151
|
Yao M, Li Z, Li C, Xiao H, Wang S, Chan AWH, Zhao Y. Isomer-Resolved Reactivity of Organic Peroxides in Monoterpene-Derived Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4882-4893. [PMID: 35357822 DOI: 10.1021/acs.est.2c01297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic peroxides play a vital role in the formation, evolution, and health impacts of atmospheric aerosols, yet their molecular composition and fate in the particle phase remain poorly understood. Here, we identified, using iodometry-assisted liquid chromatography mass spectrometry, a large suite of isomer-resolved peroxide monomers (C8-10H12-18O5-8) and dimers (C15-20H22-34O5-14) in secondary organic aerosol formed from ozonolysis of the most abundant monoterpene (α-pinene). Combining aerosol isothermal evaporation experiments and multilayer kinetic modeling, bulk peroxides were found to undergo rapid particle-phase chemical transformation with an average lifetime of several hours under humid conditions, while the individual peroxides decompose on timescales of half an hour to a few days. Meanwhile, the majority of isomeric peroxides exhibit distinct particle-phase behaviors, highlighting the importance of the characterization of isomer-resolved peroxide reactivity. Furthermore, the reactivity of most peroxides increases with aerosol water content faster in a low relative humidity (RH) range than in a high RH range. Such non-uniform water effects imply a more important role of water as a plasticizer than as a reactant in influencing the peroxide reactivity. The high particle-phase reactivity of organic peroxides and its striking dependence on RH should be considered in atmospheric modeling of their fate and impacts on aerosol chemistry and health effects.
Collapse
Affiliation(s)
- Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenxi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huayun Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shunyao Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto Ontario M5S 3E5, Canada
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto Ontario M5S 3E5, Canada
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
152
|
Bouzidi H, Fayad L, Coeur C, Houzel N, Petitprez D, Faccinetto A, Wu J, Tomas A, Ondráček J, Schwarz J, Ždímal V, Zuend A. Hygroscopic growth and CCN activity of secondary organic aerosol produced from dark ozonolysis of γ-terpinene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153010. [PMID: 35026240 DOI: 10.1016/j.scitotenv.2022.153010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) particles produced during dark ozonolysis of γ-terpinene under different reaction conditions were investigated. The SOA particles were produced in the presence or absence of cyclohexane, an OH scavenger; 1,3,5-trimethylbenzene, an anthropogenic volatile organic compound; and (NH4)2SO4 seed particles. A hygroscopicity tandem differential mobility analyzer was used to determine the GFs of the SOA particles at RHs ≤ 93%. For some experiments, a CCN counter was used for size-resolved measurement of CCN activation at supersaturation (S) in the range of 0.1 to 1%. The single hygroscopicity parameter κ was derived from both the GF and CCN measurements. Under subsaturated conditions, all the SOA (except those in the presence of the (NH4)2SO4 seeds) showed small GF values. These GFs demonstrated that SOA mass loading affected the GF. A decrease in the SOA mass loading led to increased GF and corresponding κGFvalues. However, in a supersaturation regime, the SOA mass loading and the size of the particles did not significantly alter the CCN activity of the SOA. Our CCN measurements showed higher κCCN values (κCCN = 0.20-0.24) than those observed in most monoterpene ozonolysis studies (κCCN = 0.1-0.14). This difference may have been due to the presence of the two endocyclic double bonds in the γ-terpinene structure, which may have affected the SOA chemical composition, in contrast to monoterpenes that contain an exocyclic double bond. Our comparisons of sub- and supersaturated conditions showed a larger range of κ values than other experiments. Average κCCN/κGF ratios of ~7 and 14 were obtained in the unseeded SOA experiments at low and high SOA mass loadings, respectively. The average κCCN of 0.23 indicated that the SOA produced during ozonolysis of γ-terpinene exhibited fairly high CCN activity.
Collapse
Affiliation(s)
- Hichem Bouzidi
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, Dunkerque 59140, France; Institute of Chemical Process Fundamentals of the CAS, Department of Aerosols Chemistry and Physics, Prague CZ-16502, Czech Republic; IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, 59000 Lille, France.
| | - Layal Fayad
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, Dunkerque 59140, France
| | - Cecile Coeur
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, Dunkerque 59140, France
| | - Nicolas Houzel
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, Dunkerque 59140, France
| | | | | | - Junteng Wu
- Univ. Lille, CNRS PC2A, 59000 Lille, France
| | - Alexandre Tomas
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, 59000 Lille, France
| | - Jakub Ondráček
- Institute of Chemical Process Fundamentals of the CAS, Department of Aerosols Chemistry and Physics, Prague CZ-16502, Czech Republic
| | - Jaroslav Schwarz
- Institute of Chemical Process Fundamentals of the CAS, Department of Aerosols Chemistry and Physics, Prague CZ-16502, Czech Republic
| | - Vladimír Ždímal
- Institute of Chemical Process Fundamentals of the CAS, Department of Aerosols Chemistry and Physics, Prague CZ-16502, Czech Republic
| | - Andreas Zuend
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec H3A 0B9, Canada
| |
Collapse
|
153
|
Li J, Wang L, Wang L. Computational Study on the Reaction of β-Hydroxyethylperoxy Radical with HO 2 and Effects of Water Vapor. J Phys Chem A 2022; 126:2234-2243. [PMID: 35362984 DOI: 10.1021/acs.jpca.1c09009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of β-hydroxyethylperoxy radical (β-HEP) and HO2 with and without water was studied using quantum chemistry and kinetic calculations. The main products are HOCH2CH2OOH and 3O2 for the reaction with and without water, while all other reaction channels can be neglected. The rate coefficients of the reaction follow negative temperature dependence. The pseudo-second-order rate coefficients are 2-4 orders of magnitude smaller for the reaction with saturated water vapor, indicating the negligible contribution of water in this reaction. This is probably also true for other peroxy radicals (except for HO2), indicating that a large part of previous results on the water enhancement of reaction rate coefficients might have overestimated the influence of water.
Collapse
Affiliation(s)
- Junjie Li
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lingyu Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liming Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
154
|
Li J, Li K, Li H, Wang X, Wang W, Wang K, Ge M. Long-chain alkanes in the atmosphere: A review. J Environ Sci (China) 2022; 114:37-52. [PMID: 35459500 DOI: 10.1016/j.jes.2021.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 06/14/2023]
Abstract
As a representative species of intermediate volatile organic compounds (IVOCs), long-chain alkanes are considered to be important precursors of secondary organic aerosols (SOA) in the atmosphere. This work reviews the previous studies on long-chain alkanes in the atmosphere: (1) the detection methods and filed observations of long-chain alkanes in both gas and particle phases are summarized briefly; (2) the laboratory studies of long chain alkanes are reviewed, the kinetic data, reaction mechanism, SOA yields, and physicochemical properties of SOA are included in detail; (3) the research progress related to model simulations of long-chain alkanes are also discussed. In addition, based on available research results, several perspective contents are proposed that can be used as a guideline for future research plans.
Collapse
Affiliation(s)
- Junling Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kun Li
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xuezhong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ke Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
155
|
Yang Z, Du L, Li Y, Ge X. Secondary organic aerosol formation from monocyclic aromatic hydrocarbons: insights from laboratory studies. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:351-379. [PMID: 35171163 DOI: 10.1039/d1em00409c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Monocyclic aromatic hydrocarbons (MAHs) are key anthropogenic pollutants and often dominate the volatile organic compound emissions and secondary organic aerosol (SOA) formation especially in the urban atmosphere. To evaluate the environmental impacts of SOA formed from the oxidation of MAHs (aromatic SOA), it is of great importance to elucidate their chemical composition, formation mechanism, and physicochemical properties under various atmospheric conditions. Here we seek to compile a common framework for the current studies on aromatic SOA formation and summarize the knowledge on what has been primarily learned from laboratory studies. This review begins with a brief summary of MAHs' emission characteristics, followed by an overview of atmospheric degradation mechanisms for MAHs as well as gas- and particle-phase reactions involving aromatic SOA formation. SOA formation processes highlighted in this review are complex and depend highly on environmental conditions, posing a substantial challenge for theoretical description of aromatic SOA formation. Therefore, the following issues are further discussed in detail: the response of gas-phase chemistry and aromatic SOA mass yield as well as composition to NOx levels, particle-phase reactions and molecular characterization of aromatic SOA in the presence of acidic sulfate, and physicochemical processes of SOA formation involving gas- or particle-phase water. Building on this current understanding, available experimental studies on the effects of environmental conditions were explored. A brief description of the atmospheric importance of aromatic SOA including their optical properties and health influences is also presented. Finally, we highlight the current challenges in laboratory studies and outline directions for future aromatic SOA research.
Collapse
Affiliation(s)
- Zhaomin Yang
- Environment Research Institute, Shandong University, 266000, Qingdao, China.
| | - Lin Du
- Environment Research Institute, Shandong University, 266000, Qingdao, China.
| | - Yongjie Li
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 210044, Nanjing, China
| |
Collapse
|
156
|
Synthesis and Characterization of Atmospherically Relevant Hydroxy Hydroperoxides. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hydroxy hydroperoxides are formed upon OH oxidation of volatile organic compounds in the atmosphere and may contribute to secondary organic aerosol growth and aqueous phase chemistry after phase transfer to particles. Although the detection methods for oxidized volatile organic compounds improved much over the past decades, the limited availability of synthetic standards for atmospherically relevant hydroxy hydroperoxides prevented comprehensive investigations for the most part. Here, we present a straightforward improved synthetic access to isoprene-derived hydroxy hydroperoxides, i.e., 1,2-ISOPOOH and 4,3-ISOPOOH. Furthermore, we present the first successful synthesis of an α-pinene derived hydroxy hydroperoxide. All products were identified by 1H, 13C NMR spectroscopy for structure elucidation, additional 2D NMR experiments were performed. Furthermore, gas-phase FTIR- and UV/VIS spectra are presented for the first time. Using the measured absorption cross section, the atmospheric photolysis rate of up to 2.1 × 10−3 s−1 was calculated for 1,2-ISOPOOH. Moreover, we present the investigation of synthesized hydroxy hydroperoxides in an aerosol chamber study by online MS techniques, namely PTR-ToFMS and (NO3−)-CI-APi-ToFMS. Fragmentation patterns recorded during these investigations are presented as well. For the (NO3−)-CI-APi-ToFMS, a calibration factor for 1,2-ISOPOOH was calculated as 4.44 × 10−5 ncps·ppbv−1 and a LOD (3σ, 1 min average) = 0.70 ppbv.
Collapse
|
157
|
Hu M, Chen K, Qiu J, Lin YH, Tonokura K, Enami S. Decomposition mechanism of α-alkoxyalkyl-hydroperoxides in the liquid phase: temperature dependent kinetics and theoretical calculations. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:241-251. [PMID: 35419522 PMCID: PMC8929293 DOI: 10.1039/d1ea00076d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022]
Abstract
Organic hydroperoxides (ROOHs) play key roles in the atmosphere as a reactive intermediate species. Due to the low volatility and high hydrophilicity, ROOHs are expected to reside in atmospheric condensed phases such as aerosols, fogs, and cloud droplets. The decomposition mechanisms of ROOHs in the liquid phase are, however, still poorly understood. Here we report a temperature-dependent kinetics and theoretical calculation study of the aqueous-phase decompositions of C12 or C13 α-alkoxyalkyl-hydroperoxides (α-AHs) derived from ozonolysis of α-terpineol in the presence of 1-propanol, 2-propanol, and ethanol. We found that the temporal profiles of α-AH signals, detected as chloride-adducts by negative ion electrospray mass spectrometry, showed single-exponential decay, and the derived first-order rate coefficient k for α-AH decomposition increased as temperature increased, e.g., k(288 K) = (5.3 ± 0.2) × 10-4 s-1, k(298 K) = (1.2 ± 0.3) × 10-3 s-1, k(308 K) = (2.1 ± 1.4) × 10-3 s-1 for C13 α-AHs derived from the reaction of α-terpineol Criegee intermediates with 1-propanol in the solution at pH 4.5. Arrhenius plot analysis yielded an activation energy (E a) of 12.3 ± 0.6 kcal mol-1. E a of 18.7 ± 0.3 and 13.8 ± 0.9 kcal mol-1 were also obtained for the decomposition of α-AHs (at pH 4.5) derived from the reaction of α-terpineol Criegee intermediates with 2-propanol and with ethanol, respectively. Based on the theoretical kinetic and thermodynamic calculations, we propose that a proton-catalyzed mechanism plays a central role in the decomposition of these α-AHs in acidic aqueous organic media, while water molecules may also participate in the decomposition pathways and affect the kinetics. The decomposition of α-AHs could act as a source of H2O2 and multifunctionalized species in atmospheric condensed phases.
