151
|
Orouji A, Abbasi-Moayed S, Hormozi-Nezhad MR. ThThnated Development of a pH assisted AgNP-based colorimetric sensor Array for simultaneous identification of phosalone and azinphosmethyl pesticides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:496-503. [PMID: 31077953 DOI: 10.1016/j.saa.2019.04.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Development of simple and rapid methods for identification of pesticides, due to their broad usage and harmful effects on mammals, has been known as a critical demand. Herein, we have introduced a silver nanoparticle (AgNP) based colorimetric sensor array for simultaneous identification of Azinphosmethyl (AM) and Phosalone (PS) pesticides. In the presence of the target pesticides, unmodified AgNPs at various pHs (4.5, 5.5 and 9.5) showed different aggregation behaviors. As a result of aggregation, the color and UV-Vis spectra of AgNPs changed differentially, leading to distinct response patterns for AM and PS. The aggregation induced spectral changes of AgNPs, were used to identify AM and PS with the help of linear discriminant analysis (LDA). The applicability of the proposed sensor array was then evaluated by identifying the target pesticides in apple samples. Altogether, the developed AgNPs based colorimetric sensor array can be potentially exploited as an efficient discrimination tool in the near future for agrichemical applications.
Collapse
Affiliation(s)
- A Orouji
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - S Abbasi-Moayed
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran
| | - M Reza Hormozi-Nezhad
- Chemistry Department, Sharif University of Technology, Tehran 11155-9516, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 11155-9516, Iran.
| |
Collapse
|
152
|
Wu H, Luo Y, Hou C, Huo D, Wang W, Zhao J, Lei Y. Rapid and fingerprinted monitoring of pesticide methyl parathion on the surface of fruits/leaves as well as in surface water enabled by gold nanorods based casting-and-sensing SERS platform. Talanta 2019; 200:84-90. [DOI: 10.1016/j.talanta.2019.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/24/2022]
|
153
|
Gao Y, Xu ML, Xiong J. Raman and SERS spectra of thiamethoxam and the Ag 3-thiamethoxam complex: an experimental and theoretical investigation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:665-675. [PMID: 31343381 DOI: 10.1080/03601234.2019.1631099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The insecticide thiamethoxam (TMX) is one of the most important neonicotinoid pesticides. The chromatographic methods currently employed to detect TMX require multiple operational steps. This study proposes a simple method that detects TMX via surface-enhanced Raman scattering (SERS) spectroscopy with Ag nanoparticles (NPs) as the SERS active substrate. Density functional theory (DFT) was used to calculate the structures and vibrational modes of the Ag- and Ag3-TMX complexes at the B3LYP/6-311++G(d,p)(C,H,N)/LanL2DZ(Ag) level of theory. The results reveal that the atoms in the thiazole ring all lie in the same plane, while the six-membered ring is perpendicular to the thiazole ring. Data from both Ultraviolet-visible and Raman spectroscopy indicated that TMX bonds to Ag through its nitro group, vertically. A weak intramolecular (N22-O23…H26) hydrogen bonding and Ag-O bands shift N-O symmetrical vibration to down to lower wavenumber. This was supported by the appearance of a strong 866 cm-1 band in the SERS spectrum assigned to the N-O symmetrical vibration coupled with the N-N stretching vibrational mode of different excitation wavelength. Notably, a good linear relationship was observed in the TMX concentration range 1.0 × 10-6-1.0 × 10-4 mol·L-1 (R2 = 0.9667). SERS is an extremely simple and rapid technique that requires little sample for analysis.
Collapse
Affiliation(s)
- Yu Gao
- College of Plant Protection, Jilin Agricultural University , Changchun , P. R. China
| | - Meng-Lei Xu
- College of Food Science and Engineering, Jilin University , Changchun , P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun , P. R. China
| | - Jinfeng Xiong
- Changchun Institute of Biological Products , Changchun , P. R. China
| |
Collapse
|
154
|
Enhancement of Single Molecule Raman Scattering using Sprouted Potato Shaped Bimetallic Nanoparticles. Sci Rep 2019; 9:10771. [PMID: 31341207 PMCID: PMC6656737 DOI: 10.1038/s41598-019-47179-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023] Open
Abstract
Herein, for the first time, we report the single molecule surface enhanced resonance Raman scattering (SERRS) and surface enhanced Raman scattering (SERS) spectra with high signal to noise ratio (S/N) using plasmon-active substrates fabricated by sprouted potato shaped Au-Ag bimetallic nanoparticles, prepared using a new one-step synthesis method. This particular shape of the nanoparticles has been obtained by fixing the amount of Au and carefully adjusting the amount of Ag. These nanoparticles have been characterized using scanning electron microscopy, extinction spectroscopy, and glancing angle X-ray diffraction. The single molecule sensitivity of SERS substrates has been tested with two different molecular Raman probes. The origin of the electromagnetic enhancement of single molecule Raman scattering in the presence of sprouted shape nanoparticles has been explained using quasi-static theory as well as finite element method (FEM) simulations. Moreover, the role of (i) methods for binding Raman probe molecules to the substrate, (ii) concentration of molecules, and (iii) Au-Ag ratio on the spectra of molecules has been studied in detail.
