151
|
Leder EH, Cano JM, Leinonen T, O'Hara RB, Nikinmaa M, Primmer CR, Merilä J. Female-biased expression on the X chromosome as a key step in sex chromosome evolution in threespine sticklebacks. Mol Biol Evol 2010; 27:1495-503. [PMID: 20142438 DOI: 10.1093/molbev/msq031] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Given that the genome of males and females are almost identical with the exception of genes on the Y (or W) chromosome or sex-determining alleles (in organisms without sex chromosomes), it is likely that many downstream processes resulting in sexual dimorphism are produced by changes in regulation. In early stages of sex chromosome evolution, as the Y-chromosome degenerates, gene expression should be significantly impacted for genes residing on the sex chromosome pair as regulatory mutations accumulate. However, this has rarely been examined because most model organisms have clearly diverged sex chromosomes. Fish provide a unique opportunity to examine the evolution of sex chromosomes because genetic sex determination has evolved quite recently in some groups of fish. We compared sex-specific transcription in threespine stickleback (Gasterosteus aculeatus) liver tissue using a long-oligo microarray. Of the 1,268 genes that were differentially expressed between sexes, a highly significant proportion (23%) was concentrated on chromosome 19, corresponding to the recently described nascent sex chromosomes. The sex-biased genes are enriched for different functional categories in males and females, although there is no specific functional enrichment on the sex chromosomes. Female-biased genes are concentrated at one end of the sex chromosome, corresponding to a deletion in the Y, suggesting a lack of global dosage compensation. Prior research on threespine sticklebacks has demonstrated various degrees of dissimilarity in upstream regions of genes on the Y providing a potential mechanism for the observed patterns of female-biased expression. We hypothesize that degeneration of the Y chromosome results in regulatory mutations that create a sex-specific expression pattern and that this physical concentration of sex-biased expression on the nascent sex chromosome may be a key feature characterizing intermediate phases of sex chromosome evolution.
Collapse
Affiliation(s)
- Erica H Leder
- Division of Genetics and Physiology, Department of Biology (Vesilinnantie 5), University of Turku, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
152
|
Zhang Y, Oliver B. An evolutionary consequence of dosage compensation on Drosophila melanogaster female X-chromatin structure? BMC Genomics 2010; 11:6. [PMID: 20051121 PMCID: PMC2820458 DOI: 10.1186/1471-2164-11-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 01/05/2010] [Indexed: 01/07/2023] Open
Abstract
Background X chromosomes are subject to dosage compensation in Drosophila males. Dosage compensation requires cis sequence features of the X chromosome that are present in both sexes by definition and trans acting factors that target chromatin modifying machinery to the X specifically in males. The evolution of this system could result in neutral X chromatin changes that will be apparent in females. Results We find that the general chromatin structure of female X chromosomes is distinct from autosomes. Additionally, specific histone marks associated with dosage compensation and active chromatin marks on the male X chromosome are also enriched on the X chromosomes of females, albeit to a lesser degree. Conclusions Our data indicate that X chromatin structure is fundamentally different from autosome structure in both sexes. We suggest that the differences between the X chromosomes and autosomes in females are a consequence of mechanisms that have evolved to ensure sufficient X chromosome expression in the soma of males.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-8028, USA.
| | | |
Collapse
|
153
|
The chicken Z chromosome is enriched for genes with preferential expression in ovarian somatic cells. J Mol Evol 2009; 70:129-36. [PMID: 20037757 DOI: 10.1007/s00239-009-9315-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Theory predicts that sexually antagonistic mutations will be over- or under-represented on the X and Z chromosomes, depending on their average dominance coefficients. However, as little is known about the dominance coefficients for new mutations, the effect of sexually antagonistic selection is difficult to predict. To elucidate the role of sexually antagonistic selection in the evolution of Z chromosome gene content in chicken, we analyzed publicly available microarray data from several somatic tissues as well as somatic and germ cells of the ovary. We found that the Z chromosome is enriched for genes showing preferential expression in ovarian somatic cells, but not for genes with preferential expression in primary oocytes or non-sex-specific somatic tissues. Our results suggest that sexual antagonism leads to a higher abundance of female-benefit alleles on the Z chromosome. No bias toward Z-linkage for oocyte-enriched genes can be explained by lower intensity of sexually antagonistic selection in ovarian germ cells compared to ovarian somatic cells. An alternative explanation would be that meiotic Z chromosome inactivation hinders accumulation of oocyte-expressed genes on the Z chromosome. Our results are consistent with findings in mammals and indicate that recessive rather than dominant sexually antagonistic mutations shape the gene content of the X and Z chromosomes.