Collapse
Affiliation(s)
- Mingxi Hu
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa 277-8563 Japan
| | - Kunpeng Chen
- Department of Environmental Sciences, University of California Riverside California 92521 USA
| | - Junting Qiu
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa 277-8563 Japan
| | - Ying-Hsuan Lin
- Department of Environmental Sciences, University of California Riverside California 92521 USA
| | - Kenichi Tonokura
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa 277-8563 Japan
| | - Shinichi Enami
- National Institute for Environmental Studies 16-2 Onogawa Tsukuba 305-8506 Japan +81-29-850-2770
| |
Collapse
|
158
|
Yao P, Huang RJ, Ni H, Kairys N, Yang L, Meijer HAJ, Dusek U. 13C signatures of aerosol organic and elemental carbon from major combustion sources in China compared to worldwide estimates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151284. [PMID: 34740647 DOI: 10.1016/j.scitotenv.2021.151284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Carbon isotope signatures are used to gain insight into sources and atmospheric processing of carbonaceous aerosols. Since elemental carbon (EC) is chemically stable, it is possible to apportion the main sources of EC (C3/C4 plant burning, coal combustion, and traffic emissions) using a dual 14C-13C isotope approach. The dual-isotope source apportionment crucially relies on accurate knowledge of 13C source signatures, which are seldom measured for EC. In this work, we present 13C signatures of organic carbon (OC) and EC for relevant sources in China. EC was isolated for 13C analysis based on the OC/EC split point of a thermal-optical method (EUSAAR_2 protocol). A series of sensitivity studies were conducted to investigate the EC separation and the relationship of the thermal-optical method to other EC isolation methods. Our results show that, first, the 13C signatures of raw materials and EC related to traffic emissions can be separated into three groups according to geographical location. Second, the 13C signature of OC emitted by the flaming combustion of C4 plants is strongly depleted in 13C compared to the source materials, and therefore EC is a better tracer for this source than total carbon (TC). A comprehensive literature review of 13C source signatures (of raw materials, of TC, and of EC isolated using a variety of thermal methods) was conducted. Accordingly, we recommend composite 13C source signatures of EC with uncertainties and detailed application conditions. Using these source signatures of EC in an example dual-isotope source apportionment study shows an improvement in precision. In addition, 13C signatures of OC were measured at three different desorption temperatures roughly corresponding to semi-volatile, low-volatile, and non-volatile OC fractions. Each source category shows a characteristic trend of 13C signatures with desorption temperature, which is likely related to different OC formation processes during combustion.
Collapse
Affiliation(s)
- Peng Yao
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, 9747AG, the Netherlands
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Haiyan Ni
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, 9747AG, the Netherlands
| | - Norbertas Kairys
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, 9747AG, the Netherlands
| | - Lu Yang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Harro A J Meijer
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, 9747AG, the Netherlands
| | - Ulrike Dusek
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, 9747AG, the Netherlands.
| |
Collapse
|
159
|
Hanson DR, Sawyer A, Long D, Sofio D, Kunz J, Wentzel M. Particle Formation from Photooxidation of αpinene, Limonene, and Myrcene. J Phys Chem A 2022; 126:910-923. [PMID: 35133838 DOI: 10.1021/acs.jpca.1c08427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present measurements of the effect of first-generation secondary organic aerosol (SOA) material on the growth of ∼10 nanometer diameter seed particles composed of sulfuric acid and water. Experiments were performed in an atmospheric pressure, vertically aligned flow reactor where OH was produced from HONO photolysis in the presence of either SO2 or a monoterpene. For typical conditions, organic compounds at ∼300 ppbv are exposed to photooxidation for a time of ∼80 s at a [OH] of about 6 × 106 cm-3: thus, oxidation products have minimal OH exposure. The measured size changes of the sulfuric acid seed particles can then be attributed to the uptake of first-generation products. Along with descriptions of the apparatus and the procedure, the analysis to obtain SOA yields by comparing them to growth with H2SO4(g) is detailed. Results from photooxidation experiments of αpinene, limonene, and myrcene give SOA yields of 0.040, 0.084, and 0.16, respectively. These SOA yields roughly double with each addition of a double bond to the compound. The αpinene and limonene results are in accord with the results of many previous SOA experiments, while the myrcene SOA yield stands alone. Photooxidation of myrcene also led to significant nucleation, and the species responsible is comparable to H2SO4 at a 35% relative humidity in its nucleation capability.
Collapse
Affiliation(s)
- David R Hanson
- Department of Chemistry, Augsburg University, Minneapolis, Minnesota 55454, United States
| | - Adam Sawyer
- Department of Chemistry, Augsburg University, Minneapolis, Minnesota 55454, United States
| | - Darlene Long
- Department of Chemistry, Augsburg University, Minneapolis, Minnesota 55454, United States
| | - Dominick Sofio
- Department of Chemistry, Augsburg University, Minneapolis, Minnesota 55454, United States
| | - Joan Kunz
- Department of Chemistry, Augsburg University, Minneapolis, Minnesota 55454, United States
| | - Michael Wentzel
- Department of Chemistry, Augsburg University, Minneapolis, Minnesota 55454, United States
| |
Collapse
|
160
|
Ma W, Liu Y, Zhang Y, Feng Z, Zhan J, Hua C, Ma L, Guo Y, Zhang Y, Zhou W, Yan C, Chu B, Chen T, Ma Q, Liu C, Kulmala M, Mu Y, He H. A New Type of Quartz Smog Chamber: Design and Characterization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2181-2190. [PMID: 35076226 DOI: 10.1021/acs.est.1c06341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Since the 1960s, many indoor and outdoor smog chambers have been developed worldwide. However, most of them are made of Teflon films, which have relatively high background contaminations due to the wall effect. We developed the world's first medium-size quartz chamber (10 m3), which is jointed with 32 pieces of 5 mm thick polished quartz glasses and a stainless-steel frame. Characterizations show that this chamber exhibits excellent performance in terms of relative humidity (RH) (2-80%) and temperature (15-30 ± 1 °C) control, mixing efficiency of the reactants (6-8 min), light transmittance (>90% above 290 nm), and wall loss of pollutants. The wall loss rates of the gas-phase pollutants are on the order of 10-4 min-1 at 298 K under dry conditions. It is 0.08 h-1 for 100-500 nm particles, significantly lower than those of Teflon chambers. The photolysis rate of NO2 (JNO2) is automatically adjustable to simulate the diurnal variation of solar irradiation from 0 to 0.40 min-1. The inner surface of the chamber can be repeatedly washed with deionized water, resulting in low background contaminations. Both experiments (toluene-NOx and α-pinene-ozone systems) and box model demonstrate that this new quartz chamber can provide high-quality data for investigating SOA and O3 formation in the atmosphere.
Collapse
Affiliation(s)
- Wei Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yusheng Zhang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zemin Feng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junlei Zhan
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenjie Hua
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yishuo Guo
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Zhang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenshuo Zhou
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunshan Liu
- Beijing Convenient Environmental Tech Co. Ltd., Beijing 101115, China
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
161
|
D’Ambro EL, Hyttinen N, Møller KH, Iyer S, Otkjær RV, Bell DM, Liu J, Lopez-Hilfiker FD, Schobesberger S, Shilling JE, Zelenyuk A, Kjaergaard HG, Thornton JA, Kurtén T. Pathways to Highly Oxidized Products in the Δ3-Carene + OH System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2213-2224. [PMID: 35119266 PMCID: PMC8956127 DOI: 10.1021/acs.est.1c06949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oxidation of the monoterpene Δ3-carene (C10H16) is a potentially important and understudied source of atmospheric secondary organic aerosol (SOA). We present chamber-based measurements of speciated gas and particle phases during photochemical oxidation of Δ3-carene. We find evidence of highly oxidized organic molecules (HOMs) in the gas phase and relatively low-volatility SOA dominated by C7-C10 species. We then use computational methods to develop the first stages of a Δ3-carene photochemical oxidation mechanism and explain some of our measured compositions. We find that alkoxy bond scission of the cyclohexyl ring likely leads to efficient HOM formation, in line with previous studies. We also find a surprising role for the abstraction of primary hydrogens from methyl groups, which has been calculated to be rapid in the α-pinene system, and suggest more research is required to determine if this is more general to other systems and a feature of autoxidation. This work develops a more comprehensive view of Δ3-carene photochemical oxidation products via measurements and lays out a suggested mechanism of oxidation via computationally derived rate coefficients.
Collapse
Affiliation(s)
- Emma L. D’Ambro
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Noora Hyttinen
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- Institute
for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki FI-00014, Finland
| | - Kristian H. Møller
- Department
of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Siddharth Iyer
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- Institute
for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki FI-00014, Finland
| | - Rasmus V. Otkjær
- Department
of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - David M. Bell
- Atmospheric
Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jiumeng Liu
- Atmospheric
Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Felipe D. Lopez-Hilfiker
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Siegfried Schobesberger
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - John E. Shilling
- Atmospheric
Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Alla Zelenyuk
- Atmospheric
Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Joel A. Thornton
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- Institute
for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
162
|
Tang B, Zou J, Wang X, Li B, Fu D, Thapa S, Sun X, Qi H. Theoretical insights into the gas/heterogeneous phase reactions of hydroxyl radicals with chlorophenols: Mechanism, kinetic and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150974. [PMID: 34656601 DOI: 10.1016/j.scitotenv.2021.150974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Emission of 2-chlorophenols (2-CPs) can cause serious air pollution and health problems. Here, the reaction kinetics and products of key radicals in 2-CPs photo-oxidation are explored in both gaseous and heterogeneous reactions. Quantum chemical calculations show that •OH-addition pathways are more preferable than H-abstraction pathways in gas phase, while that is opposite in heterogeneous phase. At 298 K, the overall rate coefficients of the title reactions in gas and heterogeneous phases are 3.48 × 10-13 and 2.37 × 10-13 cm3 molecule-1 s-1 with half-lives of 55.3 h and 81.2 h, respectively. The strong H-bonds between linear Si3O2(OH)8 and 2-CPs change the energy barriers of initial •OH-addition and H-abstraction reactions, resulting in the competition between heterogeneous reactions and gas phase reactions. The products in heterogeneous reactions are chloroquinone and HONO, which can cause atmospheric acid deposition and eco-toxicity. In gas phase, self-cyclization of alkoxy radical (RO•) leads to formation of •HO2 and highly‑oxygenated molecules, which cause formation of secondary organic aerosol. It is emphasized that oxidation of 2-CPs by •OH leads to formation of more toxic products for aquatic organisms. Therefore, more attention should be focused on the products originated from •OH-initiated reactions of (2-)CPs in gaseous and heterogeneous reactions.