Collapse
|
155
|
Tarannum N, Hendrickson OD, Khatoon S, Zherdev AV, Dzantiev BB. Molecularly imprinted polymers as receptors for assays of antibiotics. Crit Rev Anal Chem 2019; 50:291-310. [DOI: 10.1080/10408347.2019.1626697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, India
| | - Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Shahjadi Khatoon
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, India
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
156
|
Zhu L, Dai H, Zhang S, Hu D, Zhou Q, Zou M, Adkins J, Zheng J. Enhanced Surface-Enhanced Raman Scattering (SERS) Sensitivity by the Self-Assembly of Silver Nanoparticles (Ag NPs) Laminated on Polydimethylsiloxane (PDMS). ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1625914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lele Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Hui Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Shuyun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Die Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Qun Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), Beijing, China
| | - Jason Adkins
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Junwei Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
157
|
Jiang L, Gu K, Liu R, Jin S, Wang H, Pan C. Rapid detection of pesticide residues in fruits by surface-enhanced Raman scattering based on modified QuEChERS pretreatment method with portable Raman instrument. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0619-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
158
|
Chen L, Wang D, Zhang W, Wang F, Zhang L, Wang Z, Li Y, Zhou Z, Diao J. Ecological risk assessment of alpha-cypermethrin-treated food ingestion and reproductive toxicity in reptiles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:657-664. [PMID: 30658301 DOI: 10.1016/j.ecoenv.2019.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Pesticides are proposed as one of the many causes for the global decline in reptile population. To understand the potential impact of alpha-cypermethrin (ACP) in reptiles, in the current study, we used a tri-trophic food web (plants - herbivores - natural enemies of predators) to examine the reproductive toxicity and biomarker changes. Based on the Maximum Residue Limit (MRL) of ACP in several agricultural products, we designed three concentrations 0, 2 (MRL), and 20 mg/kg wet weight as three treatment groups for this research. Male and female lizards were fed ACP contaminated or uncontaminated diets for eight weeks during the breeding phase. The number of deaths was different among the three groups, and a dose-dependent trend was found. Decreases in food consumption of 26.6% and 28.1% were observed in the low- and high-dose group, respectively. Dietary exposure significantly induced a dose-dependent decrease in body mass index in lizards. Significant variations in glutathione-S-transferaseb activities, catalase activities, and malondialdehyde levels in gonads, suggest that lizards were under oxidative stress. In addition, ACP exposure altered sexual hormone levels in males, reduced reproductive output of females, and induced histopathological changes in testes. These negative effects highlight that ACP dietary exposure is a potential threat to lizards' reproduction.
Collapse
Affiliation(s)
- Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Wenjun Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Fang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Luyao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zikang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yao Li
- College of Plant Protection, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
159
|
Guselnikova O, Postnikov P, Elashnikov R, Miliutina E, Svorcik V, Lyutakov O. Metal-organic framework (MOF-5) coated SERS active gold gratings: A platform for the selective detection of organic contaminants in soil. Anal Chim Acta 2019; 1068:70-79. [PMID: 31072479 DOI: 10.1016/j.aca.2019.03.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
In this work, we proposed the functionalization of a surface plasmon-polariton (SPP)-supported gold grating surface with the metal-organic framework (MOF-5) for sensitive, selective and reproducible surface-enhanced Raman scattering (SERS) detection of organophosphorus pesticides. Homogeneous distribution of plasmon intensity along the Au grating surface ensures the high reproducibility of SERS results (deviation of Raman peak intensity does not exceed the 4% along the sample). The surface-assisted growth of thin MOF-5 film was accomplished in two steps procedure: (i) covalent grafting by 4-carboxyphenyl groups and (ii) the immersion of samples in the mother liquid of MOF-5. Proposed SERS chip proved itself to be a perfect analytical probe for the detection of organophosphorus pesticides with high reliability and low detection limit up to 10-12 M. Moreover, selective detection and recognition of several relevant organic contaminants (azo-dye, mycotoxin, and pesticide) from the simulated soil was successfully demonstrated. All SERS measurements were performed using portable Raman spectrometer and can easily be expanded to environmental conditions. Our work combines the high affinity of organic contaminants to the MOF-5 with excellent plasmonic excitation on the surface plasmon-polariton supported structure and shows the way to the realization of closed-to-ideal analytical SERS chip.
