151
|
Wang J, Wang Z, Cheng Y, Cao L, Bai F, Yue S, Xie P, Ma J. Molybdenum disulfide (MoS 2): A novel activator of peracetic acid for the degradation of sulfonamide antibiotics. WATER RESEARCH 2021; 201:117291. [PMID: 34107364 DOI: 10.1016/j.watres.2021.117291] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Sulfonamide antibiotics (SAs) are typical antibiotics and have attracted increasing concerns about their wide occurrence in environment as well as potential risk for human health. In this study, we applied a novel advanced oxidation process in SAs degradation by combining molybdenum sulfide and peracetic acid (MoS2/PAA). Reactive oxygen species (ROS) including HO●, CH3C(O)O●, CH3C(O)OO●, and 1O2 were generated from PAA by MoS2 activation and contributed to SAs degradation. The effects of initial pH, the dosages of PAA and MoS2, and humic acid for SAs degradation were further evaluated by selecting sulfamethoxazole (SMX) as a target SA in the MoS2/PAA process. Results suggested that the optimum pH for SMX removal was 3, where the degradation efficiency of SMX was higher than 80% after reaction for 15 min. Increasing PAA (0.075-0.45 mM) or MoS2 (0.1-0.4 g/L) dosages facilitated the SMX degradation, while the presence of humic acids retarded the SMX removal. This MoS2/PAA process also showed good efficiencies in removing other SAs including sulfaguanidine, sulfamonomethoxine and sulfamerazine. Their possible degradation pathways were proposed based on the products identification and DFT calculation, showing that apart from the oxidation of amine groups to nitro groups in SAs, MoS2/PAA induced SO2 extrusion reaction for SAs that contained six-membered heterocyclic moieties.
Collapse
Affiliation(s)
- Jingwen Wang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujie Cheng
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lisan Cao
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fan Bai
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyang Yue
- School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
152
|
Liu B, Guo W, Jia W, Wang H, Zheng S, Si Q, Zhao Q, Luo H, Jiang J, Ren N. Insights into the oxidation of organic contaminants by Co(II) activated peracetic acid: The overlooked role of high-valent cobalt-oxo species. WATER RESEARCH 2021; 201:117313. [PMID: 34119969 DOI: 10.1016/j.watres.2021.117313] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The combination of Co(II) and peracetic acid (PAA) is a promising advanced oxidation process for the abatement of refractory organic contaminants, and acetylperoxy (CH3CO3•) and acetoxyl (CH3CO2•) radicals are generally recognized as the dominant and selective intermediate oxidants. However, the role of high-valent cobalt-oxo species [Co(IV)] have been overlooked. Herein, we confirmed that Co(II)/PAA reaction enables the generation of Co(IV) at acidic conditions based on multiple lines of evidences, including methyl phenyl sulfoxide (PMSO)-based probe experiments, 18O isotope-labeling technique, and in situ Raman spectroscopy. In-depth investigation reveals that the PAA oxidation mechanism is strongly pH dependent. The elevation of solution pH could induce major oxidants converting from Co(IV) to oxygen-centered radicals (i.e., CH3CO3• and CH3CO2•). The presence of H2O2 competitively consumes both Co(IV) and reactive radicals generated from Co(II)/PAA process, and thus, leading to an undesirably decline in catalytic performance. Additionally, as a highly reactive and selective oxidant, Co(IV) reacts readily with organic substances bearing electron-rich groups, and efficiently attenuating their biological toxicity. Our findings enrich the fundamental understanding of Co(II) and PAA reaction and will be useful for the application of Co(IV)-mediated processes.
