151
|
Hong C, Guan L, Huang L, Hong X, Huang Z. Colorimetric determination of xanthine with xanthine oxidase and WSe 2 nanosheets as a peroxidase mimic. NEW J CHEM 2021. [DOI: 10.1039/d1nj00819f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric method combining WSe2 nanosheets with peroxidase-like activity and xanthine oxidase was developed for xanthine detection in serum samples.
Collapse
Affiliation(s)
- Chengyi Hong
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- China
| | - Lingyan Guan
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- China
| | - Lei Huang
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- China
| | - Xiaoshan Hong
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- China
| | - Zhiyong Huang
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- China
| |
Collapse
|
152
|
Qiu Y, Tan G, Fang Y, Liu S, Zhou Y, Kumar A, Trivedi M, Liu D, Liu J. Biomedical applications of metal–organic framework (MOF)-based nano-enzymes. NEW J CHEM 2021. [DOI: 10.1039/d1nj04045f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present review, the types and activities of nanometer-sized enzymes are summarized, with recent progress of nanometer-sized enzymes in the field of biomedical detection.
Collapse
Affiliation(s)
- Yuzhi Qiu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Guijian Tan
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yuqian Fang
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Si Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yubin Zhou
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, 226 007, India
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, NewDelhi-110021, India
| | - Dong Liu
- Shenzhen Huachuang Bio-pharmaceutical Technology Co. Ltd., Shenzhen, 518112, Guangdong, China
| | - Jianqiang Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
153
|
Cao X, Yang H, Wei Q, Yang Y, Liu M, Liu Q, Zhang X. Fast colorimetric sensing of H2O2 and glutathione based on Pt deposited on NiCo layered double hydroxide with double peroxidase-/oxidase-like activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
154
|
Shen L, Ye D, Zhao H, Zhang J. Perspectives for Single-Atom Nanozymes: Advanced Synthesis, Functional Mechanisms, and Biomedical Applications. Anal Chem 2020; 93:1221-1231. [PMID: 33371664 DOI: 10.1021/acs.analchem.0c04084] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Single-atom nanozymes (SANs) are one of the newest generations of nanozymes, which have been greatly developed in the past few years and exploited widely for many applications, such as biosensing, disease diagnosis and therapy, bioimaging, and so on. SANs, possessing dispersed single-atom structures and a well-defined coordination environment, exhibit remarkable catalytic performance with both high activity and stability. In this paper, the most recent progress in SANs is reviewed in terms of their advanced synthesis, characterization, functional mechanisms, performance validation/optimization, and biomedical applications. Several technical challenges hindering practical applications of SANs are analyzed, and possible research directions are also proposed for overcoming the challenges.
Collapse
|
155
|
Affiliation(s)
- Bing Jiang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
156
|
Liu X, Qin J, Zhang X, Zou L, Yang X, Wang Q, Zheng Y, Mei W, Wang K. The mechanisms of HSA@PDA/Fe nanocomposites with enhanced nanozyme activity and their application in intracellular H 2O 2 detection. NANOSCALE 2020; 12:24206-24213. [PMID: 33289738 DOI: 10.1039/d0nr05732k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanozymes have drawn increasing attention with their broad applications but most nanozymes lack enzyme-like molecular structures, resulting in weak selectivity and low activity. Bioinspired molecular assembly provides an extremely promising strategy to mimic natural enzyme processes and develop function enhanced architectures. Herein, a new bioinspired molecular assembly strategy based on human serum albumin@polydopamine/Fe nanocomposites (HSA@PDA/Fe NCs) was proposed, in which Fe(iii)/Fe(ii) were anchored on HSA supported on PDA. HSA@PDA/Fe NCs with iron as the active center and HSA@PDA as the skeleton showed excellent peroxidase-like activity, which was nearly 1000 times higher than that of free Fe(iii). This may be attributed to the phenomenon that the cycle of quinones and the hydroxyl group on the nanocomposite surface greatly accelerate the conversion of Fe(iii)/Fe(ii) in acidic microenvironments. Systematic experimental studies illustrated that its activity was mainly affected by the metal active center, followed by the polymeric ligand, while the protein framework has little effect on its activity. Meanwhile, even after freeze-thaw and thermal cycle tests, it also showed excellent catalytic stability. Besides, a colorimetric assay based on HSA@PDA/Fe NCs was developed for detection of H2O2in vitro and in situ detection of H2O2 generated from live cells. This work will facilitate the developments on theoretical analysis, rational design and practical applications of nanozymes based on bioinspired molecular assemblies.
Collapse
Affiliation(s)
- Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Jiang S, Zhang C, Zou T. Single-Atom Catalysts for Biotherapy Applications: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2518. [PMID: 33333964 PMCID: PMC7765387 DOI: 10.3390/nano10122518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 11/18/2022]
Abstract
Single-atom catalysts (SACs), as atomically dispersed metal active sites anchored or coordinated on suitable supports, demonstrate large potential for use in therapeutic applications. SACs have structural features similar to those of natural enzyme, while exhibiting remarkable catalytic activity, desirable stability, and excellent selectivity. This systematic review aims to synthesize evidence on SACs' biotherapy applications. Three databases (PubMed/MEDLINE, ISI Web of Science, and ScienceDirect) were searched to identify the studies that investigated the therapeutic efficacy of SACs. A total of 12 studies that fulfilled the inclusion criteria were included and reviewed, and the key findings were qualitatively synthesized. Overall, various SACs were investigated for biotherapy applications, including anticancer, anti-infection (antibacterial), and anti-inflammatory applications; brain trauma therapies, and oxidative-stress cytoprotection applications. All of the included studies showed that the synthesized SACs demonstrated superior therapeutic effects compared with their respective controls. Among the 12 studies reviewed, 11 studies showed satisfied biocompatibility of the applied SACs, whereas minimal cytotoxicity was reported in 1 study. Collectively, the reviewed studies indicated that SACs exhibited considerable promise in the field of biotherapy. Additional studies are needed for a better understanding of the effect of SACs in the treatment of various diseases.
