151
|
Britton OJ, Abi-Gerges N, Page G, Ghetti A, Miller PE, Rodriguez B. Quantitative Comparison of Effects of Dofetilide, Sotalol, Quinidine, and Verapamil between Human Ex vivo Trabeculae and In silico Ventricular Models Incorporating Inter-Individual Action Potential Variability. Front Physiol 2017; 8:597. [PMID: 28868038 PMCID: PMC5563361 DOI: 10.3389/fphys.2017.00597] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/02/2017] [Indexed: 01/20/2023] Open
Abstract
Background:In silico modeling could soon become a mainstream method of pro-arrhythmic risk assessment in drug development. However, a lack of human-specific data and appropriate modeling techniques has previously prevented quantitative comparison of drug effects between in silico models and recordings from human cardiac preparations. Here, we directly compare changes in repolarization biomarkers caused by dofetilide, dl-sotalol, quinidine, and verapamil, between in silico populations of human ventricular cell models and ex vivo human ventricular trabeculae. Methods and Results:Ex vivo recordings from human ventricular trabeculae in control conditions were used to develop populations of in silico human ventricular cell models that integrated intra- and inter-individual variability in action potential (AP) biomarker values. Models were based on the O'Hara-Rudy ventricular cardiomyocyte model, but integrated experimental AP variability through variation in underlying ionic conductances. Changes to AP duration, triangulation and early after-depolarization occurrence from application of the four drugs at multiple concentrations and pacing frequencies were compared between simulations and experiments. To assess the impact of variability in IC50 measurements, and the effects of including state-dependent drug binding dynamics, each drug simulation was repeated with two different IC50 datasets, and with both the original O'Hara-Rudy hERG model and a recently published state-dependent model of hERG and hERG block. For the selective hERG blockers dofetilide and sotalol, simulation predictions of AP prolongation and repolarization abnormality occurrence showed overall good agreement with experiments. However, for multichannel blockers quinidine and verapamil, simulations were not in agreement with experiments across all IC50 datasets and IKr block models tested. Quinidine simulations resulted in overprolonged APs and high incidence of repolarization abnormalities, which were not observed in experiments. Verapamil simulations showed substantial AP prolongation while experiments showed mild AP shortening. Conclusions: Results for dofetilide and sotalol show good agreement between experiments and simulations for selective compounds, however lack of agreement from simulations of quinidine and verapamil suggest further work is needed to understand the more complex electrophysiological effects of these multichannel blocking drugs.
Collapse
Affiliation(s)
- Oliver J. Britton
- Department of Computer Science, University of OxfordOxford, United Kingdom
| | | | - Guy Page
- AnaBios CorporationSan Diego, CA, United States
| | | | | | - Blanca Rodriguez
- Department of Computer Science, University of OxfordOxford, United Kingdom
| |
Collapse
|
152
|
Zareba W, McNitt S, Polonsky S, Couderc JP. JT interval: What does this interval mean? J Electrocardiol 2017; 50:748-751. [PMID: 28942950 DOI: 10.1016/j.jelectrocard.2017.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Indexed: 12/13/2022]
Abstract
The JTp interval gained interest as a marker differentiating effects of drugs on cardiac ion channels. For JTp interval, both the beginning - identification of J point and identification of T wave end remains the subject of substantial variability. We aimed to analyze diagnostic and prognostic performance of JTp interval in the International LQTS Registry data. ECGs from 804 gene carriers and 1139 non-carriers from LQT1 families, 735 carriers and 1145 non-carriers from LQT2 families, and 238 carriers and 554 non-carriers from LQT3 families were evaluated. The diagnostic performance of JTpc was similar to QTc in LQT1 and LQT3 patients but inferior in LQT2 patients, whereas repolarization duration in general had limited diagnostic performance in LQT3 patients. The prognostic significance for predicting cardiac events in LQT1 and LQT2 patients was similar for JTpc and QTc. In LQT3 patients, JTpc fails to be associated with arrhythmic events.
Collapse
Affiliation(s)
- Wojciech Zareba
- The Heart Research Follow-up Program, Cardiology Division, University of Rochester Medical Center, Rochester, NY, United States.
| | - Scott McNitt
- The Heart Research Follow-up Program, Cardiology Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Slava Polonsky
- The Heart Research Follow-up Program, Cardiology Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Jean-Philippe Couderc
- The Heart Research Follow-up Program, Cardiology Division, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
153
|
The QUIDAM study: Hydroquinidine therapy for the management of Brugada syndrome patients at high arrhythmic risk. Heart Rhythm 2017; 14:1147-1154. [DOI: 10.1016/j.hrthm.2017.04.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 12/19/2022]
|
154
|
Analysis of proarrhythmic potential of an atypical antipsychotic drug paliperidone in the halothane-anesthetized dogs. J Pharmacol Sci 2017; 134:239-246. [DOI: 10.1016/j.jphs.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/17/2017] [Accepted: 08/04/2017] [Indexed: 01/16/2023] Open
|
155
|
Abstract
Using BRAVO algorithm (AMPS-LLC, NY, v4.4.0), 5223 ECGs from a publicly available annotated dataset from a randomized clinical trial on four different compounds and placebo were analyzed. ECGs were automatically processed and JTp interval was computed on: 12 standard ECG leads, Vector Magnitude (VM), and root mean square (RMS) leads. On VM and RMS, JTp intervals were nearly identical (228 ± 29 vs. 227 ± 30 ms respectively, with correlation of 0.99, p < 0.0001). On lead II, JTp interval was about 10 ms longer, but highly correlated with that measured on VM (0.94, p < 0.0001). Similarly, on lead V5, JTp was about 8 ms longer than on VM, with a correlation of 0.95, p < 0.0001. When compared to the public available annotations, JTp by BRAVO generated longer (about 8 ms) measurement and evidenced outliers conducible to both the T-wave peak (in few ECGs presenting notched shapes) and, to a lesser degree, to the J point, due to variability of the two algorithms. Differences on the drug-induced effect from the four compounds were negligible.
Collapse
|
156
|
|
157
|
Yokoyama H, Nakamura Y, Saito H, Nagayama Y, Hoshiai K, Wada T, Izumi-Nakaseko H, Ando K, Akie Y, Sugiyama A. Pharmacological characterization of microminipig as a model to assess the drug-induced cardiovascular responses for non-clinical toxicity and/or safety pharmacology studies. J Toxicol Sci 2017; 42:93-101. [PMID: 28070113 DOI: 10.2131/jts.42.93] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We tried to establish the halothane-anesthetized microminipigs as an alternative animal model for non-clinical toxicity and/or safety pharmacology studies. In order to characterize the halothane-anesthetized microminipigs, we firstly clarified the effects of halothane anesthesia on their cardiovascular system (n = 5). Then, we examined the cardiovascular effects of dl-sotalol in doses of 0.1, 0.3 and 1 mg/kg, i.v. on the halothane-anesthetized microminipigs (n = 6). Induction of the halothane anesthesia by itself prolonged the QT interval as well as QTcF, suggesting that the halothane anesthesia can reduce the cardiac repolarization reserve in microminipigs like in dogs. dl-Sotalol showed more potent negative chronotropic, dromotropic and hypotensive effects together with repolarization delay in microminipigs than in dogs, although each cardiovascular response to dl-sotalol was directionally similar between them, suggesting greater basal sympathetic tone and/or smaller volume of distribution of the drug in microminipigs than in dogs. Analyses of proarrhythmic surrogate markers indicate that Tpeak-Tend and short-term variability of QT interval may be more sensitive to detect the dl-sotalol-induced direct electrophysiological changes in microminipigs than in dogs, but its reverse will be true for J-Tpeakc. Thus, these results may help better understand the drug-induced cardiovascular responses in microminipigs.
Collapse
|
158
|
Fossa AA. Beat-to-beat ECG restitution: A review and proposal for a new biomarker to assess cardiac stress and ventricular tachyarrhythmia vulnerability. Ann Noninvasive Electrocardiol 2017; 22. [PMID: 28497858 DOI: 10.1111/anec.12460] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/06/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Cardiac restitution is the ability of the heart to recover from one beat to the next. Ventricular arrhythmia vulnerability can occur when the heart does not properly adjust to sudden changes in rate or in hemodynamics leading to excessive temporal and/or spatial heterogeneity in conduction or repolarization. Restitution has historically been used to study, by invasive means, the dynamics of the relationship between action potential duration (APD) and diastolic interval (DI) in sedated subjects using various pacing protocols. Even though the analogous measures of APD and DI can be obtained using the surface ECG to acquire the respective QT and TQ intervals for ECG restitution, this methodology has not been widely adopted for a number of reasons. METHODS Recent development of more advanced software algorithms enables ECG intervals to be measured accurately, on a continuous beat-to-beat basis, in an automated manner, and under highly dynamic conditions (i.e., ambulatory or exercise) providing information beyond that available in the typical resting state. RESULTS Current breakthroughs in ECG technology will allow ECG restitution measures to become a practical approach for providing quantitative measures of the risks for ventricular arrhythmias as well as cardiac stress in general. CONCLUSIONS In addition to a review of the underlying principles and caveats of ECG restitution, a new approach toward an advancement of more integrated restitution biomarkers is proposed.
