151
|
Freitag CM, Lempp T, Nguyen TT, Jacob CP, Weissflog L, Romanos M, Renner TJ, Walitza S, Warnke A, Rujescu D, Lesch KP, Reif A. The role of ASTN2 variants in childhood and adult ADHD, comorbid disorders and associated personality traits. J Neural Transm (Vienna) 2016; 123:849-58. [DOI: 10.1007/s00702-016-1553-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/11/2016] [Indexed: 01/12/2023]
|
152
|
Reuter I, Knaup S, Romanos M, Lesch KP, Drepper C, Lillesaar C. Developmental exposure to acetaminophen does not induce hyperactivity in zebrafish larvae. J Neural Transm (Vienna) 2016; 123:841-8. [PMID: 27116683 DOI: 10.1007/s00702-016-1556-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
First line pain relief medication during pregnancy relies nearly entirely on the over-the-counter analgesic acetaminophen, which is generally considered safe to use during gestation. However, recent epidemiological studies suggest a risk of developing attention-deficit/hyperactivity disorder (ADHD)-like symptoms in children if mothers use acetaminophen during pregnancy. Currently, there are no experimental proofs that prenatal acetaminophen exposure causes developmental brain alterations of progeny. Exposure to high acetaminophen concentrations causes liver toxicity, which is well investigated in different model organisms. However, sub-liver-toxic concentrations have not been experimentally investigated with respect to ADHD endophenotypes such as hyperactivity. We used zebrafish to investigate the potential impact of acetaminophen exposure on locomotor activity levels, and compared it to the established zebrafish Latrophilin 3 (Lphn3) ADHD-model. We determined the sub-liver-toxic concentration of acetaminophen in zebrafish larvae and treated wild-type and lphn3.1 knockdown larvae with increasing concentrations of acetaminophen. We were able to confirm that lphn3.1 knockdown alone causes hyperactivity, strengthening the implication of Lphn3 dysfunction as an ADHD risk factor. Neither acute nor chronic exposure to acetaminophen at sub-liver-toxic concentrations in wild-type or lphn3.1 knock-downs increases locomotor activity levels. Together our findings show that embryonic to larval exposure to acetaminophen does not cause hyperactivity in zebrafish larvae. Furthermore, there are no additive and/or synergistic effects of acetaminophen exposure in a susceptible background induced by knock-down of lphn3.1. Our experimental study suggests that there is, at least in zebrafish larvae, no direct link between embryonic acetaminophen exposure and hyperactivity. Further work is necessary to clarify this issue in humans.
Collapse
Affiliation(s)
- Isabel Reuter
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, 97074, Würzburg, Germany
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, ADHD Clinical Research Network, Laboratory of Translational Neuroscience, University of Würzburg, 97080, Würzburg, Germany
| | - Sabine Knaup
- Department of Human Genetics, Biocenter, Am Hubland, University of Würzburg, 97074, Würzburg, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, ADHD Clinical Research Network, Laboratory of Translational Neuroscience, University of Würzburg, 97080, Würzburg, Germany
| | - Carsten Drepper
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, 97080, Würzburg, Germany.