Collapse
|
154
|
Arnold AP, van Nas A, Lusis AJ. Systems biology asks new questions about sex differences. Trends Endocrinol Metab 2009; 20:471-6. [PMID: 19783453 PMCID: PMC2787703 DOI: 10.1016/j.tem.2009.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 11/29/2022]
Abstract
Females and males differ in physiology and in the incidence and progression of diseases. The sex-biased proximate factors causing sex differences in phenotype include direct effects of gonadal hormones and of genes represented unequally in the genome because of their X- or Y-linkage. Novel systems approaches have begun to assess the magnitude and character of sex differences in organization of gene networks on a genome-wide scale. These studies identify functionally related modules of genes that are coexpressed differently in males and females, and sites in the genome that regulate gene networks in a sex-specific manner. Measurement of the aggregate behavior of genes uncovers novel sex differences that can be related more effectively to susceptibility to disease.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Physiological Science, University of California, Los Angeles, CA, USA.
| | | | | |
Collapse
|
155
|
Singh ND, Larracuente AM, Sackton TB, Clark AG. Comparative Genomics on the Drosophila Phylogenetic Tree. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.110308.120214] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the sequencing of 12 complete euchromatic Drosophila genomes, the genus Drosophila is a leading model for comparative genomics. In this review, we discuss the novel insights into evolutionary processes afforded by the newly available genomic sequences when placed in the context of the phylogeny. We focus on three levels: insights into whole-genome content, such as changes in genome size and content across the phylogeny; insights into large-scale patterns of divergence and conservation, such as selective constraints on genes and chromosome-level evolution of sex chromosomes; and insights into finer-scale processes in individual lineages and genes, such as lineage-specific evolution in response to ecological context. As the field of comparative genomics is still young, we also discuss current challenges, such as the development of more sophisticated evolutionary models to capture nonequilibrium processes and the improvement of assembly and alignment algorithms to better capture uncertainty in the data.
Collapse
Affiliation(s)
- Nadia D. Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Amanda M. Larracuente
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Timothy B. Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
156
|
Zhu Z, Zhang Y, Long M. Extensive structural renovation of retrogenes in the evolution of the Populus genome. PLANT PHYSIOLOGY 2009; 151:1943-51. [PMID: 19789289 PMCID: PMC2785971 DOI: 10.1104/pp.109.142984] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Retroposition, as an important copy mechanism for generating new genes, was believed to play a negligible role in plants. As a representative dicot, the genomic sequences of Populus (poplar; Populus trichocarpa) provide an opportunity to investigate this issue. We identified 106 retrogenes and found the majority (89%) of them are associated with functional signatures in sequence evolution, transcription, and (or) translation. Remarkably, examination of gene structures revealed extensive structural renovation of these retrogenes: we identified 18 (17%) of them undergoing either chimerization to form new chimerical genes and (or) intronization (transformation into intron sequences of previously exonic sequences) to generate new intron-containing genes. Such a change might occur at a high speed, considering eight out of 18 such cases occurred recently after divergence between Arabidopsis (Arabidopsis thaliana) and Populus. This pattern also exists in Arabidopsis, with 15 intronized retrogenes occurring after the divergence between Arabidopsis and papaya (Carica papaya). Thus, the frequency of intronization in dicots revealed its importance as a mechanism in the evolution of exon-intron structure. In addition, we also examined the potential impact of the Populus nascent sex determination system on the chromosomal distribution of retrogenes and did not observe any significant effects of the extremely young sex chromosomes.