Collapse
Affiliation(s)
- Shan Jiang
- School of Stomatology, Shenzhen University Health Science Center, Shenzhen 518060, China;
| | - Chengfei Zhang
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Ting Zou
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China;
| |
Collapse
|
158
|
Jiao L, Xu W, Wu Y, Yan H, Gu W, Du D, Lin Y, Zhu C. Single-atom catalysts boost signal amplification for biosensing. Chem Soc Rev 2020; 50:750-765. [PMID: 33306069 DOI: 10.1039/d0cs00367k] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Development of highly sensitive biosensors has received ever-increasing attention over the years. Due to the unique physicochemical properties, the functional nanomaterial-enabled signal amplification strategy has made some great breakthroughs in biosensing. However, the sensitivity and selectivity still need further improvement. Single-atom catalysts (SACs) containing atomically dispersed metal active sites demonstrate distinctive advantages in catalytic activity and selectivity for various catalytic reactions. As a consequence, the SAC-enabled signal amplification strategy holds great promise in biosensors, demonstrating satisfactory sensitivity and selectivity with the assistance of tunable metal-support interactions, coordination environments and geometric/electronic structures of active sites. In this tutorial review, we briefly discuss the structural advantages of SACs. Then, the catalytic mechanism at the atomic scale and signal amplification effects of SACs in the colorimetric, electrochemical, chemiluminescence, electrochemiluminescence, and photoelectrochemical biosensing applications are highlighted in detail. Finally, opportunities and challenges to be faced in the future development of the SAC-enabled signal amplification strategy for biosensing are discussed and outlooked.
Collapse
Affiliation(s)
- Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Wang H, Fang Q, Gu W, Du D, Lin Y, Zhu C. Noble Metal Aerogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52234-52250. [PMID: 33174718 DOI: 10.1021/acsami.0c14007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Noble metal-based nanomaterials have been a hot research topic during the past few decades. Particularly, self-assembled porous architectures have triggered tremendous interest. At the forefront of porous nanostructures, there exists a research endeavor of noble metal aerogels (NMAs), which are unique in terms of macroscopic assembly systems and three-dimensional (3D) porous network nanostructures. Combining excellent features of noble metals and the unique structural traits of porous nanostructures, NMAs are of high interest in diverse fields, such as catalysis, sensors, and self-propulsion devices. Regardless of these achievements, it is still challenging to rationally design well-tailored NMAs in terms of ligament sizes, morphologies, and compositions and profoundly investigate the underlying gelation mechanisms. Herein, an elaborate overview of the recent progress on NMAs is given. First, a simple description of typical synthetic methods and some advanced design engineering are provided, and then, the gelation mechanism models of NMAs are discussed in detail. Furthermore, promising applications particularly focusing on electrocatalysis and biosensors are highlighted. In the final section, brief conclusions and an outlook on the existing challenges and future chances of NMAs are also proposed.
Collapse
Affiliation(s)
- Hengjia Wang
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Qie Fang
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wenling Gu
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
160
|
Wu D, Li J, Xu S, Xie Q, Pan Y, Liu X, Ma R, Zheng H, Gao M, Wang W, Li J, Cai X, Jaouen F, Li R. Engineering Fe-N Doped Graphene to Mimic Biological Functions of NADPH Oxidase in Cells. J Am Chem Soc 2020; 142:19602-19610. [PMID: 33108194 DOI: 10.1021/jacs.0c08360] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NADPH oxidase (NOX) as a transmembrane enzyme complex controls the generation of superoxide that plays important roles in immune signaling pathway. NOX inactivation may elicit immunodeficiency and cause chronic granulomatous disease (CGD). Biocompatible synthetic materials with NOX-like activities would therefore be interesting as curative and/or preventive approaches in case of NOX deficiency. Herein, we synthesized a Fe-N doped graphene (FeNGR) nanomaterial that could mimic the activity of NOX by efficiently catalyzing the conversion of NADPH into NADP+ and triggering the generation of oxygen radicals. The resulting FeNGR nanozyme had similar cellular distribution to NOX and is able to mimic the enzyme function in NOX-deficient cells by catalyzing the generation of superoxide and retrieving the immune activity, evidenced by TNF-α, IL-1β, and IL-6 production in response to Alum exposure. Overall, our study discovered a synthetic material (FeNGR) to mimic NOX and demonstrated its biological function in immune activation of NOX-deficient cells.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jingkun Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanxia Pan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ronglin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jia Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou 215123, Jiangsu, China
| | | | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
161
|
Pei J, Zhao R, Mu X, Wang J, Liu C, Zhang XD. Single-atom nanozymes for biological applications. Biomater Sci 2020; 8:6428-6441. [PMID: 33141122 DOI: 10.1039/d0bm01447h] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanozymes have been widely used as highly active and stable arterial enzymes due to their controllable electronic transfer and unique catalytic reaction route. However, the development of nanozymes is hindered by their ambiguous structure, insufficient activity and inadequate substrate selectivity. In comparison, single-atom nanozymes (SAzymes) hold superior catalytic activity 10-100 times higher than conventional nanozymes by maximizing the utilization of metal atom dispersion, and exhibit versatile catalytic selectivity through precisely adjusting the atom spatial configuration. In this review, we highlight several well-defined SAzymes, and discuss their accurate atom configuration, catalytic mechanisms, enzyme-like activity, and applications in cancer treatment, brain disease, and wound healing. It is of great significance to understand the advantages and properties of SAzymes for further medical development.