Collapse
Affiliation(s)
- O Guselnikova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation
| | - P Postnikov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation.
| | - R Elashnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation
| | - E Miliutina
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation
| | - V Svorcik
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation
| | - O Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation.
| |
Collapse
|
160
|
Gerssen A, Bovee TH, van Ginkel LA, van Iersel ML, Hoogenboom RL. Food and feed safety: Cases and approaches to identify the responsible toxins and toxicants. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
161
|
A simple strategy to improve the sensitivity of probe molecules on SERS substrates. Talanta 2019; 195:221-228. [DOI: 10.1016/j.talanta.2018.11.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022]
|
162
|
Surface-Enhanced Raman Scattering Detection of Fipronil Pesticide Adsorbed on Silver Nanoparticles. SENSORS 2019; 19:s19061355. [PMID: 30889914 PMCID: PMC6471083 DOI: 10.3390/s19061355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 02/05/2023]
Abstract
This work presents a surface-enhanced Raman scattering (SERS) and density functional theory (DFT) study of a fipronil adsorbed on colloidal silver nanoparticles (AgNPs). A standard curve was established to quantify fipronil within a range of 0.0001⁻0.1 ppm (r² ≥ 0.985), relying on the unique fipronil Raman shift at ~2236 cm-1 adsorbed on AgNPs. DFT calculations suggest that the nitrile moiety (C≡N) binding should be slightly more favorable, by 1.92 kcal/mol, than those of the nitrogen atom of the pyrazole in fipronil and Ag₆ atom clusters. The characteristic peaks of the SERS spectrum were identified, and both the calculated vibrational wavenumbers and the Raman intensity pattern were considered. The vibrational spectra of fipronil were obtained from the potential energy distribution (PED) analysis and selective Raman band enhancement.
Collapse
|
163
|
Liu T, Yang F, Wang X, Liang JF. Adhesive Gold Nanoparticles for Easy and Controlled Surface Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2728-2737. [PMID: 30669837 DOI: 10.1021/acs.langmuir.8b04110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles (Au NPs) are one of the most important nanomaterials due to their unique properties and broad applications. Among these applications, decorating Au NPs on universal surfaces is highly desired. Herein, we report adhesive Au NPs functionalized by borated dopamine dithiocarbamate. Such Au NPs are nonreactive in colloidal solution but can be activated at an acidic pH to produce adhesive Au NPs and initiate spontaneous surface coating through deprotected catechol-mediated reactions. Easy and controllable surface coating was achieved on materials with distinguished chemical and physical properties because of the high reactivity of catechol. Adhesive Au NPs represent new surface coating method with wide application potentials.
Collapse
Affiliation(s)
- Tianchi Liu
- Department of Chemistry and Chemical Biology, Schaefer School of Engineering and Science , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| | - Fan Yang
- Department of Chemical Engineering and Materials Science , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , PR China
| | - Jun Feng Liang
- Department of Chemistry and Chemical Biology, Schaefer School of Engineering and Science , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| |
Collapse
|
164
|
Rapid Detection of Pesticide Residues in Paddy Water Using Surface-Enhanced Raman Spectroscopy. SENSORS 2019; 19:s19030506. [PMID: 30691110 PMCID: PMC6386844 DOI: 10.3390/s19030506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Pesticide residue in paddy water is one of the main factors affecting the quality and safety of rice, however, the negative effect of this residue can be effectively prevented and reduced through early detection. This study developed a rapid detection method for fonofos, phosmet, and sulfoxaflor in paddy water through chemometric methods and surface-enhanced Raman spectroscopy (SERS). Residue from paddy water samples was directly used for SERS measurement. The obtained spectra from the SERS can detect 0.5 mg/L fonofos, 0.25 mg/L phosmet, and 1 mg/L sulfoxaflor through the appearance of major characteristic peaks. Then, we used chemometric methods to develop models for the intelligent analysis of pesticides, alongside the SERS spectra. The classification models developed by K-nearest neighbor identified all of the samples, with an accuracy of 100%. For the quantitative analysis, the partial least squares regression models obtained the best predicted performance for fonofos and sulfoxaflor, and the support vector machine model provided optimal results, with a root-mean-square error of validation of 0.207 and a coefficient of determination of validation of 0.99952, for phosmet. Experiments for actual contaminated samples also showed that the above models predicted the pesticide residue values with high accuracy. Overall, using SERS with chemometric methods provided a simple and convenient approach for the detection of pesticide residues in paddy water.