Collapse
Affiliation(s)
- Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Shanshan Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
153
|
Li R, Manoli K, Kim J, Feng M, Huang CH, Sharma VK. Peracetic Acid-Ruthenium(III) Oxidation Process for the Degradation of Micropollutants in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9150-9160. [PMID: 34128639 DOI: 10.1021/acs.est.0c06676] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper presents an advanced oxidation process (AOP) of peracetic acid (PAA) and ruthenium(III) (Ru(III)) to oxidize micropollutants in water. Studies of PAA-Ru(III) oxidation of sulfamethoxazole (SMX), a sulfonamide antibiotic, in 0.5-20.0 mM phosphate solution at different pH values (5.0-9.0) showed an optimum pH of 7.0 with a complete transformation of SMX in 2.0 min. At pH 7.0, other metal ions (i.e., Fe(II), Fe(III), Mn(II), Mn(III), Co(II), Cu(II), and Ni(II)) in 10 mM phosphate could activate PAA to oxidize SMX only up to 20%. The PAA-Ru(III) oxidation process was also unaffected by the presence of chloride and carbonate ions in solution. Electron paramagnetic resonance (EPR) measurements and quenching experiments showed the dominant involvement of the acetyl(per)oxyl radicals (i.e., CH3C(O)O• and CH3C(O)OO•) for degrading SMX in the PAA-Ru(III) oxidation process. The transformation pathways of SMX by PAA-Ru(III) were proposed based on the identified intermediates. Tests with other pharmaceuticals demonstrated that the PAA-Ru(III) oxidation system could remove efficiently a wide range of pharmaceuticals (9 compounds) in the presence of phosphate ions in 2.0 min at neutral pH. The knowledge gained herein on the effective role of Ru(III) to activate PAA to oxidize micropollutants may aid in developing Ru(III)-containing catalysts for PAA-based AOPs.
Collapse
Affiliation(s)
- Ruobai Li
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Road, College Station, Texas 77844, United States
| | - Kyriakos Manoli
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Road, College Station, Texas 77844, United States
| | - Juhee Kim
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mingbao Feng
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Road, College Station, Texas 77844, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Road, College Station, Texas 77844, United States
| |
Collapse
|
154
|
Li X, Liang D, Wang C, Li Y. Insights into the peroxomonosulfate activation on boron-doped carbon nanotubes: Performance and mechanisms. CHEMOSPHERE 2021; 275:130058. [PMID: 33652283 DOI: 10.1016/j.chemosphere.2021.130058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/25/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Preparation of carbonaceous catalysts by doping with boron (B) is one of the most promising strategies for substitution of toxic transition metal catalysts in advanced oxidation processes. This study was dedicated to reveal the intrinsic structure-performance relationship of peroxomonosulfate (PMS) activation by B-doped carbon nanotubes toward catalytic oxidation of pollutants. Performance tests showed the catalyst realized more than 95% phenol removal at pH 7 in 1 h and 69.4% total organic carbon removal. The catalysts were characterized using scanning electron microscopy (SEM), transmission electron microscope (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). Characterization results indicated that the topography of carbon nanotube was not significantly changed after B doped, while the defect sites increased from 1.05 to 1.23. The newly formed active sites may be presented in the form of C3B, CBO2 and CBO3, and reactive oxygen species (ROS) including OH, SO4-•, O2-• and 1O2 might be generated after activation by the active sites. Furthermore, B-MWNT-PMS∗ was also be detected by In-situ Raman, confirming the non-radical pathway and electron transfer mechanism. Beside of phenol, the reaction system of B-MWNT/PMS also can remove methylene blue, bisphenol S and diuron at pH = 7, confirming the universality and promising of this advanced oxidation technology.
Collapse
Affiliation(s)
- Xingfa Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Department of Environmental Engineering and Technology, China Institute for Radiation Protection, Taiyuan, 030006, China.