Collapse
Affiliation(s)
- Jiahui Pei
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| | | | | | | | | | | |
Collapse
|
162
|
Wang Q, Ina T, Chen WT, Shang L, Sun F, Wei S, Sun-Waterhouse D, Telfer SG, Zhang T, Waterhouse GIN. Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons. Sci Bull (Beijing) 2020; 65:1743-1751. [PMID: 36659247 DOI: 10.1016/j.scib.2020.06.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 01/21/2023]
Abstract
The pyrolysis of zeolitic imidazolate frameworks (ZIFs) is becoming a popular approach for the synthesis of catalysts comprising porphyrin-like metal single atom catalysts (SACs) on N-doped carbons (M-N-C). Understanding the structural evolution of M-N-C as a function of ZIF pyrolysis temperature is important for realizing high performance catalysts. Herein, we report a detailed investigation of the evolution of Zn single atom catalyst sites during the pyrolysis of ZIF-8 at temperatures ranging from 500 to 900 °C. Results from Zn L-edge and Zn K-edge X-ray absorption spectroscopy studies reveal that tetrahedral ZnN4 centers in ZIF-8 transform to porphyrin-like ZnN4 centers supported on N-doped carbon at temperatures as low as 600 °C. As the pyrolysis temperature increased in the range 600-900 °C, the Zn atoms moved closer to the N4 coordination plane. This subtle geometry change in the ZnN4 sites alters the electron density on the Zn atoms (formally Zn2+), strongly impacting the catalytic performance for the peroxidase-like decomposition of H2O2. The catalyst obtained at 800 °C (Zn-N-C-800) offered the best performance for H2O2 decomposition. This work provides valuable new insights about the evolution of porphyrin-like single metal sites on N-doped carbons from ZIF precursors and the factors influencing SAC activity.
Collapse
Affiliation(s)
- Qing Wang
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Toshiaki Ina
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Kouto 679-5148, Japan
| | - Wan-Ting Chen
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Shanghai Wei
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1142, New Zealand
| | | | - Shane G Telfer
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Massey University, Palmerston North 4442, New Zealand
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | |
Collapse
|
163
|
Xu W, Kang Y, Jiao L, Wu Y, Yan H, Li J, Gu W, Song W, Zhu C. Tuning Atomically Dispersed Fe Sites in Metal-Organic Frameworks Boosts Peroxidase-Like Activity for Sensitive Biosensing. NANO-MICRO LETTERS 2020; 12:184. [PMID: 34138213 PMCID: PMC7770903 DOI: 10.1007/s40820-020-00520-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 05/16/2023]
Abstract
Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges. Herein, two functional groups with opposite electron modulation abilities (nitro and amino) were introduced into the metal-organic frameworks (MIL-101(Fe)) to tune the atomically dispersed metal sites and thus regulate the enzyme-like activity. Notably, the functionalization of nitro can enhance the peroxidase (POD)-like activity of MIL-101(Fe), while the amino is poles apart. Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) with a low reaction energy barrier for the HO* formation exhibits a superior POD-like activity. As a concept of the application, a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2-50 mU mL-1 with a limit of detection of 0.14 mU mL-1. Moreover, the detection of organophosphorus pesticides was also achieved. This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
Collapse
Affiliation(s)
- Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yikun Kang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China.
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
164
|
Chen Y, Jiao L, Yan H, Xu W, Wu Y, Wang H, Gu W, Zhu C. Hierarchically Porous S/N Codoped Carbon Nanozymes with Enhanced Peroxidase-like Activity for Total Antioxidant Capacity Biosensing. Anal Chem 2020; 92:13518-13524. [PMID: 32869631 DOI: 10.1021/acs.analchem.0c02982] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Design of highly active carbon nanozymes and further establishment of ultrasensitive biosensors remain a challenge. Herein, hierarchically porous carbon nanozymes with sulfur (S)/nitrogen (N) codoping (SNC) were developed. Compared with N-doped carbon (NC) nanozymes, SNC nanozymes have a smaller Michaelis-Menten constant and higher specific activities, demonstrating that the S-doping in SNC nanozymes could not only enhance their affinity toward substrates but also improve their catalytic performance. These results may be caused by the synergistic effect of heteroatoms (S and N). Because of the good enzyme-like activity, the proposed SNC nanozymes were exploited to the colorimetric detection of the total antioxidant capacity (TAC) using ascorbic acid as a typical model with a limit of detection of 0.08 mM. Because of its high sensitivity and selectivity and encouraging performance, the detection method presented practical feasibility for the TAC assay in commercial beverages. This work paves a way to design the highly active carbon nanozymes and expand their applications in the construction of high-performance biosensors.
Collapse
Affiliation(s)
- Yifeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hengjia Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
165
|
Zhang H, Lu XF, Wu ZP, Lou XWD. Emerging Multifunctional Single-Atom Catalysts/Nanozymes. ACS CENTRAL SCIENCE 2020; 6:1288-1301. [PMID: 32875072 PMCID: PMC7453415 DOI: 10.1021/acscentsci.0c00512] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 05/09/2023]
Abstract
Single-atom catalysts (SACs), in which the metal active sites are isolated on the support and stabilized by coordinated atoms such as oxygen, nitrogen, sulfur, etc., represent the maximum usage efficiency of the metal atoms. Benefiting from the recent progress in synthetic strategies, characterization methods, and computational models, many SACs that deliver an impressive catalytic performance for a variety of reactions have been developed. The catalytic selectivity and activity are critical issues that need to be optimized and augmented in the areas of nanotechnology and biomedicine. This review summarizes some recent experimental and theoretical progress aimed at clarifying the structure of SACs and how they influence the catalytic performance. The examples described here elaborate on the utility of SACs and highlight the strengths of these catalysts in the applications of biomedicine, environmental protection, and energy conversion. Finally, some current challenges and future perspectives for SACs are also discussed.