Collapse
Affiliation(s)
- Bo Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150090, China
| | - Xueyu Wang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Bo Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Donglei Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Samit Thapa
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiazhong Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Polar Environment and Ecosystem, Heilongjiang Province, Harbin 150090, China.
| |
Collapse
|
163
|
Wang Y, Clusius P, Yan C, Dällenbach K, Yin R, Wang M, He XC, Chu B, Lu Y, Dada L, Kangasluoma J, Rantala P, Deng C, Lin Z, Wang W, Yao L, Fan X, Du W, Cai J, Heikkinen L, Tham YJ, Zha Q, Ling Z, Junninen H, Petäjä T, Ge M, Wang Y, He H, Worsnop DR, Kerminen VM, Bianchi F, Wang L, Jiang J, Liu Y, Boy M, Ehn M, Donahue NM, Kulmala M. Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:770-778. [PMID: 34806377 DOI: 10.1021/acs.est.1c05191] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The understanding at a molecular level of ambient secondary organic aerosol (SOA) formation is hampered by poorly constrained formation mechanisms and insufficient analytical methods. Especially in developing countries, SOA related haze is a great concern due to its significant effects on climate and human health. We present simultaneous measurements of gas-phase volatile organic compounds (VOCs), oxygenated organic molecules (OOMs), and particle-phase SOA in Beijing. We show that condensation of the measured OOMs explains 26-39% of the organic aerosol mass growth, with the contribution of OOMs to SOA enhanced during severe haze episodes. Our novel results provide a quantitative molecular connection from anthropogenic emissions to condensable organic oxidation product vapors, their concentration in particle-phase SOA, and ultimately to haze formation.
Collapse
Affiliation(s)
- Yonghong Wang
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Petri Clusius
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Kaspar Dällenbach
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Rujing Yin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mingyi Wang
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Biwu Chu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiqun Lu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Lubna Dada
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Juha Kangasluoma
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Pekka Rantala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Chenjuan Deng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhuohui Lin
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
| | - Weigang Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100029, China
| | - Lei Yao
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Xiaolong Fan
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
| | - Wei Du
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Jing Cai
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Liine Heikkinen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Yee Jun Tham
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Qiaozhi Zha
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Zhenhao Ling
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Heikki Junninen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
- Institute of Physics, University of Tartu, Tartu 50090, Estonia
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Maofa Ge
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100029, China
| | - Yuesi Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hong He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Douglas R Worsnop
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Veli-Matti Kerminen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Federico Bianchi
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Lin Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
| | - Michael Boy
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Mikael Ehn
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| |
Collapse
|
164
|
Piletic IR, Kleindienst TE. Rates and Yields of Unimolecular Reactions Producing Highly Oxidized Peroxy Radicals in the OH-Induced Autoxidation of α-Pinene, β-Pinene, and Limonene. J Phys Chem A 2022; 126:88-100. [PMID: 34979075 PMCID: PMC8895440 DOI: 10.1021/acs.jpca.1c07961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent ambient atmospheric measurements have detected highly oxygenated organic molecules (HOMs) at many sites and are a consequence of autoxidation processes occurring at ambient temperatures. Monoterpenes in particular have a propensity to autoxidize although they exhibit a wide range of HOM yields, which may be due to a variety of reasons including reactions with different oxidants like OH and O3, differing hydrogen (H) atom transfer or peroxy radical cyclization rates, numbers of available reaction pathways, and/or energy loss processes for activated HO-monoterpene or O3-monoterpene adducts. In this work, the autoxidation mechanisms of (+)-α-pinene, (+)-β-pinene, and (+)-limonene following initial OH oxidation and three successive O2 additions are examined using density functional theory (DFT) to understand what accounts for the disparity. Rates of different potential autoxidation pathways initiated by OH addition or abstraction reactions are quantified using transition-state theory (TST) and master equation approaches using the lowest-energy conformers. OH abstraction reactions do not appreciably influence HOM production in the pinenes and limit autoxidation for limonene because the subsequent autoxidation reactions are slow while OH addition reactions are found to be the main route to HOMs for all three monoterpenes. Generally, faster autoxidation rates are computed in later unimolecular reactions that produce RO7 radicals after OH addition (∼10 s-1 or greater) than rates for RO5 peroxy radical production (0.2-7 s-1). Mechanistic pathways that form RO7 peroxy radicals are similar for all three monoterpenes with a particular bicyclo RO7 radical involving a five-membered peroxide ring being favored for all three monoterpenes. The molar yields of RO7 radicals are 4.6% (+10.0/-2.4), 3.8% (+9.1/-2.6), and 7.6% (+13.1/-4.9) for α-pinene, β-pinene, and limonene, respectively, at 298 K and 1 ppb of NO and only significantly decline at NO concentrations exceeding 10 ppb. The higher yield for limonene relative to the pinenes is predominantly a consequence of the initial oxidation step: OH adducts of the bicyclic pinenes have to use the excess energy after OH addition to break one of the rings and make the molecule more flexible for autoxidation although this process is inefficient, while one of the prominent OH adducts for monocyclic limonene does not have to do this and may add O2 immediately before autoxidizing further. These insights may be used to guide a better representation of these processes in atmospheric models because they affect particulate matter (PM), NOx, and ozone concentrations via enhanced production of low-volatility species, less early-generation NOx cycling, and altered organic nitrate production.
Collapse
Affiliation(s)
- Ivan R. Piletic
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Tadeusz E. Kleindienst
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| |
Collapse
|
165
|
BHAGDE TRISHA, Hansen AS, Chen SG, Walsh P, Klippenstein SJ, Lester MI. Energy-resolved and time-dependent unimolecular dissociation of hydroperoxyalkyl radicals (•QOOH). Faraday Discuss 2022; 238:575-588. [DOI: 10.1039/d2fd00008c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroperoxyalkyl radicals (•QOOH) are transient intermediates in the atmospheric oxidation of volatile organic compounds and combustion of hydrocarbon fuels in low temperature (< 1000 K) environments. The carbon-centered •QOOH radicals...
Collapse
|
166
|
Aerosol Characteristics and Their Impact on the Himalayan Energy Budget. SUSTAINABILITY 2021. [DOI: 10.3390/su14010179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extensive work on the increasing burden of aerosols and resultant climate implications shows a matter of great concern. In this study, we investigate the aerosol optical depth (AOD) variations in the Indian Himalayan Region (IHR) between its plains and alpine regions and the corresponding consequences on the energy balance on the Himalayan glaciers. For this purpose, AOD data from Moderate Resolution Imaging Spectroradiometer (MODIS, MOD-L3), Aerosol Robotic Network (AERONET), India, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) were analyzed. Aerosol radiative forcing (ARF) was assessed using the atmospheric radiation transfer model (RTM) integrated into AERONET inversion code based on the Discrete Ordinate Radiative Transfer (DISORT) module. Further, air mass trajectory over the entire IHR was analyzed using a hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. We estimated that between 2001 and 2015, the monthly average ARF at the surface (ARFSFC), top of the atmosphere (ARFTOA), and atmosphere (ARFATM) were −89.6 ± 18.6 Wm−2, −25.2 ± 6.8 Wm−2, and +64.4 ± 16.5 Wm−2, respectively. We observed that during dust aerosol transport days, the ARFSFC and TOA changed by −112.2 and −40.7 Wm−2, respectively, compared with low aerosol loading days, thereby accounting for the decrease in the solar radiation by 207% reaching the surface. This substantial decrease in the solar radiation reaching the Earth’s surface increases the heating rate in the atmosphere by 3.1-fold, thereby acting as an additional forcing factor for accelerated melting of the snow and glacier resources of the IHR.
Collapse
|
167
|
Hasan G, Valiev RR, Salo VT, Kurtén T. Computational Investigation of the Formation of Peroxide (ROOR) Accretion Products in the OH- and NO 3-Initiated Oxidation of α-Pinene. J Phys Chem A 2021; 125:10632-10639. [PMID: 34881893 PMCID: PMC8713291 DOI: 10.1021/acs.jpca.1c08969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The formation of
accretion products (“dimers”) from
recombination reactions of peroxyl radicals (RO2) is a
key step in the gas-phase generation of low-volatility vapors, leading
to atmospheric aerosol particles. We have recently demonstrated that
this recombination reaction very likely proceeds via an intermediate
complex of two alkoxy radicals (RO···OR′) and
that the accretion product pathway involves an intersystem crossing
(ISC) of this complex from the triplet to the singlet surface. However,
ISC rates have hitherto not been computed for large and chemically
complex RO···OR′ systems actually relevant to
atmospheric aerosol formation. Here, we carry out systematic conformational
sampling and ISC rate calculations on 3(RO···OR′)
clusters formed in the recombination reactions of different diastereomers
of the first-generation peroxyl radicals originating in both OH- and
NO3-initiated reactions of α-pinene, a key biogenic
hydrocarbon for atmospheric aerosol formation. While we find large
differences between the ISC rates of different diastereomer pairs,
all systems have ISC rates of at least 106 s–1, and many have rates exceeding 1010 s–1. Especially the latter value demonstrates that accretion product
formation via the suggested pathway is a competitive process also
for α-pinene-derived RO2 and likely explains the
experimentally observed gas-phase formation of C20 compounds
in α-pinene oxidation.
Collapse
Affiliation(s)
- Galib Hasan
- Department of Chemistry, University of Helsinki, POB 55, Helsinki FIN-00014, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Rashid R Valiev
- Department of Chemistry, University of Helsinki, POB 55, Helsinki FIN-00014, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland.,Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Vili-Taneli Salo
- Department of Chemistry, University of Helsinki, POB 55, Helsinki FIN-00014, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, POB 55, Helsinki FIN-00014, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
168
|
Kenagy HS, Romer Present PS, Wooldridge PJ, Nault BA, Campuzano-Jost P, Day DA, Jimenez JL, Zare A, Pye HOT, Yu J, Song CH, Blake DR, Woo JH, Kim Y, Cohen RC. Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16326-16338. [PMID: 34870986 PMCID: PMC8759034 DOI: 10.1021/acs.est.1c05521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of anthropogenic NOx emissions in secondary organic aerosol (SOA) production is not fully understood but is important for understanding the contribution of emissions to air quality. Here, we examine the role of organic nitrates (RONO2) in SOA formation over the Korean Peninsula during the Korea-United States Air Quality field study in Spring 2016 as a model for RONO2 aerosol in cities worldwide. We use aircraft-based measurements of the particle phase and total (gas + particle) RONO2 to explore RONO2 phase partitioning. These measurements show that, on average, one-fourth of RONO2 are in the condensed phase, and we estimate that ≈15% of the organic aerosol (OA) mass can be attributed to RONO2. Furthermore, we observe that the fraction of RONO2 in the condensed phase increases with OA concentration, evidencing that equilibrium absorptive partitioning controls the RONO2 phase distribution. Lastly, we model RONO2 chemistry and phase partitioning in the Community Multiscale Air Quality modeling system. We find that known chemistry can account for one-third of the observed RONO2, but there is a large missing source of semivolatile, anthropogenically derived RONO2. We propose that this missing source may result from the oxidation of semi- and intermediate-volatility organic compounds and/or from anthropogenic molecules that undergo autoxidation or multiple generations of OH-initiated oxidation.