Collapse
|
157
|
Affiliation(s)
- John Parsch
- Department of Biology, University of Munich, Planegg-Martinsried, Germany.
| |
Collapse
|
158
|
Vibranovski MD, Lopes HF, Karr TL, Long M. Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes. PLoS Genet 2009; 5:e1000731. [PMID: 19936020 PMCID: PMC2770318 DOI: 10.1371/journal.pgen.1000731] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 10/19/2009] [Indexed: 01/01/2023] Open
Abstract
In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation—MSCI) was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes. During the course of Drosophila evolution, genes expressed in males have accumulated on the autosomes. Meiotic sex chromosome X inactivation in males was proposed, among other hypotheses, as a selective force favoring the accumulation of testis-expressed genes on the autosomes. Under such a model, the inactivation of X-linked genes would favor the accumulation of testis-expressed genes in autosomes, wherein these genes would still be expressed. In this study, we observed meiotic expression reduction for X-linked genes in D. melanogaster through a global gene expression analysis in different phases of spermatogenesis, in agreement with MSCI. In order to test the effects of MSCI on the chromosomal distribution of testis-expressed genes, we analyzed their expression pattern throughout spermatogenesis. First, X chromosome underrepresentation was restricted to testis-biased genes over-expressed in meiosis. Second, we observed that the autosomal genes retroposed from the X chromosome more often showed complementary expression in meiosis to their X-linked parents. These results support MSCI in Drosophila, suggesting its mechanistic role in the evolution of testis-expressed genes.
Collapse
Affiliation(s)
- Maria D. Vibranovski
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Hedibert F. Lopes
- The University of Chicago Booth School of Business, Chicago, Illinois, United States of America
| | - Timothy L. Karr
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
159
|
Mank JE, Nam K, Ellegren H. Faster-Z Evolution Is Predominantly Due to Genetic Drift. Mol Biol Evol 2009; 27:661-70. [DOI: 10.1093/molbev/msp282] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
160
|
Evolution of sex-dependent gene expression in three recently diverged species of Drosophila. Genetics 2009; 183:1175-85. [PMID: 19720861 DOI: 10.1534/genetics.109.105775] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sexual dimorphism in morphological, physiological, and behavioral traits is pervasive in animals, as is the observation of strong sexual dimorphism in genomewide patterns of gene expression in the few species where this has been studied. Studies of transcriptome divergence show that most interspecific transcriptional divergence is highly sex dependent, an observation consistent with the action of sex-dependent natural selection during species divergence. However, few transcriptome evolution studies have been conducted between recently diverged species (<1 MY). Here, we present analyses of sex-biased transcriptome divergence in sexually mature adults of three recently diverged species of Drosophila: Drosophila pseudoobscura, D. persimilis, and D. pseudoobscura bogotana. Data were collected using a custom designed Agilent oligonucleotide. Expression was detected in 12,507 genes. About 80% of the expressed genes show sex-biased expression in each species. Across species, 21% of the transcriptome shows switches between nonsex bias and sex bias, and just 0.9% of the transcriptome shows reversals of sex-biased expression. Over 80% of the expression divergence between species is due to changes in one sex only. About 15% of the expression divergence between species is due to changes in the same direction in both sexes and just 2% is due to changes in both sexes but in opposite directions. In agreement with previous studies, we observe a high level of sex-dependent transcriptome divergence and strong demasculinization of the two arms of the X chromosome in all species. However, in contrast to previous studies we find that male-biased genes do not have higher levels of expression divergence than non-sex-biased genes, and sex-biased genes show higher levels of expression divergence in the alternate sex, suggesting that sex-biased genes endure stronger selection when expressed in the alternate sex.