Collapse
|
159
|
Shakibfar S, Graff C, Kanters JK, Nielsen J, Schmidt S, Struijk JJ. Minimal T-wave representation and its use in the assessment of drug arrhythmogenicity. Ann Noninvasive Electrocardiol 2017; 22. [DOI: 10.1111/anec.12413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Saeed Shakibfar
- Center for Sensory Motor Interaction (SMI); Department of Health Science and Technology; Aalborg University; Aalborg Denmark
| | - Claus Graff
- Medical Informatics Group (MI); Department of Health Science and Technology; Aalborg University; Aalborg Denmark
| | - Jørgen K. Kanters
- Laboratory of Experimental Cardiology; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Cardiology; Herlev & Gentofte University Hospitals; Copenhagen Denmark
- Department of Cardiology; Aalborg University Hospital; Aalborg Denmark
| | - Jimmi Nielsen
- Center for Schizophrenia; Aalborg Psychiatric Hospital; Aalborg University Hospital; Aalborg Denmark
| | - Samuel Schmidt
- Medical Informatics Group (MI); Department of Health Science and Technology; Aalborg University; Aalborg Denmark
| | - Johannes J. Struijk
- Medical Informatics Group (MI); Department of Health Science and Technology; Aalborg University; Aalborg Denmark
| |
Collapse
|
160
|
Huo J, Kamalakar A, Yang X, Word B, Stockbridge N, Lyn-Cook B, Pang L. Evaluation of Batch Variations in Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes from 2 Major Suppliers. Toxicol Sci 2017; 156:25-38. [PMID: 28031415 DOI: 10.1093/toxsci/kfw235] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Drug-induced proarrhythmia is a major safety issue in drug development. Developing sensitive in vitro assays that can predict drug-induced cardiotoxicity in humans has been a challenge of toxicology research for decades. Recently, induced pluripotent stem cell-derived human cardiomyocytes (iPSC-hCMs) have become a promising model because they largely replicate the electrophysiological behavior of human ventricular cardiomyocytes. Patient-specific iPSC-hCMs have been proposed for personalized cardiac drug selection and adverse drug response prediction; however, many procedures are involved in cardiomyocytes differentiation and purification process, which may result in large line-to-line and batch-to-batch variations. Here, we examined the purity, cardiac ion channel gene expression profile, and electrophysiological response of 3 batches of iPSC-hCMs from each of 2 major cell suppliers. We found that iPSC-hCMs from both vendors had similar purities. Most of the cardiac ion channel genes were expressed uniformly among different batches of iCells, while larger variations were found in Cor.4U cells, particularly in the expression of CACNA1C, KCND2, and KCNA5 genes, which could underlie the differences in baseline beating rate (BR) and field potential duration (FPD) measurements. Although, in general, the electrophysiological responses of different batches of cells to Na+, Ca2+, Ikr, and Iks channel blockers were similar, with Ikr blocker-induced proarrhythmia, the sensitivities were depended on baseline BR and FPD values: cells that beat slower had longer FPD and greater sensitivity to drug-induced proarrhythmia. Careful evaluation of the performance of iPSC-hCMs and methods of data analysis is warranted for shaping regulatory standards in qualifying iPSC-hCMs for drug safety testing.
Collapse
MESH Headings
- Anti-Arrhythmia Agents/pharmacology
- Antioxidants/pharmacology
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Calcium Channel Blockers/adverse effects
- Calcium Channel Blockers/chemistry
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Cell Differentiation/drug effects
- Cell Line
- Drug Evaluation, Preclinical/economics
- Drug Evaluation, Preclinical/methods
- Electrophysiological Phenomena/drug effects
- Gene Expression Regulation/drug effects
- Humans
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Kinetics
- Kv1.5 Potassium Channel/genetics
- Kv1.5 Potassium Channel/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Potassium Channel Blockers/adverse effects
- Potassium Channel Blockers/antagonists & inhibitors
- Potassium Channel Blockers/pharmacology
- Reproducibility of Results
- Shal Potassium Channels/genetics
- Shal Potassium Channels/metabolism
- Toxicity Tests, Acute/economics
- Toxicity Tests, Acute/methods
- Voltage-Gated Sodium Channel Blockers/adverse effects
- Voltage-Gated Sodium Channel Blockers/pharmacology
Collapse
Affiliation(s)
- Jianhua Huo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
- Department of Cardiovascular Medicine, First Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, ShaanXI, 710061, China
| | - Archana Kamalakar
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
| | - Xi Yang
- Division of Systems Biology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
| | - Beverly Word
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
| | - Norman Stockbridge
- Division of Cardiovascular and Renal Products, Office of New Drugs, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, Maryland 20993
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
| | - Li Pang
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
| |
Collapse
|
161
|
Authier S, Pugsley MK, Koerner JE, Fermini B, Redfern WS, Valentin JP, Vargas HM, Leishman DJ, Correll K, Curtis MJ. Proarrhythmia liability assessment and the comprehensive in vitro Proarrhythmia Assay (CiPA): An industry survey on current practice. J Pharmacol Toxicol Methods 2017; 86:34-43. [PMID: 28223123 DOI: 10.1016/j.vascn.2017.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The Safety Pharmacology Society (SPS) has conducted a survey of its membership to identify industry practices related to testing considered in the Comprehensive In vitro Proarrhythmia Assay (CiPA). METHODS Survey topics included nonclinical approaches to address proarrhythmia issues, conduct of in silico studies, in vitro ion channel testing methods used, drugs used as positive controls during the conduct of cardiac ion channel studies, types of arrhythmias observed in non-clinical studies and use of the anticipated CiPA ion channel assay. RESULTS In silico studies were used to evaluate effects on ventricular action potentials by only 15% of responders. In vitro assays were used mostly to assess QT prolongation (95%), cardiac Ca2+ and Na+ channel blockade (82%) and QT shortening or QRS prolongation (53%). For de-risking of candidate drugs for proarrhythmia, those assays most relevant to CiPA including cell lines stably expressing ion channels used to determine potency of drug block were most frequently used (89%) and human stem cell-derived or induced pluripotent stem cell cardiomyocytes (46%). Those in vivo assays related to general proarrhythmia derisking include ECG recording using implanted telemetry technology (88%), jacketed external telemetry (62%) and anesthetized animal models (53%). While the CiPA initiative was supported by 92% of responders, there may be some disconnect between current practice and future expectations, as explained. DISCUSSION Proarrhythmia liability assessment in drug development presently includes study types consistent with CiPA. It is anticipated that CiPA will develop into a workable solution to the concern that proarrhythmia liability testing remains suboptimal.
Collapse
Affiliation(s)
- Simon Authier
- CiToxLAB North America, 445, Armand-Frappier Boul, Laval, QC H7V 4B3, Canada.