| | - Christina Lillesaar
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
153
|
NOS1 and SNAP25 polymorphisms are associated with Attention-Deficit/Hyperactivity Disorder symptoms in adults but not in children. J Psychiatr Res 2016; 75:75-81. [PMID: 26821215 DOI: 10.1016/j.jpsychires.2016.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/05/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023]
Abstract
Several investigations documented that Attention-Deficit/Hyperactivity Disorder (ADHD) is better conceptualized as a dimensional disorder. At the same time, the disorder seems to have different neurobiological underpinnings and phenotypic presentation in children compared to adults. Neurodevelopmental genes could explain, at least partly these differences. The aim of the present study was to examine possible associations between polymorphisms in SNAP25, MAP1B and NOS1 genes and ADHD symptoms in Brazilian samples of children/adolescents and adults with ADHD. The youth sample consisted of 301 patients whereas the adult sample comprises 485 individuals with ADHD. Diagnoses of ADHD and comorbidities were based on the Diagnostic and Statistical Manual of Mental Disorders-4th edition criteria. The Swanson, Nolan and Pelham Scale-Version IV (SNAP-IV) was applied by psychiatrists blinded to genotype. The total SNAP-IV scores were compared between genotypes. Impulsivity SNAP-IV scores were also compared according to NOS1 genotypes. Adult patients homozygous for the C allele at SNAP25 rs8636 showed significantly higher total SNAP-IV scores (F = 11.215; adjusted P-value = 0.004). Impulsivity SNAP-IV scores were also significantly different according to NOS1 rs478597 polymorphisms in adults with ADHD (F = 6.282; adjusted P-value = 0.026). These associations were not observed in children and adolescents with ADHD. These results suggest that SNAP25 and NOS1 genotypes influence ADHD symptoms only in adults with ADHD. Our study corroborates previous evidences for differences in the genetic contribution to adult ADHD compared with childhood ADHD.
Collapse
|
154
|
Lima LDA, Feio-dos-Santos AC, Belangero SI, Gadelha A, Bressan RA, Salum GA, Pan PM, Moriyama TS, Graeff-Martins AS, Tamanaha AC, Alvarenga P, Krieger FV, Fleitlich-Bilyk B, Jackowski AP, Brietzke E, Sato JR, Polanczyk GV, Mari JDJ, Manfro GG, do Rosário MC, Miguel EC, Puga RD, Tahira AC, Souza VN, Chile T, Gouveia GR, Simões SN, Chang X, Pellegrino R, Tian L, Glessner JT, Hashimoto RF, Rohde LA, Sleiman PMA, Hakonarson H, Brentani H. An integrative approach to investigate the respective roles of single-nucleotide variants and copy-number variants in Attention-Deficit/Hyperactivity Disorder. Sci Rep 2016; 6:22851. [PMID: 26947246 PMCID: PMC4780010 DOI: 10.1038/srep22851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023] Open
Abstract
Many studies have attempted to investigate the genetic susceptibility of Attention-Deficit/Hyperactivity Disorder (ADHD), but without much success. The present study aimed to analyze both single-nucleotide and copy-number variants contributing to the genetic architecture of ADHD. We generated exome data from 30 Brazilian trios with sporadic ADHD. We also analyzed a Brazilian sample of 503 children/adolescent controls from a High Risk Cohort Study for the Development of Childhood Psychiatric Disorders, and also previously published results of five CNV studies and one GWAS meta-analysis of ADHD involving children/adolescents. The results from the Brazilian trios showed that cases with de novo SNVs tend not to have de novo CNVs and vice-versa. Although the sample size is small, we could also see that various comorbidities are more frequent in cases with only inherited variants. Moreover, using only genes expressed in brain, we constructed two "in silico" protein-protein interaction networks, one with genes from any analysis, and other with genes with hits in two analyses. Topological and functional analyses of genes in this network uncovered genes related to synapse, cell adhesion, glutamatergic and serotoninergic pathways, both confirming findings of previous studies and capturing new genes and genetic variants in these pathways.