Collapse
|
161
|
Meisel RP, Han MV, Hahn MW. A complex suite of forces drives gene traffic from Drosophila X chromosomes. Genome Biol Evol 2009; 1:176-88. [PMID: 20333188 PMCID: PMC2817413 DOI: 10.1093/gbe/evp018] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2009] [Indexed: 01/06/2023] Open
Abstract
Theoretical studies predict X chromosomes and autosomes should be under different selection pressures, and there should therefore be differences in sex-specific and sexually antagonistic gene content between the X and the autosomes. Previous analyses have identified an excess of genes duplicated by retrotransposition from the X chromosome in Drosophila melanogaster. A number of hypotheses may explain this pattern, including mutational bias, escape from X-inactivation during spermatogenesis, and the movement of male-favored (sexually antagonistic) genes from a chromosome that is predominantly carried by females. To distinguish among these processes and to examine the generality of these patterns, we identified duplicated genes in nine sequenced Drosophila genomes. We find that, as in D. melanogaster, there is an excess of genes duplicated from the X chromosome across the genus Drosophila. This excess duplication is due almost completely to genes duplicated by retrotransposition, with little to no excess from the X among genes duplicated via DNA intermediates. The only exception to this pattern appears within the burst of duplication that followed the creation of the Drosophila pseudoobscura neo-X chromosome. Additionally, we examined genes relocated among chromosomal arms (i.e., genes duplicated to new locations coupled with the loss of the copy in the ancestral locus) and found an excess of genes relocated off the ancestral X and neo-X chromosomes. Interestingly, many of the same genes were duplicated or relocated from the independently derived neo-X chromosomes of D. pseudoobscura and Drosophila willistoni, suggesting that natural selection favors the traffic of genes from X chromosomes. Overall, we find that the forces driving gene duplication from X chromosomes are dependent on the lineage in question, the molecular mechanism of duplication considered, the preservation of the ancestral copy, and the age of the X chromosome.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Graduate Program in Genetics, The Pennsylvania State University, USA.
| | | | | |
Collapse
|
162
|
Accelerated adaptive evolution on a newly formed X chromosome. PLoS Biol 2009; 7:e82. [PMID: 19402745 PMCID: PMC2672600 DOI: 10.1371/journal.pbio.1000082] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 02/27/2009] [Indexed: 01/01/2023] Open
Abstract
Sex chromosomes originated from ordinary autosomes, and their evolution is characterized by continuous gene loss from the ancestral Y chromosome. Here, we document a new feature of sex chromosome evolution: bursts of adaptive fixations on a newly formed X chromosome. Taking advantage of the recently formed neo-X chromosome of Drosophila miranda, we compare patterns of DNA sequence variation at genes located on the neo-X to genes on the ancestral X chromosome. This contrast allows us to draw inferences of selection on a newly formed X chromosome relative to background levels of adaptation in the genome while controlling for demographic effects. Chromosome-wide synonymous diversity on the neo-X is reduced 2-fold relative to the ancestral X, as expected under recent and recurrent directional selection. Several statistical tests employing various features of the data consistently identify 10%–15% of neo-X genes as targets of recent adaptive evolution but only 1%–3% of genes on the ancestral X. In addition, both the rate of adaptation and the fitness effects of adaptive substitutions are estimated to be roughly an order of magnitude higher for neo-X genes relative to genes on the ancestral X. Thus, newly formed X chromosomes are not passive players in the evolutionary process of sex chromosome differentiation, but respond adaptively to both their sex-biased transmission and to Y chromosome degeneration, possibly through demasculinization of their gene content and the evolution of dosage compensation. Sex chromosomes have evolved independently many times in both animals and plants from ordinary chromosomes. Much research on sex chromosome evolution has focused on the degeneration and loss of genes from the Y chromosome. Here, we describe another principle of sex chromosome evolution: bursts of adaptive fixations on a newly formed X chromosome. By employing a comparative population genomics approach and taking advantage of the recently formed sex chromosomes in the fruit fly Drosophila miranda, we show that rates of adaptation are increased about 10-fold on a newly formed X chromosome relative to background levels of selection in the genome. This suggests that a young X chromosome responds adaptively to both its female-biased transmission and to Y chromosome degeneration. Thus, contrary to the traditional view of being passive players, the X chromosome has a very active role in the evolutionary process of sex chromosome differentiation. Research on sex chromosome molecular evolution has focused on the degeneration of the Y chromosome, but new evidence highlights that important changes occur on the evolving X chromosome in the form of rapid bursts of adaptive evolution.