Collapse
Affiliation(s)
- Hannah S Kenagy
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Paul S Romer Present
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Paul J Wooldridge
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Benjamin A Nault
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Pedro Campuzano-Jost
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Douglas A Day
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Jose L Jimenez
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Azimeh Zare
- Department of Chemistry, University of California, Berkeley, California 94710, United States
| | - Havala O T Pye
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Jinhyeok Yu
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61105, Republic of Korea
| | - Chul H Song
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61105, Republic of Korea
| | - Donald R Blake
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jung-Hun Woo
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Younha Kim
- Energy, Climate, and Environment (ECE) Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria
| | - Ronald C Cohen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Earth & Planetary Sciences, University of California, Berkeley CA 94 720, United States
| |
Collapse
|
169
|
Barber VP, Kroll JH. Chemistry of Functionalized Reactive Organic Intermediates in the Earth's Atmosphere: Impact, Challenges, and Progress. J Phys Chem A 2021; 125:10264-10279. [PMID: 34846877 DOI: 10.1021/acs.jpca.1c08221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gas-phase oxidation of organic compounds is an important chemical process in the Earth's atmosphere. It governs oxidant levels and controls the production of key secondary pollutants, and hence has major implications for air quality and climate. Organic oxidation is largely controlled by the chemistry of a few reactive intermediates, namely, alkyl (R) radicals, alkoxy (RO) radicals, peroxy (RO2) radicals, and carbonyl oxides (R1R2COO), which may undergo a number of unimolecular and bimolecular reactions. Our understanding of these intermediates, and the reaction pathways available to them, is based largely on studies of unfunctionalized intermediates, formed in the first steps of hydrocarbon oxidation. However, it has become increasingly clear that intermediates with functional groups, which are generally formed later in the oxidation process, can exhibit fundamentally different reactivity than unfunctionalized ones. In this Perspective, we explore the unique chemistry available to functionalized organic intermediates in the Earth's atmosphere. After a brief review of the canonical chemistry available to unfunctionalized intermediates, we discuss how the addition of functional groups can introduce new reactions, either by changing the energetics or kinetics of a given reaction or by opening up new chemical pathways. We then provide examples of atmospheric reaction classes that are available only to functionalized intermediates. Some of these, such as unimolecular H-shift reactions of RO2 radicals, have been elucidated only relatively recently, and can have important impacts on atmospheric chemistry (e.g., on radical cycling or organic aerosol formation); it seems likely that other, as-yet undiscovered reactions of (multi)functional intermediates may also exist. We discuss the challenges associated with the study of the chemistry of such intermediates and review novel experimental and theoretical approaches that have recently provided (or hold promise for providing) new insights into their atmospheric chemistry. The continued use and development of such techniques and the close collaboration between experimentalists and theoreticians are necessary for a complete, detailed understanding of the chemistry of functionalized intermediates and their impact on major atmospheric chemical processes.
Collapse
Affiliation(s)
- Victoria P Barber
- Departments of Civil and Environmental Engineering and Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jesse H Kroll
- Departments of Civil and Environmental Engineering and Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
170
|
Goldman MJ, Green WH, Kroll JH. Chemistry of Simple Organic Peroxy Radicals under Atmospheric through Combustion Conditions: Role of Temperature, Pressure, and NO x Level. J Phys Chem A 2021; 125:10303-10314. [PMID: 34843244 DOI: 10.1021/acs.jpca.1c07203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic peroxy radicals (RO2) are key intermediates in the oxidation of organic compounds in both combustion systems and the atmosphere. While many studies have focused on reactions of RO2 in specific applications, spanning a relatively limited range of reaction conditions, the generalized behavior of RO2 radicals across the full range of reaction conditions (temperatures, pressures, and NO levels) has, to our knowledge, never been explored. In this work, two simple model systems, n-propyl peroxy radical and γ-isobutanol peroxy radical, are used to evaluate RO2 fate using pressure-dependent kinetics. The fate of these radicals was modeled based on literature data over 250-1250 K, 0.01-100 bar, and 1 ppt to 100 ppm of NO, which spans the typical range of atmospheric and combustion conditions. Covering this entire range provides a broad overview of the reactivity of these species under both atmospheric and combustion conditions, as well as under conditions intermediate to the two. A particular focus is on the importance of reactions that were traditionally considered to occur in only one of the two sets of conditions: RO2 unimolecular isomerization reactions (long known to occur in combustion systems but only recently appreciated in atmospheric systems) and RO2 bimolecular reactions of RO2 with NO (thought to occur mainly in atmospheric systems and rarely considered in combustion chemistry).
Collapse
Affiliation(s)
- Mark Jacob Goldman
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jesse H Kroll
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
171
|
Shen H, Zhao D, Pullinen I, Kang S, Vereecken L, Fuchs H, Acir IH, Tillmann R, Rohrer F, Wildt J, Kiendler-Scharr A, Wahner A, Mentel TF. Highly Oxygenated Organic Nitrates Formed from NO 3 Radical-Initiated Oxidation of β-Pinene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15658-15671. [PMID: 34807606 DOI: 10.1021/acs.est.1c03978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reactions of biogenic volatile organic compounds (BVOC) with the nitrate radicals (NO3) are major night-time sources of organic nitrates and secondary organic aerosols (SOA) in regions influenced by BVOC and anthropogenic emissions. In this study, the formation of gas-phase highly oxygenated organic molecules-organic nitrates (HOM-ON) from NO3-initiated oxidation of a representative monoterpene, β-pinene, was investigated in the SAPHIR chamber (Simulation of Atmosphere PHotochemistry In a large Reaction chamber). Six monomer (C = 7-10, N = 1-2, O = 6-16) and five accretion product (C = 17-20, N = 2-4, O = 9-22) families were identified and further classified into first- or second-generation products based on their temporal behavior. The time lag observed in the peak concentrations between peroxy radicals containing odd and even number of oxygen atoms, as well as between radicals and their corresponding termination products, provided constraints on the HOM-ON formation mechanism. The HOM-ON formation can be explained by unimolecular or bimolecular reactions of peroxy radicals. A dominant portion of carbonylnitrates in HOM-ON was detected, highlighting the significance of unimolecular termination reactions by intramolecular H-shift for the formation of HOM-ON. A mean molar yield of HOM-ON was estimated to be 4.8% (-2.6%/+5.6%), suggesting significant HOM-ON contributions to the SOA formation.
Collapse
Affiliation(s)
- Hongru Shen
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Defeng Zhao
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
- Big Data Institute for Carbon Emission and Environmental Pollution, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), 20 Cuiniao Road, Chenjia Zhen, Chongming, Shanghai 202162, China
| | - Iida Pullinen
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Sungah Kang
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Luc Vereecken
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Hendrik Fuchs
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Ismail-Hakki Acir
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Ralf Tillmann
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Franz Rohrer
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Jürgen Wildt
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Andreas Wahner
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Thomas F Mentel
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
172
|
Zheng Y, Chen Q, Cheng X, Mohr C, Cai J, Huang W, Shrivastava M, Ye P, Fu P, Shi X, Ge Y, Liao K, Miao R, Qiu X, Koenig TK, Chen S. Precursors and Pathways Leading to Enhanced Secondary Organic Aerosol Formation during Severe Haze Episodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15680-15693. [PMID: 34775752 DOI: 10.1021/acs.est.1c04255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular analyses help to investigate the key precursors and chemical processes of secondary organic aerosol (SOA) formation. We obtained the sources and molecular compositions of organic aerosol in PM2.5 in winter in Beijing by online and offline mass spectrometer measurements. Photochemical and aqueous processing were both involved in producing SOA during the haze events. Aromatics, isoprene, long-chain alkanes or alkenes, and carbonyls such as glyoxal and methylglyoxal were all important precursors. The enhanced SOA formation during the severe haze event was predominantly contributed by aqueous processing that was promoted by elevated amounts of aerosol water for which multifunctional organic nitrates contributed the most followed by organic compounds having four oxygen atoms in their formulae. The latter included dicarboxylic acids and various oxidation products from isoprene and aromatics as well as products or oligomers from methylglyoxal aqueous uptake. Nitrated phenols, organosulfates, and methanesulfonic acid were also important SOA products but their contributions to the elevated SOA mass during the severe haze event were minor. Our results highlight the importance of reducing nitrogen oxides and nitrate for future SOA control. Additionally, the formation of highly oxygenated long-chain molecules with a low degree of unsaturation in polluted urban environments requires further research.
Collapse
Affiliation(s)
- Yan Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xi Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Claudia Mohr
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm 11418, Sweden
| | - Jing Cai
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Wei Huang
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Manish Shrivastava
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Penglin Ye
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaodi Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yanli Ge
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keren Liao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ruqian Miao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Theodore K Koenig
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
173
|
DeVault MP, Ziemann PJ. Gas- and Particle-Phase Products and Their Mechanisms of Formation from the Reaction of Δ-3-Carene with NO 3 Radicals. J Phys Chem A 2021; 125:10207-10222. [PMID: 34791878 DOI: 10.1021/acs.jpca.1c07763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monoterpenes are a major component of the large quantities of biogenic volatile organic compounds that are emitted to the atmosphere each year. They have a variety of structures, which influences their subsequent reactions with OH radicals, O3, or NO3 radicals and the tendency for these reactions to form secondary organic aerosol (SOA). Here we report the results of an environmental chamber study of the reaction of Δ-3-carene, an abundant unsaturated C10 bicyclic monoterpene, with NO3 radicals, a major nighttime oxidant. Gas- and particle-phase reaction products were analyzed in real time and offline by using mass spectrometry, gas and liquid chromatography, infrared spectroscopy, and derivatization-spectrophotometric methods. The results were used to identify and quantify functional groups and molecular products and to develop gas- and particle-phase reaction mechanisms to explain their formation. Identified gas-phase products were all first-generation ring-retaining and ring-opened compounds (ten C10 and one C9 monomers) with 2-4 functional groups and one C20 dinitrooxydialkyl peroxide dimer. Upon partitioning to the particle phase, the monomers reacted further to form oligomers consisting almost entirely of C20 acetal and hemiacetal dimers, with those formed from a hydroxynitrate and hydroxycarbonyl nitrate comprising more than 50% of the SOA mass. The SOA contained an average of 0.94, 0.71, 0.15, 0.11, 0.16, 0.13, and 7.80 nitrate, carbonyl, hydroxyl, carboxyl, ester, peroxide, and methylene groups per C10 monomer and was formed with a mass yield of 56%. These results have important similarities and differences to those obtained from a previous similar study of the reaction of β-pinene and yield new insights into the effects of monoterpene structure on gas- and particle-phase reactions that can lead to the formation of a large variety of multifunctional products and significant amounts of SOA.
Collapse
Affiliation(s)
- Marla P DeVault
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, Colorado 80309, United States
| | - Paul J Ziemann
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, Colorado 80309, United States
| |
Collapse
|
174
|
Xia D, Chen J, Wang Y, Xu T, Su L, Xie HB, Allen DT. Organic acid-ammonia ion-induced nucleation pathways unveiled by quantum chemical calculation and kinetics modeling: A case study of 3-methyl-1,2,3-butanetricarboxylic acid. CHEMOSPHERE 2021; 284:131354. [PMID: 34216930 DOI: 10.1016/j.chemosphere.2021.131354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/13/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Nucleation of organic acids (OAs) and H2SO4 is an important source for new particle formation in the atmosphere. However, it is still unclear whether organic acids can produce nanoparticles independent of H2SO4. In this study, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) was adopted as a model of OAs. Pathways of clustering from MBTCA, ammonia and ions (NH4+ and NO3-) to form a 1.9 nm nucleus were investigated by quantum chemical calculation and kinetic modeling. Results show recombination of charged clusters/ions plays an essential role in the nucleation processes. Cluster formation rates increase by a factor of 103 when NH3 increases from 2.6 × 108 molecules·cm-3 (under clean conditions) to 2.6 × 1011 molecules·cm-3 (under polluted conditions), as NH3 can stabilize MBTCA clusters and change ion compositions from H3O+ to NH4+. Although the proposed new mechanism cannot compete with H2SO4-NH3-H2O or H2SO4-OA nucleation currently, it may be important in the future with the decline of SO2 concentration.