Collapse
|
165
|
Aptasensors for pesticide detection. Biosens Bioelectron 2019; 130:174-184. [PMID: 30738246 DOI: 10.1016/j.bios.2019.01.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/05/2019] [Accepted: 01/12/2019] [Indexed: 12/16/2022]
Abstract
Pesticide contamination has become one of the most serious problems of public health in the world, due to their wide application in agriculture industry to guarantee the crop yield and quality. The detection of pesticide residues plays an important role in food safety management and environment protection. However, the conventional detection methodologies cannot realize highly sensitive, selective and on-site detection, which limits their applications. Aptamers are short single-stranded oligonucleotides (RNA or DNA) selected by SELEX method, which can selectively bind to their targets with high affinity. Compared with the commonly used antibodies or enzymes in designing biosensors, aptamers exhibit better stability, low molecular weight, easy modification and low cost, and were regarded as excellent candidates for developing aptasensors for pesticide detection. In this review, application of aptamers for pesticide detection was reviewed. Firstly, aptamers specifically bind to various pesticides were first summarized. Secondly, the progresses and highlights of developing aptasensors for highly-sensitive and selective detection of pesticide residues were systematically provided. Finally, the present challenges and future perspectives for developing novel highly-effective aptasensor for the detection of pesticide residues were discussed.
Collapse
|
166
|
Xu Y, Kutsanedzie FYH, Hassan MM, Li H, Chen Q. Synthesized Au NPs@silica composite as surface-enhanced Raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:405-412. [PMID: 30170175 DOI: 10.1016/j.saa.2018.08.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 05/25/2023]
Abstract
With increased concerns on milk safety issues, the development of a simple and sensitive method to detect 2,4-dichlorophenoxyacetic acid (2,4-D), a common contaminant in milk, becomes relevant in safeguarding human health threats that results from its consumption. Surface-enhanced Raman spectroscopy (SERS) shows excellent ability for various targets analysis but its usage for rapid and accurate determination of analyte via SERS presents challenges. This study attempted the quantification of 2,4-dichlorophenoxyacetic acid (2,4-D) residue in milk using a novel SERS active substrate- decorated silica films with Au nanoparticles (Au NPs@ silica) coupled to chemometric algorithms. Au NPs@ silica composite was synthesized as a SERS sensor through self-assembly. Thereafter, the SERS spectrum of 2,4-D extract from milk with different concentrations based on the developed SERS sensor was collected and the spectra were analyzed by partial least squares (PLS), and variable selection algorithms - genetic algorithm-PLS (GA-PLS), competitive-adaptive reweighted sampling-PLS (CARS-PLS) and ant colony optimization-PLS (ACO-PLS), to develop quantitative models for 2,4-D prediction. The results obtained showed that the CARS-PLS model gave the optimum result with LOD of 0.01 ng/mL realized and a determination coefficient in the prediction set of (RP) = 0.9836 within a linear range of 10-2 to 106 ng/mL was achieved. Au NPs@ silica SERS sensor combined with CARS-PLS may be employed for rapid quantification of 2,4-D extract from milk towards its quality and safety monitoring.
Collapse
Affiliation(s)
- Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Felix Y H Kutsanedzie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
167
|
Fu G, Sun DW, Pu H, Wei Q. Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Talanta 2018; 195:841-849. [PMID: 30625626 DOI: 10.1016/j.talanta.2018.11.114] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
Thiabendazole (TBZ) is a kind of pesticide that is widely used in agriculture, and its residue may pose a threat to human health. In order to measure TBZ residues in food samples, a surface-enhanced Raman spectroscopy (SERS) method combined with a homogeneous and reusable gold nanorods (GNR) array substrate was proposed. GNR with a high uniformity was synthesized and then applied to the self-assembly of a GNR vertically aligned array. The relative standard deviation (RSD) of the array for SERS could reach 15.4%, and the array could be reused for more than seven times through the treatment of plasma etching. A logarithmic correlation between TBZ concentration and Raman intensity was obtained, with the best determination coefficient (R2) and the corresponding limit of detection (LOD) of 0.991 and 0.037 mg/L in methanol solution, and 0.980 and 0.06 ppm in apple samples, respectively. The recoveries of TBZ in apple samples ranged from 76% to 107%. This study provided a rapid and sensitive approach for detecting TBZ in apples based on SERS coupled with GNR array substrate, showing great potential for analyzing other trace contaminants in food matrices.