Collapse
|
163
|
The deficit of male-biased genes on the D. melanogaster X chromosome is expression-dependent: a consequence of dosage compensation? J Mol Evol 2009; 68:576-83. [PMID: 19407921 DOI: 10.1007/s00239-009-9235-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/13/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
In Drosophila, there is a consistent deficit of male-biased genes on the X chromosome. It has been suggested that male-biased genes may evolve from initially unbiased genes as a result of increased expression levels in males. If transcription rates are limited, a large increase in expression in the testis may be harder to achieve for single-copy X-linked genes than for autosomal genes, because they are already hypertranscribed due to dosage compensation. This hypothesis predicts that the larger the increase in expression required to make a male-biased gene, the lower the chance of this being achievable if it is located on the X chromosome. Consequently, highly expressed male-biased genes should be located on the X chromosome less often than lowly expressed male-biased genes. This pattern is observed in our analysis of publicly available data, where microarray data or EST data are used to detect male-biased genes in D. melanogaster and to measure their expression levels. This is consistent with the idea that limitations in transcription rates may prevent male-biased genes from accumulating on the X chromosome.
Collapse
|
164
|
Sex chromosomes and speciation in Drosophila. Trends Genet 2009; 24:336-43. [PMID: 18514967 DOI: 10.1016/j.tig.2008.04.007] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 12/22/2022]
Abstract
Two empirical rules suggest that sex chromosomes play a special role in speciation. The first is Haldane's rule - the preferential sterility and inviability of species hybrids of the heterogametic (XY) sex. The second is the disproportionately large effect of the X chromosome in genetic analyses of hybrid sterility. Whereas the causes of Haldane's rule are well established, the causes of the 'large X-effect' have remained controversial. New genetic analyses in Drosophila confirm that the X is a hotspot for hybrid male sterility factors, providing a proximate explanation for the large X-effect. Several other new findings -- on faster X evolution, X chromosome meiotic drive and the regulation of the X chromosome in the male-germline -- provide plausible evolutionary explanations for the large X-effect.
Collapse
|
165
|
Vibranovski MD, Zhang Y, Long M. General gene movement off the X chromosome in the Drosophila genus. Genome Res 2009; 19:897-903. [PMID: 19251740 DOI: 10.1101/gr.088609.108] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Drosophila melanogaster, there is an excess of genes duplicated by retroposition from the X chromosome to the autosomes. Most of those retrogenes that originated on the X chromosome have testis expression pattern. These observations could be explained by natural selection favoring genes that avoided spermatogenesis X inactivation or by sexual antagonistic effects favoring the fixation of male beneficial mutations on the autosomes. If natural selection played the essential role in distributing male-related genes, then the out-of-the-X chromosomal gene movement should not be limited to retrogenes. Here, we studied DNA-based interchromosome gene movement patterns by analyzing relocated genes that were previously identified in 12 Drosophila genome sequences. We found a significant excess of gene movement out of the X chromosome. In addition, we were able to extend previous retrogene movement analysis to species and branches other than those involving D. melanogaster, confirming the pervasiveness of gene movement out of the X chromosome. Also, for X chromosome-to-autosome (X-->A) movement, we observed high testis expression of relocated genes as opposed to the low testis expression of parental genes, corroborating the involvement of the male germ line on the gene movement process. These analyses of both DNA-based and RNA-based gene relocations reveal that the out-of-the-X movement of testis-expressed genes is a general pattern in the Drosophila genus.
Collapse
Affiliation(s)
- Maria D Vibranovski
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
166
|
Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM, Rollmann SM, Duncan LH, Lawrence F, Anholt RRH, Mackay TFC. Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 2009; 41:299-307. [PMID: 19234471 PMCID: PMC2752214 DOI: 10.1038/ng.332] [Citation(s) in RCA: 396] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 01/12/2009] [Indexed: 01/18/2023]
Abstract
Determining the genetic architecture of complex traits is challenging because phenotypic variation arises from interactions between multiple, environmentally sensitive alleles. We quantified genome-wide transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster wild-derived inbred lines. We observed 10,096 genetically variable transcripts and high heritabilities for all organismal phenotypes. The transcriptome is highly genetically inter-correlated, forming 241 transcriptional modules. Modules are enriched for transcripts in common pathways, gene ontology categories, tissue-specific expression, and transcription factor binding sites. The high transcriptional connectivity allows us to infer genetic networks and the function of predicted genes based on annotations of other genes in the network. Regressions of organismal phenotypes on transcript abundance implicate several hundred candidate genes that form modules of biologically meaningful correlated transcripts affecting each phenotype. Overlapping transcripts in modules associated with different traits provides insight into the molecular basis of pleiotropy between complex traits.