Collapse
Affiliation(s)
- Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Ya Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Tong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - David T Allen
- Center for Energy and Environmental Resources, University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
175
|
Towards a Comprehensive Characterization of the Low-Temperature Autoxidation of Di-n-Butyl Ether. Molecules 2021; 26:molecules26237174. [PMID: 34885760 PMCID: PMC8658975 DOI: 10.3390/molecules26237174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, we investigated the oxidation of 2500 ppm of di-n-butyl ether under fuel-rich conditions (φ = 2) at low temperatures (460-780 K), a residence time of 1 s, and 10 atm. The experiments were carried out in a fused silica jet-stirred reactor. Oxidation products were identified and quantified in gas samples by gas chromatography and Fourier transform infrared spectrometry. Samples were also trapped through bubbling in cool acetonitrile for high-pressure liquid chromatography (HPLC) analyses. 2,4-dinitro-phenylhydrazine was used to derivatize carbonyl products and distinguish them from other isomers. HPLC coupled to high resolution mass spectrometry (Orbitrap Q-Exactive®) allowed for the detection of oxygenated species never observed before, i.e., low-temperature oxidation products (C8H12O4,6, C8H16O3,5,7, and C8H18O2,5) and species that are more specific products of atmospheric oxidation, i.e., C16H34O4, C11H24O3, C11H22O3, and C10H22O3. Flow injection analyses indicated the presence of high molecular weight oxygenated products (m/z > 550). These results highlight the strong similitude in terms of classes of oxidation products of combustion and atmospheric oxidation, and through autoxidation processes. A kinetic modeling of the present experiments indicated some discrepancies with the present data.
Collapse
|
176
|
Tuovinen S, Kontkanen J, Cai R, Kulmala M. Condensation sink of atmospheric vapors: the effect of vapor properties and the resulting uncertainties. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2021; 1:543-557. [PMID: 34913038 PMCID: PMC8614186 DOI: 10.1039/d1ea00032b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Aerosol particles affect the climate and human health. Thus, understanding and accurately quantifying the processes associated with secondary formation of aerosol particles is highly important. The loss rate of vapor to aerosol particles affects the mass balance of that vapor in the atmosphere. The condensation sink (CS) describes the condensation rate of vapor to particles while the effective condensation sink (CSeff) describes the loss rate including both condensation and evaporation of vapor. When the CS is determined, the mass accommodation coefficient (α) is usually assumed to be unity and the condensing vapor is often assumed to be sulfuric acid. In addition, evaporation is assumed to be negligible (CSeff = CS) and the total loss rate of vapor is described by the CS. To study the possible uncertainties resulting from these assumptions, we investigate how vapor properties such as vapor mass and α affect the CS. In addition, the influence of evaporation on the CSeff is evaluated. The CS and CSeff are determined using particle number size distribution data from Beijing, China. Vapors are observed to have differing CSs depending on molecular mass and diffusivity volume and larger molecules are lost at a slower rate. If the condensing vapor is composed, for example, of oxidized organic molecules, which often have larger masses than sulfuric acid molecules, the CS is smaller than for pure sulfuric acid vapor. We find that if α is smaller than unity, the CS can be significantly overestimated if unity is assumed. Evaporation can significantly influence the CSeff for volatile and semi-volatile vapors. Neglecting the evaporation may result in an overestimation of vapor loss rate and hence an underestimation of the fraction of vapor molecules that is left to form clusters.
Collapse
Affiliation(s)
- Santeri Tuovinen
- Institute for Atmospheric and Earth System Research, University of Helsinki Helsinki 00014 Finland
| | - Jenni Kontkanen
- Institute for Atmospheric and Earth System Research, University of Helsinki Helsinki 00014 Finland
| | - Runlong Cai
- Institute for Atmospheric and Earth System Research, University of Helsinki Helsinki 00014 Finland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research, University of Helsinki Helsinki 00014 Finland .,Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University Nanjing China.,Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Sciences and Engineering, Beijing University of Chemical Technology (BUCT) Beijing China.,Faculty of Geography, Lomonosov Moscow State University Moscow Russia
| |
Collapse
|
177
|
Berndt T. Peroxy Radical Processes and Product Formation in the OH Radical-Initiated Oxidation of α-Pinene for Near-Atmospheric Conditions. J Phys Chem A 2021; 125:9151-9160. [PMID: 34636563 DOI: 10.1021/acs.jpca.1c05576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Pinene, C10H16, represents one of the most important biogenic emissions into the atmosphere. The formation of RO2 radicals HO-C10H16Ox, x = 2-6, and their closed-shell products from the OH + α-pinene reaction has been measured for close to atmospheric reaction conditions in the presence of NO with concentrations of (1.7-490) × 109 molecules cm-3. Main closed-shell products are substances with the composition C10H16O2 and C10H16O4, most likely carbonyls, obtained with molar yields in the range 0.42-0.45 and 0.17-0.19, respectively, for NO concentrations >5 × 1010 molecules cm-3. The corresponding total product yields amount to 0.75-0.81, indicating efficient product detection by the mass spectrometric method applied. All stated molar yields represent lower limit values affected with an uncertainty of [Formula: see text]. Kinetic and product analysis consistently revealed the suppression of the formation of highly oxygenated organic molecules (HOMs) by a factor of 2-2.2 for the highest NO concentration used. The findings of this study provide insights into the RO2 radical processes of the OH + α-pinene reaction for atmospheric conditions and give an overview about the first-generation products.
Collapse
Affiliation(s)
- Torsten Berndt
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
178
|
Rissanen M. Anthropogenic Volatile Organic Compound (AVOC) Autoxidation as a Source of Highly Oxygenated Organic Molecules (HOM). J Phys Chem A 2021; 125:9027-9039. [PMID: 34617440 PMCID: PMC8543447 DOI: 10.1021/acs.jpca.1c06465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/01/2021] [Indexed: 11/30/2022]
Abstract
Gas-phase hydrocarbon autoxidation is a rapid pathway for the production of in situ aerosol precursor compounds. It is a highway to molecular growth and lowering of vapor pressure, and it produces hydrogen-bonding functional groups that allow a molecule to bind into a substrate. It is the crucial process in the formation and growth of atmospheric secondary organic aerosol (SOA). Recently, the rapid gas-phase autoxidation of several volatile organic compounds (VOC) has been shown to yield highly oxygenated organic molecules (HOM). Most of the details on HOM formation have been obtained from biogenic monoterpenes and their surrogates, with cyclic structures and double bonds both found to strongly facilitate HOM formation, especially in ozonolysis reactions. Similar structural features in common aromatic compounds have been observed to facilitate high HOM formation yields, despite the lack of appreciable O3 reaction rates. Similarly, the recently observed autoxidation and subsequent HOM formation in the oxidation of saturated hydrocarbons cannot be initiated by O3 and require different mechanistic steps for initiating and propagating the autoxidation sequence. This Perspective reflects on these recent findings in the context of the direct aerosol precursor formation in urban atmospheres.
Collapse
Affiliation(s)
- Matti Rissanen
- Aerosol Physics Laboratory,
Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland
| |
Collapse
|
179
|
Qiao X, Yan C, Li X, Guo Y, Yin R, Deng C, Li C, Nie W, Wang M, Cai R, Huang D, Wang Z, Yao L, Worsnop DR, Bianchi F, Liu Y, Donahue NM, Kulmala M, Jiang J. Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13646-13656. [PMID: 34585932 DOI: 10.1021/acs.est.1c02095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gas-phase oxygenated organic molecules (OOMs) can contribute substantially to the growth of newly formed particles. However, the characteristics of OOMs and their contributions to particle growth rate are not well understood in urban areas, which have complex anthropogenic emissions and atmospheric conditions. We performed long-term measurement of gas-phase OOMs in urban Beijing during 2018-2019 using nitrate-based chemical ionization mass spectrometry. OOM concentrations showed clear seasonal variations, with the highest in the summer and the lowest in the winter. Correspondingly, calculated particle growth rates due to OOM condensation were highest in summer, followed by spring, autumn, and winter. One prominent feature of OOMs in this urban environment was a high fraction (∼75%) of nitrogen-containing OOMs. These nitrogen-containing OOMs contributed only 50-60% of the total growth rate led by OOM condensation, owing to their slightly higher volatility than non-nitrate OOMs. By comparing the calculated condensation growth rates and the observed particle growth rates, we showed that sulfuric acid and its clusters are the main contributors to the growth of sub-3 nm particles, with OOMs significantly promoting the growth of 3-25 nm particles. In wintertime Beijing, however, there are missing contributors to the growth of particles above 3 nm, which remain to be further investigated.
Collapse
Affiliation(s)
- Xiaohui Qiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, P. R. China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Xiaoxiao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, P. R. China
| | - YiShuo Guo
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Rujing Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, P. R. China
| | - Chenjuan Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, P. R. China
| | - Chang Li
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Wei Nie
- Joint International research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Mingyi Wang
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Runlong Cai
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Dandan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, P. R. China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, P. R. China
| | - Lei Yao
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Douglas R Worsnop
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerodyne Research Incoporated, Billerica, Massachusetts 01821, United States
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, P. R. China
| |
Collapse
|
180
|
Wei J, Fang T, Lakey PSJ, Shiraiwa M. Iron-Facilitated Organic Radical Formation from Secondary Organic Aerosols in Surrogate Lung Fluid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 56:7234-7243. [PMID: 34596401 DOI: 10.1021/acs.est.1c04334] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Respiratory deposition of secondary organic aerosols (SOA) and iron may lead to the generation of reactive oxygen species and free radicals in lung fluid to cause oxidative stress, but their underlying mechanism and formation kinetics are not well understood. Here we demonstrate substantial formation of organic radicals in surrogate lung fluid (SLF) by mixtures of Fe2+ and SOA generated from photooxidation of isoprene, α-terpineol, and toluene. The molar yields of organic radicals by SOA are measured to be 0.03-0.5% in SLF, which are 5-10 times higher than in water. We observe that Fe2+ enhances organic radical yields dramatically by a factor of 20-80, which can be attributed to Fe2+-facilitated decomposition of organic peroxides, in consistency with a positive correlation between peroxide contents and organic radical yields. Ascorbate mediates redox cycling of iron ions to sustain organic peroxide decomposition, as supported by kinetic modeling reproducing time- and concentration-dependence of organic radical formation as well as additional experiments observing the formation of Fe2+ and ascorbate radicals in mixtures of ascorbate and Fe3+. •OH and superoxide are found to be scavenged by antioxidants efficiently. These findings have implications on the role of organic radicals in oxidative damage and lipid peroxidation.
Collapse
Affiliation(s)
- Jinlai Wei
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Ting Fang
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
181
|
Wu X, Huang C, Chai J, Zhang F. Formation of Substituted Alkyls as Precursors of Peroxy Radicals with a Rapid H-Shift in the Atmosphere. J Phys Chem Lett 2021; 12:8790-8797. [PMID: 34491756 DOI: 10.1021/acs.jpclett.1c02503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Long straight-chain alkyl peroxy (ROO) radicals substituted with C═C and oxo functional groups are expected to undergo a rapid hydrogen shift (H-shift), which is a critical step in the atmospheric autoxidation mechanism. The existence of a weak tertiary C-H bond plays a key role in the rapid H-shift. Here, the reaction kinetics between OH and two typical long straight-chain functionalized volatile organic compounds, 3-methyl-1-hexene (3-MH) and 2-methylpentanal (2-MP), was theoretically investigated to reveal the fate of the weak C-H bond. The results indicate that the most favored reaction pathways are direct consumption (H-abstraction of 2-MP) and indirect destruction (addition of OH to 3-MH) of the "weak" tertiary C-H bond. The yields of abstraction pathways producing precursors of ROO radicals that undergo rapid H-shifts are computed to be less than 10% for both 3-MH + OH and 2-MP + OH reactions.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Can Huang
- Chair of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Jiajue Chai
- Institute at Brown for Environment and Society, and Department of Earth, Environmental and Planetary Sciences, Brown University, 182 Hope Street, Providence, Rhode Island 02912, United States
| | - Feng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
182
|
Vereecken L, Vu G, Wahner A, Kiendler-Scharr A, Nguyen HMT. A structure activity relationship for ring closure reactions in unsaturated alkylperoxy radicals. Phys Chem Chem Phys 2021; 23:16564-16576. [PMID: 34313271 DOI: 10.1039/d1cp02758a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Terpenoids are an important class of multi-unsaturated volatile organic compounds emitted to the atmosphere. During their oxidation in the troposphere, unsaturated peroxy radicals are formed, which may undergo ring closure reactions by an addition of the radical oxygen atom on either of the carbons in the C[double bond, length as m-dash]C double bond. This study describes a quantum chemical and theoretical kinetic study of the rate of ring closure, finding that the reactions are comparatively fast with rates often exceeding 1 s-1 at room temperature, making these reactions competitive in low-NOx environments and allowing for continued autoxidation by ring closure. A structure-activity relationship (SAR) is presented for 5- to 8-membered ring closure in unsaturated RO2 radicals with aliphatic substituents, with some analysis of the impact of oxygenated substituents. H-migration in the cycloperoxide peroxy radicals formed after the ring closure was found to be comparatively slow for unsubstituted RO2 radicals. In the related cycloperoxide alkoxy radicals, migration of H-atoms implanted on the ring was similarly found to be slower than for non-cyclic alkoxy radicals and is typically not competitive against decomposition reactions that lead to cycloperoxide ring breaking. Ring closure reactions may constitute an important reaction channel in the atmospheric oxidation of terpenoids and could promote continued autoxidation, though the impact is likely to be strongly dependent on the specific molecular backbone.
