preclinical, prodromal, and dementia stages of Alzheimer's disease (AD) and the influence of sex, setting, apolipoprotein E (APOE) genotype, and cerebrospinal fluid tau on disease duration. METHODS We performed multistate modeling in a combined sample of 6 cohorts (n = 3268) with death as the end stage and estimated the preclinical, prodromal, and dementia stage duration. RESULTS The overall AD duration varied between 24 years (age 60) and 15 years (age 80). For individuals presenting with preclinical AD, age 70, the estimated preclinical AD duration was 10 years, prodromal AD 4 years, and dementia 6 years. Male sex, clinical setting, APOE ε4 allele carriership, and abnormal cerebrospinal fluid tau were associated with a shorter duration, and these effects depended on disease stage. DISCUSSION Estimates of AD disease duration become more accurate if age, sex, setting, APOE, and cerebrospinal fluid tau are taken into account. This will be relevant for clinical practice and trial design.
Collapse
Affiliation(s)
- Lisa Vermunt
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Sietske A M Sikkes
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ardo van den Hout
- Department of Statistical Science, University College London, London, UK
| | - Ron Handels
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Alzheimer Centrum Limburg, Maastricht University, Maastricht, The Netherlands
| | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Alzheimer Centrum Limburg, Maastricht University, Maastricht, The Netherlands
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Silke Kern
- Department of Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | - Paul Maruff
- Cogstate Ltd, Florey Institute, University of Melbourne, Melbourne, Australia
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Frans R J Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Alzheimer Centrum Limburg, Maastricht University, Maastricht, The Netherlands
| | - Yvonne Freund-Levi
- Department of Neurobiology, Caring Sciences and Society (NVS), Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Old Age Psychiatry, Psychology and Neuroscience, King's College London, London, UK; School of Medical Sciences, Orebro University Campus USÖ, Örebro, Sweden
| | - Magda Tsolaki
- 3rd Department of Neurology, Aristotle University of Thessaloniki, Memory and Dementia Center, "G Papanicolau" General Hospital, Thessaloniki, Greece
| | - Åsa K Wallin
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Marcel Olde Rikkert
- Department of Geriatric Medicine, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hilkka Soininen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Luisa Spiru
- "Carol Davila" University of Medicine and Pharmacy, Geriatrics-Gerontology and Old Age Psychiatry Clinical Department -"Elias" University Clinical Hospital, Bucarest, Romenia; "Ana Aslan" International Academy of Aging - The Memory Clinic and Longevity Medicine, Bucarest, Romenia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Pieter Jelle Visser
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Alzheimer Centrum Limburg, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
191
|
Gaubert S, Raimondo F, Houot M, Corsi MC, Naccache L, Diego Sitt J, Hermann B, Oudiette D, Gagliardi G, Habert MO, Dubois B, De Vico Fallani F, Bakardjian H, Epelbaum S. EEG evidence of compensatory mechanisms in preclinical Alzheimer’s disease. Brain 2019; 142:2096-2112. [DOI: 10.1093/brain/awz150] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Early biomarkers are needed to identify individuals at high risk of preclinical Alzheimer’s disease and to better understand the pathophysiological processes of disease progression. Preclinical Alzheimer’s disease EEG changes would be non-invasive and cheap screening tools and could also help to predict future progression to clinical Alzheimer’s disease. However, the impact of amyloid-β deposition and neurodegeneration on EEG biomarkers needs to be elucidated. We included participants from the INSIGHT-preAD cohort, which is an ongoing single-centre multimodal observational study that was designed to identify risk factors and markers of progression to clinical Alzheimer’s disease in 318 cognitively normal individuals aged 70–85 years with a subjective memory complaint. We divided the subjects into four groups, according to their amyloid status (based on 18F-florbetapir PET) and neurodegeneration status (evidenced by 18F-fluorodeoxyglucose PET brain metabolism in Alzheimer’s disease signature regions). The first group was amyloid-positive and neurodegeneration-positive, which corresponds to stage 2 of preclinical Alzheimer’s disease. The second group was amyloid-positive and neurodegeneration-negative, which corresponds to stage 1 of preclinical Alzheimer’s disease. The third group was amyloid-negative and neurodegeneration-positive, which corresponds to ‘suspected non-Alzheimer’s pathophysiology’. The last group was the control group, defined by amyloid-negative and neurodegeneration-negative subjects. We analysed 314 baseline 256-channel high-density eyes closed 1-min resting state EEG recordings. EEG biomarkers included spectral measures, algorithmic complexity and functional connectivity assessed with a novel information-theoretic measure, weighted symbolic mutual information. The most prominent effects of neurodegeneration on EEG metrics were localized in frontocentral regions with an increase in high frequency oscillations (higher beta and gamma power) and a decrease in low frequency oscillations (lower delta power), higher spectral entropy, higher complexity and increased functional connectivity measured by weighted symbolic mutual information in theta band. Neurodegeneration was associated with a widespread increase of median spectral frequency. We found a non-linear relationship between amyloid burden and EEG metrics in neurodegeneration-positive subjects, either following a U-shape curve for delta power or an inverted U-shape curve for the other metrics, meaning that EEG patterns are modulated differently depending on the degree of amyloid burden. This finding suggests initial compensatory mechanisms that are overwhelmed for the highest amyloid load. Together, these results indicate that EEG metrics are useful biomarkers for the preclinical stage of Alzheimer’s disease.