| | - Michael K Pugsley
- Department of Toxicology & PKDM, Purdue Pharma L.P., Cranbury, NJ 08512, USA
| | - John E Koerner
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bernard Fermini
- Safety & Toxicology Assessment, Coyne Scientific, Atlanta, GA 30303, USA
| | | | | | - Hugo M Vargas
- Integrated Discovery and Safety Pharmacology, Amgen, Inc., Thousand Oaks, CA, USA
| | | | | | - Michael J Curtis
- Cardiovascular Division, Faculty of Life Sciences & Medicine, King's College London, Rayne Institute, St Thomas' Hospital, London SE17EH, UK
| |
Collapse
|
162
|
Strauss DG, Vicente J, Johannesen L, Blinova K, Mason JW, Weeke P, Behr ER, Roden DM, Woosley R, Kosova G, Rosenberg MA, Newton-Cheh C. Common Genetic Variant Risk Score Is Associated With Drug-Induced QT Prolongation and Torsade de Pointes Risk: A Pilot Study. Circulation 2017; 135:1300-1310. [PMID: 28213480 DOI: 10.1161/circulationaha.116.023980] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/26/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Drug-induced QT interval prolongation, a risk factor for life-threatening ventricular arrhythmias, is a potential side effect of many marketed and withdrawn medications. The contribution of common genetic variants previously associated with baseline QT interval to drug-induced QT prolongation and arrhythmias is not known. METHODS We tested the hypothesis that a weighted combination of common genetic variants contributing to QT interval at baseline, identified through genome-wide association studies, can predict individual response to multiple QT-prolonging drugs. Genetic analysis of 22 subjects was performed in a secondary analysis of a randomized, double-blind, placebo-controlled, crossover trial of 3 QT-prolonging drugs with 15 time-matched QT and plasma drug concentration measurements. Subjects received single doses of dofetilide, quinidine, ranolazine, and placebo. The outcome was the correlation between a genetic QT score comprising 61 common genetic variants and the slope of an individual subject's drug-induced increase in heart rate-corrected QT (QTc) versus drug concentration. RESULTS The genetic QT score was correlated with drug-induced QTc prolongation. Among white subjects, genetic QT score explained 30% of the variability in response to dofetilide (r=0.55; 95% confidence interval, 0.09-0.81; P=0.02), 23% in response to quinidine (r=0.48; 95% confidence interval, -0.03 to 0.79; P=0.06), and 27% in response to ranolazine (r=0.52; 95% confidence interval, 0.05-0.80; P=0.03). Furthermore, the genetic QT score was a significant predictor of drug-induced torsade de pointes in an independent sample of 216 cases compared with 771 controls (r2=12%, P=1×10-7). CONCLUSIONS We demonstrate that a genetic QT score comprising 61 common genetic variants explains a significant proportion of the variability in drug-induced QT prolongation and is a significant predictor of drug-induced torsade de pointes. These findings highlight an opportunity for recent genetic discoveries to improve individualized risk-benefit assessment for pharmacological therapies. Replication of these findings in larger samples is needed to more precisely estimate variance explained and to establish the individual variants that drive these effects. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01873950.
Collapse
Affiliation(s)
- David G Strauss
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.).
| | - Jose Vicente
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Lars Johannesen
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Ksenia Blinova
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Jay W Mason
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Peter Weeke
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Elijah R Behr
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Dan M Roden
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Ray Woosley
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Gulum Kosova
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Michael A Rosenberg
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Christopher Newton-Cheh
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.).
| |
Collapse
|
163
|
Modification of distinct ion channels differentially modulates Ca 2+ dynamics in primary cultured rat ventricular cardiomyocytes. Sci Rep 2017; 7:40952. [PMID: 28102360 PMCID: PMC5244425 DOI: 10.1038/srep40952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023] Open
Abstract
Primary cultured cardiomyocytes show spontaneous Ca2+ oscillations (SCOs) which not only govern contractile events, but undergo derangements that promote arrhythmogenesis through Ca2+ -dependent mechanism. We systematically examined influence on SCOs of an array of ion channel modifiers by recording intracellular Ca2+ dynamics in rat ventricular cardiomyocytes using Ca2+ specific fluorescence dye, Fluo-8/AM. Voltage-gated sodium channels (VGSCs) activation elongates SCO duration and reduces SCO frequency while inhibition of VGSCs decreases SCO frequency without affecting amplitude and duration. Inhibition of voltage-gated potassium channel increases SCO duration. Direct activation of L-type Ca2+ channels (LTCCs) induces SCO bursts while suppressing LTCCs decreases SCO amplitude and slightly increases SCO frequency. Activation of ryanodine receptors (RyRs) increases SCO duration and decreases both SCO amplitude and frequency while inhibiting RyRs decreases SCO frequency without affecting amplitude and duration. The potencies of these ion channel modifiers on SCO responses are generally consistent with their affinities in respective targets demonstrating that modification of distinct targets produces different SCO profiles. We further demonstrate that clinically-used drugs that produce Long-QT syndrome including cisapride, dofetilide, sotalol, and quinidine all induce SCO bursts while verapamil has no effect. Therefore, occurrence of SCO bursts may have a translational value to predict cardiotoxicants causing Long-QT syndrome.
Collapse
|
164
|
Wiśniowska B, Polak S. Am I or am I not proarrhythmic? Comparison of various classifications of drug TdP propensity. Drug Discov Today 2017; 22:10-16. [DOI: 10.1016/j.drudis.2016.09.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/22/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022]
|
165
|
Izumi-Nakaseko H, Nakamura Y, Wada T, Ando K, Kanda Y, Sekino Y, Sugiyama A. Characterization of human iPS cell-derived cardiomyocyte sheets as a model to detect drug-induced conduction disturbance. J Toxicol Sci 2017; 42:183-192. [DOI: 10.2131/jts.42.183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Yuji Nakamura
- Department of Pharmacology, Faculty of Medicine, Toho University
| | - Takeshi Wada
- Department of Pharmacology, Faculty of Medicine, Toho University
| | - Kentaro Ando
- Department of Pharmacology, Faculty of Medicine, Toho University
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences
| | - Yuko Sekino
- Division of Pharmacology, National Institute of Health Sciences
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University
| |
Collapse
|
166
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
167
|
Blinova K, Stohlman J, Vicente J, Chan D, Johannesen L, Hortigon-Vinagre MP, Zamora V, Smith G, Crumb WJ, Pang L, Lyn-Cook B, Ross J, Brock M, Chvatal S, Millard D, Galeotti L, Stockbridge N, Strauss DG. Comprehensive Translational Assessment of Human-Induced Pluripotent Stem Cell Derived Cardiomyocytes for Evaluating Drug-Induced Arrhythmias. Toxicol Sci 2017; 155:234-247. [PMID: 27701120 PMCID: PMC6093617 DOI: 10.1093/toxsci/kfw200] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) hold promise for assessment of drug-induced arrhythmias and are being considered for use under the comprehensive in vitro proarrhythmia assay (CiPA). We studied the effects of 26 drugs and 3 drug combinations on 2 commercially available iPSC-CM types using high-throughput voltage-sensitive dye and microelectrode-array assays being studied for the CiPA initiative and compared the results with clinical QT prolongation and torsade de pointes (TdP) risk. Concentration-dependent analysis comparing iPSC-CMs to clinical trial results demonstrated good correlation between drug-induced rate-corrected action potential duration and field potential duration (APDc and FPDc) prolongation and clinical trial QTc prolongation. Of 20 drugs studied that exhibit clinical QTc prolongation, 17 caused APDc prolongation (16 in Cor.4U and 13 in iCell cardiomyocytes) and 16 caused FPDc prolongation (16 in Cor.4U and 10 in iCell cardiomyocytes). Of 14 drugs that cause TdP, arrhythmias occurred with 10 drugs. Lack of arrhythmic beating in iPSC-CMs for the four remaining drugs could be due to differences in relative levels of expression of individual ion channels. iPSC-CMs responded consistently to human ether-a-go-go potassium channel blocking drugs (APD prolongation and arrhythmias) and calcium channel blocking drugs (APD shortening and prevention of arrhythmias), with a more variable response to late sodium current blocking drugs. Current results confirm the potential of iPSC-CMs for proarrhythmia prediction under CiPA, where iPSC-CM results would serve as a check to ion channel and in silico modeling prediction of proarrhythmic risk. A multi-site validation study is warranted.
Collapse
Affiliation(s)
- Ksenia Blinova
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland;
| | - Jayna Stohlman
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland
| | - Jose Vicente
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, Maryland
- BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Dulciana Chan
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland
| | - Lars Johannesen
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland
| | | | - Victor Zamora
- University of Glasgow, Glasgow, UK
- Clyde Biosciences, Glasgow, UK
| | - Godfrey Smith
- University of Glasgow, Glasgow, UK
- Clyde Biosciences, Glasgow, UK
| | | | - Li Pang
- Division of Biochemical Toxicology, US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | | | | | | | | - Loriano Galeotti
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland
| | - Norman Stockbridge
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, Maryland
| | - David G Strauss
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Silver Spring, Maryland;
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Clinical Pharmacology, Silver Spring, Maryland
| |
Collapse
|
168
|
Johannesen L, Vicente J, Hosseini M, Strauss DG. Automated Algorithm for J-Tpeak and Tpeak-Tend Assessment of Drug-Induced Proarrhythmia Risk. PLoS One 2016; 11:e0166925. [PMID: 28036330 PMCID: PMC5201230 DOI: 10.1371/journal.pone.0166925] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Prolongation of the heart rate corrected QT (QTc) interval is a sensitive marker of torsade de pointes risk; however it is not specific as QTc prolonging drugs that block inward currents are often not associated with torsade. Recent work demonstrated that separate analysis of the heart rate corrected J-Tpeakc (J-Tpeakc) and Tpeak-Tend intervals can identify QTc prolonging drugs with inward current block and is being proposed as a part of a new cardiac safety paradigm for new drugs (the "CiPA" initiative). METHODS In this work, we describe an automated measurement methodology for assessment of the J-Tpeakc and Tpeak-Tend intervals using the vector magnitude lead. The automated measurement methodology was developed using data from one clinical trial and was evaluated using independent data from a second clinical trial. RESULTS Comparison between the automated and the prior semi-automated measurements shows that the automated algorithm reproduces the semi-automated measurements with a mean difference of single-deltas <1 ms and no difference in intra-time point variability (p for all > 0.39). In addition, the time-profile of the baseline and placebo-adjusted changes are within 1 ms for 63% of the time-points (86% within 2 ms). Importantly, the automated results lead to the same conclusions about the electrophysiological mechanisms of the studied drugs. CONCLUSIONS We have developed an automated algorithm for assessment of J-Tpeakc and Tpeak-Tend intervals that can be applied in clinical drug trials. Under the CiPA initiative this ECG assessment would determine if there are unexpected ion channel effects in humans compared to preclinical studies. The algorithm is being released as open-source software. TRIAL REGISTRATION NCT02308748 and NCT01873950.