Collapse
Affiliation(s)
- Huabin Zhang
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xue Feng Lu
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Zhi-Peng Wu
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Green
Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiong Wen David Lou
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- E-mail:
| |
Collapse
|
166
|
Borkowski A, Kiciński W, Szala M, Topolska J, Działak P, Syczewski MD. Interactions of Fe-N-S Co-Doped Porous Carbons with Bacteria: Sorption Effect and Enzyme-Like Properties. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3707. [PMID: 32825752 PMCID: PMC7503267 DOI: 10.3390/ma13173707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/26/2022]
Abstract
Carbon-based (nano)materials doped with transition metals, nitrogen and other heteroatoms are considered active heterogeneous catalysts in a wide range of chemical processes. Recently they have been scrutinized as artificial enzymes since they can catalyze proton-coupled electron transfer reactions vital for living organisms. Herein, interactions between Gram-positive and Gram-negative bacteria and either metal-free N and/or S doped or metal containing Fe-N-S co-doped porous carbons are studied. The Fe- and N-co-doped porous carbons (Fe-N-C) exhibit enhanced affinity toward bacteria as they show the highest adsorption capacity. Fe-N-C materials also show the strongest influence on the bacteria viability with visible toxic effect. Both types of bacteria studied reacted to the presence of Fe-doped carbons in a similar manner, showing a decrease in dehydrogenases activity in comparison to controls. The N-coordinated iron-doped carbons (Fe-N-C) may exhibit oxidase/peroxidase-like activity and activate O2 dissolved in the solution and/or oxygen-containing species released by the bacteria (e.g., H2O2) to yield highly bactericidal reactive oxygen species. As Fe/N/ and/or S-doped carbon materials efficiently adsorb bacteria exhibiting simultaneously antibacterial properties, they can be applied, inter alia, as microbiological filters with enhanced biofouling resistance.
Collapse
Affiliation(s)
- Andrzej Borkowski
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (J.T.); (P.D.)
| | - Wojciech Kiciński
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (W.K.); (M.S.)
| | - Mateusz Szala
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (W.K.); (M.S.)
| | - Justyna Topolska
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (J.T.); (P.D.)
| | - Paweł Działak
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (J.T.); (P.D.)
| | - Marcin D. Syczewski
- Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland;
| |
Collapse
|
167
|
Wu W, Huang L, Wang E, Dong S. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem Sci 2020; 11:9741-9756. [PMID: 34094238 PMCID: PMC8162425 DOI: 10.1039/d0sc03522j] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
Enzyme mimics, especially nanozymes, play a crucial role in replacing natural enzymes for diverse applications related to bioanalysis, therapeutics and other enzyme-like catalysis. Nanozymes are catalytic nanomaterials with enzyme-like properties, which currently face formidable challenges with respect to their intricate structure, properties and mechanism in comparison with enzymes. The latest emergence of single-atom nanozymes (SAzymes) undoubtedly promoted the nanozyme technologies to the atomic level and provided new opportunities to break through their inherent limitations. In this perspective, we discuss key aspects of SAzymes, including the advantages of the single-site structure, and the derived synergetic enhancements of enzyme-like activity, catalytic selectivity and the mechanism, as well as the superiority in biological and catalytic applications, and then highlight challenges that SAzymes face and provide relevant guidelines from our point of view for the rational design and extensive applications of SAzymes, so that SAzyme may achieve its full potential as the next-generation nanozyme.
Collapse
Affiliation(s)
- Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
168
|
Ding W, Liu H, Zhao W, Wang J, Zhang L, Yao Y, Yao C, Song C. A Hybrid of FeS2 Nanoparticles Encapsulated by Two-Dimensional Carbon Sheets as Excellent Nanozymes for Colorimetric Glucose Detection. ACS APPLIED BIO MATERIALS 2020; 3:5905-5912. [DOI: 10.1021/acsabm.0c00605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Ding
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haibo Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weiwen Zhao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Linlin Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuewei Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chan Song
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
169
|
Chen M, Zhou H, Liu X, Yuan T, Wang W, Zhao C, Zhao Y, Zhou F, Wang X, Xue Z, Yao T, Xiong C, Wu Y. Single Iron Site Nanozyme for Ultrasensitive Glucose Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002343. [PMID: 32597016 DOI: 10.1002/smll.202002343] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/21/2020] [Indexed: 05/23/2023]
Abstract
Nanomaterials with enzyme-mimicking characteristics have engaged great awareness in various fields owing to their comparative low cost, high stability, and large-scale preparation. However, the wide application of nanozymes is seriously restricted by the relatively low catalytic activity and poor specificity, primarily because of the inhomogeneous catalytic sites and unclear catalytic mechanisms. Herein, a support-sacrificed strategy is demonstrated to prepare a single iron site nanozyme (Fe SSN) dispersed on the porous N-doped carbon. With well-defined coordination structure and high density of active sites, the Fe SSN performs prominent peroxidase-like activity by efficiently activating H2 O2 into hydroxyl radical (•OH) species. Furthermore, the Fe SSN is applied in colorimetric detection of glucose through a multienzyme biocatalytic cascade platform. Moreover, a low-cost integrated agarose-based hydrogel colorimetric biosensor is designed and successfully achieves the visualization evaluation and quantitative detection of glucose. This work expands the application of single-site catalysts in the fields of nanozyme-based biosensors and personal biomedical diagnosis.