Collapse
Affiliation(s)
- L Vereecken
- Institute for Energy and Climate Research: IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | | | | | | | | |
Collapse
|
183
|
Jahn LG, Wang DS, Dhulipala SV, Ruiz LH. Gas-Phase Chlorine Radical Oxidation of Alkanes: Effects of Structural Branching, NO x, and Relative Humidity Observed during Environmental Chamber Experiments. J Phys Chem A 2021; 125:7303-7317. [PMID: 34383508 DOI: 10.1021/acs.jpca.1c03516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorine-initiated oxidation of alkanes has been shown to rapidly form secondary organic aerosol (SOA) at higher yields than OH-alkane reactions. However, the effects of alkane volatile organic compound precursor structure and the reasons for the differences in SOA yield from OH-alkane reactions remain unclear. In this work, we investigated the effects of alkane molecular structure on oxidation by chlorine radical (Cl) and resulting formation of SOA through a series of laboratory chamber experiments, utilizing data from an iodide chemical ionization mass spectrometer and an aerosol chemical speciation monitor. Experiments were conducted with linear, branched, and branched cyclic C10 alkane precursors under different NOx and RH conditions. Observed product fragmentation patterns during the oxidation of branched alkanes demonstrate the abstraction of primary hydrogens by Cl, confirming a key difference between OH- and Cl-initiated oxidation of alkanes and providing a possible explanation for higher SOA production from Cl-initiated oxidation. Low-NOx conditions led to higher SOA production. SOA formed from butylcyclohexane under low NOx conditions contained higher fractions of organic acids and lower volatility molecules that were less prone to oligomerization relative to decane SOA. Branched alkanes produced less SOA, and branched cycloalkanes produced more SOA than linear n-alkanes, consistent with past work on OH-initiated reactions. Overall, our work provides insights into the differences between Cl- and OH-initiated oxidation of alkanes of different structures and the potential significance of Cl as an atmospheric oxidant.
Collapse
Affiliation(s)
- Leif G Jahn
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 78712 Texas, United States
| | - Dongyu S Wang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 78712 Texas, United States.,Now at Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Surya Venkatesh Dhulipala
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 78712 Texas, United States.,Now at Department of Mechanical Engineering, The University of British Columbia, V6T 1Z4 Vancouver, Canada
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 78712 Texas, United States
| |
Collapse
|
184
|
Hansen AS, Bhagde T, Moore KB, Moberg DR, Jasper AW, Georgievskii Y, Vansco MF, Klippenstein SJ, Lester MI. Watching a hydroperoxyalkyl radical (•QOOH) dissociate. Science 2021; 373:679-682. [PMID: 34353951 DOI: 10.1126/science.abj0412] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/22/2021] [Indexed: 11/02/2022]
Abstract
A prototypical hydroperoxyalkyl radical (•QOOH) intermediate, transiently formed in the oxidation of volatile organic compounds, was directly observed through its infrared fingerprint and energy-dependent unimolecular decay to hydroxyl radical and cyclic ether products. Direct time-domain measurements of •QOOH unimolecular dissociation rates over a wide range of energies were found to be in accord with those predicted theoretically using state-of-the-art electronic structure characterizations of the transition state barrier region. Unimolecular decay was enhanced by substantial heavy-atom tunneling involving O-O elongation and C-C-O angle contraction along the reaction pathway. Master equation modeling yielded a fully a priori prediction of the pressure-dependent thermal unimolecular dissociation rates for the •QOOH intermediate-again increased by heavy-atom tunneling-which are required for global models of atmospheric and combustion chemistry.
Collapse
Affiliation(s)
- Anne S Hansen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trisha Bhagde
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin B Moore
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Daniel R Moberg
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yuri Georgievskii
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael F Vansco
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
185
|
Barber VP, Green WH, Kroll JH. Screening for New Pathways in Atmospheric Oxidation Chemistry with Automated Mechanism Generation. J Phys Chem A 2021; 125:6772-6788. [PMID: 34346695 DOI: 10.1021/acs.jpca.1c04297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the Earth's atmosphere, reactive organic carbon undergoes oxidation via a highly complex, multigeneration process, with implications for air quality and climate. Decades of experimental and theoretical studies, primarily on the reactions of hydrocarbons, have led to a canonical understanding of how gas-phase oxidation of organic compounds takes place. Recent research has brought to light a number of examples where the presence of certain functional groups opens up reaction pathways for key radical intermediates, including alkyl radicals, alkoxy radicals, and peroxy radicals, that are substantially different from traditional oxidation mechanisms. These discoveries highlight the need for methods that systematically explore the chemistry of complex, functionalized molecules without being prohibitively expensive. In this work, automated reaction network generation is used as a screening tool for new pathways in atmospheric oxidation chemistry. The reaction mechanism generator (RMG) is used to generate reaction networks for the OH-initiated oxidation of 200 mono- and bifunctionally substituted n-pentanes. The resulting networks are then filtered to highlight the reactions of key radical intermediates that are fast enough to compete with traditional atmospheric removal processes as well as "uncanonical" processes which differ from traditionally accepted oxidation mechanisms. Several recently reported, uncanonical atmospheric mechanisms appear in the RMG dataset. These "proof of concept" results provide confidence in this approach as a tool in the search for overlooked atmospheric oxidation chemistry. Several previously unreported reaction types are also encountered in the dataset. The most potentially atmospherically important of these is a radical-carbonyl ring-closure reaction that produces a highly functionalized cyclic alkoxy radical. This pathway is proposed as a promising target for further study via experiments and more detailed theoretical calculations. The approach presented herein represents a new way to efficiently explore atmospheric chemical space and unearth overlooked reaction steps in atmospheric oxidation.
Collapse
Affiliation(s)
- Victoria P Barber
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jesse H Kroll
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
186
|
Zhang Y, Wang K, Tong H, Huang RJ, Hoffmann T. The maximum carbonyl ratio (MCR) as a new index for the structural classification of secondary organic aerosol components. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9113. [PMID: 33908097 DOI: 10.1002/rcm.9113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Organic aerosols (OA) account for a large fraction of atmospheric fine particulate matter and thus are affecting climate and public health. Elucidation of the chemical composition of OA is the key for addressing the role of ambient fine particles at the atmosphere-biosphere interface and mass spectrometry is the main method to achieve this goal. METHODS High-resolution mass spectrometry (HRMS) is on its way to becoming one of the most prominent analytical techniques, also for the analysis of atmospheric aerosols. The combination of high mass resolution and accurate mass determination allows the elemental compositions of numerous compounds to be easily elucidated. Here a new parameter for the improved classification of OA is introduced - the maximum carbonyl ratio (MCR) - which is directly derived from the molecular composition and is particularly suitable for the identification and characterization of secondary organic aerosols (SOA). RESULTS The concept is exemplified by the analysis of ambient OA samples from two measurement sites (Hyytiälä, Finland; Beijing, China) and of laboratory-generated SOA based on ultrahigh-performance liquid chromatography (UHPLC) coupled to Orbitrap MS. To interpret the results, MCR-Van Krevelen (VK) diagrams are generated for the different OA samples and the individual compounds are categorized into specific areas in the diagrams. The results show that the MCR index is a valuable parameter for representing atmospheric SOA components in composition and structure-dependent visualization tools such as VK diagrams. CONCLUSIONS The MCR index is suggested as a tool for a better characterization of the sources and the processing of atmospheric OA components based on HRMS data. Since the MCR contains information on the concentration of highly electrophilic organic compounds in particulate matter (PM) as well as on the concentration of organic (hydro)peroxides, the MCR could be a promising metric for identifying health-related particulate matter parameters by HRMS.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Chemistry, Johannes Gutenberg University, Mainz, 55128, Germany
| | - Kai Wang
- Key Laboratory of Plant-Soil Interactions of MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Haijie Tong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Thorsten Hoffmann
- Department of Chemistry, Johannes Gutenberg University, Mainz, 55128, Germany
| |
Collapse
|
187
|
Shannon RJ, Martínez-Núñez E, Shalashilin DV, Glowacki DR. ChemDyME: Kinetically Steered, Automated Mechanism Generation through Combined Molecular Dynamics and Master Equation Calculations. J Chem Theory Comput 2021; 17:4901-4912. [PMID: 34283599 DOI: 10.1021/acs.jctc.1c00335] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In many scientific fields, there is an interest in understanding the way in which chemical networks evolve. The chemical networks which researchers focus upon have become increasingly complex, and this has motivated the development of automated methods for exploring chemical reactivity or conformational change in a "black-box" manner, harnessing modern computing resources to automate mechanism discovery. In this work, we present a new approach to automated mechanism generation which couples molecular dynamics and statistical rate theory to automatically find kinetically important reactions and then solve the time evolution of the species in the evolving network. The key to this chemical network mapping through combined dynamics and ME simulation approach is the concept of "kinetic convergence", whereby the search for new reactions is constrained to those species which are kinetically favorable at the conditions of interest. We demonstrate the capability of the new approach for two systems, a well-studied combustion system and a multiple oxygen addition system relevant to atmospheric aerosol formation.