Collapse
Affiliation(s)
- Leandro de Araújo Lima
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil.,Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Sintia Iole Belangero
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ary Gadelha
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo Affonseca Bressan
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Mario Pan
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tais Silveira Moriyama
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ana Soledade Graeff-Martins
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Ana Carina Tamanaha
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Pedro Alvarenga
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Fernanda Valle Krieger
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Bacy Fleitlich-Bilyk
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Andrea Parolin Jackowski
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Elisa Brietzke
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - João Ricardo Sato
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Center of Mathematics, Computation and Cognition. Universidade Federal do ABC, Santo André, Brazil
| | - Guilherme Vanoni Polanczyk
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Jair de Jesus Mari
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Gisele Gus Manfro
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Conceição do Rosário
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Eurípedes Constantino Miguel
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Renato David Puga
- Hospital Israelita Albert Einstein, Clinical Research, São Paulo, SP, Brazil
| | - Ana Carolina Tahira
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Viviane Neri Souza
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Thais Chile
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Gisele Rodrigues Gouveia
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Sérgio Nery Simões
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil.,Federal Institute of Espírito Santo, Serra, ES, Brazil
| | - Xiao Chang
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lifeng Tian
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph T Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ronaldo Fumio Hashimoto
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil.,Mathematics &Statistics Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Luis Augusto Rohde
- Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil.,Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrick M A Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Helena Brentani
- Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil.,Department &Institute of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| |
Collapse
|
155
|
Zhao Y, Castellanos FX. Annual Research Review: Discovery science strategies in studies of the pathophysiology of child and adolescent psychiatric disorders--promises and limitations. J Child Psychol Psychiatry 2016; 57:421-39. [PMID: 26732133 PMCID: PMC4760897 DOI: 10.1111/jcpp.12503] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Psychiatric science remains descriptive, with a categorical nosology intended to enhance interobserver reliability. Increased awareness of the mismatch between categorical classifications and the complexity of biological systems drives the search for novel frameworks including discovery science in Big Data. In this review, we provide an overview of incipient approaches, primarily focused on classically categorical diagnoses such as schizophrenia (SZ), autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD), but also reference convincing, if focal, advances in cancer biology, to describe the challenges of Big Data and discovery science, and outline approaches being formulated to overcome existing obstacles. FINDINGS A paradigm shift from categorical diagnoses to a domain/structure-based nosology and from linear causal chains to complex causal network models of brain-behavior relationship is ongoing. This (r)evolution involves appreciating the complexity, dimensionality, and heterogeneity of neuropsychiatric data collected from multiple sources ('broad' data) along with data obtained at multiple levels of analysis, ranging from genes to molecules, cells, circuits, and behaviors ('deep' data). Both of these types of Big Data landscapes require the use and development of robust and powerful informatics and statistical approaches. Thus, we describe Big Data analysis pipelines and the promise and potential limitations in using Big Data approaches to study psychiatric disorders. CONCLUSIONS We highlight key resources available for psychopathological studies and call for the application and development of Big Data approaches to dissect the causes and mechanisms of neuropsychiatric disorders and identify corresponding biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Child and Adolescent Psychiatry, NYU Child Study Center at NYU Langone Medical Center, New York, NY 10016, USA
| | - F. Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Child Study Center at NYU Langone Medical Center, New York, NY 10016, USA,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
156
|
Stevenson JM, Reilly JL, Harris MSH, Patel SR, Weiden PJ, Prasad KM, Badner JA, Nimgaonkar VL, Keshavan MS, Sweeney JA, Bishop JR. Antipsychotic pharmacogenomics in first episode psychosis: a role for glutamate genes. Transl Psychiatry 2016; 6:e739. [PMID: 26905411 PMCID: PMC4872428 DOI: 10.1038/tp.2016.10] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/21/2015] [Indexed: 12/30/2022] Open
Abstract
Genetic factors may underlie beneficial and adverse responses to antipsychotic treatment. These relationships may be easier to identify among patients early in the course of disease who have limited exposure to antipsychotic drugs. We examined 86 first episode patients (schizophrenia, psychotic bipolar disorder and major depressive disorder with psychotic features) who had minimal to no prior antipsychotic exposure in a 6-week pharmacogenomic study of antipsychotic treatment response. Response was measured by change in Brief Psychiatric Rating Scale total score. Risperidone monotherapy was the primary antipsychotic treatment. Pharmacogenomic association studies were completed to (1) examine candidate single-nucleotide polymorphisms (SNPs) in genes known to be involved with glutamate signaling, and (2) conduct an exploratory genome-wide association study of symptom response to identify potential novel associations for future investigation. Two SNPs in GRM7 (rs2069062 and rs2014195) were significantly associated with antipsychotic response in candidate gene analysis, as were two SNPs in the human glutamate receptor delta 2 (GRID2) gene (rs9307122 and rs1875705) in genome-wide association analysis. Further examination of these findings with those from a separate risperidone-treated study sample demonstrated that top SNPs in both studies were overrepresented in glutamate genes and that there were similarities in neurodevelopmental gene categories associated with drug response from both study samples. These associations indicate a role for gene variants related to glutamate signaling and antipsychotic response with more broad association patterns indicating the potential importance of genes involved in neuronal development.