Collapse
Affiliation(s)
- Sinead Gaubert
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Inria, Aramis project-team, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN), National Reference Center for Rare or Early Dementias, Department of Neurology, Paris, France
| | - Federico Raimondo
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Laboratorio de Inteligencia Artificial Aplicada, Departamento de computación, FCEyN, Universidad de Buenos Aires, Argentina
- GIGA Consciousness, University of Liège, Liège, Belgium
- Coma Science Group, University Hospital of Liège, Liège, Belgium
| | - Marion Houot
- AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN), National Reference Center for Rare or Early Dementias, Department of Neurology, Paris, France
- Center for Clinical Investigation (CIC) Neurosciences, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’Hôpital, Paris, France
| | - Marie-Constance Corsi
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Inria, Aramis project-team, Paris, France
| | - Lionel Naccache
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, Paris, France
| | - Jacobo Diego Sitt
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Bertrand Hermann
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Delphine Oudiette
- AP-HP, Hôpital Pitié-Salpêtrière, Service des Pathologies du Sommeil (Département ‘R3S’), Paris, France
- Sorbonne Université, IHU@ICM, INSERM, CNRS UMR 7225, équipe MOV’IT, Paris, France
| | - Geoffroy Gagliardi
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN), National Reference Center for Rare or Early Dementias, Department of Neurology, Paris, France
| | - Marie-Odile Habert
- Laboratoire d’Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1146, CNRS UMR 7371, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, Paris, France
- Centre d’Acquisition et de Traitement des Images, CATI neuroimaging platform, France (www.cati-neuroimaging.com)
| | - Bruno Dubois
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN), National Reference Center for Rare or Early Dementias, Department of Neurology, Paris, France
| | - Fabrizio De Vico Fallani
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Inria, Aramis project-team, Paris, France
| | - Hovagim Bakardjian
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN), National Reference Center for Rare or Early Dementias, Department of Neurology, Paris, France
| | - Stéphane Epelbaum
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Inria, Aramis project-team, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN), National Reference Center for Rare or Early Dementias, Department of Neurology, Paris, France
| | | |
Collapse
|
192
|
Chiaravalloti A, Barbagallo G, Martorana A, Castellano AE, Ursini F, Schillaci O. Brain metabolic patterns in patients with suspected non-Alzheimer's pathophysiology (SNAP) and Alzheimer's disease (AD): is [ 18F] FDG a specific biomarker in these patients? Eur J Nucl Med Mol Imaging 2019; 46:1796-1805. [PMID: 31201430 DOI: 10.1007/s00259-019-04379-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE The present study was conducted to compare the pattern of brain [18F] FDG uptake in suspected non-Alzheimer's pathophysiology (SNAP), AD, and healthy controls using 2-deoxy-2-[18F]fluoroglucose ([18F] FDG) positron emission tomography imaging. Cerebrospinal fluid (CSF) biomarkers amyloid-β1-42 peptide (Aβ1-42) and tau were used in order to differentiate AD from SNAP. METHODS The study included 43 newly diagnosed AD patients (female = 23; male = 20) according to the NINCDS-ADRDA criteria, 15 SNAP patients (female = 12; male =3), and a group of 34 healthy subjects that served as the control group (CG), who were found to be normal at neurological evaluation (male = 20; female = 14). A battery of neuropsychological tests was administrated in AD and SNAP subjects; cerebrospinal fluid assay was conducted in both AD and SNAP as well. Brain PET/CT acquisition was started 30 ± 5 min after [18F] FDG injection in all subjects. SPM12 [statistical parametric mapping] implemented in MATLAB 2018a was used for the analysis of PET scans in this study. RESULTS As compared to SNAP, AD subjects showed significant hypometabolism in a wide cortical area involving the right frontal, parietal, and temporal lobes. As compared to CG, AD subjects showed a significant reduction in [18F] FDG uptake in the parietal, limbic, and frontal cortex, while a more limited reduction in [18F] FDG uptake in the same areas was found when comparing SNAP to CG. CONCLUSIONS SNAP subjects show milder impairment of brain [18F] FDG uptake as compared to AD. The partial overlap of the metabolic pattern between SNAP and AD limits the use of [18F] FDG PET/CT in effectively discriminating these clinical entities.