Collapse
Affiliation(s)
- Gendi Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
168
|
Song J, Zhang Y, Huang Y, Fan Y, Lai K. Rapid Tartrazine Determination in Large Yellow Croaker with Ag Nanowires Using Surface-Enhanced Raman Spectroscopy. NANOMATERIALS 2018; 8:nano8120967. [PMID: 30477131 PMCID: PMC6317054 DOI: 10.3390/nano8120967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 11/18/2022]
Abstract
In this work, surface-enhanced Raman spectroscopy (SERS) technology coupled with Ag nanowires was shown to be a promising tool in the detection of tartrazine in large yellow croaker for the first time. Ag nanowires with a uniform diameter were fabricated by an efficient and manageable polyol method. The partial least square model was established for the quantitative analysis of tartrazine, which showed a relatively high linear correlation between actual and predicted concentrations of standard tartrazine solutions. An optimal sample preparation method was also selected and used to extract tartrazine from large yellow croaker within 20 min. The lowest concentration detected was 20.38 ng/cm2, which fully meets the requirements of tartrazine testing in aquatic products. This study indicated that SERS technology combined with the as-prepared Ag nanowires could detect tartrazine sensitively and provide an easily operable and time-saving way to monitor tartrazine in large yellow croaker.
Collapse
Affiliation(s)
- Jia Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Yuanyi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Yiqun Huang
- School of Chemistry & Biological Engineering, Changsha University of Science & Technology, Changsha 410076, Hunan, China.
| | - Yuxia Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- Engineering Research Center of Food Thermal Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- Engineering Research Center of Food Thermal Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
169
|
Chen M, Luo W, Liu Q, Hao N, Zhu Y, Liu M, Wang L, Yang H, Chen X. Simultaneous In Situ Extraction and Fabrication of Surface-Enhanced Raman Scattering Substrate for Reliable Detection of Thiram Residue. Anal Chem 2018; 90:13647-13654. [PMID: 30379069 DOI: 10.1021/acs.analchem.8b03940] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report a novel strategy of simultaneous in situ extraction and fabrication of surface-enhanced Raman scattering substrate (IE-SERS) to perform selective and reliable on-site determination of thiram residue in soil, fruits, and vegetables. In this protocol, the thiram residue on complex surfaces can facilely diffuse into the solvent (dichloromethane (DCM)) and specifically bind to gold nanoparticles (AuNPs), affording the SERS substrate through the embedding of the thiram-trapped AuNPs into the cellulose p-toluenesulfonates (CTSAs) film through the evaporation of DCM. SERS signals of the specifically prepared CTSAs could be used as an internal standard to calibrate the absolute signal of thiram, which can avoid the fluctuation of SERS intensities caused by uneven and irregular morphology of SERS substrate. Thus, reliable quantitation of thiram through SERS detection and superior reproducibility in the SERS measurement (RSD = 4.21%) were achieved. As for directly sensing the thiram residue in soil, the established method shows strong anti-interference ability and a good linear response from 0.1 to 12 μg/g with a low limit of detection (LOD) of 50 ng/g, which is lower than that of all the previously reported methods. The recoveries range from 91.76 to 112.3% for thiram in paddy soils, indicating that the established IE-SERS method is reliable and applicable to the detection of thiram residue in real soil samples. In addition, the measurement of the residual thiram on strawberry and cucumber surface was also successfully accomplished by this strategy, indicating that the established method also has great potential in the in situ ultrasensitive detection of thiram on irregular fruits and vegetables.
Collapse
Affiliation(s)
- Miao Chen
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , Hunan , China
| | - Wen Luo
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , Hunan , China
| | - Qi Liu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , Hunan , China
| | - Naiying Hao
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , Hunan , China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , Hunan , China
| | - Minzhuo Liu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , Hunan , China
| | - Lumin Wang
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , Hunan , China
| | - Hua Yang
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , Hunan , China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , Hunan , China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety , Central South University , Changsha 410083 , Hunan , China
| |
Collapse
|
170
|
Borah H, Gogoi S, Kalita S, Puzari P. A broad spectrum amperometric pesticide biosensor based on glutathione S-transferase immobilized on graphene oxide-gelatin matrix. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
171
|
Gukowsky JC, Xie T, Gao S, Qu Y, He L. Rapid identification of artificial and natural food colorants with surface enhanced Raman spectroscopy. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
172
|
Szlag VM, Rodriguez RS, He J, Hudson-Smith N, Kang H, Le N, Reineke TM, Haynes CL. Molecular Affinity Agents for Intrinsic Surface-Enhanced Raman Scattering (SERS) Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31825-31844. [PMID: 30134102 DOI: 10.1021/acsami.8b10303] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research at the interface of synthetic materials, biochemistry, and analytical techniques has enabled sensing platforms for applications across many research communities. Herein we review the materials used as affinity agents to create surface-enhanced Raman spectroscopy (SERS) sensors. Our scope includes those affinity agents (antibody, aptamer, small molecule, and polymer) that facilitate the intrinsic detection of targets relevant to biology, medicine, national security, environmental protection, and food safety. We begin with an overview of the analytical technique (SERS) and considerations for its application as a sensor. We subsequently describe four classes of affinity agents, giving a brief overview on affinity, production, attachment chemistry, and first uses with SERS. Additionally, we review the SERS features of the affinity agents, and the analytes detected by intrinsic SERS with that affinity agent class. We conclude with remarks on affinity agent selection for intrinsic SERS sensing platforms.
