151
|
Grodetskaya TA, Evlakov PM, Fedorova OA, Mikhin VI, Zakharova OV, Kolesnikov EA, Evtushenko NA, Gusev AA. Influence of Copper Oxide Nanoparticles on Gene Expression of Birch Clones In Vitro under Stress Caused by Phytopathogens. NANOMATERIALS 2022; 12:nano12050864. [PMID: 35269352 PMCID: PMC8912387 DOI: 10.3390/nano12050864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Recently, metal oxide nanoparticles (NPs) have attracted attention as promising components for the protection and stimulation of plant microclones in tissue culture in vitro. However, the effect of NPs on the genetic mechanisms underlying plant adaptive responses remains poorly understood. We studied the effect of column-shaped CuO NPs 50 nm in diameter and 70–100 nm in length at a concentration of 0.1–10 mg/L on the development of phytopathogenic fungi Alternaria alternata, Fusarium oxysporum, and Fusarium avenaceum in culture, as well as on the infection of downy birch micro-clones with phytopathogens and the level of genes expression associated with the formation of plant responses to stress induced by microorganisms. CuO NPs effectively suppressed the development of colonies of phytopathogenic fungi A. alternata and F. avenaceum (up to 68.42% inhibition at 10 mg/L CuO NPs) but not the development of a colony of F. oxysporum. Exposure to the NPs caused multidirectional responses at the level of plant genes transcription: 5 mg/L CuO NPs significantly increased the expression level of the LEA8 and MYB46 genes and decreased the expression of DREB2 and PAL. Infection with A. alternata significantly increased the level of MYB46, LEA8, PAL, PR-1, and PR-10 transcripts in birch micro-clones; however, upon exposure to a medium with NPs and simultaneous exposure to a phytopathogen, the expression of the MYB46, PR-1, and PR-10 genes decreased by 5.4 times, which is associated with a decrease in the pathogenic load caused by the effect of NPs and the simultaneous stimulation of clones in vitro. The results obtained can be used in the development of preparations based on copper oxide NPs for disinfection and stimulation of plant phytoimmunity during clonal micropropagation of tree crops.
Collapse
Affiliation(s)
- Tatiana A. Grodetskaya
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
| | - Peter M. Evlakov
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
- Correspondence: ; Tel.: +7-9204366589
| | - Olga A. Fedorova
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
| | - Vyacheslav I. Mikhin
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
| | - Olga V. Zakharova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Evgeny A. Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Nadezhda A. Evtushenko
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
| | - Alexander A. Gusev
- Research Institute of Innovative Technologies of the Forestry Complex, Laboratory of PCR Analysis, Voronezh State University of Forestry and Technologies Named after G. F. Morozov, 394087 Voronezh, Russia; (T.A.G.); (O.A.F.); (V.I.M.); (N.A.E.); (A.A.G.)
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| |
Collapse
|
152
|
Xu VW, Nizami MZI, Yin IX, Yu OY, Lung CYK, Chu CH. Application of Copper Nanoparticles in Dentistry. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:805. [PMID: 35269293 PMCID: PMC8912653 DOI: 10.3390/nano12050805] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Nanoparticles based on metal and metallic oxides have become a novel trend for dental applications. Metal nanoparticles are commonly used in dentistry for their exclusive shape-dependent properties, including their variable nano-sizes and forms, unique distribution, and large surface-area-to-volume ratio. These properties enhance the bio-physio-chemical functionalization, antimicrobial activity, and biocompatibility of the nanoparticles. Copper is an earth-abundant inexpensive metal, and its nanoparticle synthesis is cost effective. Copper nanoparticles readily intermix and bind with other metals, ceramics, and polymers, and they exhibit physiochemical stability in the compounds. Hence, copper nanoparticles are among the commonly used metal nanoparticles in dentistry. Copper nanoparticles have been used to enhance the physical and chemical properties of various dental materials, such as dental amalgam, restorative cements, adhesives, resins, endodontic-irrigation solutions, obturation materials, dental implants, and orthodontic archwires and brackets. The objective of this review is to provide an overview of copper nanoparticles and their applications in dentistry.