Collapse
Affiliation(s)
- Lars Johannesen
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Jose Vicente
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
- BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Meisam Hosseini
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - David G. Strauss
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| |
Collapse
|
169
|
Vicente J, Johannesen L, Hosseini M, Mason JW, Sager PT, Pueyo E, Strauss DG. Electrocardiographic Biomarkers for Detection of Drug-Induced Late Sodium Current Block. PLoS One 2016; 11:e0163619. [PMID: 28036334 PMCID: PMC5201270 DOI: 10.1371/journal.pone.0163619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Drugs that prolong the heart rate corrected QT interval (QTc) on the electrocardiogram (ECG) by blocking the hERG potassium channel and also block inward currents (late sodium or L-type calcium) are not associated with torsade de pointes (e.g. ranolazine and verapamil). Thus, identifying ECG signs of late sodium current block could aid in the determination of proarrhythmic risk for new drugs. A new cardiac safety paradigm for drug development (the "CiPA" initiative) will involve the preclinical assessment of multiple human cardiac ion channels and ECG biomarkers are needed to determine if there are unexpected ion channel effects in humans. METHODS AND RESULTS In this study we assess the ability of eight ECG morphology biomarkers to detect late sodium current block in the presence of QTc prolongation by analyzing a clinical trial where a selective hERG potassium channel blocker (dofetilide) was administered alone and then in combination with two late sodium current blockers (lidocaine and mexiletine). We demonstrate that late sodium current block has the greatest effect on the heart-rate corrected J-Tpeak interval (J-Tpeakc), followed by QTc and then T-wave flatness. Furthermore, J-Tpeakc is the only biomarker that improves detection of the presence of late sodium current block compared to using QTc alone (AUC: 0.83 vs. 0.72 respectively, p<0.001). CONCLUSIONS Analysis of the J-Tpeakc interval can differentiate drug-induced multichannel block involving the late sodium current from selective hERG potassium channel block. Future methodologies assessing drug effects on cardiac ion channel currents on the ECG should use J-Tpeakc to detect the presence of late sodium current block. TRIAL REGISTRATION NCT02308748 and NCT01873950.
Collapse
Affiliation(s)
- Jose Vicente
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States of America
- BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Lars Johannesen
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Meisam Hosseini
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Jay W. Mason
- Cardiology Division, University of Utah, Salt Lake City, UT, United States of America
- Spaulding Clinical Research, West Bend, WI, United States of America
| | - Philip T. Sager
- Stanford University, Palo Alto, CA, United States of America
| | - Esther Pueyo
- BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - David G. Strauss
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| |
Collapse
|
170
|
Nguyen TA, Kurian A, Leong J, Patel UM, Shah SA. Do Studies Evaluating QT/QTc Interval Prolongation with Dietary Supplements Meet FDA Standards: A Systematic Review. J Diet Suppl 2016; 14:467-477. [DOI: 10.1080/19390211.2016.1253633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tinh An Nguyen
- Doctor of Pharmacy Program, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Amy Kurian
- Doctor of Pharmacy Program, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Jessica Leong
- Doctor of Pharmacy Program, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Umang M. Patel
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Sachin A. Shah
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, USA
| |
Collapse
|
171
|
Zareba W. Should We Use Drugs to Decrease Drug-Induced QT Prolongation? JACC Clin Electrophysiol 2016; 2:775-776. [PMID: 29759758 DOI: 10.1016/j.jacep.2016.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Wojciech Zareba
- Heart Research Follow-up Program, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
172
|
Onal B, Hund TJ. Integrative approaches for prediction of cardiotoxic drug effects and mitigation strategies. J Mol Cell Cardiol 2016; 102:1-2. [PMID: 27894864 DOI: 10.1016/j.yjmcc.2016.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Birce Onal
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center and The Ohio State University College of Engineering, USA; Department of Biomedical Engineering, The Ohio State University Wexner Medical Center and The Ohio State University College of Engineering, USA
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center and The Ohio State University College of Engineering, USA; Department of Biomedical Engineering, The Ohio State University Wexner Medical Center and The Ohio State University College of Engineering, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center and The Ohio State University College of Engineering, USA.
| |
Collapse
|
173
|
Juberg DR, Knudsen TB, Sander M, Beck NB, Faustman EM, Mendrick DL, Fowle JR, Hartung T, Tice RR, Lemazurier E, Becker RA, Fitzpatrick SC, Daston GP, Harrill A, Hines RN, Keller DA, Lipscomb JC, Watson D, Bahadori T, Crofton KM. FutureTox III: Bridges for Translation. Toxicol Sci 2016; 155:22-31. [PMID: 27780885 DOI: 10.1093/toxsci/kfw194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Future Tox III, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in November 2015. Building upon Future Tox I and II, Future Tox III was focused on developing the high throughput risk assessment paradigm and taking the science of in vitro data and in silico models forward to explore the question-what progress is being made to address challenges in implementing the emerging big-data toolbox for risk assessment and regulatory decision-making. This article reports on the outcome of the workshop including 2 examples of where advancements in predictive toxicology approaches are being applied within Federal agencies, where opportunities remain within the exposome and AOP domains, and how collectively the toxicology community across multiple sectors can continue to bridge the translation from historical approaches to Tox21 implementation relative to risk assessment and regulatory decision-making.
Collapse
Affiliation(s)
| | - Thomas B Knudsen
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - Nancy B Beck
- American Chemistry Council, Washington, The District of Columbia
| | | | | | - John R Fowle
- Science to Inform, LLC, Pittsboro, North Carolina
| | - Thomas Hartung
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Raymond R Tice
- National Toxicology Program/National Institute of Environmental Health Sciences, Durham, North Carolina
| | | | - Richard A Becker
- American Chemistry Council, Washington, The District of Columbia
| | | | | | - Alison Harrill
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ronald N Hines
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | | | | | - Tina Bahadori
- US Environmental Protection Agency, Washington, The District of Columbia
| | - Kevin M Crofton
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
174
|
Sriwattanakomen R, Mukamal KJ, Shvilkin A. A novel algorithm to predict the QT interval during intrinsic atrioventricular conduction from an electrocardiogram obtained during ventricular pacing. Heart Rhythm 2016; 13:2076-82. [DOI: 10.1016/j.hrthm.2016.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 01/08/2023]
|
175
|
Garnett C, Johannesen L. Commentary on: "Levofloxacin-Induced QTc Prolongation Depends on the Time of Drug Administration". CPT Pharmacometrics Syst Pharmacol 2016; 5:452-4. [PMID: 27647678 PMCID: PMC5036419 DOI: 10.1002/psp4.12128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/22/2016] [Indexed: 01/03/2023] Open
Abstract
Circadian variations in the corrected QT (QTc) interval have been documented in clinical trials. Animal models show circadian variations in expression of the cardiac ion channels that are necessary to maintain the heart's electrophysiological properties. Can these diurnal rhythms in QTc affect the ability of a drug to delay cardiac repolarization?