Collapse
Affiliation(s)
- Victoria M Szlag
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Rebeca S Rodriguez
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Jiayi He
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Natalie Hudson-Smith
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Hyunho Kang
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ngoc Le
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Theresa M Reineke
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christy L Haynes
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
173
|
Du S, Yu C, Tang L, Lu L. Applications of SERS in the Detection of Stress-Related Substances. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E757. [PMID: 30257510 PMCID: PMC6215319 DOI: 10.3390/nano8100757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 11/16/2022]
Abstract
A wide variety of biotic and abiotic stresses continually attack plants and animals, which adversely affect their growth, development, reproduction, and yield realization. To survive under stress conditions, highly sophisticated and efficient tolerance mechanisms have been evolved to adapt to stresses, which consist of the variation of effector molecules playing vital roles in physiological regulation. The development of a sensitive, facile, and rapid analytical methods for stress factors and effector molecules detection is significant for gaining deeper insight into the tolerance mechanisms. As a nondestructive analysis technique, surface-enhanced Raman spectroscopy (SERS) has unique advantages regarding its biosensing applications. It not only provides specific fingerprint spectra of the target molecules, conformation, and structure, but also has universal capacity for simultaneous detection and imaging of targets owing to the narrow width of the Raman vibrational bands. Herein, recent progress on biotic and abiotic stresses, tolerance mechanisms and effector molecules is summarized. Moreover, the development and promising future trends of SERS detection for stress-related substances combined with nanomaterials as substrates and SERS tags are discussed. This comprehensive and critical review might shed light on a new perspective for SERS applications.
Collapse
Affiliation(s)
- Shuyuan Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Chundi Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Lin Tang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Lixia Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
174
|
Yang L, Gao MX, Zou HY, Li YF, Huang CZ. Plasmonic Cu2–xSySe1–y Nanoparticles Catalyzed Click Chemistry Reaction for SERS Immunoassay of Cancer Biomarker. Anal Chem 2018; 90:11728-11733. [DOI: 10.1021/acs.analchem.8b03791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lin Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Ming Xuan Gao
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong Yan Zou
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
175
|
Feng X, Wang K, Pan L, Xu T, Zhang H, Fantke P. Measured and Modeled Residue Dynamics of Famoxadone and Oxathiapiprolin in Tomato Fields. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8489-8495. [PMID: 30028951 DOI: 10.1021/acs.jafc.8b02056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A reliable analytical method for the simultaneous determination of famoxadone and oxathiapiprolin dissipation kinetics as well as the metabolites of oxathiapiprolin (IN-E8S72 and IN-WR791) in tomato and soil was developed. We studied the dissipation of famoxadone and oxathiapiprolin in tomatoes grown using different kinetic curves in the area of Beijing in 2015 and 2016. Our results show that the most suitable model for two fungicides in 2015 and 2016 was first-order kinetic and second-order kinetic with the half-lives of 3.4 to 5.2 and 2.4 to 3.0 days, respectively. In addition, we applied the dynamic plant uptake model dynamiCROP and combined it with results from the field experiments to investigate the uptake and translocation of famoxadone and oxathiapiprolin in the soil-tomato environment. Modeled and measured results of two years fitted well with R2 values ranging from 0.8072 to 0.9221. The fractions of famoxadone and oxathiapiprolin applied during tomato cultivation that are eventually ingested by humans via residues in crop harvest were finally evaluated and found to be in the range of one part per thousand, that is one gram intake per kilogram applied.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- College of Science , China Agricultural University , Beijing 100193 , P R China
| | - Kai Wang
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University of Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Lixiang Pan
- College of Science , China Agricultural University , Beijing 100193 , P R China
| | - Tianheng Xu
- College of Science , China Agricultural University , Beijing 100193 , P R China
| | - Hongyan Zhang
- College of Science , China Agricultural University , Beijing 100193 , P R China
| | - Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering , Technical University of Denmark , Bygningstorvet 116 , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
176
|