Collapse
Affiliation(s)
| | - Mohammed Zahedul Islam Nizami
- Faculty of Dentistry, University of Hong Kong, Hong Kong 999077, China; (V.W.X.); (I.X.Y.); (O.Y.Y.); (C.Y.K.L.); (C.H.C.)
| | | | | | | | | |
Collapse
|
153
|
Feng Y, Lv X, Ran X, Jia C, Qin L, Chen M, Qi R, Peng H, Lin H. High-efficiency synthesis of Cu superfine particles via reducing cuprous and cupric oxides with monoethanolamine and their antimicrobial potentials. J Colloid Interface Sci 2022; 608:749-757. [PMID: 34634547 DOI: 10.1016/j.jcis.2021.09.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Cuprous oxide (Cu2O) and cupric oxide (CuO) are widely available and low cost raw materials. Their applications as precursors for wet chemical synthesis of metallic Cu materials are greatly limited due to their insoluble in water and most organic solvents. In this work, copper superfine particles (Cu SPs) are synthesized using Cu2O and CuO as precursors via a heating process in monoethanoamine (MEA). Due to the strong coordinating character, Cu2O and CuO can be partially dissolved in MEA. The dissolved copper source is reduced by MEA at elevated temperature with the drastically releasing of NH3. As the dissolved copper source is reduced, more oxide will be dissolved and finally leads to the full reduction of Cu2O and CuO to produce the Cu SPs. The advantage of this synthesis method is that MEA acts as both the solvent and the reducing agent. The antimicrobial properties are investigated to find that the obtained Cu SPs depress the growth of Escherichia coli (E. coli) and Staphylococcus aureus (St. aureus) efficiently. More interesting, the composites produced via curing Cu2O and CuO with a small amount of MEA also exhibit excellent antimicrobial activity, indicating the MEA curing method is high-efficiency. The synthesis is low cost, high-efficiency, high atom-economy and up-scale synthesizing easily, which will benefit the wide applications of Cu SPs.
Collapse
Affiliation(s)
- Yanming Feng
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, PR China
| | - Xinyue Lv
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, PR China
| | - Xi Ran
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, PR China
| | - Caifeng Jia
- School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, PR China
| | - Lujie Qin
- School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, PR China
| | - Maoshen Chen
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, PR China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, PR China
| | - Hui Peng
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, PR China; Collaborative Innovation Centre of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Hechun Lin
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, PR China.
| |
Collapse
|
154
|
Niu P, Dai J, Wang Z, Wang Y, Feng D, Li Y, Miao W. Sensitization of Antibiotic-Resistant Gram-Negative Bacteria to Photodynamic Therapy via Perfluorocarbon Nanoemulsion. Pharmaceuticals (Basel) 2022; 15:ph15020156. [PMID: 35215269 PMCID: PMC8878207 DOI: 10.3390/ph15020156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
With the merits of excellent efficacy, safety, and facile implementation, antibacterial photodynamic therapy (APDT) represents a promising means for treating bacterial infections. However, APDT shows an unsatisfactory efficacy in combating antibiotic-resistant Gram-negative bacteria due to their specific cell wall structure. In this work, we report a perfluorocarbon nanoemulsion (Ce6@FDC) used as a multifunctional nanocargo of photosensitizer and oxygen for sensitizing antibiotic-resistant Gram-negative bacteria to APDT. Ce6@FDC was fabricated via ultrasonic emulsification with good colloidal stability, efficient Ce6 and oxygen delivery, and excellent photodynamic activity. Meanwhile, Ce6@FDC could strongly bind with Gram-negative Acinetobacter baumannii (A. baumannii) and Escherichia coli (E. coli) via electrostatic interaction, thus leading to notable photodynamic bactericidal potency upon irradiation. In addition, oxygenated Ce6@FDC also exhibited a remarkable efficacy in eradicating Gram-negative bacteria biofilm, averaging five log units lower than the Ce6 group under identical conditions. Taken together, we demonstrate that photodynamic perfluorocarbon nanoemulsion with oxygen-delivery ability could effectively kill planktonic bacteria and remove biofilm, representing a novel strategy in fighting against antibiotic-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanyuan Li
- Correspondence: (Y.L.); (W.M.); Tel.: +86-25-58139399 (W.M.)