Collapse
Affiliation(s)
- Robin J Shannon
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Emilio Martínez-Núñez
- Department of Physical Chemistry, University of Santiago de Compostela, Santiago de Compostela 15705, Spain
| | | | - David R Glowacki
- ArtSci International Foundation, 5th floor Mariner House, Bristol BS1 4QD, U.K
| |
Collapse
|
188
|
Shen J, Bigi A, Marinoni A, Lampilahti J, Kontkanen J, Ciarelli G, Putaud JP, Nieminen T, Kulmala M, Lehtipalo K, Bianchi F. Emerging Investigator Series: COVID-19 lockdown effects on aerosol particle size distributions in northern Italy. ACTA ACUST UNITED AC 2021; 1:214-227. [PMID: 34355190 PMCID: PMC8296575 DOI: 10.1039/d1ea00016k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
The lockdown measures implemented to curb the COVID-19 epidemic in Italy reduced human mobility dramatically, which resulted in a marked decline in traffic intensity. In this study, we present the effect of lockdown measures on several air pollutants, particle number size distribution as well as on regional new particle formation (NPF) frequency in the Po Valley (northern Italy). The results show that during the lockdown period, concentrations of nitrogen dioxide (NO2), nitric oxide (NO), benzene (C6H6), and toluene (C7H8) decreased, while ozone (O3) concentrations mildly increased as compared to the corresponding period in 2016–2019. Unlike gaseous pollutants, particulate matter mass concentrations (PM2.5 and PM10) showed no significant changes. The impact of lockdown measures on particle number size distributions were also quite limited. During the lockdown period, the number concentrations of 10–25 and 25–50 nm primary particles were reduced by 66% and 34%, respectively, at the regional background site (Ispra) but surprisingly there was no difference during and after lockdown at the urban background site (Modena). Conversely, the NPF frequency was exceptionally high, 70%, in Modena during the lockdown as compared to values (22–26%) observed for the same period in 2006 and 2009, while NPF frequency in Ispra only slightly increased compared to the same period in 2016–2019. The particle growth rates, however, were slightly lower during the lockdown at both sites compared to other periods. The study shows that a drastic decrease in traffic had little influence on particulate pollution levels in the Po Valley, suggesting that other sources and processes also have a prominent impact on particle number and particulate matter mass concentration in this region. Impact of lockdown measures on the air pollutants and particle number size distribution.![]()
Collapse
Affiliation(s)
- Jiali Shen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Finland
| | - Alessandro Bigi
- Department of Engineering "Enzo Ferrari", Università di Modena e Reggio Emilia Modena Italy
| | - Angela Marinoni
- Institute of Atmospheric Sciences and Climate, National Research Council of Italy Bologna Italy
| | - Janne Lampilahti
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Finland
| | - Jenni Kontkanen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Finland
| | - Giancarlo Ciarelli
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Finland
| | - Jean P Putaud
- European Commission, Joint Research Centre (JRC) Ispra Italy
| | - Tuomo Nieminen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Finland .,Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki Finland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Finland .,Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing China.,Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University Nanjing China
| | - Katrianne Lehtipalo
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Finland .,Finnish Meteorological Institute Helsinki Finland
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Finland
| |
Collapse
|
189
|
Jaoui M, Piletic IR, Szmigielski R, Rudzinski KJ, Lewandowski M, Riedel TP, Kleindienst TE. Rapid production of highly oxidized molecules in isoprene aerosol via peroxy and alkoxy radical isomerization pathways in low and high NO x environments: Combined laboratory, computational and field studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145592. [PMID: 34380608 PMCID: PMC8363757 DOI: 10.1016/j.scitotenv.2021.145592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Recently, we identified seven novel hydroxy-carboxylic acids resulting from gas-phase reactions of isoprene in the presence of nitrogen oxides (NOx), ozone (O3), and/or hydroxyl radicals (OH). In the present study, we provide evidence that hydroxy-carboxylic acids, namely methyltartaric acids (MTA) are: (1) reliable isoprene tracers, (2) likely produced via rapid peroxy radical hydrogen atom (H) shift reactions (autoxidation mechanism) and analogous alkoxy radical H shifts in low and high NOx environments respectively and (3) representative of aged ambient aerosol in the low NOx regime. Firstly, MTA are reliable tracers of isoprene aerosol because they have been identified in numerous chamber experiments involving isoprene conducted under a wide range of conditions and are absent in the oxidation of mono- and sesquiterpenes. They are also present in numerous samples of ambient aerosol collected during the past 20 years at several locations in the U.S. and Europe. Furthermore, MTA concentrations measured during a year-long field study in Research Triangle Park (RTP), NC in 2003 show a seasonal trend consistent with isoprene emissions and photochemical activity. Secondly, an analysis of chemical ionization mass spectrometer (CIMS) data of several chamber experiments in low and high NOx environments show that highly oxidized molecules (HOMs) derived from isoprene that lead to MTAs may be produced rapidly and considered as early generation isoprene oxidation products in the gas phase. Density functional theory calculations show that rapid intramolecular H shifts involving peroxy and alkoxy radicals possess low barriers for methyl-hydroxy-butenals (MHBs) that may represent precursors for MTA. From these results, a viable rapid H shift mechanism is proposed to occur that produces isoprene derived HOMs like MTA. Finally, an analysis of the mechanism shows that autoxidation-like pathways in low and high NOx may produce HOMs in a few OH oxidation steps like commonly detected methyl tetrol (MT) isoprene tracers. The ratio of MTA/MT in isoprene aerosol is also shown to be significantly greater in field versus chamber samples indicating the importance of such pathways in the atmosphere even for smaller hydrocarbons like isoprene.
Collapse
Affiliation(s)
- Mohammed Jaoui
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America.
| | - Ivan R Piletic
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America
| | - Rafal Szmigielski
- Environmental Chemistry Group, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Krzysztof J Rudzinski
- Environmental Chemistry Group, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Michael Lewandowski
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America
| | - Theran P Riedel
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America
| | - Tadeusz E Kleindienst
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America
| |
Collapse
|
190
|
Hallar AG, Brown SS, Crosman E, Barsanti K, Cappa CD, Faloona I, Fast J, Holmes HA, Horel J, Lin J, Middlebrook A, Mitchell L, Murphy J, Womack CC, Aneja V, Baasandorj M, Bahreini R, Banta R, Bray C, Brewer A, Caulton D, de Gouw J, De Wekker SF, Farmer DK, Gaston CJ, Hoch S, Hopkins F, Karle NN, Kelly JT, Kelly K, Lareau N, Lu K, Mauldin RL, Mallia DV, Martin R, Mendoza D, Oldroyd HJ, Pichugina Y, Pratt KA, Saide P, Silva PJ, Simpson W, Stephens BB, Stutz J, Sullivan A. Coupled Air Quality and Boundary-Layer Meteorology in Western U.S. Basins during Winter: Design and Rationale for a Comprehensive Study. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 2021; 0:1-94. [PMID: 34446943 PMCID: PMC8384125 DOI: 10.1175/bams-d-20-0017.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models.
Collapse
Affiliation(s)
| | | | - Erik Crosman
- Department of Life, Earth, and Environmental Sciences, West Texas A&M University
| | - Kelley Barsanti
- Department of Chemical and Environmental Engineering, Center for Environmental Research and Technology, University of California, Riverside
| | - Christopher D. Cappa
- Department of Civil and Environmental Engineering, University of California, Davis 95616 USA
| | - Ian Faloona
- Department of Land, Air and Water Resources, University of California, Davis
| | - Jerome Fast
- Atmospheric Science and Global Change Division, Pacific Northwest, National Laboratory, Richland, Washington, USA
| | - Heather A. Holmes
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT
| | - John Horel
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - John Lin
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | | | - Logan Mitchell
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Jennifer Murphy
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Caroline C. Womack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado/ NOAA Chemical Sciences Laboratory, Boulder, CO
| | - Viney Aneja
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University
| | | | - Roya Bahreini
- Environmental Sciences, University of California, Riverside, CA
| | | | - Casey Bray
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University
| | - Alan Brewer
- NOAA Chemical Sciences Laboratory, Boulder, CO
| | - Dana Caulton
- Department of Atmospheric Science, University of Wyoming
| | - Joost de Gouw
- Cooperative Institute for Research in Environmental Sciences & Department of Chemistry, University of Colorado, Boulder, CO
| | | | | | - Cassandra J. Gaston
- Department of Atmospheric Science - Rosenstiel School of Marine and Atmospheric Science, University of Miami
| | - Sebastian Hoch
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | | | - Nakul N. Karle
- Environmental Science and Engineering, The University of Texas at El Paso, TX
| | - James T. Kelly
- Office of Air Quality Planning and Standards, US Environmental Protection Agency, Research Triangle Park, NC
| | - Kerry Kelly
- Chemical Engineering, University of Utah, Salt Lake City, UT
| | - Neil Lareau
- Atmospheric Sciences and Environmental Sciences and Health, University of Nevada, Reno, NV
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing, China, 100871
| | - Roy L. Mauldin
- National Center for Atmospheric Research, Boulder, CO 80307, USA
| | - Derek V. Mallia
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Randal Martin
- Civil and Environmental Engineering, Utah State University, Utah Water Research Laboratory, Logan, UT
| | - Daniel Mendoza
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Holly J. Oldroyd
- Department of Civil and Environmental Engineering, University of California, Davis
| | | | | | - Pablo Saide
- Department of Atmospheric and Oceanic Sciences, and Institute of the Environment and Sustainability, University of California, Los Angeles
| | - Phillip J. Silva
- Food Animal Environmental Systems Research Unit, USDA-ARS, Bowling Green, KY
| | - William Simpson
- Department of Chemistry, Biochemistry, and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775-6160
| | - Britton B. Stephens
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles
| | - Amy Sullivan
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO
| |
Collapse
|
191
|
Chu B, Chen T, Liu Y, Ma Q, Mu Y, Wang Y, Ma J, Zhang P, Liu J, Liu C, Gui H, Hu R, Hu B, Wang X, Wang Y, Liu J, Xie P, Chen J, Liu Q, Jiang J, Li J, He K, Liu W, Jiang G, Hao J, He H. Application of smog chambers in atmospheric process studies. Natl Sci Rev 2021; 9:nwab103. [PMID: 35145701 PMCID: PMC8826053 DOI: 10.1093/nsr/nwab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Abstract
Smog chamber experimental systems, which have been widely used in laboratory simulation for studying atmospheric processes, are comprehensively reviewed in this paper. The components, development history, main research topics and main achievements of smog chambers are introduced. Typical smog chambers in the world, including their volumes, wall materials, light sources and features, are summarized and compared. Key factors of smog chambers and their influences on the simulation of the atmospheric environment are discussed, including wall loss, wall emission and background pollutants. The features of next-generation smog chambers and their application prospect in future studies of the atmospheric environment are also outlined in this paper.
Collapse
Affiliation(s)
- Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunshan Liu
- Beijing Convenient Environmental Tech Co. Ltd, Beijing 101115, China
| | - Huaqiao Gui
- Key Laboratory of Environmental Optics and Technology, Anhui Institutes of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Renzhi Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institutes of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Bo Hu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xinming Wang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuesi Wang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jianguo Liu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Environmental Optics and Technology, Anhui Institutes of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Pinhua Xie
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Environmental Optics and Technology, Anhui Institutes of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianmin Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Qian Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kebin He
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenqing Liu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Environmental Optics and Technology, Anhui Institutes of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Guibin Jiang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
192
|
Abstract
The fates of organic hydroperoxides (ROOHs) in atmospheric condensed phases are key to understanding the oxidative and toxicological potentials of particulate matter. Recently, mass spectrometric detection of ROOHs as chloride anion adducts has revealed that liquid-phase α-hydroxyalkyl hydroperoxides, derived from hydration of carbonyl oxides (Criegee intermediates), decompose to geminal diols and H2O2 over a time frame that is sensitively dependent on the water content, pH, and temperature of the reaction solution. Based on these findings, it has been proposed that H+-catalyzed conversion of ROOHs to ROHs + H2O2 is a key process for the decomposition of ROOHs that bypasses radical formation. In this perspective, we discuss our current understanding of the aqueous-phase decomposition of atmospherically relevant ROOHs, including ROOHs derived from reaction between Criegee intermediates and alcohols or carboxylic acids, and of highly oxygenated molecules (HOMs). Implications and future challenges are also discussed.
Collapse
Affiliation(s)
- Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
193
|
Ma F, Xie HB, Li M, Wang S, Zhang R, Chen J. Autoxidation mechanism for atmospheric oxidation of tertiary amines: Implications for secondary organic aerosol formation. CHEMOSPHERE 2021; 273:129207. [PMID: 33349467 DOI: 10.1016/j.chemosphere.2020.129207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Tertiary amines are one kind of identified amines in the atmosphere. Here, the atmospheric oxidation mechanism and kinetics of tertiary amines were investigated by using computational methods. As proxies of these amines, trimethylamine (TMA) and triethylamine (TEA) have been selected. Results indicate that N-containing peroxy radicals (NRO2⋅), which are key intermediates in ⋅OH initiated oxidation of TMA and TEA, can follow a so-called autoxidation mechanism (a chain reaction of H-shift followed by O2 addition) even on the condition of high NO/HO2⋅ concentration. Such unique mechanism can be ascribed to the ability of N-atom in facilitating the unimolecular H-shift of NRO2⋅ and the absence of H-atoms on N-atom. However, different from TMA reaction system, the pathway dissociating into fragmental products can compete with the autoxidation pathway for TEA system. More importantly, TEA reaction system cannot lead to the formation of products with high O/C ratio due to the autoxidation pathway terminated by the release of fragmental molecules. Such difference can be corroborated by previously observing lower secondary organic aerosol yield of TEA oxidation than that of TMA oxidation. The unveiled mechanism enhances current understanding on atmospheric fate of amines and autoxidation mechanism.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Mingxue Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sainan Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Renyi Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
194
|
Kroflič A, Anders J, Drventić I, Mettke P, Böge O, Mutzel A, Kleffmann J, Herrmann H. Guaiacol Nitration in a Simulated Atmospheric Aerosol with an Emphasis on Atmospheric Nitrophenol Formation Mechanisms. ACS EARTH & SPACE CHEMISTRY 2021; 5:1083-1093. [PMID: 34084985 PMCID: PMC8161671 DOI: 10.1021/acsearthspacechem.1c00014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric nitrophenols are pollutants of concern due to their toxicity and light-absorption characteristics and their low reactivity resulting in relatively long residence times in the environment. We investigate multiphase nitrophenol formation from guaiacol in a simulated atmospheric aerosol and support observations with the corresponding chemical mechanisms. The maximal secondary organic aerosol (SOA) yield (42%) is obtained under illumination at 80% relative humidity. Among the identified nitrophenols, 4-nitrocatechol (3.6% yield) is the prevailing species in the particulate phase. The results point to the role of water in catechol and further 4-nitrocatechol formation from guaiacol. In addition, a new pathway of dark nitrophenol formation is suggested, which prevailed in dry air and roughly yielded 1% nitroguaiacols. Furthermore, the proposed mechanism possibly leads to oligomer formation via a phenoxy radical formation by oxidation with HONO.