Collapse
Affiliation(s)
- C Garnett
- Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.
| | - L Johannesen
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
176
|
Page G, Ratchada P, Miron Y, Steiner G, Ghetti A, Miller PE, Reynolds JA, Wang K, Greiter-Wilke A, Polonchuk L, Traebert M, Gintant GA, Abi-Gerges N. Human ex-vivo action potential model for pro-arrhythmia risk assessment. J Pharmacol Toxicol Methods 2016; 81:183-95. [PMID: 27235787 PMCID: PMC5042841 DOI: 10.1016/j.vascn.2016.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
While current S7B/E14 guidelines have succeeded in protecting patients from QT-prolonging drugs, the absence of a predictive paradigm identifying pro-arrhythmic risks has limited the development of valuable drug programs. We investigated if a human ex-vivo action potential (AP)-based model could provide a more predictive approach for assessing pro-arrhythmic risk in man. Human ventricular trabeculae from ethically consented organ donors were used to evaluate the effects of dofetilide, d,l-sotalol, quinidine, paracetamol and verapamil on AP duration (APD) and recognized pro-arrhythmia predictors (short-term variability of APD at 90% repolarization (STV(APD90)), triangulation (ADP90-APD30) and incidence of early afterdepolarizations at 1 and 2Hz to quantitatively identify the pro-arrhythmic risk. Each drug was blinded and tested separately with 3 concentrations in triplicate trabeculae from 5 hearts, with one vehicle time control per heart. Electrophysiological stability of the model was not affected by sequential applications of vehicle (0.1% dimethyl sulfoxide). Paracetamol and verapamil did not significantly alter anyone of the AP parameters and were classified as devoid of pro-arrhythmic risk. Dofetilide, d,l-sotalol and quinidine exhibited an increase in the manifestation of pro-arrhythmia markers. The model provided quantitative and actionable activity flags and the relatively low total variability in tissue response allowed for the identification of pro-arrhythmic signals. Power analysis indicated that a total of 6 trabeculae derived from 2 hearts are sufficient to identify drug-induced pro-arrhythmia. Thus, the human ex-vivo AP-based model provides an integrative translational assay assisting in shaping clinical development plans that could be used in conjunction with the new CiPA-proposed approach.
Collapse
Affiliation(s)
- Guy Page
- AnaBios Corporation, San Diego, CA 92109, USA
| | | | | | - Guido Steiner
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | | | | | | - Ken Wang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Andrea Greiter-Wilke
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Liudmila Polonchuk
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Martin Traebert
- Novartis Institutes of Biomedical Research, Safety Pharmacology, CH-4057 Basel, Switzerland
| | - Gary A Gintant
- Department of Integrative Pharmacology Integrated Sciences & Technology, AbbVie, North Chicago, IL, USA
| | | |
Collapse
|
177
|
Crumb WJ, Vicente J, Johannesen L, Strauss DG. An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. J Pharmacol Toxicol Methods 2016; 81:251-62. [DOI: 10.1016/j.vascn.2016.03.009] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 02/05/2023]
|
178
|
Yang PC, El-Bizri N, Romero L, Giles WR, Rajamani S, Belardinelli L, Clancy CE. A computational model predicts adjunctive pharmacotherapy for cardiac safety via selective inhibition of the late cardiac Na current. J Mol Cell Cardiol 2016; 99:151-161. [PMID: 27545042 PMCID: PMC5453509 DOI: 10.1016/j.yjmcc.2016.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 07/19/2016] [Accepted: 08/17/2016] [Indexed: 11/28/2022]
Abstract
Background The QT interval is a phase of the cardiac cycle that corresponds to action potential duration (APD) including cellular repolarization (T-wave). In both clinical and experimental settings, prolongation of the QT interval of the electrocardiogram (ECG) and related proarrhythmia have been so strongly associated that a prolonged QT interval is largely accepted as surrogate marker for proarrhythmia. Accordingly, drugs that prolong the QT interval are not considered for further preclinical development resulting in removal of many promising drugs from development. While reduction of drug interactions with hERG is an important goal, there are promising means to mitigate hERG block. Here, we examine one possibility and test the hypothesis that selective inhibition of the cardiac late Na current (INaL) by the novel compound GS-458967 can suppress proarrhythmic markers. Methods and results New experimental data has been used to calibrate INaL in the Soltis-Saucerman computationally based model of the rabbit ventricular action potential to study effects of GS-458967 on INaL during the rabbit ventricular AP. We have also carried out systematic in silico tests to determine if targeted block of INaL would suppress proarrhythmia markers in ventricular myocytes described by TRIaD: Triangulation, Reverse use dependence, beat-to-beat Instability of action potential duration, and temporal and spatial action potential duration Dispersion. Conclusions Our computer modeling approach based on experimental data, yields results that suggest that selective inhibition of INaL modifies all TRIaD related parameters arising from acquired Long-QT Syndrome, and thereby reduced arrhythmia risk. This study reveals the potential for adjunctive pharmacotherapy via targeted block of INaL to mitigate proarrhythmia risk for drugs with significant but unintended off-target hERG blocking effects.
Collapse
Affiliation(s)
- Pei-Chi Yang
- University of California Davis, Davis, CA, United States
| | - Nesrine El-Bizri
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Fremont, CA, United States
| | - Lucia Romero
- Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València, Valencia, Spain
| | - Wayne R Giles
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Sridharan Rajamani
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Fremont, CA, United States; Amgen, Inc., 1120 Veterans Blvd, South San Francisco CA, United States
| | - Luiz Belardinelli
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Fremont, CA, United States
| | | |
Collapse
|
179
|
Qiu XS, Chauveau S, Anyukhovsky EP, Rahim T, Jiang YP, Harleton E, Feinmark SJ, Lin RZ, Coronel R, Janse MJ, Opthof T, Rosen TS, Cohen IS, Rosen MR. Increased Late Sodium Current Contributes to the Electrophysiological Effects of Chronic, but Not Acute, Dofetilide Administration. Circ Arrhythm Electrophysiol 2016; 9:e003655. [PMID: 27071826 DOI: 10.1161/circep.115.003655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/01/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Drugs are screened for delayed rectifier potassium current (IKr) blockade to predict long QT syndrome prolongation and arrhythmogenesis. However, single-cell studies have shown that chronic (hours) exposure to some IKr blockers (eg, dofetilide) prolongs repolarization additionally by increasing late sodium current (INa-L) via inhibition of phosphoinositide 3-kinase. We hypothesized that chronic dofetilide administration to intact dogs prolongs repolarization by blocking IKr and increasing INa-L. METHODS AND RESULTS We continuously infused dofetilide (6-9 μg/kg bolus+6-9 μg/kg per hour IV infusion) into anesthetized dogs for 7 hours, maintaining plasma levels within the therapeutic range. In separate experiments, myocardial biopsies were taken before and during 6-hour intravenous dofetide infusion, and the level of phospho-Akt was determined. Acute and chronic dofetilide effects on action potential duration (APD) were studied in canine left ventricular subendocardial slabs using microelectrode techniques. Dofetilide monotonically increased QTc and APD throughout 6.5-hour exposure. Dofetilide infusion during ≥210 minutes inhibited Akt phosphorylation. INa-L block with lidocaine shortened QTc and APD more at 6.5 hours than at 50 minutes (QTc) or 30 minutes (APD) dofetilide administration. In comparison, moxifloxacin, an IKr blocker with no effects on phosphoinositide 3-kinase and INa-L prolonged APD acutely but no additional prolongation occurred on chronic superfusion. Lidocaine shortened APD equally during acute and chronic moxifloxacin superfusion. CONCLUSIONS Increased INa-L contributes to chronic dofetilide effects in vivo. These data emphasize the need to include time and INa-L in evaluating the phosphoinositide 3-kinase inhibition-derived proarrhythmic potential of drugs and provide a mechanism for benefit from lidocaine administration in clinical acquired long QT syndrome.
Collapse
Affiliation(s)
- Xiaoliang S Qiu
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Samuel Chauveau
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Evgeny P Anyukhovsky
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Tania Rahim
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Ya-Ping Jiang
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Erin Harleton
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Steven J Feinmark
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Richard Z Lin
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Ruben Coronel
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Michiel J Janse
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Tobias Opthof
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Tove S Rosen
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Ira S Cohen
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.).
| | - Michael R Rosen
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| |
Collapse
|
180
|
Vicente J, Stockbridge N, Strauss DG. Evolving regulatory paradigm for proarrhythmic risk assessment for new drugs. J Electrocardiol 2016; 49:837-842. [PMID: 27524478 DOI: 10.1016/j.jelectrocard.2016.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/16/2022]
Abstract
Fourteen drugs were removed from the market worldwide because their potential to cause torsade de pointes (torsade), a potentially fatal ventricular arrhythmia. The observation that most drugs that cause torsade block the potassium channel encoded by the human ether-à-go-go related gene (hERG) and prolong the heart rate corrected QT interval (QTc) on the ECG, led to a focus on screening new drugs for their potential to block the hERG potassium channel and prolong QTc. This has been a successful strategy keeping torsadogenic drugs off the market, but has resulted in drugs being dropped from development, sometimes inappropriately. This is because not all drugs that block the hERG potassium channel and prolong QTc cause torsade, sometimes because they block other channels. The regulatory paradigm is evolving to improve proarrhythmic risk prediction. ECG studies can now use exposure-response modeling for assessing the effect of a drug on the QTc in small sample size first-in-human studies. Furthermore, the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative is developing and validating a new in vitro paradigm for cardiac safety evaluation of new drugs that provides a more accurate and comprehensive mechanistic-based assessment of proarrhythmic potential. Under CiPA, the prediction of proarrhythmic potential will come from in vitro ion channel assessments coupled with an in silico model of the human ventricular myocyte. The preclinical assessment will be checked with an assessment of human phase 1 ECG data to determine if there are unexpected ion channel effects in humans compared to preclinical ion channel data. While there is ongoing validation work, the heart rate corrected J-Tpeak interval is likely to be assessed under CiPA to detect inward current block in presence of hERG potassium channel block.