Collapse
Affiliation(s)
- Julien F Ayroles
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Lebo MS, Sanders LE, Sun F, Arbeitman MN. Somatic, germline and sex hierarchy regulated gene expression during Drosophila metamorphosis. BMC Genomics 2009; 10:80. [PMID: 19216785 PMCID: PMC2656526 DOI: 10.1186/1471-2164-10-80] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 02/13/2009] [Indexed: 12/05/2022] Open
Abstract
Background Drosophila melanogaster undergoes a complete metamorphosis, during which time the larval male and female forms transition into sexually dimorphic, reproductive adult forms. To understand this complex morphogenetic process at a molecular-genetic level, whole genome microarray analyses were performed. Results The temporal gene expression patterns during metamorphosis were determined for all predicted genes, in both somatic and germline tissues of males and females separately. Temporal changes in transcript abundance for genes of known functions were found to correlate with known developmental processes that occur during metamorphosis. We find that large numbers of genes are sex-differentially expressed in both male and female germline tissues, and relatively few are sex-differentially expressed in somatic tissues. The majority of genes with somatic, sex-differential expression were found to be expressed in a stage-specific manner, suggesting that they mediate discrete developmental events. The Sex-lethal paralog, CG3056, displays somatic, male-biased expression at several time points in metamorphosis. Gene expression downstream of the somatic, sex determination genes transformer and doublesex (dsx) was examined in two-day old pupae, which allowed for the identification of genes regulated as a consequence of the sex determination hierarchy. These include the homeotic gene abdominal A, which is more highly expressed in females as compared to males, as a consequence of dsx. For most genes regulated downstream of dsx during pupal development, the mode of regulation is distinct from that observed for the well-studied direct targets of DSX, Yolk protein 1 and 2. Conclusion The data and analyses presented here provide a comprehensive assessment of gene expression during metamorphosis in each sex, in both somatic and germline tissues. Many of the genes that underlie critical developmental processes during metamorphosis, including sex-specific processes, have been identified. These results provide a framework for further functional studies on the regulation of sex-specific development.
Collapse
Affiliation(s)
- Matthew S Lebo
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA.
| | | | | | | |
Collapse
|
168
|
Abstract
Gene copies that stem from the mRNAs of parental source genes have long been viewed as evolutionary dead-ends with little biological relevance. Here we review a range of recent studies that have unveiled a significant number of functional retroposed gene copies in both mammalian and some non-mammalian genomes. These studies have not only revealed previously unknown mechanisms for the emergence of new genes and their functions but have also provided fascinating general insights into molecular and evolutionary processes that have shaped genomes. For example, analyses of chromosomal gene movement patterns via RNA-based gene duplication have shed fresh light on the evolutionary origin and biology of our sex chromosomes.