Collapse
Affiliation(s)
- Ana Kroflič
- Department
of Analytical Chemistry, National Institute
of Chemistry, Hajdrihova
19, 1000 Ljubljana, Slovenia
- Atmospheric
Chemistry Department (ACD), Leibniz-Institute
for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Janine Anders
- Atmospheric
Chemistry Department (ACD), Leibniz-Institute
for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Ivana Drventić
- Department
of Analytical Chemistry, National Institute
of Chemistry, Hajdrihova
19, 1000 Ljubljana, Slovenia
| | - Peter Mettke
- Atmospheric
Chemistry Department (ACD), Leibniz-Institute
for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Olaf Böge
- Atmospheric
Chemistry Department (ACD), Leibniz-Institute
for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Anke Mutzel
- Atmospheric
Chemistry Department (ACD), Leibniz-Institute
for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Jörg Kleffmann
- Physical
and Theoretical Chemistry, University of
Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Hartmut Herrmann
- Atmospheric
Chemistry Department (ACD), Leibniz-Institute
for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
195
|
Zhao Z, Zhang W, Alexander T, Zhang X, Martin DBC, Zhang H. Isolating α-Pinene Ozonolysis Pathways Reveals New Insights into Peroxy Radical Chemistry and Secondary Organic Aerosol Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6700-6709. [PMID: 33913707 DOI: 10.1021/acs.est.1c02107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
α-Pinene ozonolysis is a key process that impacts the formation of new particles and secondary organic aerosol (SOA) in the atmosphere. The mechanistic understanding of this chemistry has been inconclusive despite extensive research, hindering accurate simulations of atmospheric processes. In this work, we examine the ozonolysis of two synthesized unsaturated carbonyl isomers (C11H18O) which separately produce the two Criegee intermediates (CIs) that would form simultaneously in α-pinene ozonolysis. Direct gas-phase measurements of peroxy radicals (RO2) from flowtube ozonolysis experiments by an iodide-adduct chemical ionization mass spectrometer suggest that the initial C10H15O4· RO2 from the CI with a terminal methyl ketone undergo autoxidation 20-fold faster than the CI with a terminal aldehyde and always outcompete the bimolecular reactions under typical laboratory and atmospheric conditions. These results provide experimental constraints on the detailed RO2 autoxidation mechanisms for understanding new particle formation in the atmosphere. Further, isomer-resolved characterization of the SOA formed from a continuous-flow stirred tank reactor using ion mobility spectrometry mass spectrometry suggests that the two structurally different CIs predominantly and unexpectedly form constituents with identical structures. These results open up possibilities of diverse isomerization pathways that the two CIs may undergo that form mutual products to a large extent toward their way forming the SOA. This work highlights new insights into α-pinene ozonolysis pathways and call for future studies to uncover the detailed mechanisms.
Collapse
Affiliation(s)
- Zixu Zhao
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Wen Zhang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Taylor Alexander
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Xuan Zhang
- Department of Life and Environmental Sciences, University of California, Merced, California 95343, United States
| | - David B C Martin
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
196
|
Berndt T, Møller KH, Herrmann H, Kjaergaard HG. Trimethylamine Outruns Terpenes and Aromatics in Atmospheric Autoxidation. J Phys Chem A 2021; 125:4454-4466. [PMID: 33978422 DOI: 10.1021/acs.jpca.1c02465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autoxidation in the atmosphere has been realized in the last decade as an important process that forms highly oxidized products relevant for the formation of secondary organic aerosol and likely with detrimental human health effects. It is experimentally shown that the OH radical-initiated oxidation of trimethylamine, the most highly emitted amine in the atmosphere, proceeds via rapid autoxidation steps dominating its atmospheric oxidation process. All three methyl groups are functionalized within a timescale of 10 s following the reaction with OH radicals leading to highly oxidized products. The exceptionally large density of functional groups in the oxidized products is expected to define their chemical properties. A detailed reaction mechanism based on theoretical calculations is able to describe the experimental findings. The comparison with results of the reinvestigated OH radical- and ozone-initiated autoxidation of a series of terpenes and aromatics reveals the trimethylamine process as the most efficient one discovered up to now for atmospheric conditions.
Collapse
Affiliation(s)
- Torsten Berndt
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, Leipzig 04318, Germany
| | - Kristian H Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, Leipzig 04318, Germany
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| |
Collapse
|
197
|
Hyttinen N, Wolf M, Rissanen MP, Ehn M, Peräkylä O, Kurtén T, Prisle NL. Gas-to-Particle Partitioning of Cyclohexene- and α-Pinene-Derived Highly Oxygenated Dimers Evaluated Using COSMO therm. J Phys Chem A 2021; 125:3726-3738. [PMID: 33885310 PMCID: PMC8154597 DOI: 10.1021/acs.jpca.0c11328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Oxidized
organic compounds are expected to contribute to secondary
organic aerosol (SOA) if they have sufficiently low volatilities.
We estimated saturation vapor pressures and activity coefficients
(at infinite dilution in water and a model water-insoluble organic
phase) of cyclohexene- and α-pinene-derived accretion products,
“dimers”, using the COSMOtherm19 program.
We found that these two property estimates correlate with the number
of hydrogen bond-donating functional groups and oxygen atoms in the
compound. In contrast, when the number of H-bond donors is fixed,
no clear differences are seen either between functional group types
(e.g., OH or OOH as H-bond donors) or the formation mechanisms (e.g.,
gas-phase radical recombination vs liquid-phase closed-shell esterification).
For the cyclohexene-derived dimers studied here, COSMOtherm19 predicts lower vapor pressures than the SIMPOL.1 group-contribution
method in contrast to previous COSMOtherm estimates
using older parameterizations and nonsystematic conformer sampling.
The studied dimers can be classified as low, extremely low, or ultra-low-volatility
organic compounds based on their estimated saturation mass concentrations.
In the presence of aqueous and organic aerosol particles, all of the
studied dimers are likely to partition into the particle phase and
thereby contribute to SOA formation.
Collapse
Affiliation(s)
- Noora Hyttinen
- Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Matthieu Wolf
- Department of Chemistry and Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, 00014 Helsinki, Finland
| | - Matti P Rissanen
- Aerosol Physics Laboratory, Physics Unit, Tampere University, 33720 Tampere, Finland
| | - Mikael Ehn
- Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Otso Peräkylä
- Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Theo Kurtén
- Department of Chemistry and Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, 00014 Helsinki, Finland
| | - Nønne L Prisle
- Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland.,Center for Atmospheric Research, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
198
|
Popitanu C, Cioca G, Copolovici L, Iosif D, Munteanu FD, Copolovici D. The Seasonality Impact of the BTEX Pollution on the Atmosphere of Arad City, Romania. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094858. [PMID: 34063249 PMCID: PMC8124805 DOI: 10.3390/ijerph18094858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
Benzene, toluene, and total BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations registered for one year (2016) have been determined every month for one high-density traffic area. The assessment was performed in Arad City, Romania, to evaluate these pollutants and their influence on the inhabitants’ health. The contaminants were sampled using a static sampling method and analyzed by gas chromatography coupled with mass spectrometry. Benzene was the most dominant among the BTEX compounds—the average concentrations ranged from 18.00 ± 1.32 µg m−3 in December to 2.47 ± 0.74 µg m−3 in August. The average toluene concentration over the year was 4.36 ± 2.42 µg m−3 (with a maximum of 9.60 ± 2.39 µg m−3 in November and a minimum of 1.04 ± 0.29 µg m−3 in May). The toluene/benzene ratio (T/B) was around 0.5, indicating substantial contributions from mobile sources (vehicles). The emission and accumulation of different aromatic compounds (especially benzene) could deteriorate the urban air quality. The lifetime cancer risk (LTCR) for benzene was found to be more than 10−5 in winter, including the inhabitants in the “probable cancer risk” category.
Collapse
Affiliation(s)
- Corina Popitanu
- Biomedical Sciences Doctoral School, University of Oradea, 410087 Oradea, Romania;
| | - Gabriela Cioca
- Preclinical Department, Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania;
| | - Lucian Copolovici
- Development and Innovation in Technical and Natural Sciences, Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Aurel Vlaicu University of Arad, 310330 Arad, Romania; (D.I.); (F.-D.M.); (D.C.)
- Correspondence: ; Tel.: +40-74-525-9816
| | - Dennis Iosif
- Development and Innovation in Technical and Natural Sciences, Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Aurel Vlaicu University of Arad, 310330 Arad, Romania; (D.I.); (F.-D.M.); (D.C.)
| | - Florentina-Daniela Munteanu
- Development and Innovation in Technical and Natural Sciences, Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Aurel Vlaicu University of Arad, 310330 Arad, Romania; (D.I.); (F.-D.M.); (D.C.)
| | - Dana Copolovici
- Development and Innovation in Technical and Natural Sciences, Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Aurel Vlaicu University of Arad, 310330 Arad, Romania; (D.I.); (F.-D.M.); (D.C.)
| |
Collapse
|
199
|
Belh SJ, Ghosh G, Greer A. Surface-Radical Mobility Test by Self-Sorted Recombination: Symmetrical Product upon Recombination (SPR). J Phys Chem B 2021; 125:4212-4220. [PMID: 33856798 DOI: 10.1021/acs.jpcb.1c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe here a study of the mobility of the alkoxy radical on a surface by detection of its recombination product. A novel method called symmetrical product recombination (SRP) uses an unsymmetrical peroxide that upon sensitized homolysis recombines to a symmetrical product [R'OOR → R'O•↑ + •OR → ROOR]. This allows for self-sorting of the radical to enhance the recombination path to a symmetrical product, which has been used to deduce surface migratory aptitude. SPR also provides a new opportunity for mechanistic studies of interfacial radicals, including monitoring competition between radical recombination versus surface hydrogen abstraction. This is an approach that might work for other surface-borne radicals on natural and artificial particles.
Collapse
Affiliation(s)
- Sarah J Belh
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Goutam Ghosh
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
200
|
Vogt E, Huchmala RM, Jensen CV, Boyer MA, Wallberg J, Hansen AS, Kjærsgaard A, Lester MI, McCoy AB, Kjaergaard HG. Coupling of torsion and OH-stretching in tert-butyl hydroperoxide. II. The OH-stretching fundamental and overtone spectra. J Chem Phys 2021; 154:164307. [DOI: 10.1063/5.0048022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Emil Vogt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Rachel M. Huchmala
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Casper V. Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Mark A. Boyer
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Jens Wallberg
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Anne S. Hansen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Alexander Kjærsgaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Marsha I. Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Anne B. McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|