Collapse
Affiliation(s)
- Min Chen
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Huang Zhou
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Tongwei Yuan
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Wenyu Wang
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Chao Zhao
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Yafei Zhao
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Fangyao Zhou
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Xin Wang
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Zhenggang Xue
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Can Xiong
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
- School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuen Wu
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
170
|
Xu B, Cui Y, Wang W, Li S, Lyu C, Wang S, Bao W, Wang H, Qin M, Liu Z, Wei W, Liu H. Immunomodulation-Enhanced Nanozyme-Based Tumor Catalytic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003563. [PMID: 32627937 DOI: 10.1002/adma.202003563] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 05/23/2023]
Abstract
Nanozyme-based tumor catalytic therapy has attracted widespread attention in recent years. However, its therapeutic outcomes are diminished by many factors in the tumor microenvironment (TME), such as insufficient endogenous hydrogen peroxide (H2 O2 ) concentration, hypoxia, and immunosuppressive microenvironment. Herein, an immunomodulation-enhanced nanozyme-based tumor catalytic therapy strategy is first proposed to achieve the synergism between nanozymes and TME regulation. TGF-β inhibitor (TI)-loaded PEGylated iron manganese silicate nanoparticles (IMSN) (named as IMSN-PEG-TI) are constructed to trigger the therapeutic modality. The results show that IMSN nanozyme exhibits both intrinsic peroxidase-like and catalase-like activities under acidic TME, which can decompose H2 O2 into hydroxyl radicals (•OH) and oxygen (O2 ), respectively. Besides, it is demonstrated that both IMSN and TI can regulate the tumor immune microenvironment, resulting in macrophage polarization from M2 to M1, and thus inducing the regeneration of H2 O2 , which can promote catalytic activities of IMSN nanozyme. The potent antitumor effect of IMSN-PEG-TI is proved by in vitro multicellular tumor spheroids (MCTS) and in vivo CT26-tumor-bearing mice models. It is believed that the immunomodulation-enhanced nanozyme-based tumor treatment strategy is a promising tool to kill cancer cells.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Cui
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiwei Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weier Bao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhen Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
171
|
Xu Y, Xue J, Zhou Q, Zheng Y, Chen X, Liu S, Shen Y, Zhang Y. The Fe-N-C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug-Drug Interactions. Angew Chem Int Ed Engl 2020; 59:14498-14503. [PMID: 32515070 DOI: 10.1002/anie.202003949] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Indexed: 11/10/2022]
Abstract
Emerging as a cost-effective and robust enzyme mimic, nanozymes have drawn increasing attention with broad applications ranging from cancer therapy to biosensing. Developing nanozymes with both accelerated and inhibited biocatalytic properties in a biological context is intriguing to peruse more advanced functions of natural enzymes, but remains challenging, because most nanozymes are lack of enzyme-like molecular structures. By re-visiting and engineering the well-known Fe-N-C electrocatalyst that has a heme-like Fe-Nx active sites, herein, it is reported that Fe-N-C could not only catalyze drug metabolization but also had inhibition behaviors similar to cytochrome P450 (CYP), endowing it a potential replacement of CYP for preliminary evaluation of massive potential chemicals, drug dosing guide, and outcome prediction. In addition, in contrast to electrocatalysts, the highly graphitic framework of Fe-N-C may not be obligatory for a competitive CYP-like activity.
Collapse
Affiliation(s)
- Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Jing Xue
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yongjun Zheng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| |
Collapse
|
172
|
Xu Y, Xue J, Zhou Q, Zheng Y, Chen X, Liu S, Shen Y, Zhang Y. The Fe‐N‐C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug–Drug Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Jing Xue
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yongjun Zheng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| |
Collapse
|
173
|
Fu L, Tang Y, Lin Y. Advances in Synchrotron Radiation‐based X‐ray Absorption Spectroscopy to Characterize the Fine Atomic Structure of Single‐atom Nanozymes. Chem Asian J 2020; 15:2110-2116. [DOI: 10.1002/asia.202000560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/31/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Lianlian Fu
- College of Material Science and EngineeringHuaqiao University Xiamen 361021 China
| | - Yonghua Tang
- Research Institute for Biomimetics and Soft MatterDepartment of Physics Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen University Xiamen 361005 China
| | - Youhui Lin
- Research Institute for Biomimetics and Soft MatterDepartment of Physics Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen University Xiamen 361005 China
| |
Collapse
|
174
|
Li L, Zhang Y, Yan Z, Chen M, Zhang L, Zhao P, Yu J. Ultrasensitive Photoelectrochemical Detection of MicroRNA on Paper by Combining a Cascade Nanozyme-Engineered Biocatalytic Precipitation Reaction and Target-Triggerable DNA Motor. ACS Sens 2020; 5:1482-1490. [PMID: 32362115 DOI: 10.1021/acssensors.0c00632] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Developing efficient strategies for sensitive detection of microRNAs, the noncoding bioactive molecules and well-established biomarkers, has aroused great interests due to its great potential values in genetic and pathological analyses. Herein, a highly selective and disposable paper-based photoelectrochemical (PEC) sensor was rationally designed for sensing microRNA based on simple self-assembly of a target-triggerable DNA motor and nanozyme-catalyzed multistage biocatalytic precipitation reaction. Specifically, a brand-new type II heterojunction of TiO2-CeO2 nanotubes decorated with carbon fiber paper (CFP) was first prepared, which gave an enhanced photoreactive surface and realized fast electron transport and extraction, markedly accelerating photoelectric conversion efficiency of the sensor. For achieving target detection, cascade nanozyme centers of the CeO2 and Au nanoparticles modified by cyclodextrin were drafted, greatly decreasing the photocurrent intensity and achieving an ultralow background signal. With target introduction, the DNA motor was activated and automatically moved along the predesigned route driven by an endonuclease cleavage reaction, resulting in more substrate probe digestion and nanozyme release from CFP. Consequently, the repressive inner enhancement mechanism was gradually renewed with constant advancement of the enzymatic reaction and walker probe walking progressively, eventually allowing multiple enzymatic factor output in each target import. As a proof-of-concept application, the developed PEC sensor successfully performed detection of miRNA-141, showing a low detection limit of 0.6 fM, and was further applied to real sample bioassays with satisfying results. This work proposes promising strategies to boost the catalytic cascade DNA-motor adhibition in biological samples analysis and also exhibits potential capability in detection of other targets.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhao Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Mengqi Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