| | - Dandan Liang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Chaoxu Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongguo Li
- Department of Environmental Engineering and Technology, China Institute for Radiation Protection, Taiyuan, 030006, China
| |
Collapse
|
155
|
Li H, Zhao Z, Qian J, Pan B. Are Free Radicals the Primary Reactive Species in Co(II)-Mediated Activation of Peroxymonosulfate? New Evidence for the Role of the Co(II)-Peroxymonosulfate Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6397-6406. [PMID: 33882668 DOI: 10.1021/acs.est.1c02015] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The catalytic activation of peroxymonosulfate (PMS) is under intensive investigation with potentials as an alternative advanced oxidation process (AOP) in wastewater treatment. Among all catalysts examined, Co(II) exhibits the highest reactivity for the activation of PMS, following the conventional Fenton-like mechanism, in which free radicals (i.e., sulfate radicals and hydroxyl radicals) are reckoned as the reactive species. Herein, we report that the primary reactive species (PRS) is proposed to be a Co(II)-PMS complex (Co(II)-OOSO3-), while free radicals and Co(III) species act as the secondary reactive species (SRS) that play a minor role in the Co(II)/PMS process. This Co(II)-OOSO3- exhibits several intriguing properties including ability to conduct both one-electron-transfer and oxygen-atom-transfer reactions with selected molecules, both nucleophilic and electrophilic in nature, and strongly pH-dependent reactivity. This study provides novel insights into the chemical nature of the Co(II)-catalyzed PMS activation process.
Collapse
Affiliation(s)
- Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Zihao Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
156
|
Chai X, Cui Y, Xu W, Kong L, Zuo Y, Yuan L, Chen W. Degradation of malathion in the solution of acetyl peroxyborate activated by carbonate: Products, kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124808. [PMID: 33338811 DOI: 10.1016/j.jhazmat.2020.124808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The degradation process of malathion in the acetyl peroxyborate (APB) solution of different APB/malathion molar ratio and in the carbonate-activated APB (APB/CO32-) solution of different pH was studied by 31P NMR technology. In the APB solution, all malathion could be degraded in 47.5 min when the molar ratio of APB/malathion was 60. CO32- could effectively activate APB to degrade all malathion in 10 min at pH of 10 when APB/malathion was 10, which was obviously higher than in APB solution. 1O2, •O2-, •OH and carbon-centered radicals (RC•) could be produced in the APB/CO32- solution, and the degradation of malathion was mainly affected by RC•. The degradation mechanism of malathion in the APB/CO32- solution was proposed based on the research results of malathion degradation process by 31P NMR and active species quenching test, which involves two steps: the first step is the oxidation of malathion to malaoxon by RC•, and the second step is the hydrolysis of malaoxon to dimethyl phosphate via hydroxyl anions nucleophilic addition.
Collapse
Affiliation(s)
- Xiaojie Chai
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China
| | - Yan Cui
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Wencai Xu
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Lingce Kong
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yanjun Zuo
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ling Yuan
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Wenming Chen
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
157
|
Nguyen TBV, Nguyen-Bich N, Vu ND, Ho Phuong H, Nguyen Thi H. Degradation of Reactive Blue 19 (RB19) by a Green Process Based on Peroxymonocarbonate Oxidation System. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6696600. [PMID: 33763288 PMCID: PMC7952156 DOI: 10.1155/2021/6696600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 06/09/2023]
Abstract
The effectiveness of peroxymonocarbonate (HCO4 -) on the degradation of Reactive Blue 19 (RB19) textile dye was investigated in this study. The formation kinetics of HCO4 - produced in situ in a H2O2 - HCO3 - system was studied to control the experimental conditions for the investigation of RB19 degradation at mild conditions. The effects of metallic ion catalysts, the pH, the input HCO3 - and Co2+ concentrations, and UV irradiation were studied. The obtained result showed that Co2+ ion gave the highest efficiency on accelerating the rate of RB19 degradation by the H2O2-HCO3 - system. In the pH range of 7-10, the higher pH values resulted in faster dye degradation. The reaction orders of the RB19 degradation with respect to Co2+ and HCO3 - were determined to be 1.2 and 1.7, respectively. The UV irradiation remarkably enhanced the radical formation in the oxidation system, which led to high degradation efficiencies. The COD, TOC removal, and HPLC results clearly revealed complete mineralization of RB19 by the H2O2 - HCO3 --Co2+ system.