| | - Wenjun Miao
- Correspondence: (Y.L.); (W.M.); Tel.: +86-25-58139399 (W.M.)
| |
Collapse
|
155
|
Sharma P, Goyal D, Chudasama B. Antibacterial Activity of Colloidal Copper Nanoparticles against Gram-negative (Escherichia coli and Proteus vulgaris) Bacteria. Lett Appl Microbiol 2022; 74:695-706. [PMID: 35034356 DOI: 10.1111/lam.13655] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Antibacterial activities of as-synthesized nanoparticles have gained attention in past few years due to rapid phylogenesis of pathogens developing multi-drug resistance (MDR). Antibacterial activity of Copper nanoparticles (CuNPs) on surrogate pathogenic Gram-negative bacteria Escherichia coli (MTCC No. 739) and Proteus vulgaris (MTCC No. 426) was evaluated under culture conditions. Three sets of colloidal CuNPs were synthesized by chemical reduction method with per batch yield of 0.2 g, 0.3 g and 0.4 g. As-synthesized CuNPs possess identical plasmonic properties and have similar hydrodynamic particle sizes (11-14 nm). Antibacterial activities of CuNPs were evaluated by MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) tests, cytoplasmic leakage and ROS (reactive oxygen species) assays. MIC and MBC tests revealed dose dependence bactericidal action. Growth curves of E. coli show faster growth inhibition along with higher cytoplasmic leakage than that of P. vulgaris. This might be because of increased membrane permeability of E. coli. CuNPs - microorganism interaction induces oxidative stress generated by ROS (reactive oxygen species). Leakage of cytoplasmic components, loss of membrane permeability and ROS generation are the primary causes of CuNPs induced bacterial cell death. As-synthesized CuNPs exhibiting promising antibacterial activities and could be a promising candidate for novel antibacterial agents.
Collapse
Affiliation(s)
- Purnima Sharma
- Department Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, India.,School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - Dinesh Goyal
- Department Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - Bhupendra Chudasama
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, 147004, India.,Thapar-VT Center of Excellence in Emerging Materials (CEEMS), Thapar Institute of Engineering and Technology, Patiala, 147004, India
| |
Collapse
|
156
|
Han S, Kim J, Lee Y, Bang J, Kim CG, Choi J, Min J, Ha I, Yoon Y, Yun CH, Cruz M, Wiley BJ, Ko SH. Transparent Air Filters with Active Thermal Sterilization. NANO LETTERS 2022; 22:524-532. [PMID: 34665632 DOI: 10.1021/acs.nanolett.1c02737] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The worldwide proliferation of COVID-19 poses the urgent need for sterilizable and transparent air filters to inhibit virus transmission while retaining ease of communication. Here, we introduce copper nanowires to fabricate transparent and self-sterilizable air filters. Copper nanowire air filter (CNAF) allowed visible light penetration, thereby can exhibit facial expressions, helpful for better communication. CNAF effectively captured particulate matter (PM) by mechanical and electrostatic filtration mechanisms. The temperature of CNAF could be controlled by Joule-heating up to 100 °C with thermal stability. CNAF successfully inhibited the growth of E. coli because of the oligodynamic effect of copper. With heat sterilization, the antibacterial efficiency against G. anodireducens was greatly improved up to 99.3% within 10 min. CNAF showed high reusability with stable filtration efficiency and thermal antibacterial efficacy after five repeated uses. Our result suggests an alternative form of active antimicrobial air filter in preparation for the current and future pandemic situations.