Collapse
Affiliation(s)
- J M Stevenson
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - J L Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M S H Harris
- Jesse Brown Veterans Administration Medical Center, Chicago, IL, USA
| | - S R Patel
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - P J Weiden
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - K M Prasad
- Department of Psychiatry, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - J A Badner
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - V L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - M S Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - J A Sweeney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
157
|
Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder. Anal Bioanal Chem 2016; 408:2339-45. [DOI: 10.1007/s00216-016-9332-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/04/2023]
|
158
|
Jiang Y, Bachner-Melman R, Chew SH, Ebstein RP. Dopamine D4 receptor gene and religious affiliation correlate with dictator game altruism in males and not females: evidence for gender-sensitive gene × culture interaction. Front Neurosci 2015; 9:338. [PMID: 26441510 PMCID: PMC4585304 DOI: 10.3389/fnins.2015.00338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 09/07/2015] [Indexed: 11/30/2022] Open
Abstract
On a large sample of 2288 Han Chinese undergraduates, we investigated how religion and DRD4 are related to human altruistic giving behavior as measured with the Andreoni-Miller Dictator Game. This game enables us to clearly specify (non-)selfishness, efficiency, and fairness motives for sharing. Participants were further classified into religious categories (Christian, Buddhist-Tao, and No Religion) based on self-reports, and genotyped for the dopamine D4 receptor (DRD4) gene exon III VNTR. Our analysis revealed a significant interaction between religion and DRD4 correlated with giving behavior solely among males: Whereas no significant association between religion and sharing decisions was observed in the majority 4R/4R genotype group, a significant difference in giving behavior between Christian and non-Christian males was seen in the non-4R/4R group, with Christian men being overall more altruistic (less selfish and fairer) than non-Christian men. These results support the vantage sensitivity hypothesis regarding DRD4 that the non-4R/4R “susceptibility” genotype is more responsive to a positive environment provided by some religions.
Collapse
Affiliation(s)
- Yushi Jiang
- Department of Economics, National University of Singapore Singapore, Singapore
| | - Rachel Bachner-Melman
- School of Social and Community Sciences, Ruppin Academic Center Emek Hefer, Israel ; Department of Psychology, Hebrew University of Jerusalem Mt. Scopus, Israel
| | - Soo Hong Chew
- Department of Economics, National University of Singapore Singapore, Singapore
| | - Richard P Ebstein
- Department of Psychology, National University of Singapore Singapore, Singapore
| |
Collapse
|
159
|
Niu W, Huang X, Yu T, Chen S, Li X, Wu X, Cao Y, Zhang R, Bi Y, Yang F, Wang L, Li W, Xu Y, He L, He G. Association study of GRM7 polymorphisms and schizophrenia in the Chinese Han population. Neurosci Lett 2015; 604:109-112. [PMID: 26254163 DOI: 10.1016/j.neulet.2015.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 11/26/2022]
Abstract
Schizophrenia is a severe and complex mental disorder with high heritability. There is an evidence that metabotropic glutamate receptors (GRM) are associated with schizophrenia. GRM7 has been identified as a candidate gene for many psychiatric disorders especially schizophrenia. In this study, we investigated whether single nucleotide polymorphisms (SNPs) in GRM7 were associated with schizophrenia. Four SNPs (rs9814881, rs13353402, rs9870680 and rs1531939) were genotyped in 1034 schizophrenic patients and 1034 healthy controls of Chinese Han origin. The results showed that the two SNPs rs13353402 and rs1531939 demonstrated significant difference between schizophrenic patients and control subjects in allele frequencies (rs13353402: P value=0.0307, rs1531939: P value=0.0328, respectively). Nevertheless, there was no significant discrepancies in genotype distribution. In summary, our results indicate that the GRM7 SNPs rs13353402 and rs1531939 might be associated with schizophrenia in Chinese Han population.