Collapse
Affiliation(s)
- Thi Bich Viet Nguyen
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam
| | - Ngan Nguyen-Bich
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam
| | - Ngoc Duy Vu
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
- Research Center for Environmental Technology and Sustainable Development, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Hien Ho Phuong
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam
| | - Hanh Nguyen Thi
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam
- Department of Chemistry, Hanoi Pedagogical University 2, 32 Nguyen Van Linh, Phuc Yen, Vinh Phuc 15000, Vietnam
| |
Collapse
|
158
|
Ao XW, Eloranta J, Huang CH, Santoro D, Sun WJ, Lu ZD, Li C. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. WATER RESEARCH 2021; 188:116479. [PMID: 33069949 DOI: 10.1016/j.watres.2020.116479] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Peracetic acid (PAA) has attracted growing attention as an alternative oxidant and disinfectant in wastewater treatment due to the increased demand to reduce chlorine usage and control disinfection byproducts (DBPs). These applications have stimulated new investigations on PAA-based advanced oxidation processes (AOPs), which can enhance water disinfection and remove micropollutants. The purpose of this review is to conduct a comprehensive analysis of scientific information and experimental data reported in recent years on the applications of PAA-based AOPs for the removal of chemical and microbiological micropollutants from water and wastewater. Various methods of PAA activation, including the supply of external energy and metal/metal-free catalysts, as well as their activation mechanisms are discussed. Then, a review on the usage of PAA-based AOPs for contaminant degradation is given. The degradation mechanisms of organic compounds and the influence of the controlling parameters of PAA-based treatment systems are summarized and discussed. Concurrently, the application of PAA-based AOPs for water disinfection and the related mechanisms of microorganism inactivation are also reviewed. Since combining UV light with PAA is the most commonly investigated PAA-based AOP for simultaneous pathogen inactivation and micropollutant oxidation, we have also focused on PAA microbial inactivation kinetics, together with the effects of key experimental parameters on the process. Moreover, we have discussed the advantages and disadvantages of UV/PAA as an AOP against the well-known and established UV/H2O2. Finally, the knowledge gaps, challenges, and new opportunities for research in this field are discussed. This critical review will facilitate an in-depth understanding of the PAA-based AOPs for water and wastewater treatment and provide useful perspectives for future research and development for PAA-based technologies.
Collapse
Affiliation(s)
- Xiu-Wei Ao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jussi Eloranta
- Department of Chemistry and Biochemistry, California State University at Northridge, Northridge, CA, 91330, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | - Wen-Jun Sun
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Ze-Dong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chen Li
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
159
|
Wu Z, Wang L, Lu B, Eckhardt AK, Schreiner PR, Zeng X. Spectroscopic characterization and photochemistry of the vinylsulfinyl radical. Phys Chem Chem Phys 2021; 23:16307-16315. [PMID: 34313279 DOI: 10.1039/d1cp02584h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simplest α,β-unsaturated sulfinyl radical CH2[double bond, length as m-dash]C(H)SO˙ has been generated in the gas phase by high-vacuum flash pyrolysis (HVFP) of sulfoxide CH2[double bond, length as m-dash]C(H)S(O)CF3 at ca. 800 °C. Two planar cis and trans conformers of CH2[double bond, length as m-dash]C(H)SO˙ were isolated in cryogenic matrixes (N2, Ne, and Ar) and characterized with IR and UV/Vis spectroscopy. In addition to the photo-induced cis ⇋ trans conformational interconversion, CH2[double bond, length as m-dash]C(H)SO˙ displays complex photochemistry. Upon irradiation with a purple light LED (400 nm), CH2[double bond, length as m-dash]C(H)SO˙ isomerizes to novel radicals CH3SCO˙, ˙CH2SC(O)H, and ˙CH2C(O)SH with concomitant dissociation to a caged molecular complex CH3S˙CO. Subsequent UV-laser (266 nm) irradiation causes fragmentation to ˙CH3/OCS and additional formation of an elusive carbonyl radical CH3C(O)S˙, which rearranges to ˙CH2C(O)SH upon further UV-light irradiation (365 nm). The vibrational data and bonding analysis of the two conformers of CH2[double bond, length as m-dash]C(H)SO˙ suggest that both are floppy radicals in which the unpaired electron conjugates with the vicinal π(C[double bond, length as m-dash]C) bond, leading to significant contribution of the canonical resonance form of ˙CH2-C(H)SO. The mechanism for the isomerization of CH2[double bond, length as m-dash]C(H)SO˙ is discussed based on the observed intermediates along with a computed potential energy profile at the CCSD(T)-F12a/aug-cc-pVTZ//B3LYP/6-311++G(3df,3pd) level of theory.