Collapse
Affiliation(s)
- Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, 00133, Rome, Italy. .,IRCCS Neuromed, Pozzilli, Italy.
| | - Gaetano Barbagallo
- Institute of Neurology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Alessandro Martorana
- UOSD Centro Demenze, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | | | - Francesco Ursini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
193
|
Mormino EC, Papp KV. Amyloid Accumulation and Cognitive Decline in Clinically Normal Older Individuals: Implications for Aging and Early Alzheimer's Disease. J Alzheimers Dis 2019; 64:S633-S646. [PMID: 29782318 DOI: 10.3233/jad-179928] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aberrant accumulation of the amyloid protein is a critical and early event in the Alzheimer's disease (AD) cascade. Given the early involvement of this pathological process, it is not surprising that many clinically normal (CN) older individuals demonstrate evidence of abnormal Aβ at postmortem examination and in vivo using either CSF or PET imaging. Converging evidence across multiple research groups suggests that the presence of abnormal Aβ among CN individuals is associated with elevated risk of future clinical impairment and cognitive decline. Amyloid positivity in conjunction with biomarkers of neuronal injury offers further insight into which CN are most at risk for short-term decline. Although in its infancy, tau PET has demonstrated early increases among Aβ+ that will likely be an important indicator of risk among CN. Overall, the detection of early Aβ among CN individuals has provided an important opportunity to understand the contributions of this pathology to age-related cognitive decline and to explore early intervention with disease modifying strategies.
Collapse
Affiliation(s)
- Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Kathryn V Papp
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
194
|
Meyer PF, McSweeney M, Gonneaud J, Villeneuve S. AD molecular: PET amyloid imaging across the Alzheimer's disease spectrum: From disease mechanisms to prevention. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:63-106. [PMID: 31481172 DOI: 10.1016/bs.pmbts.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of amyloid-beta (Aβ) positron emission tomography (PET) imaging has transformed the field of Alzheimer's disease (AD) by enabling the quantification of cortical Aβ accumulation and propagation in vivo. This revolutionary tool has made it possible to measure direct associations between Aβ and other AD biomarkers, to identify factors that influence Aβ accumulation and to redefine entry criteria into clinical trials as well as measure drug target engagement. This chapter summarizes the main findings on the associations of Aβ with other biomarkers of disease progression across the AD spectrum. It discusses investigations of the timing at which Aβ pathology starts to accumulate, demonstrates the clinical utility of Aβ PET imaging and discusses some ethical implications. Finally, it presents genetic and potentially modifiable lifestyle factors that might influence Aβ accumulation and therefore be targets for AD prevention.
Collapse
Affiliation(s)
- Pierre-François Meyer
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Melissa McSweeney
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Julie Gonneaud
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Sylvia Villeneuve
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada.