Collapse
Affiliation(s)
- Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Xiaoye Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shiqing Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yanfei Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Rui Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Lu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institutes of Biomedical Sciences Fudan University, 138 Yixueyuan Road, Shanghai 200032, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China.
| |
Collapse
|
160
|
Klein M, van der Voet M, Harich B, van Hulzen KJ, Onnink AM, Hoogman M, Guadalupe T, Zwiers M, Groothuismink JM, Verberkt A, Nijhof B, Castells-Nobau A, Faraone SV, Buitelaar JK, Schenck A, Arias-Vasquez A, Franke B, Psychiatric Genomics Consortium ADHD Working Group. Converging evidence does not support GIT1 as an ADHD risk gene. Am J Med Genet B Neuropsychiatr Genet 2015; 168:492-507. [PMID: 26061966 PMCID: PMC7164571 DOI: 10.1002/ajmg.b.32327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/20/2015] [Indexed: 01/03/2023]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder with a complex genetic background. The G protein-coupled receptor kinase interacting ArfGAP 1 (GIT1) gene was previously associated with ADHD. We aimed at replicating the association of GIT1 with ADHD and investigated its role in cognitive and brain phenotypes. Gene-wide and single variant association analyses for GIT1 were performed for three cohorts: (1) the ADHD meta-analysis data set of the Psychiatric Genomics Consortium (PGC, N = 19,210), (2) the Dutch cohort of the International Multicentre persistent ADHD CollaboraTion (IMpACT-NL, N = 225), and (3) the Brain Imaging Genetics cohort (BIG, N = 1,300). Furthermore, functionality of the rs550818 variant as an expression quantitative trait locus (eQTL) for GIT1 was assessed in human blood samples. By using Drosophila melanogaster as a biological model system, we manipulated Git expression according to the outcome of the expression result and studied the effect of Git knockdown on neuronal morphology and locomotor activity. Association of rs550818 with ADHD was not confirmed, nor did a combination of variants in GIT1 show association with ADHD or any related measures in either of the investigated cohorts. However, the rs550818 risk-genotype did reduce GIT1 expression level. Git knockdown in Drosophila caused abnormal synapse and dendrite morphology, but did not affect locomotor activity. In summary, we could not confirm GIT1 as an ADHD candidate gene, while rs550818 was found to be an eQTL for GIT1. Despite GIT1's regulation of neuronal morphology, alterations in gene expression do not appear to have ADHD-related behavioral consequences. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Klein
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - M van der Voet
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - B Harich
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - KJ van Hulzen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - AM Onnink
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, The Netherlands
| | - M Hoogman
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - T Guadalupe
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands,International Max Planck Research School for Language Sciences, Nijmegen, The Netherlands
| | - M Zwiers
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - JM Groothuismink
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - A Verberkt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - B Nijhof
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - A Castells-Nobau
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - SV Faraone
- Department of Psychiatry, State University of New York (SUNY) Upstate Medical University, Syracuse, New York,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - JK Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - A Schenck
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - A Arias-Vasquez
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, The Netherlands,Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, The Netherlands
| | | |
Collapse
|
161
|
Alemany S, Ribasés M, Vilor-Tejedor N, Bustamante M, Sánchez-Mora C, Bosch R, Richarte V, Cormand B, Casas M, Ramos-Quiroga JA, Sunyer J. New suggestive genetic loci and biological pathways for attention function in adult attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2015; 168:459-470. [PMID: 26174813 DOI: 10.1002/ajmg.b.32341] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/22/2015] [Indexed: 11/09/2022]
Abstract