Collapse
Affiliation(s)
- Seonggeun Han
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaewon Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Youngseok Lee
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junhyuk Bang
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Cheol Gyun Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junhwa Choi
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jinki Min
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Inho Ha
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yeosang Yoon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mutya Cruz
- Department of Chemistry, Duke University, 124 Science Drive, Box 90354, Durham, North Carolina 27708, United States
| | - Benjamin J Wiley
- Department of Chemistry, Duke University, 124 Science Drive, Box 90354, Durham, North Carolina 27708, United States
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Institute of Advanced Machines and Design/Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
157
|
Calabrese C, La Parola V, Testa ML, Liotta LF. Antifouling and antimicrobial activity of Ag, Cu and Fe nanoparticles supported on silica and titania. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
158
|
Veerakumar P, Velusamy N, Thanasekaran P, Lin KC, Rajagopal S. Copper supported silica-based nanocatalysts for CuAAC and cross-coupling reactions. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00095d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent advances in Cu/SiO2-based heterogeneous catalysts for click reaction, C–N, C–S, and C–O coupling reactions are reviewed and summarized.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Nithya Velusamy
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | |
Collapse
|
159
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
160
|
Sadani K, Nag P, Pisharody L, Thian XY, Bajaj G, Natu G, Mukherji S, Mukherji S. Polyphenol stabilized copper nanoparticle formulations for rapid disinfection of bacteria and virus on diverse surfaces. NANOTECHNOLOGY 2021; 33:035701. [PMID: 34633302 DOI: 10.1088/1361-6528/ac2e77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Rapid and sustained disinfection of surfaces is necessary to check the spread of pathogenic microbes. The current study proposes a method of synthesis and use of copper nanoparticles (CuNPs) for contact disinfection of pathogenic microorganisms. Polyphenol stabilized CuNPs were synthesized by successive reductive disassembly and reassembly of copper phenolic complexes. Morphological and compositional characterization by transmission electron microscope (TEM), selected area diffraction and electron energy loss spectroscopy revealed monodispersed spherical (ϕ5-8 nm) CuNPs with coexisting Cu, Cu(I) and Cu (II) phases. Various commercial grade porous and non-porous substrates, such as, glass, stainless steel, cloth, plastic and silk were coated with the nanoparticles. Complete disinfection of 107copies of surrogate enveloped and non-enveloped viruses: bacteriophage MS2, SUSP2, phi6; and gram negative as well as gram positive bacteria:Escherichia coliandStaphylococcus aureuswas achieved on most substrates within minutes. Structural cell damage was further analytically confirmed by TEM. The formulation was well retained on woven cloth surfaces even after repeated washing, thereby revealing its promising potential for use in biosafe clothing. In the face of the current pandemic, the nanomaterials developed are also of commercial utility as an eco-friendly, mass producible alternative to bleach and alcohol based public space sanitizers used today.
Collapse
Affiliation(s)
- Kapil Sadani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Pooja Nag
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Lakshmi Pisharody
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Xiao Yun Thian
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Geetika Bajaj
- Applied Materials India, Mumbai 400076, Maharashtra, India
| | - Gayatri Natu
- Applied Materials India, Mumbai 400076, Maharashtra, India
| | - Suparna Mukherji
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Soumyo Mukherji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
161
|
Ma J, Ma L, Cao L, Miao Y, Dong J, Shi YE, Wang Z. Point-of-care testing of butyrylcholinesterase activity through modulating the photothermal effect of cuprous oxide nanoparticles. Mikrochim Acta 2021; 188:392. [PMID: 34697648 DOI: 10.1007/s00604-021-05033-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
Butyrylcholinesterase (BChE) is an important indicator for clinical diagnosis of liver dysfunction, organophosphate toxicity, and poststroke dementia. Point-of-care testing (POCT) of BChE activity is still a challenge, which is a critical requirement for the modern clinical diagnose. A portable photothermal BChE assay is proposed through modulating the photothermal effects of Cu2O nanoparticles. BChE can catalyze the decomposition of butyrylcholine, producing thiocholine, which further reduce and coordinate with CuO on surface of Cu2O nanoparticle. This leads to higher efficiency of formation of Cu9S8 nanoparticles, through the reaction between Cu2O nanoparticle and NaHS, together with the promotion of photothermal conversion efficiency from 3.1 to 59.0%, under the excitation of 1064 nm laser radiation. An excellent linear relationship between the temperature change and the logarithm of BChE concentration is obtained in the range 1.0 to 7.5 U/mL, with a limit of detection of 0.076 U/mL. In addition, the portable photothermal assay shows strong detection robustness, which endows the accurate detection of BChE in human serum, together with the screening and quantification of organophosphorus pesticides. Such a simple, sensitive, and robust assay shows great potential for the applications to clinical BChE detection and brings a new horizon for the development of temperature based POCT.