| |
Collapse
|
195
|
NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement 2019; 14:535-562. [PMID: 29653606 PMCID: PMC5958625 DOI: 10.1016/j.jalz.2018.02.018] [Citation(s) in RCA: 6326] [Impact Index Per Article: 1054.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Abstract
In 2011, the National Institute on Aging and Alzheimer’s Association created separate diagnostic recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer’s disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and Alzheimer’s Association to update and unify the 2011 guidelines. This unifying update is labeled a “research framework” because its intended use is for observational and interventional research, not routine clinical care. In the National Institute on Aging and Alzheimer’s Association Research Framework, Alzheimer’s disease (AD) is defined by its underlying pathologic processes that can be documented by postmortem examination or in vivo by biomarkers. The diagnosis is not based on the clinical consequences of the disease (i.e., symptoms/signs) in this research framework, which shifts the definition of AD in living people from a syndromal to a biological construct. The research framework focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are grouped into those of β amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This ATN classification system groups different biomarkers (imaging and biofluids) by the pathologic process each measures. The AT(N) system is flexible in that new biomarkers can be added to the three existing AT(N) groups, and new biomarker groups beyond AT(N) can be added when they become available. We focus on AD as a continuum, and cognitive staging may be accomplished using continuous measures. However, we also outline two different categorical cognitive schemes for staging the severity of cognitive impairment: a scheme using three traditional syndromal categories and a six-stage numeric scheme. It is important to stress that this framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms. We appreciate the concern that this biomarker-based research framework has the potential to be misused. Therefore, we emphasize, first, it is premature and inappropriate to use this research framework in general medical practice. Second, this research framework should not be used to restrict alternative approaches to hypothesis testing that do not use biomarkers. There will be situations where biomarkers are not available or requiring them would be counterproductive to the specific research goals (discussed in more detail later in the document). Thus, biomarker-based research should not be considered a template for all research into age-related cognitive impairment and dementia; rather, it should be applied when it is fit for the purpose of the specific research goals of a study. Importantly, this framework should be examined in diverse populations. Although it is possible that β-amyloid plaques and neurofibrillary tau deposits are not causal in AD pathogenesis, it is these abnormal protein deposits that define AD as a unique neurodegenerative disease among different disorders that can lead to dementia. We envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD, as well as the multifactorial etiology of dementia. This approach also will enable a more precise approach to interventional trials where specific pathways can be targeted in the disease process and in the appropriate people.
Collapse
|
196
|
Lowe VJ, Lundt ES, Albertson SM, Przybelski SA, Senjem ML, Parisi JE, Kantarci K, Boeve B, Jones DT, Knopman D, Jack CR, Dickson DW, Petersen RC, Murray ME. Neuroimaging correlates with neuropathologic schemes in neurodegenerative disease. Alzheimers Dement 2019; 15:927-939. [PMID: 31175025 DOI: 10.1016/j.jalz.2019.03.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/05/2019] [Accepted: 03/07/2019] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Neuroimaging biomarkers are important for early diagnosis of Alzheimer's disease, and comparing multimodality neuroimaging to autopsy data is essential. METHODS We compared the pathologic findings from a prospective autopsy cohort (n = 100) to Pittsburgh compound B PET (PiB-PET), 18F-fluorodeoxyglucose PET (FDG-PET), and MRI. Correlations between neuroimaging biomarkers and neuropathologic schemes were assessed. RESULTS PiB-PET showed strong correlations with Thal amyloid phase and Consortium to Establish a Registry for Alzheimer's Disease score and categorized 44% of Thal phase 1 participants as positive. FDG-PET and MRI correlated modestly with Braak tangle stage in Alzheimer's type pathology. A subset of participants with "none" or "sparse" neuritic plaque scores had elevated PiB-PET signal due to diffuse amyloid plaque. Participants with findings characterized as "suspected non-Alzheimer's pathophysiology" represented 15% of the group. DISCUSSION PiB-PET is associated with Alzheimer's disease, neuritic plaques, and diffuse plaques. FDG-PET and MRI have modest correlation with neuropathologic schemes. Participants with findings characterized as suspected non-Alzheimer's pathophysiology most commonly had primary age-related tauopathy.
Collapse
Affiliation(s)
- Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Emily S Lundt
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Bradley Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
197
|
Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist ITS, Chui HC, Fardo DW, Flanagan ME, Halliday G, Hokkanen SRK, Hunter S, Jicha GA, Katsumata Y, Kawas CH, Keene CD, Kovacs GG, Kukull WA, Levey AI, Makkinejad N, Montine TJ, Murayama S, Murray ME, Nag S, Rissman RA, Seeley WW, Sperling RA, White III CL, Yu L, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142:1503-1527. [PMID: 31039256 PMCID: PMC6536849 DOI: 10.1093/brain/awz099] [Citation(s) in RCA: 948] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | - Helena C Chui
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Central Clinical School Faculty of Medicine and Health, Sydney, Australia