Collapse
Affiliation(s)
- Jose Vicente
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, MD, USA.
| | - Norman Stockbridge
- Division of Cardiovascular and Renal Products, Office of New Drugs, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - David G Strauss
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, MD, USA
| |
Collapse
|
181
|
Cavero I, Holzgrefe H, Clements M. The prospective IQ-CSRC trial: A prototype early clinical proarrhythmia assessment investigation for replacing the ICH E14 thorough QTc (TQT) study. J Pharmacol Toxicol Methods 2016; 80:1-8. [DOI: 10.1016/j.vascn.2016.02.181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/27/2016] [Accepted: 02/17/2016] [Indexed: 11/29/2022]
|
182
|
Hill AP, Perry MD, Abi-Gerges N, Couderc JP, Fermini B, Hancox JC, Knollmann BC, Mirams GR, Skinner J, Zareba W, Vandenberg JI. Computational cardiology and risk stratification for sudden cardiac death: one of the grand challenges for cardiology in the 21st century. J Physiol 2016; 594:6893-6908. [PMID: 27060987 PMCID: PMC5134408 DOI: 10.1113/jp272015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
Risk stratification in the context of sudden cardiac death has been acknowledged as one of the major challenges facing cardiology for the past four decades. In recent years, the advent of high performance computing has facilitated organ-level simulation of the heart, meaning we can now examine the causes, mechanisms and impact of cardiac dysfunction in silico. As a result, computational cardiology, largely driven by the Physiome project, now stands at the threshold of clinical utility in regards to risk stratification and treatment of patients at risk of sudden cardiac death. In this white paper, we outline a roadmap of what needs to be done to make this translational step, using the relatively well-developed case of acquired or drug-induced long QT syndrome as an exemplar case.
Collapse
Affiliation(s)
- Adam P Hill
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Matthew D Perry
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., San Diego, CA, 92109, USA
| | | | - Bernard Fermini
- Global Safety Pharmacology, Pfizer Inc, MS8274-1347 Eastern Point Road, Groton, CT, 06340, USA
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bjorn C Knollmann
- Vanderbilt University School of Medicine, 1285 Medical Research Building IV, Nashville, Tennessee, 37232, USA
| | - Gary R Mirams
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Jon Skinner
- Cardiac Inherited Disease Group, Starship Hospital, Auckland, New Zealand
| | - Wojciech Zareba
- University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
183
|
Colatsky T, Fermini B, Gintant G, Pierson JB, Sager P, Sekino Y, Strauss DG, Stockbridge N. The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative - Update on progress. J Pharmacol Toxicol Methods 2016; 81:15-20. [PMID: 27282641 DOI: 10.1016/j.vascn.2016.06.002] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/01/2016] [Accepted: 06/04/2016] [Indexed: 11/17/2022]
Abstract
The implementation of the ICH S7B and E14 guidelines has been successful in preventing the introduction of potentially torsadogenic drugs to the market, but it has also unduly constrained drug development by focusing on hERG block and QT prolongation as essential determinants of proarrhythmia risk. The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative was established to develop a new paradigm for assessing proarrhythmic risk, building on the emergence of new technologies and an expanded understanding of torsadogenic mechanisms beyond hERG block. An international multi-disciplinary team of regulatory, industry and academic scientists are working together to develop and validate a set of predominantly nonclinical assays and methods that eliminate the need for the thorough-QT study and enable a more precise prediction of clinical proarrhythmia risk. The CiPA effort is led by a Steering Team that provides guidance, expertise and oversight to the various working groups and includes partners from US FDA, HESI, CSRC, SPS, EMA, Health Canada, Japan NIHS, and PMDA. The working groups address the three pillars of CiPA that evaluate drug effects on: 1) human ventricular ionic channel currents in heterologous expression systems, 2) in silico integration of cellular electrophysiologic effects based on ionic current effects, the ion channel effects, and 3) fully integrated biological systems (stem-cell-derived cardiac myocytes and the human ECG). This article provides an update on the progress of the initiative towards its target date of December 2017 for completing validation.
Collapse
Affiliation(s)
- Thomas Colatsky
- US FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
| | - Bernard Fermini
- Pfizer, Eastern Point Road MS 4083, Groton, CT 06340, United States.
| | - Gary Gintant
- AbbVie, R46R AP-9, 1 North Waukegan Rd, North Chicago, IL 60064-6118, United States.
| | - Jennifer B Pierson
- ILSI-Health and Environmental Sciences Institute, 1156 15th Street NW, Suite 200, Washington, DC 20005, United States.
| | - Philip Sager
- Stanford University, 719 Carolina St., San Francisco, CA 94107, United States.
| | - Yuko Sekino
- NIHS Japan, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan.
| | - David G Strauss
- US FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
| | - Norman Stockbridge
- US FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
| |
Collapse
|
184
|
Matsukura S, Nakamura Y, Cao X, Wada T, Izumi-Nakaseko H, Ando K, Sugiyama A. Anti-atrial Fibrillatory Versus Proarrhythmic Potentials of Amiodarone: A New Protocol for Safety Evaluation In Vivo. Cardiovasc Toxicol 2016; 17:157-162. [DOI: 10.1007/s12012-016-9369-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
185
|
McCauley M, Vallabhajosyula S, Darbar D. Proarrhythmic and Torsadogenic Effects of Potassium Channel Blockers in Patients. Card Electrophysiol Clin 2016; 8:481-93. [PMID: 27261836 DOI: 10.1016/j.ccep.2016.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The most common arrhythmia requiring drug treatment is atrial fibrillation (AF), which affects 2 to 5 million Americans and continues to be a major cause of morbidity and increased mortality. Despite recent advances in catheter-based and surgical therapies, antiarrhythmic drugs continue to be the mainstay of therapy for most patients with symptomatic AF. However, many antiarrhythmics block the rapid component of the cardiac delayed rectifier potassium current (IKr) as a major mechanism of action, and marked QT prolongation and pause-dependent polymorphic ventricular tachycardia (torsades de pointes) are major class toxicities.
Collapse
Affiliation(s)
- Mark McCauley
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, 840 South Wood Street, Suite 920 (MC715), Chicago, IL 60612, USA
| | - Sharath Vallabhajosyula
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, 840 South Wood Street, Suite 920 (MC715), Chicago, IL 60612, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, 840 South Wood Street, Suite 920 (MC715), Chicago, IL 60612, USA.
| |
Collapse
|
186
|
Malik M. Drug-Induced QT/QTc Interval Shortening: Lessons from Drug-Induced QT/QTc Prolongation. Drug Saf 2016; 39:647-59. [DOI: 10.1007/s40264-016-0411-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
187
|
Elahi M, Eshera N, Bambata N, Barr H, Lyn-Cook B, Beitz J, Rios M, Taylor DR, Lightfoote M, Hanafi N, DeJager L, Wiesenfeld P, Scott PE, Fadiran EO, Henderson MB. The Food and Drug Administration Office of Women's Health: Impact of Science on Regulatory Policy: An Update. J Womens Health (Larchmt) 2016; 25:222-34. [PMID: 26871618 PMCID: PMC4790210 DOI: 10.1089/jwh.2015.5671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The U.S. Food and Drug Administration Office of Women's Health (FDA OWH) has supported women's health research for ∼20 years, funding more than 300 studies on women's health issues, including research on diseases/conditions that disproportionately affect women in addition to the evaluation of sex differences in the performance of and response to medical products. These important women's health issues are studied from a regulatory perspective, with a focus on improving and optimizing medical product development and the evaluation of product safety and efficacy in women. These findings have influenced industry direction, labeling, product discontinuation, safety notices, and clinical practice. In addition, OWH-funded research has addressed gaps in the knowledge about diseases and medical conditions that impact women across the life span such as cardiovascular disease, pregnancy, menopause, osteoporosis, and the safe use of numerous medical products.