Collapse
Affiliation(s)
- Jinzhu Ma
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Lili Ma
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Lili Cao
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Yuming Miao
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Jiangxue Dong
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Yu-E Shi
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
162
|
3D Hierarchical Polyaniline-Metal Hybrid Nanopillars: Morphological Control and Its Antibacterial Application. NANOMATERIALS 2021; 11:nano11102716. [PMID: 34685158 PMCID: PMC8540657 DOI: 10.3390/nano11102716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/25/2023]
Abstract
Effective and reliable antibacterial surfaces are in high demand in modern society. Although recent works have shown excellent antibacterial performance by combining unique hierarchical nanotopological structures with functional polymer coating, determining the antibacterial performance arising from morphological changes is necessary. In this work, three-dimensional (3D) hierarchical polyaniline–gold (PANI/Au) hybrid nanopillars were successfully fabricated via chemical polymerization (i.e., dilute method). The morphology and structures of the PANI/Au nanopillars were controlled by the reaction time (10 min to 60 h) and the molar concentrations of the monomer (0.01, 0.1, and 1 M aniline), oxidant (0.002, 0.0067, 0.01, and 0.02 M ammonium persulfate), and acid (0.01, 0.1, 1, and 2 M perchloric acid). These complex combinations allow controlling the hierarchical micro- to nanostructure of PANI on a nanopillar array (NPA). Furthermore, the surface of the 3D PANI/Au hierarchical nanostructure can be chemically treated while maintaining the structure using initiated chemical vapor deposition. Moreover, the excellent antibacterial performance of the 3D PANI/Au hierarchical nanostructure (HNS) exceeds 99% after functional polymer coating. The excellent antibacterial performance of the obtained 3D PANI/Au HNS is mainly because of the complex topological and physicochemical surface modification. Thus, these 3D PANI/Au hierarchical nanostructures are promising high-performance antibacterial materials.
Collapse
|
163
|
Copper-Containing Nanoparticles and Organic Complexes: Metal Reduction Triggers Rapid Cell Death via Oxidative Burst. Int J Mol Sci 2021; 22:ijms222011065. [PMID: 34681725 PMCID: PMC8539714 DOI: 10.3390/ijms222011065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/21/2022] Open
Abstract
Copper-containing agents are promising antitumor pharmaceuticals due to the ability of the metal ion to react with biomolecules. In the current study, we demonstrate that inorganic Cu2+ in the form of oxide nanoparticles (NPs) or salts, as well as Cu ions in the context of organic complexes (oxidation states +1, +1.5 and +2), acquire significant cytotoxic potency (2–3 orders of magnitude determined by IC50 values) in combinations with N-acetylcysteine (NAC), cysteine, or ascorbate. In contrast, other divalent cations (Zn, Fe, Mo, and Co) evoked no cytotoxicity with these combinations. CuO NPs (0.1–1 µg/mL) together with 1 mM NAC triggered the formation of reactive oxygen species (ROS) within 2–6 h concomitantly with perturbation of the plasma membrane and caspase-independent cell death. Furthermore, NAC potently sensitized HCT116 colon carcinoma cells to Cu–organic complexes in which the metal ion coordinated with 5-(2-pyridylmethylene)-2-methylthio-imidazol-4-one or was present in the coordination sphere of the porphyrin macrocycle. The sensitization effect was detectable in a panel of mammalian tumor cell lines including the sublines with the determinants of chemotherapeutic drug resistance. The components of the combination were non-toxic if added separately. Electrochemical studies revealed that Cu cations underwent a stepwise reduction in the presence of NAC or ascorbate. This mechanism explains differential efficacy of individual Cu–organic compounds in cell sensitization depending on the availability of Cu ions for reduction. In the presence of oxygen, Cu+1 complexes can generate a superoxide anion in a Fenton-like reaction Cu+1L + O2 → O2−. + Cu+2L, where L is the organic ligand. Studies on artificial lipid membranes showed that NAC interacted with negatively charged phospholipids, an effect that can facilitate the penetration of CuO NPs across the membranes. Thus, electrochemical modification of Cu ions and subsequent ROS generation, as well as direct interaction with membranes, represent the mechanisms of irreversible membrane damage and cell death in response to metal reduction in inorganic and organic Cu-containing compounds.