| | | | | | | | | | | | | | - Gabor G Kovacs
- Institute of Neurology Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Shigeo Murayama
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | - Lei Yu
- Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
198
|
IDEAS becoming reality on the roadmap for biomarker validation in Alzheimer's disease. Lancet Neurol 2019; 18:519-520. [DOI: 10.1016/s1474-4422(19)30166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022]
|
199
|
Zhang YS, Zhou N, Knoll BM, Samra S, Ward MR, Weintraub S, Fawzi AA. Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer's Disease on optical coherence tomography angiography. PLoS One 2019; 14:e0214685. [PMID: 30939178 PMCID: PMC6445433 DOI: 10.1371/journal.pone.0214685] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Patients with Alzheimer's Disease (AD) exhibit decreased retinal blood flow and vessel density (VD). However, it is not known whether these changes are also present in individuals with early AD (eAD) or amnestic type mild cognitive impairment (aMCI), an enriched pre-AD population with a higher risk for progressing to dementia. We performed a prospective case-control clinical study to investigate whether optical coherence tomography angiography (OCTA) parameters in the macula and disc are altered in those with aMCI and eAD. METHODS This is a single center study of 32 participants. Individuals with aMCI/eAD (n = 16) were 1:1 matched to cognitively normal controls (n = 16). We evaluated OCTA images of the parafoveal superficial capillary plexus (SCP) and two vascular layers in the peripapillary region, the radial peripapillary capillary (RPC) and superficial vascular complex (SVC). Outcome vascular and structural parameters included VD, vessel length density (VLD), adjusted flow index (AFI) and structural retinal nerve fiber layer (RNFL) thickness. We compared these parameters between the two groups and examined the correlation between OCTA parameters and cognitive performance on the Montreal Cognitive Assessment (MoCA). RESULTS Cognitively impaired participants demonstrated statistically significant decrease in parafoveal SCP VD and AFI as compared to controls, but no statistically significant difference in peripapillary parameters. Furthermore, we found a significant positive correlation between MoCA scores for the entire study cohort and both the parafoveal SCP VD and peripapillary RPC VLD. CONCLUSION OCTA shows significant decline in parafoveal flow and VD in individuals with early cognitive impairment related to AD, suggesting that these parameters could have potential utility as early disease biomarkers. In contrast, the presence of larger vascular channels in the peripapillary region may have obscured subtle capillary changes in that region. Overall, the correlation between vascular OCTA parameters and cognitive performance supports further OCTA studies in this population.
Collapse
Affiliation(s)
- Yi Stephanie Zhang
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Nina Zhou
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Brianna Marie Knoll
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Sahej Samra
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Mallory R. Ward
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Amani A. Fawzi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
200
|
Timmers M, Tesseur I, Bogert J, Zetterberg H, Blennow K, Börjesson-Hanson A, Baquero M, Boada M, Randolph C, Tritsmans L, Van Nueten L, Engelborghs S, Streffer JR. Relevance of the interplay between amyloid and tau for cognitive impairment in early Alzheimer's disease. Neurobiol Aging 2019; 79:131-141. [PMID: 31055223 DOI: 10.1016/j.neurobiolaging.2019.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 01/23/2023]
Abstract
Amyloid β (Aβ) and tau are key hallmark features of Alzheimer's disease (AD) neuropathology. The interplay of Aβ and tau for cognitive impairment in early AD was examined with cross-sectional analysis, measured by cerebrospinal fluid biomarkers (Aβ1-42, total tau [t-tau], and phosphorylated tau [p-tau181P]), and on cognitive performance by the repeatable battery for assessment of neuropsychological status (RBANS). Participants (n = 246) included cognitively normal (Aβ-), mild cognitively impaired (Aβ-), preclinical AD (Aβ+), and prodromal AD (Aβ+). Overall, cognitive scores (RBANS total scale score) had a moderate negative correlation to t-tau (n = 246; r = -0.434; p < 0.001) and p-tau181P (r = -0.389; p < 0.001). When classified by Aβ status, this correlation to t-tau was applicable only in Aβ+ participants (n = 139; r = -0.451, p < 0.001) but not Aβ- participants (n = 107; r = 0.137, p = 0.16), with identical findings for p-tau. Both tau (p < 0.0001) and interaction of Aβ1-42 with tau (p = 0.006) affected RBANS, but not Aβ1-42 alone. Cognitive/memory performance correlated well with cerebrospinal fluid tau levels across early stages of AD, although the correlation is Aβ dependent.
Collapse
Affiliation(s)
- Maarten Timmers
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| | - Ina Tesseur
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistery Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistery Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anne Börjesson-Hanson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Sahlgrenska University Hospital, Mölndal, Sweden; Clinical Trials, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Miquel Baquero
- Neurology Department, Hospital Universitari I Politecnic La Fe, Valencia, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya-Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Christopher Randolph
- MedAvante-ProPhase, Hamilton, NJ, USA; Department of Neurology, Loyola University Medical Center, Maywood, IL, USA
| | - Luc Tritsmans
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Luc Van Nueten
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Johannes Rolf Streffer
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|