175
|
Zhu Y, Wu J, Han L, Wang X, Li W, Guo H, Wei H. Nanozyme Sensor Arrays Based on Heteroatom-Doped Graphene for Detecting Pesticides. Anal Chem 2020; 92:7444-7452. [PMID: 32363854 DOI: 10.1021/acs.analchem.9b05110] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pesticides, widely used for pest control and plant growth regulation, have posed a threat to the environment and human health. Conventional methods to analyze pesticide residues are not applied to resource-limited areas because of their high cost, complexity, and requirements for expensive instruments (such as GC/MS and LC/MS). To address these challenges, herein we fabricated colorimetric nanozyme sensor arrays based on heteroatom-doped graphene for detection of aromatic pesticides. The active sites of nanozymes could be differentially masked when different pesticides were adsorbed on the graphene, which in turn resulted in the decrease of their peroxidase-mimicking activities. On the basis of this principle, five pesticides (i.e., lactofen, fluoroxypyr-meptyl, bensulfuron-methyl, fomesafen, and diafenthiuron) from 5 to 500 μM were successfully discriminated by the sensor arrays. In addition, discrimination for different concentrations of each pesticide and different ratios of two mixed pesticides were also demonstrated. The practical application of the sensor arrays was further validated by successfully discriminating the pesticides in soil samples. This work not only provides a facile and cost-effective method to detect pesticides but also makes a positive contribution to food safety and environmental protection.
Collapse
Affiliation(s)
- Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Lijun Han
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Wei Li
- Collaborative Innovation Center of Chemical Science and Chemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Hongchao Guo
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210093, P. R. China.,State Key Laboratory of Analytical Chemistry for Life Science and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.,Key Laboratory of Analytical Chemistry for Biology and Medicine (Wuhan University), Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
176
|
Jiao L, Wu J, Zhong H, Zhang Y, Xu W, Wu Y, Chen Y, Yan H, Zhang Q, Gu W, Gu L, Beckman SP, Huang L, Zhu C. Densely Isolated FeN4 Sites for Peroxidase Mimicking. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01647] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Jiabin Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
| | - Hong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yu Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Yifeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Scott P. Beckman
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Liang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| |
Collapse
|
177
|
Cao F, Zhang L, You Y, Zheng L, Ren J, Qu X. An Enzyme‐Mimicking Single‐Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. Angew Chem Int Ed Engl 2020; 59:5108-5115. [DOI: 10.1002/anie.201912182] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Fangfang Cao
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Yawen You
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation FacilityInstitute of High Energy PhysicsChinese Academy of Sciences Beijing 100049 China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| |
Collapse
|
178
|
Song C, Ding W, Zhao W, Liu H, Wang J, Yao Y, Yao C. High peroxidase-like activity realized by facile synthesis of FeS2 nanoparticles for sensitive colorimetric detection of H2O2 and glutathione. Biosens Bioelectron 2020; 151:111983. [DOI: 10.1016/j.bios.2019.111983] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 02/09/2023]
|
179
|
Cao F, Zhang L, You Y, Zheng L, Ren J, Qu X. An Enzyme‐Mimicking Single‐Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912182] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fangfang Cao
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Yawen You
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation FacilityInstitute of High Energy PhysicsChinese Academy of Sciences Beijing 100049 China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| |
Collapse
|
180
|
Low-background electrochemical biosensor for one-step detection of base excision repair enzyme. Biosens Bioelectron 2020; 150:111865. [DOI: 10.1016/j.bios.2019.111865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/18/2022]
|
181
|
Gu W, Wang H, Jiao L, Wu Y, Chen Y, Hu L, Gong J, Du D, Zhu C. Single‐Atom Iron Boosts Electrochemiluminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of EducationInternational Joint Research Center for Intelligent Biosensing Technology and HealthCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Hengjia Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of EducationInternational Joint Research Center for Intelligent Biosensing Technology and HealthCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of EducationInternational Joint Research Center for Intelligent Biosensing Technology and HealthCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of EducationInternational Joint Research Center for Intelligent Biosensing Technology and HealthCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Yuxin Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of EducationInternational Joint Research Center for Intelligent Biosensing Technology and HealthCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Liuyong Hu
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 P. R. China
| | - Jingming Gong
- Key Laboratory of Pesticide and Chemical Biology of Ministry of EducationInternational Joint Research Center for Intelligent Biosensing Technology and HealthCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Dan Du
- School of Mechanical and Materials EngineeringWashington State University Pullman WA 99164 USA
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of EducationInternational Joint Research Center for Intelligent Biosensing Technology and HealthCollege of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
182
|
Gu W, Wang H, Jiao L, Wu Y, Chen Y, Hu L, Gong J, Du D, Zhu C. Single-Atom Iron Boosts Electrochemiluminescence. Angew Chem Int Ed Engl 2020; 59:3534-3538. [PMID: 31873976 DOI: 10.1002/anie.201914643] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Indexed: 11/11/2022]
Abstract
The traditional luminol-H2 O2 electrochemiluminescence (ECL) sensing platform suffers from self-decomposition of H2 O2 at room temperature, hampering its application for quantitative analysis. In this work, for the first time we employ iron single-atom catalysts (Fe-N-C SACs) as an advanced co-reactant accelerator to directly reduce the dissolved oxygen (O2 ) to reactive oxygen species (ROS). Owing to the unique electronic structure and catalytic activity of Fe-N-C SACs, large amounts of ROS are efficiently produced, which then react with the luminol anion radical and significantly amplify the luminol ECL emission. Under the optimum conditions, a Fe-N-C SACs-luminol ECL sensor for antioxidant capacity measurement was developed with a good linear range from 0.8 μm to 1.0 mm of Trolox.