Collapse
|
164
|
Lin N, Verma D, Saini N, Arbi R, Munir M, Jovic M, Turak A. Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. NANO TODAY 2021; 40:101267. [PMID: 34404999 PMCID: PMC8361009 DOI: 10.1016/j.nantod.2021.101267] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 08/08/2021] [Indexed: 05/13/2023]
Abstract
Nanoparticles provide new opportunities in merging therapeutics and new materials, with current research efforts just beginning to scratch the surface of their diverse benefits and potential applications. One such application, the use of inorganic nanoparticles in antiseptic coatings to prevent pathogen transmission and infection, has seen promising developments. Notably, the high reactive surface area to volume ratio and unique chemical properties of metal-based nanoparticles enables their potent inactivation of viruses. Nanoparticles exert their virucidal action through mechanisms including inhibition of virus-cell receptor binding, reactive oxygen species oxidation and destructive displacement bonding with key viral structures. The prevention of viral outbreaks is one of the foremost challenges to medical science today, emphasizing the importance of research efforts to develop nanoparticles for preventative antiviral applications. In this review, the use of nanoparticles to inactivate other viruses, such as influenza, HIV-1, or norovirus, among others, will be discussed to extrapolate broad-spectrum antiviral mechanisms that could also inhibit SARS-CoV-2 pathogenesis. This review analyzes the published literature to highlight the current state of knowledge regarding the efficacy of metal-based nanoparticles and other antiviral materials for biomedical, sterile polymer, and surface coating applications.
Collapse
Affiliation(s)
- Neil Lin
- Department of Engineering Physics, McMaster University, Hamilton, Canada
- Faculty of Health Science, McMaster University, Hamilton, Canada
| | - Daksh Verma
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | - Nikhil Saini
- Department of Engineering Physics, McMaster University, Hamilton, Canada
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, Canada
| | - Ramis Arbi
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | - Muhammad Munir
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | | | - Ayse Turak
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| |
Collapse
|
165
|
Lactobacillus amylovorus derived lipase-mediated silver derivatization over poly(ε-caprolactone) towards antimicrobial coatings. Enzyme Microb Technol 2021; 150:109888. [PMID: 34489041 DOI: 10.1016/j.enzmictec.2021.109888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
Owing to the probiotic origin, lipases-derived from the Lactobacilli sp. are considered to be promising biomaterials for in vivo applications. On a different note, poly(ε-caprolactone) (PCL)-an FDA-approved polymer for implantable applications-lacks inherent antimicrobial property, because of which suitable modifications are required to render it with bactericidal activity. Here, we employ Lactobacillus amylovorous derived lipase to surface derivatize the PCL films with silver that is a highly efficient inorganic broad-spectrum antimicrobial substance. Two different surface functionalization strategies have been employed over the alkaline hydrolyzed PCL films towards this purpose: In the first strategy, lipase-capped silver nanoparticles (Ag NPs) have been synthesized in a first step, which have been covalently immobilized over the activated carboxylic groups on the PCL film surface in a subsequent step. In the second strategy, the lipase was covalently immobilized over the activated carboxylic groups of the PCL film surface in the first step, over which silver was deposited in the second step using the dip-coating method. While the characterization study using X-ray photoelectron spectroscopy (XPS) has revealed the successful derivatization of silver over the PCL film, the surface characterization using field-emission scanning electron microscopy (FE-SEM) study has shown a distinct morphological change with higher silver loading in both strategies. The antimicrobial studies employing E. coli have revealed 100 % inhibition in the bacterial growth in 4-6 h with the Ag NPs-immobilized PCL films as opposed to >8 h with those prepared through the dip-coating method. Additionally, the cytotoxicity assay using mouse fibroblast cells has shown that the PCL films immobilized with lipase-capped Ag NPs exhibit high cell compatibility, similar to that of pristine PCL film, and thereby making it suitable for in vivo applications.