Collapse
Affiliation(s)
- Merina Elahi
- Office of Women's Health (OWH), Food and Drug Administration, Silver Spring, Maryland
| | - Noha Eshera
- Office of Women's Health (OWH), Food and Drug Administration, Silver Spring, Maryland
| | - Nkosazana Bambata
- Office of Women's Health (OWH), Food and Drug Administration, Silver Spring, Maryland
| | - Helen Barr
- Center for Devices and Radiological Health (CDRH), Food and Drug Administration, Silver Spring, Maryland
| | - Beverly Lyn-Cook
- National Center for Toxicological Research (NCTR), Food and Drug Administration, Jefferson, Arkansas
| | - Julie Beitz
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration, Silver Spring, Maryland
| | - Maria Rios
- Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, Maryland
| | - Deborah R. Taylor
- Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, Maryland
| | - Marilyn Lightfoote
- Center for Devices and Radiological Health (CDRH), Food and Drug Administration, Silver Spring, Maryland
| | - Nada Hanafi
- Center for Devices and Radiological Health (CDRH), Food and Drug Administration, Silver Spring, Maryland
| | - Lowri DeJager
- Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, Silver Spring, Maryland
| | - Paddy Wiesenfeld
- Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, Silver Spring, Maryland
| | - Pamela E. Scott
- Office of Women's Health (OWH), Food and Drug Administration, Silver Spring, Maryland
| | - Emmanuel O. Fadiran
- Office of Women's Health (OWH), Food and Drug Administration, Silver Spring, Maryland
| | - Marsha B. Henderson
- Office of Women's Health (OWH), Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
188
|
Davies MR, Wang K, Mirams GR, Caruso A, Noble D, Walz A, Lavé T, Schuler F, Singer T, Polonchuk L. Recent developments in using mechanistic cardiac modelling for drug safety evaluation. Drug Discov Today 2016; 21:924-38. [PMID: 26891981 PMCID: PMC4909717 DOI: 10.1016/j.drudis.2016.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/13/2016] [Accepted: 02/05/2016] [Indexed: 01/21/2023]
Abstract
Modelling and simulation can streamline decision making in drug safety testing. Computational cardiac electrophysiology is a mature technology with a long heritage. There are many challenges and opportunities in using in silico techniques in future. We discuss how models can be used at different stages of drug discovery. CiPA will combine screening platforms, human cell assays and in silico predictions.
On the tenth anniversary of two key International Conference on Harmonisation (ICH) guidelines relating to cardiac proarrhythmic safety, an initiative aims to consider the implementation of a new paradigm that combines in vitro and in silico technologies to improve risk assessment. The Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative (co-sponsored by the Cardiac Safety Research Consortium, Health and Environmental Sciences Institute, Safety Pharmacology Society and FDA) is a bold and welcome step in using computational tools for regulatory decision making. This review compares and contrasts the state-of-the-art tools from empirical to mechanistic models of cardiac electrophysiology, and how they can and should be used in combination with experimental tests for compound decision making.
Collapse
Affiliation(s)
| | - Ken Wang
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Gary R Mirams
- Computational Biology, Department of Computer Science, University of Oxford, OX1 3QD, UK
| | - Antonello Caruso
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Denis Noble
- Department of Physiology, Anatomy & Genetics, University of Oxford, OX1 3PT, UK
| | - Antje Walz
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Thierry Lavé
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Franz Schuler
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Thomas Singer
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Liudmila Polonchuk
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| |
Collapse
|
189
|
Johannesen L, Vicente J, Mason JW, Erato C, Sanabria C, Waite-Labott K, Hong M, Lin J, Guo P, Mutlib A, Wang J, Crumb WJ, Blinova K, Chan D, Stohlman J, Florian J, Ugander M, Stockbridge N, Strauss DG. Late sodium current block for drug-induced long QT syndrome: Results from a prospective clinical trial. Clin Pharmacol Ther 2016; 99:214-23. [PMID: 26259627 PMCID: PMC5421403 DOI: 10.1002/cpt.205] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022]
Abstract
Drug-induced long QT syndrome has resulted in many drugs being withdrawn from the market. At the same time, the current regulatory paradigm for screening new drugs causing long QT syndrome is preventing drugs from reaching the market, sometimes inappropriately. In this study, we report the results of a first-of-a-kind clinical trial studying late sodium (mexiletine and lidocaine) and calcium (diltiazem) current blocking drugs to counteract the effects of hERG potassium channel blocking drugs (dofetilide and moxifloxacin). We demonstrate that both mexiletine and lidocaine substantially reduce heart-rate corrected QT (QTc) prolongation from dofetilide by 20 ms. Furthermore, all QTc shortening occurs in the heart-rate corrected J-Tpeak (J-Tpeak c) interval, the biomarker we identified as a sign of late sodium current block. This clinical trial demonstrates that late sodium blocking drugs can substantially reduce QTc prolongation from hERG potassium channel block and assessment of J-Tpeak c may add value beyond only assessing QTc.
Collapse
Affiliation(s)
- L Johannesen
- Center for Devices and Radiological Health, US Food and Drug Administration,
Silver Spring, Maryland, USA
- Department of Clinical Physiology, Karolinska Institutet and Karolinska
University Hospital, Stockholm, Sweden
| | - J Vicente
- Center for Devices and Radiological Health, US Food and Drug Administration,
Silver Spring, Maryland, USA
- Center for Drug Evaluation and Research, US Food and Drug Administration,
Silver Spring, Maryland, USA
- BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS
Aragón, University of Zaragoza, Zaragoza, Spain
| | - JW Mason
- Spaulding Clinical, West Bend, Wisconsin, USA
- University of Utah, Salt Lake City, Utah, USA
| | - C Erato
- Spaulding Clinical, West Bend, Wisconsin, USA
| | - C Sanabria
- Spaulding Clinical, West Bend, Wisconsin, USA
| | | | - M Hong
- Frontage Laboratories, Exton, Pennsylvania, USA
| | - J Lin
- Frontage Laboratories, Exton, Pennsylvania, USA
| | - P Guo
- Frontage Laboratories, Exton, Pennsylvania, USA
| | - A Mutlib
- Frontage Laboratories, Exton, Pennsylvania, USA
| | - J Wang
- Frontage Laboratories, Exton, Pennsylvania, USA
| | - WJ Crumb
- Zenas Technologies, Metairie, Louisiana, USA
| | - K Blinova
- Center for Devices and Radiological Health, US Food and Drug Administration,
Silver Spring, Maryland, USA
| | - D Chan
- Center for Devices and Radiological Health, US Food and Drug Administration,
Silver Spring, Maryland, USA
| | - J Stohlman
- Center for Devices and Radiological Health, US Food and Drug Administration,
Silver Spring, Maryland, USA
| | - J Florian
- Center for Drug Evaluation and Research, US Food and Drug Administration,
Silver Spring, Maryland, USA
| | - M Ugander
- Center for Devices and Radiological Health, US Food and Drug Administration,
Silver Spring, Maryland, USA
- Department of Clinical Physiology, Karolinska Institutet and Karolinska
University Hospital, Stockholm, Sweden
| | - N Stockbridge
- Center for Drug Evaluation and Research, US Food and Drug Administration,
Silver Spring, Maryland, USA
| | - DG Strauss
- Center for Devices and Radiological Health, US Food and Drug Administration,
Silver Spring, Maryland, USA
- Department of Clinical Physiology, Karolinska Institutet and Karolinska
University Hospital, Stockholm, Sweden
| |
Collapse
|
190
|
Ferber G, Johannesen L. A Comparison of Methods for Thorough QT Analysis for the Assessment of Cardiac Safety. Pharmaceut Med 2016. [DOI: 10.1007/s40290-015-0123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
191
|
Cao X, Nakamura Y, Wada T, Izumi-Nakaseko H, Ando K, Sugiyama A. Electropharmacological effects of amantadine on cardiovascular system assessed with J-T peak and T peak-T end analysis in the halothane-anesthetized beagle dogs. J Toxicol Sci 2016; 41:439-47. [DOI: 10.2131/jts.41.439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xin Cao
- Department of Pharmacology, Faculty of Medicine, Toho University
| | - Yuji Nakamura
- Department of Pharmacology, Faculty of Medicine, Toho University
| | - Takeshi Wada
- Department of Pharmacology, Faculty of Medicine, Toho University
| | | | - Kentaro Ando
- Department of Pharmacology, Faculty of Medicine, Toho University
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University
| |
Collapse
|
192
|
Geanacopoulos M, Barratt R. How the Critical Path Initiative Addresses CDER’s Regulatory Science Needs: Some Illustrative Examples. Ther Innov Regul Sci 2015; 49:466-472. [DOI: 10.1177/2168479014567323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
193
|
Lee W, Mann SA, Windley MJ, Imtiaz MS, Vandenberg JI, Hill AP. In silico assessment of kinetics and state dependent binding properties of drugs causing acquired LQTS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:89-99. [PMID: 26713558 DOI: 10.1016/j.pbiomolbio.2015.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/06/2015] [Accepted: 12/16/2015] [Indexed: 11/24/2022]
Abstract
The Kv11.1 or hERG potassium channel is responsible for one of the major repolarising currents (IKr) in cardiac myocytes. Drug binding to hERG can result in reduction in IKr, action potential prolongation, acquired long QT syndrome and fatal cardiac arrhythmias. The current guidelines for pre-clinical assessment of drugs in development is based on the measurement of the drug concentration that causes 50% current block, i.e., IC50. However, drugs with the same apparent IC50 may have very different kinetics of binding and unbinding, as well as different affinities for the open and inactivated states of Kv11.1. Therefore, IC50 measurements may not reflect the true risk of drug induced arrhythmias. Here we have used an in silico approach to test the hypothesis that drug binding kinetics and differences in state-dependent affinity will influence the extent of cardiac action potential prolongation independent of apparent IC50 values. We found, in general that drugs with faster overall kinetics and drugs with higher affinity for the open state relative to the inactivated state cause more action potential prolongation. These characteristics of drug-hERG interaction are likely to be more arrhythmogenic but cannot be predicted by IC50 measurement alone. Our results suggest that the pre-clinical assessment of Kv11.1-drug interactions should include descriptions of the kinetics and state dependence of drug binding. Further, incorporation of this information into sophisticated in silico models should be able to better predict arrhythmia risk and therefore more accurately assess safety of new drugs in development.