Collapse
|
169
|
Mank JE, Ellegren H. Sex-linkage of sexually antagonistic genes is predicted by female, but not male, effects in birds. Evolution 2009; 63:1464-72. [PMID: 19154378 DOI: 10.1111/j.1558-5646.2009.00618.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Evolutionary theory predicts that sexually antagonistic loci will be preferentially sex-linked, and this association can be empirically testes with data on sex-biased gene expression with the assumption that sex-biased gene expression represents the resolution of past sexual antagonism. However, incomplete dosage compensating mechanisms and meiotic sex chromosome inactivation have hampered efforts to connect expression data to theoretical predictions regarding the genomic distribution of sexually antagonistic loci in a variety of animals. Here we use data on the underlying regulatory mechanism that produce expression sex-bias to test the genomic distribution of sexually antagonistic genes in chicken. Using this approach, which is free from problems associated with the lack of dosage compensation in birds, we show that female-detriment genes are significantly overrepresented on the Z chromosome, and female-benefit genes underrepresented. By contrast, male-effect genes show no over- or underrepresentation on the Z chromosome. These data are consistent with a dominant mode of inheritance for sexually antagonistic genes, in which male-benefit coding mutations are more likely to be fixed on the Z due to stronger male-specific selective pressures. After fixation of male-benefit alleles, regulatory changes in females evolve to minimize antagonism by reducing female expression.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
170
|
A multispecies approach for comparing sequence evolution of X-linked and autosomal sites inDrosophila. Genet Res (Camb) 2008; 90:421-31. [DOI: 10.1017/s0016672308009804] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SummaryPopulation genetics models show that, under certain conditions, the X chromosome is expected to be under more efficient selection than the autosomes. This could lead to ‘faster-X evolution’, if a large proportion of mutations are fixed by positive selection, as suggested by recent studies inDrosophila. We used a multispecies approach to test this: Muller's element D, an autosomal arm, is fused to the ancestral X chromosome inDrosophila pseudoobscuraand its sister species,Drosophila affinis. We tested whether the same set of genes had higher rates of non-synonymous evolution when they were X-linked (in theD. pseudoobscura/D. affiniscomparison) than when they were autosomal (inDrosophila melanogaster/Drosophila yakuba). Although not significant, our results suggest this may be the case, but only for genes under particularly strong positive selection/weak purifying selection. They also suggest that genes that have become X-linked have higher levels of codon bias and slower synonymous site evolution, consistent with more effective selection on codon usage at X-linked sites.
Collapse
|
171
|
Arnold AP, Itoh Y, Melamed E. A bird's-eye view of sex chromosome dosage compensation. Annu Rev Genomics Hum Genet 2008; 9:109-27. [PMID: 18489256 DOI: 10.1146/annurev.genom.9.081307.164220] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intensive study of a few genetically tractable species with XX/XY sex chromosomes has produced generalizations about the process of sex chromosome dosage compensation that do not fare well when applied to ZZ/ZW sex chromosome systems, such as those in birds. The inherent sexual imbalance in dose of sex chromosome genes has led to the evolution of sex-chromosome-wide mechanisms for balancing gene dosage between the sexes and relative to autosomal genes. Recent advances in our knowledge of avian genomes have led to a reexamination of sex-specific dosage compensation (SSDC) in birds, which is less effective than in known XX/XY systems. Insights about the mechanisms of SSDC in birds also suggest similarities to and differences from those in XX/XY species. Birds are thus offering new opportunities for studying dosage compensation in a ZZ/ZW system, which should shed light on the evolution of SSDC more broadly.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
172
|
Low conservation of gene content in the Drosophila Y chromosome. Nature 2008; 456:949-51. [PMID: 19011613 PMCID: PMC2713029 DOI: 10.1038/nature07463] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 09/26/2008] [Indexed: 11/27/2022]
Abstract
Chromosomal organization is sufficiently evolutionarily stable that large syntenic blocks of genes can be recognized even between species as distantly related as mammals and puffer fish (450 Myr divergence)1–7. In Diptera the gene content of the X chromosome and the autosomes is well conserved: in Drosophila more than 95% of the genes have remained on the same chromosome arm in the 12 sequenced species (63 Myr of divergence, traversing 400 Myr of evolution)2,4,6, and the same linkage groups are clearly recognizable in mosquito genomes (260 Myr of divergence)3,5,7. Here we investigate the conservation of Y-linked gene content among the 12 sequenced Drosophila species. We found that only 1/4 of D. melanogaster Y-linked genes (3 out 12 ) are Y-linked in all sequenced species, and that the majority of them (7 out 12) were acquired less than 63 Myr ago. Hence, whereas the organization of other Drosophila chromosomes trace back to the common ancestor with mosquitoes, the gene content of the D. melanogaster Y is much younger. Gene losses are known to play a major role in the evolution of Y chromosomes8–10, and we indeed found two such cases. However, the rate of gene gain in the Drosophila Y chromosomes investigated is 10.9 times higher than the rate of gene loss (95% confidence interval: 2.3 – 52.5), and hence their gene content seems to be increasing. In contrast with the mammalian Y, gene gains have a prominent role in the evolution of the Drosophila Y chromosome.