Collapse
Affiliation(s)
- Zhuang Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | | | | | | | | | | |
Collapse
|
160
|
Wang J, Wan Y, Ding J, Wang Z, Ma J, Xie P, Wiesner MR. Thermal Activation of Peracetic Acid in Aquatic Solution: The Mechanism and Application to Degrade Sulfamethoxazole. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14635-14645. [PMID: 33108174 DOI: 10.1021/acs.est.0c02061] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemical oxidation using peracetic acid (PAA) can be enhanced by activation with the formation of reactive species such as organic radicals (R-O•) and HO•. Thermal activation is an alternative way for PAA activation, which was first applied to degrade micropollutants in this study. PAA is easily decomposed by heat via both radical and nonradical pathways. Our experimental results suggest that a series of reactive species including R-O•, HO•, and 1O2 can be produced through the thermal decomposition of PAA. Sulfamethoxazole (SMX), a typical sulfa drug, can be effectively removed by the thermoactivated PAA process under conditions of neutral pH. R-O• including CH3C(O)O• and CH3C(O)OO• has been shown to play a primary role in the degradation of SMX followed by direct PAA oxidation in the thermoactivated PAA process. Both higher temperature (60 °C) and higher PAA dose benefit SMX degradation, while coexisting H2O2 inhibits SMX degradation in the thermoactivated PAA process. With a variation of solution pH, conditions near a neutral value show the best performance of this process in SMX degradation. Based on the identified intermediates, transformation of SMX was proposed to undergo oxidation of the amine group and oxidative coupling reactions. This study definitively illustrates the PAA decomposition pathways at high temperature in aquatic solution and addresses the possibility of the thermoactivated PAA process for contaminant destruction, demonstrating this process to be a feasible advanced oxidation process.
Collapse
Affiliation(s)
- Jingwen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Ding
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Center for the Environmental Implications of Nanotechnology (CEINT), Durham, North Carolina 27708-0287, United States
| | - Mark R Wiesner
- Center for the Environmental Implications of Nanotechnology (CEINT), Durham, North Carolina 27708-0287, United States
| |
Collapse
|
161
|
Zhou X, Wu H, Zhang L, Liang B, Sun X, Chen J. Activation of Peracetic Acid with Lanthanum Cobaltite Perovskite for Sulfamethoxazole Degradation under a Neutral pH: The Contribution of Organic Radicals. Molecules 2020; 25:molecules25122725. [PMID: 32545498 PMCID: PMC7356246 DOI: 10.3390/molecules25122725] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Advanced oxidation processes (AOPs) are effective ways to degrade refractory organic contaminants, relying on the generation of inorganic radicals (e.g., •OH and SO4•-). Herein, a novel AOP with organic radicals (R-O•) was reported to degrade contaminants. Lanthanum cobaltite perovskite (LaCoO3) was used to activate peracetic acid (PAA) for organic radical generation to degrade sulfamethoxazole (SMX). The results show that LaCoO3 exhibited an excellent performance on PAA activation and SMX degradation at neutral pH, with low cobalt leaching. Meanwhile, LaCoO3 also showed an excellent reusability during PAA activation. In-depth investigation confirmed CH3C(O)O• and CH3C(O)OO• as the key reactive species for SMX degradation in LaCoO3/PAA system. The presence of Cl- (1-100 mM) slightly inhibited the degradation of SMX in the LaCoO3/PAA system, whereas the addition of HCO3- (0.1-1 mM) and humic aid (1-10 mg/L) could significantly inhibit SMX degradation. This work highlights the generation of organic radicals via the heterogeneous activation of PAA and thus provides a promising way to destruct contaminants in wastewater treatment.
Collapse
|