Collapse
Affiliation(s)
- Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hengjia Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yuxin Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jingming Gong
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
183
|
Wu Y, Wu J, Jiao L, Xu W, Wang H, Wei X, Gu W, Ren G, Zhang N, Zhang Q, Huang L, Gu L, Zhu C. Cascade Reaction System Integrating Single-Atom Nanozymes with Abundant Cu Sites for Enhanced Biosensing. Anal Chem 2020; 92:3373-3379. [DOI: 10.1021/acs.analchem.9b05437] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu Wu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jiabin Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Lei Jiao
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiqing Xu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hengjia Wang
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiaoqian Wei
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wenling Gu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guoxi Ren
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Nian Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Liang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
184
|
Fan L, Sun P, Huang Y, Xu Z, Lu X, Xi J, Han J, Guo R. One-Pot Synthesis of Fe/N-Doped Hollow Carbon Nanospheres with Multienzyme Mimic Activities against Inflammation. ACS APPLIED BIO MATERIALS 2020; 3:1147-1157. [DOI: 10.1021/acsabm.9b01079] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Peizheng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yaling Huang
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225002, China
| | - Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Ximing Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
185
|
Lyu Z, Ding S, Zhang N, Zhou Y, Cheng N, Wang M, Xu M, Feng Z, Niu X, Cheng Y, Zhang C, Du D, Lin Y. Single-Atom Nanozymes Linked Immunosorbent Assay for Sensitive Detection of A β 1-40: A Biomarker of Alzheimer's Disease. RESEARCH (WASHINGTON, D.C.) 2020; 2020:4724505. [PMID: 33145493 PMCID: PMC7592081 DOI: 10.34133/2020/4724505] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 04/12/2023]
Abstract
Single-atom nanozymes (SANs) possess unique features of maximum atomic utilization and present highly assembled enzyme-like structure and remarkable enzyme-like activity. By introducing SANs into immunoassay, limitations of ELISA such as low stability of horseradish peroxidase (HRP) can be well addressed, thereby improving the performance of the immunoassays. In this work, we have developed novel Fe-N-C single-atom nanozymes (Fe-Nx SANs) derived from Fe-doped polypyrrole (PPy) nanotube and substituted the enzymes in ELISA kit for enhancing the detection sensitivity of amyloid beta 1-40. Results indicate that the Fe-Nx SANs contain high density of single-atom active sites and comparable enzyme-like properties as HRP, owing to the maximized utilization of Fe atoms and their abundant active sites, which could mimic natural metalloproteases structures. Further designed SAN-linked immunosorbent assay (SAN-LISA) demonstrates the ultralow limit of detection (LOD) of 0.88 pg/mL, much more sensitive than that of commercial ELISA (9.98 pg/mL). The results confirm that the Fe-Nx SANs can serve as a satisfactory replacement of enzyme labels, which show great potential as an ultrasensitive colorimetric immunoassay.
Collapse
Affiliation(s)
- Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Nan Zhang
- Institute of High Performance Computing, Institute of High Performance Computing, Singapore 138632
| | - Yang Zhou
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Nan Cheng
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Maoyu Wang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Mingjie Xu
- Irvine Materials Research Institute (IMRI), University of California, Irvine, CA 92697, USA
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Xiangheng Niu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Yuan Cheng
- Institute of High Performance Computing, Institute of High Performance Computing, Singapore 138632
| | - Chao Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Engineering Drive 3, Singapore 117583
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
186
|
Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y. Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chem Commun (Camb) 2020; 56:11338-11353. [DOI: 10.1039/d0cc04890a] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metal–organic frameworks with enzyme-like catalytic features (MOF nanozymes) exhibit great promise in detecting various analytes with amplified signal outputs.
Collapse
Affiliation(s)
- Xiangheng Niu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
- Institute of Green Chemistry and Chemical Technology
| | - Xin Li
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
- Institute of Green Chemistry and Chemical Technology
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Xiaofan Ruan
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Dan Du
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| |
Collapse
|
187
|
Yan Z, Yuan H, Zhao Q, Xing L, Zheng X, Wang W, Zhao Y, Yu Y, Hu L, Yao W. Recent developments of nanoenzyme-based colorimetric sensors for heavy metal detection and the interaction mechanism. Analyst 2020; 145:3173-3187. [DOI: 10.1039/d0an00339e] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This work highlights the application and interaction mechanism of metal nanoparticles, metal oxides, metal sulfides, graphene-based nanomaterials and G-quadruplex, etc. in nanoenzyme-based colorimetric sensors.
Collapse
Affiliation(s)
- Zhengquan Yan
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Hua Yuan
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Qi Zhao
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Lin Xing
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Xiaoyu Zheng
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Weiguo Wang
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Yulei Zhao
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Yang Yu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Lei Hu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Wenli Yao
- Jiangxi Key laboratory of Power Battery and Material
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| |
Collapse
|
188
|
Hu L, Wu Y, Xu M, Gu W, Zhu C. Recent advances in co-reaction accelerators for sensitive electrochemiluminescence analysis. Chem Commun (Camb) 2020; 56:10989-10999. [DOI: 10.1039/d0cc04371k] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In electrochemiluminescence sensing platforms, co-reaction accelerators are specific materials used to catalyze the dissociation of co-reactants into active radicals, which can significantly boost the ECL emission of luminophores.