Luo H, Wang X, Huang Y, Lai K, Rasco BA, Fan Y. Rapid and sensitive surface-enhanced Raman spectroscopy (SERS) method combined with gold nanoparticles for determination of paraquat in apple juice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3892-3898. [PMID: 29364504 DOI: 10.1002/jsfa.8906] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Paraquat, a highly efficient herbicide, is widely used in agricultural practices throughout the world. However, paraquat residues in food pose a threat to human health. In order to develop a rapid and sensitive method, surface-enhanced Raman spectroscopy (SERS) coupled with gold nanoparticles was applied to analysis of paraquat in apple juice. RESULTS Natural organic compounds (sugars and organic acids) in apple juice interfered with SERS measurement. Sample preparation was needed. Paraquat could be detected at concentrations as low as 0.02 and 0.1 µg mL- 1 with the weak cation-exchange solid-phase extraction (WCX-SPE) method and dilution method for sample preparation, respectively. For quantitative analysis, the R2 cv of the partial least-squares regression model with the dilution method (0.939) was not as good as with the WCX-SPE method (0.984), but the dilution method is much less costly, simpler and time saving. Satisfactory recovery values were obtained ranging from 94.73% to 114.81%, with the exception of 56.55% for the lowest concentration. CONCLUSION This work showed that SERS combined with gold nanoparticles could determine paraquat in apple juice. As a simple, rapid and ultrasensitive method, it has great practical potential for detection of other contaminants in a variety of foods. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hairui Luo
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, Shanghai, China
| | - Xiaohui Wang
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, Shanghai, China
| | - Yiqun Huang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, Shanghai, China
- Engineering Research Center of Food Thermal Processing Technology, Shanghai Ocean University, LinGang New City, Shanghai, China
| | - Barbara A Rasco
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Yuxia Fan
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, Shanghai, China
- Engineering Research Center of Food Thermal Processing Technology, Shanghai Ocean University, LinGang New City, Shanghai, China
| |
Collapse
|
177
|
Gu X, Trujillo MJ, Olson JE, Camden JP. SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:147-169. [PMID: 29547340 DOI: 10.1146/annurev-anchem-061417-125724] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Owing to its extreme sensitivity and easy execution, surface-enhanced Raman spectroscopy (SERS) now finds application for a wide variety of problems requiring sensitive and targeted analyte detection. This widespread application has prompted a proliferation of different SERS-based sensors, suggesting the need for a framework to classify existing methods and guide the development of new techniques. After a brief discussion of the general SERS modalities, we classify SERS-based sensors according the origin of the signal. Three major categories emerge from this analysis: surface-affinity strategy, SERS-tag strategy, and probe-mediated strategy. For each case, we describe the mechanism of action, give selected examples, and point out general misconceptions to aid the construction of new devices. We hope this review serves as a useful tutorial guide and helps readers to better classify and design practical and effective SERS-based sensors.
Collapse
Affiliation(s)
- Xin Gu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Michael J Trujillo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Jacob E Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| |
Collapse
|
178
|
Kang Y, Li L, Chen W, Zhang F, Du Y, Wu T. Rapid In Situ SERS Analysis of Pesticide Residues on Plant Surfaces Based on Micelle Extraction of Targets and Stabilization of Ag Nanoparticle Aggregates. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1290-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
179
|
Xu ML, Gao Y, Li Y, Li X, Zhang H, Han XX, Zhao B, Su L. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:78-82. [PMID: 29352639 DOI: 10.1016/j.saa.2018.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/23/2017] [Accepted: 01/04/2018] [Indexed: 05/21/2023]
Abstract
Glyphosate is one of the most commonly-used and non-selective herbicides in agriculture, which may directly pollute the environment and threaten human health. A simple and effective approach to assessment of its damage to the natural environment is thus quite necessary. However, traditional chromatography-based detection methods usually suffer from complex pretreatment procedures. Herein, we propose a simple and sensitive method for the determination of glyphosate by combining ninhydrin reaction and surface-enhanced Raman scattering (SERS) spectroscopy. The product (purple color dye, PD) of the ninhydrin reaction is found to SERS-active and directly correlate with the glyphosate concentration. The limit of detection of the proposed method for glyphosate is as low as 1.43×10-8mol·L-1 with a relatively wider linear concentration range (1.0×10-7-1.0×10-4mol·L-1), which demonstrates its great potential in rapid, highly sensitive concentration determination of glyphosate in practical applications for safety assessment of food and environment.
Collapse
Affiliation(s)
- Meng-Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China; National Research Center of Engineering and Technology of Tea Quality and Safety, Anxi 362441, PR China
| | - Yu Gao
- College of Agriculture, Jilin Agricultural University, Changchun 130118, PR China
| | - Yali Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Xueliang Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Huanjie Zhang
- Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China.
| | - Liang Su
- National Research Center of Engineering and Technology of Tea Quality and Safety, Anxi 362441, PR China
| |
Collapse
|
180
|
Jiang Y, Sun DW, Pu H, Wei Q. Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
181
|
|
182
|
Yaseen T, Pu H, Sun DW. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: A review of recent research trends. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
183
|
Wu Y, Yu W, Yang B, Li P. Self-assembled two-dimensional gold nanoparticle film for sensitive nontargeted analysis of food additives with surface-enhanced Raman spectroscopy. Analyst 2018; 143:2363-2368. [DOI: 10.1039/c8an00540k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CTAB-functionalized Au NP film as SERS active substrate prepared by the evaporation-driven self-assembly strategy demonstrated high sensitivity and reproducibility for the detection of different food additives.