Attention deficit is one of the core symptoms of the attention-deficit/hyperactivity disorder (ADHD). However, the specific genetic variants that may be associated with attention function in adult ADHD remain largely unknown. The present study aimed to identifying SNPs associated with attention function in adult ADHD and tested whether these associations were enriched for specific biological pathways. Commissions, hit-reaction time (HRT), the standard error of HRT (HRTSE), and intraindividual coefficient variability (ICV) of the Conners Continuous Performance Test (CPT-II) were assessed in 479 unmedicated adult ADHD individuals. A Genome-Wide Association Study (GWAS) was conducted for each outcome and, subsequently, gene set enrichment analyses were performed. Although no SNPs reached genome-wide significance (P < 5E-08), 27 loci showed suggestive evidence of association with the CPT outcomes (P < E-05). The most relevant associated SNP was located in the SORCS2 gene (P = 3.65E-07), previously associated with bipolar disorder (BP), Alzheimer disease (AD), and brain structure in elderly individuals. We detected other genes suggested to be involved in synaptic plasticity, cognitive function, neurological and neuropsychiatric disorders, and smoking behavior such as NUAK1, FGF20, NETO1, BTBD9, DLG2, TOP3B, and CHRNB4. Also, several of the pathways nominally associated with the CPT outcomes are relevant for ADHD such as the ubiquitin proteasome, neurodegenerative disorders, axon guidance, and AD amyloid secretase pathways. To our knowledge, this is the first GWAS and pathway analysis of attention function in patients with persistent ADHD. Overall, our findings reinforce the conceptualization of attention function as a potential endophenotype for studying the molecular basis of adult ADHD. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Silvia Alemany
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Marta Ribasés
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain.,Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natàlia Vilor-Tejedor
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain.,Center for Genomic Regulation (CRG), Barcelona, Spain
| | - Cristina Sánchez-Mora
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain.,Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Bosch
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain.,Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bru Cormand
- Facultat de Biologia, Departament de Genètica, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain
| | - Miguel Casas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain.,Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep A Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain.,Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
162
|
Coffey BJ. Complexities for Assessment and Treatment of Co-Occurring ADHD and Tics. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2015. [DOI: 10.1007/s40474-015-0061-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
163
|
Poot M, Haaf T. Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements. Mol Syndromol 2015; 6:110-34. [PMID: 26732513 DOI: 10.1159/000438812] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 01/08/2023] Open
Abstract
Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C (JMJD2C) as a novel candidate gene for mental retardation.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Thomas Haaf
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
164
|
Bello NT. Clinical utility of guanfacine extended release in the treatment of ADHD in children and adolescents. Patient Prefer Adherence 2015; 9:877-85. [PMID: 26170637 PMCID: PMC4494608 DOI: 10.2147/ppa.s73167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common psychiatric illness in children and adolescents. Several stimulant medications, such as methylphenidate and amphetamine derivatives, are available to treat ADHD in pediatric patients. Nonstimulant medications are more preferred by some parents, other caregivers, and patients because they lack the abuse potential of stimulant medications. In the US, one available nonstimulant option is guanfacine extended release (XR). As a selective α2A adrenergic receptor, guanfacine acts on the central noradrenergic pathways and cortical noradrenergic targets to improve working memory and attention. The XR formulation of guanfacine, compared with the immediate-release formulation, is more effective for the long-term management of ADHD and is associated with fewer adverse effects. Available data also indicate that guanfacine XR is superior to atomoxetine and is as effective as the nonselective α2 adrenergic receptor agonist, clonidine XR. The most common adverse effects associated with guanfacine XR are somnolence, fatigue, bradycardia, and hypotension. Somnolence is the most often cited reason for discontinuation. Guanfacine XR is also labeled for use as an adjuvant to stimulant treatment for ADHD. A similar profile of adverse effects as reported with monotherapy is reported when guanfacine XR is "added on" to stimulant therapy with somnolence as the most commonly reported adverse event. This review discusses the clinical efficacy and patient preference of guanfacine XR based on available published data on the safety, relative effectiveness, and tolerance of this medication to treat ADHD.
Collapse
Affiliation(s)
- Nicholas T Bello
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|