Collapse
|
166
|
Wang N, Ferhan AR, Yoon BK, Jackman JA, Cho NJ, Majima T. Chemical design principles of next-generation antiviral surface coatings. Chem Soc Rev 2021; 50:9741-9765. [PMID: 34259262 DOI: 10.1039/d1cs00317h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has accelerated efforts to develop high-performance antiviral surface coatings while highlighting the need to build a strong mechanistic understanding of the chemical design principles that underpin antiviral surface coatings. Herein, we critically summarize the latest efforts to develop antiviral surface coatings that exhibit virus-inactivating functions through disrupting lipid envelopes or protein capsids. Particular attention is focused on how cutting-edge advances in material science are being applied to engineer antiviral surface coatings with tailored molecular-level properties to inhibit membrane-enveloped and non-enveloped viruses. Key topics covered include surfaces functionalized with organic and inorganic compounds and nanoparticles to inhibit viruses, and self-cleaning surfaces that incorporate photocatalysts and triplet photosensitizers. Application examples to stop COVID-19 are also introduced and demonstrate how the integration of chemical design principles and advanced material fabrication strategies are leading to next-generation surface coatings that can help thwart viral pandemics and other infectious disease threats.
Collapse
Affiliation(s)
- Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
167
|
Michniewicz F, Saletta F, Rouaen JRC, Hewavisenti RV, Mercatelli D, Cirillo G, Giorgi FM, Trahair T, Ziegler D, Vittorio O. Copper: An Intracellular Achilles' Heel Allowing the Targeting of Epigenetics, Kinase Pathways, and Cell Metabolism in Cancer Therapeutics. ChemMedChem 2021; 16:2315-2329. [PMID: 33890721 DOI: 10.1002/cmdc.202100172] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Copper is an essential transition metal frequently increased in cancer known to strongly influence essential cellular processes. Targeted therapy protocols utilizing both novel and repurposed drug agents initially demonstrate strong efficacy, before failing in advanced cancers as drug resistance develops and relapse occurs. Overcoming this limitation involves the development of strategies and protocols aimed at a wider targeting of the underlying molecular changes. Receptor Tyrosine Kinase signaling pathways, epigenetic mechanisms and cell metabolism are among the most common therapeutic targets, with molecular investigations increasingly demonstrating the strong influence each mechanism exerts on the others. Interestingly, all these mechanisms can be influenced by intracellular copper. We propose that copper chelating agents, already in clinical trial for multiple cancers, may simultaneously target these mechanisms across a wide variety of cancers, serving as an excellent candidate for targeted combination therapy. This review summarizes the known links between these mechanisms, copper, and copper chelation therapy.
Collapse
Affiliation(s)
- Filip Michniewicz
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Federica Saletta
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rehana V Hewavisenti
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Toby Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - David Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
168
|
Wan J, Ma J, Zhang Y, Xia Y, Hong L, Yang C. Improved antioxidative performance of a water-soluble copper nanoparticle@fullerenol composite formed via photochemical reduction. NEW J CHEM 2021. [DOI: 10.1039/d1nj03132e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We synthesized a water-soluble nanocomposite consisting of ultrasmall copper nanoparticles and fullerenol, which showed excellent radical scavenging ability (IC50 = 14.5 μg mL−1).
Collapse
Affiliation(s)
- Jie Wan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuyuan Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuxuan Xia
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liu Hong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|