Collapse
Affiliation(s)
- William Lee
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, NSW 2052, Australia
| | - Stefan A Mann
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, NSW 2052, Australia
| | - Monique J Windley
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
| | - Mohammad S Imtiaz
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, NSW 2052, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, NSW 2052, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
194
|
Vicente J, Johannesen L, Mason JW, Pueyo E, Stockbridge N, Strauss DG. Sex differences in drug-induced changes in ventricular repolarization. J Electrocardiol 2015; 48:1081-7. [DOI: 10.1016/j.jelectrocard.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 10/23/2022]
|
195
|
Galeotti L, van Dam PM, Johannesen L, Vicente J, Strauss DG. Computer simulations to investigate the causes of T-wave notching. J Electrocardiol 2015; 48:927-32. [DOI: 10.1016/j.jelectrocard.2015.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/30/2022]
|
196
|
The T-peak–T-end Interval as a Marker of Repolarization Abnormality: A Comparison with the QT Interval for Five Different Drugs. Clin Drug Investig 2015; 35:717-24. [DOI: 10.1007/s40261-015-0328-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
197
|
Guldenring D, Finlay DD, Bond RR, Kennedy A, McLaughlin J, Galeotti L, Strauss DG. The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason-Likar 12-lead electrocardiogram. J Electrocardiol 2015; 48:1045-52. [PMID: 26381798 DOI: 10.1016/j.jelectrocard.2015.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/30/2022]
Abstract
Research has shown that the 'spatial QRS-T angle' (SA) and the 'spatial ventricular gradient' (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice. The SA and the SVG are therefore frequently derived from 12-lead electrocardiogram (ECG) data using linear lead transformation matrices. This research compares the performance of two previously published linear lead transformation matrices (Kors and ML2VCG) in deriving the SA and the SVG from Mason-Likar (ML) 12-lead ECG data. This comparison was performed through an analysis of the estimation errors that are made when deriving the SA and the SVG for all 181 subjects in the study population. The estimation errors were quantified as the systematic error (mean difference) and the random error (span of the Bland-Altman 95% limits of agreement). The random error was found to be the dominating error component for both the Kors and the ML2VCG matrix. The random error [ML2VCG; Kors; result of the paired, two-sided Pitman-Morgan test for statistical significance of differences in the error variance between ML2VCG and Kors] for the vectorcardiographic parameters SA, magnitude of the SVG, elevation of the SVG and azimuth of the SVG were found to be [37.33°; 50.52°; p<0.001], [30.17mVms; 39.09mVms; p<0.001], [36.77°; 47.62°; p=0.001] and [63.45°; 80.32°; p<0.001] respectively. The findings of this research indicate that in comparison to the Kors matrix the ML2VCG provides greater precision for estimating the SA and SVG from ML 12-lead ECG data.
Collapse
Affiliation(s)
| | | | | | | | | | - Loriano Galeotti
- Office of Science and Engineering Laboratories, CDRH, US FDA, Silver Spring, MD, USA
| | - David G Strauss
- Office of Science and Engineering Laboratories, CDRH, US FDA, Silver Spring, MD, USA
| |
Collapse
|
198
|
Vicente J, Simlund J, Johannesen L, Sundh F, Florian J, Ugander M, Wagner GS, Woosley RL, Strauss DG. Investigation of potential mechanisms of sex differences in quinidine-induced torsade de pointes risk. J Electrocardiol 2015; 48:533-8. [DOI: 10.1016/j.jelectrocard.2015.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 11/25/2022]
|
199
|
Vicente J, Johannesen L, Mason JW, Crumb WJ, Pueyo E, Stockbridge N, Strauss DG. Comprehensive T wave morphology assessment in a randomized clinical study of dofetilide, quinidine, ranolazine, and verapamil. J Am Heart Assoc 2015; 4:e001615. [PMID: 25870186 PMCID: PMC4579946 DOI: 10.1161/jaha.114.001615] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/06/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Congenital long QT syndrome type 2 (abnormal hERG potassium channel) patients can develop flat, asymmetric, and notched T waves. Similar observations have been made with a limited number of hERG-blocking drugs. However, it is not known how additional calcium or late sodium block, that can decrease torsade risk, affects T wave morphology. METHODS AND RESULTS Twenty-two healthy subjects received a single dose of a pure hERG blocker (dofetilide) and 3 drugs that also block calcium or sodium (quinidine, ranolazine, and verapamil) as part of a 5-period, placebo-controlled cross-over trial. At pre-dose and 15 time-points post-dose, ECGs and plasma drug concentration were assessed. Patch clamp experiments were performed to assess block of hERG, calcium (L-type) and late sodium currents for each drug. Pure hERG block (dofetilide) and strong hERG block with lesser calcium and late sodium block (quinidine) caused substantial T wave morphology changes (P<0.001). Strong late sodium current and hERG block (ranolazine) still caused T wave morphology changes (P<0.01). Strong calcium and hERG block (verapamil) did not cause T wave morphology changes. At equivalent QTc prolongation, multichannel blockers (quinidine and ranolazine) caused equal or greater T wave morphology changes compared with pure hERG block (dofetilide). CONCLUSIONS T wave morphology changes are directly related to amount of hERG block; however, with quinidine and ranolazine, multichannel block did not prevent T wave morphology changes. A combined approach of assessing multiple ion channels, along with ECG intervals and T wave morphology may provide the greatest insight into drug-ion channel interactions and torsade de pointes risk. CLINICAL TRIAL REGISTRATION URL: http://clinicaltrials.gov/ Unique identifier: NCT01873950.
Collapse
Affiliation(s)
- Jose Vicente
- Office of Science and Engineering Laboratories, CDRH, US FDA, Silver Spring, MD (J.V., L.J., E.P., D.G.S.)
- Division of Cardiovascular and Renal Products, Office of New Drugs, CDER, US FDA, Silver Spring, MD (J.V., N.S.)
- BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain (J.V., E.P.)
| | - Lars Johannesen
- Office of Science and Engineering Laboratories, CDRH, US FDA, Silver Spring, MD (J.V., L.J., E.P., D.G.S.)
- Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J., D.G.S.)
| | - Jay W. Mason
- Spaulding Clinical Research, West Bend, WI (J.W.M.)
| | | | - Esther Pueyo
- Office of Science and Engineering Laboratories, CDRH, US FDA, Silver Spring, MD (J.V., L.J., E.P., D.G.S.)
- BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain (J.V., E.P.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN), Zaragoza, Spain (E.P.)
| | - Norman Stockbridge
- Division of Cardiovascular and Renal Products, Office of New Drugs, CDER, US FDA, Silver Spring, MD (J.V., N.S.)
| | - David G. Strauss
- Office of Science and Engineering Laboratories, CDRH, US FDA, Silver Spring, MD (J.V., L.J., E.P., D.G.S.)
- Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J., D.G.S.)
| |
Collapse
|
200
|
Haigney MC. Looking for virtuous promiscuity: electrocardiographic evidence of multichannel drug block. Clin Pharmacol Ther 2015; 96:534-6. [PMID: 25336265 DOI: 10.1038/clpt.2014.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The finding of QTc prolongation often sounds the death knell for a new molecule, but investigators have long suspected that QTc prolongation alone may be an indifferent predictor of risk. Premature or inappropriate rejection of promising molecules deprives clinicians of new therapies and depletes industry resources. Could it be that the conventional electrocardiogram contains information that might prevent us from relegating "virtuous" compounds to a fate they do not deserve?
Collapse
Affiliation(s)
- M C Haigney
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|