Collapse
Affiliation(s)
- Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| | - Miao Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| |
Collapse
|
189
|
Chen L, Gao H, Bai Y, Wei W, Wang J, El Fakhri G, Wang M. Colorimetric biosensing of glucose in human serum based on the intrinsic oxidase activity of hollow MnO 2 nanoparticles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02387f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hollow MnO2 nanoparticles with excellent oxidase-like activity for the sensitive and selective detection of glucose in human serum.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Medical Imaging, Henan Provincial People's Hospital& People's Hospital of Zhengzhou University
- Zhengzhou
- China
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University
- Zhengzhou
| | - Haiyan Gao
- Department of Medical Imaging, Henan Provincial People's Hospital& People's Hospital of Zhengzhou University
- Zhengzhou
- China
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University
- Zhengzhou
| | - Yan Bai
- Department of Medical Imaging, Henan Provincial People's Hospital& People's Hospital of Zhengzhou University
- Zhengzhou
- China
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University
- Zhengzhou
| | - Wei Wei
- Department of Medical Imaging, Henan Provincial People's Hospital& People's Hospital of Zhengzhou University
- Zhengzhou
- China
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University
- Zhengzhou
| | - Junfeng Wang
- Gordon Center for Medical Imaging
- Radiology
- Massachusetts General Hospital
- Harvard Medical School
- Boston
| | - Georges El Fakhri
- Gordon Center for Medical Imaging
- Radiology
- Massachusetts General Hospital
- Harvard Medical School
- Boston
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital& People's Hospital of Zhengzhou University
- Zhengzhou
- China
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University
- Zhengzhou
| |
Collapse
|
190
|
Yan H, Wang L, Chen Y, Jiao L, Wu Y, Xu W, Gu W, Song W, Du D, Zhu C. Fine-Tuning Pyridinic Nitrogen in Nitrogen-Doped Porous Carbon Nanostructures for Boosted Peroxidase-Like Activity and Sensitive Biosensing. RESEARCH (WASHINGTON, D.C.) 2020; 2020:8202584. [PMID: 33623911 PMCID: PMC7877393 DOI: 10.34133/2020/8202584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 11/23/2022]
Abstract
Carbon materials have been widely used as nanozymes in bioapplications, attributing to their intrinsic enzyme-like activities. Nitrogen (N)-doping has been explored as a promising way to improve the activity of carbon material-based nanozymes (CMNs). However, hindered by the intricate N dopants, the real active site of N-doped CMNs (N-CMNs) has been rarely investigated, which subsequently retards the further progress of high-performance N-CMNs. Here, a series of porous N-CMNs with well-controlled N dopants were synthesized, of which the intrinsic peroxidase (POD)like activity has a positive correlation with the pyridinic N content. Density functional theory calculations also reveal that pyridinic N boosts the intrinsic POD-like activity of N-CMNs. Pyridinic-N dopant can effectively promote the first H2O desorption process in comparison with the graphitic and pyrrolic N, which is the key endothermic reaction during the catalytic process. Then, utilizing the optimized nanozymes with high pyridinic N content (NP-CMNs) and superior POD-like activity, a facile total antioxidant capacity (TAC) assay was developed, holding great promise in the quality assessment of medicine tablets and antioxidant food for healthcare and healthy diet.
Collapse
Affiliation(s)
- Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Linzhe Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Yifeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
191
|
Chi J, Guo M, Zhang C, Zhang Y, Ai S, Hou J, Wu P, Li X. Glucose oxidase and Au nanocluster co-encapsulated metal–organic frameworks as a sensitive colorimetric sensor for glucose based on a cascade reaction. NEW J CHEM 2020. [DOI: 10.1039/c9nj06339k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The GOx & AuNCs@ZIF-8 composite was simply obtained as a colorimetric glucose sensor with high sensitivity and selectivity and long-term storage stability.
Collapse
Affiliation(s)
- Jingtian Chi
- College of Food Science and Engineering
- Shandong Agricultural University
- Taian
- P. R. China
| | - Manli Guo
- College of Food Science and Engineering
- Shandong Agricultural University
- Taian
- P. R. China
| | - Chi Zhang
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- P. R. China
| | - Yuanhong Zhang
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- P. R. China
| | - Juying Hou
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- P. R. China
| | - Peng Wu
- College of Food Science and Engineering
- Shandong Agricultural University
- Taian
- P. R. China
| | - Xiangyang Li
- College of Food Science and Engineering
- Shandong Agricultural University
- Taian
- P. R. China
| |
Collapse
|
192
|
Abstract
Hydrogen peroxide (H2O2) is an important molecule within the human body, but many of its roles in physiology and pathophysiology are not well understood. To better understand the importance of H2O2 in biological systems, it is essential that researchers are able to quantify this reactive species in various settings, including in vitro, ex vivo and in vivo systems. This review covers a broad range of H2O2 sensors that have been used in biological systems, highlighting advancements that have taken place since 2015.
Collapse
|
193
|
Lou Z, Zhao S, Wang Q, Wei H. N-Doped Carbon As Peroxidase-Like Nanozymes for Total Antioxidant Capacity Assay. Anal Chem 2019; 91:15267-15274. [DOI: 10.1021/acs.analchem.9b04333] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210093, China
| | - Sheng Zhao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210093, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Wuhan University), Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|