Collapse
Affiliation(s)
- Yiping Wu
- Department of Chemical and Materials Engineering
- Hefei University
- Hefei
- Anhui
- China
| | - Wenfang Yu
- Department of Chemical and Materials Engineering
- Hefei University
- Hefei
- Anhui
- China
| | - Benhong Yang
- Department of Chemical and Materials Engineering
- Hefei University
- Hefei
- Anhui
- China
| | - Pan Li
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| |
Collapse
|
184
|
Zhong B, Wang S, Dong H, Luo Y, Jia Z, Zhou X, Chen M, Xie D, Jia D. Halloysite Tubes as Nanocontainers for Herbicide and Its Controlled Release in Biodegradable Poly(vinyl alcohol)/Starch Film. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10445-10451. [PMID: 29131614 DOI: 10.1021/acs.jafc.7b04220] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Commercial herbicide atrazine (AT) was first loaded into the lumen of halloysite nanotubes (HNTs) in the amount of 9 wt %, and then the AT-loaded HNTs (HNTs-AT) were further incorporated into poly(vinyl alcohol)/starch composites (PVA/ST, with the weight ratio of 80/20) to construct a dual drug delivery system. AT loaded in nanotubes displayed much slower release from PVA/ST film in water than free AT; for example, the total release amount of AT from PVA/ST film with loaded AT was only 61% after 96 h, while this value reached 97% in PVA/ST film with free AT. The release behavior of AT from PVA/ST film with HNTs-AT was first dominated by the mechanism of matrix erosion and then by the mechanism of Fickian diffusion. In addition, combining HNTs and PVA/ST blends together in the controlled release of herbicide also reduced its leaching through the soil layer, which would be useful for diminishing the environmental pollution caused by pesticide.
Collapse
Affiliation(s)
- Bangchao Zhong
- Key Lab of Guangdong for High Property and Functional Polymer Materials, South China University of Technology , Guangzhou 510640, China
| | - Song Wang
- Key Lab of Guangdong for High Property and Functional Polymer Materials, South China University of Technology , Guangzhou 510640, China
| | - Huanhuan Dong
- Key Lab of Guangdong for High Property and Functional Polymer Materials, South China University of Technology , Guangzhou 510640, China
| | - Yuanfang Luo
- Key Lab of Guangdong for High Property and Functional Polymer Materials, South China University of Technology , Guangzhou 510640, China
| | - Zhixin Jia
- Key Lab of Guangdong for High Property and Functional Polymer Materials, South China University of Technology , Guangzhou 510640, China
| | - Xiangyang Zhou
- Department of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering , Guangzhou 510225, China
| | - Mingzhou Chen
- Guangzhou Sugarcane Industry Research Institute, Guangdong Academy of Sciences , Guangzhou 510316, China
| | - Dong Xie
- Guangzhou Sugarcane Industry Research Institute, Guangdong Academy of Sciences , Guangzhou 510316, China
| | - Demin Jia
- Key Lab of Guangdong for High Property and Functional Polymer Materials, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
185
|
The Role of Food Antioxidants, Benefits of Functional Foods, and Influence of Feeding Habits on the Health of the Older Person: An Overview. Antioxidants (Basel) 2017; 6:antiox6040081. [PMID: 29143759 PMCID: PMC5745491 DOI: 10.3390/antiox6040081] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023] Open
Abstract
This overview was directed towards understanding the relationship of brain functions with dietary choices mainly by older humans. This included food color, flavor, and aroma, as they relate to dietary sufficiency or the association of antioxidants with neurodegenerative diseases such as dementia and Alzheimer’s disease. Impairment of olfactory and gustatory function in relation to these diseases was also explored. The role of functional foods was considered as a potential treatment of dementia and Alzheimer’s disease through inhibition of acetylcholinesterase as well as similar treatments based on herbs, spices and antioxidants therein. The importance of antioxidants for maintaining the physiological functions of liver, kidney, digestive system, and prevention of cardiovascular diseases and cancer has also been highlighted. Detailed discussion was focused on health promotion of the older person through the frequency and patterns of dietary intake, and a human ecology framework to estimate adverse risk factors for health. Finally, the role of the food industry, mass media, and apps were explored for today’s new older person generation.
Collapse
|