Collapse
|
173
|
Bai Y, Casola C, Betrán E. Quality of regulatory elements in Drosophila retrogenes. Genomics 2008; 93:83-9. [PMID: 18848618 DOI: 10.1016/j.ygeno.2008.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 08/02/2008] [Accepted: 09/05/2008] [Indexed: 11/24/2022]
Abstract
Retrogenes are processed copies of genes that are inserted into new genomic regions and that acquire new regulatory elements from the sequences in their surroundings. Here we use a comparative approach of phylogenetic footprinting and a non-comparative approach of measuring motif over-representation in retrogenes in order to describe putative elements present in cis-regulatory regions of 94 retrogenes recently described in Drosophila. The detailed examination of the motifs found in the core promoter regions of retrogenes reveals an abundance of the DNA replication-related element (DRE), the Initiator (Inr), and a new over-represented motif that we call the GCT motif. Parental genes also show an abundance of DRE and Inr motifs, but these do not seem to have been carried over with retrogenes. In particular, we also examined motifs upstream of retrogenes expressed in adult testis and were able to identify 6 additional over-represented motifs. Comparative analyses provide data on the conservation and origin of some of these motifs and reveal 15 additional conserved motifs in these retrogenes. Some of those conserved motifs are sequences bound by known transcription factors, while others are novel motifs. In this report we provide the first genome-wide data on which specific cis-regulatory regions can be recruited by retrogenes after they are inserted into new coding regions in the genome. Future experiments are needed to determine the function and role of the new elements presented here.
Collapse
Affiliation(s)
- Yongsheng Bai
- Department of Biology, Box 19498, University of Texas-Arlington, Arlington, TX 76019, USA
| | | | | |
Collapse
|
174
|
Gurbich TA, Bachtrog D. Gene content evolution on the X chromosome. Curr Opin Genet Dev 2008; 18:493-8. [PMID: 18929654 DOI: 10.1016/j.gde.2008.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/18/2008] [Accepted: 09/20/2008] [Indexed: 12/23/2022]
Abstract
Compared with autosomes, the X chromosome shows different patterns of evolution as a result of its hemizygosity in males. Additionally, inactivation of the X during spermatogenesis can make the X chromosome an unfavorable location for male-specific genes. These factors can help to explain why in many species gene content of the X chromosome differs from that of autosomes. Indeed, the X chromosome in mouse is enriched for male-specific genes while they are depleted on the X in Drosophila but show neither of these trends in mosquito. Here, we will discuss recent findings on the ancestral and neo-X chromosomes in Drosophila that support sexual antagonism as a force shaping gene content evolution of sex chromosomes and suggest that selection could be driving male-biased genes off the X.
Collapse
Affiliation(s)
- Tatiana A Gurbich
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
175
|
Lawniczak MKN, Holloway AK, Begun DJ, Jones CD. Genomic analysis of the relationship between gene expression variation and DNA polymorphism in Drosophila simulans. Genome Biol 2008; 9:R125. [PMID: 18700012 PMCID: PMC2575515 DOI: 10.1186/gb-2008-9-8-r125] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/20/2008] [Accepted: 08/12/2008] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Understanding how DNA sequence polymorphism relates to variation in gene expression is essential to connecting genotypic differences with phenotypic differences among individuals. Addressing this question requires linking population genomic data with gene expression variation. RESULTS Using whole genome expression data and recent light shotgun genome sequencing of six Drosophila simulans genotypes, we assessed the relationship between expression variation in males and females and nucleotide polymorphism across thousands of loci. By examining sequence polymorphism in gene features, such as untranslated regions and introns, we find that genes showing greater variation in gene expression between genotypes also have higher levels of sequence polymorphism in many gene features. Accordingly, X-linked genes, which have lower sequence polymorphism levels than autosomal genes, also show less expression variation than autosomal genes. We also find that sex-specifically expressed genes show higher local levels of polymorphism and divergence than both sex-biased and unbiased genes, and that they appear to have simpler regulatory regions. CONCLUSION The gene-feature-based analyses and the X-to-autosome comparisons suggest that sequence polymorphism in cis-acting elements is an important determinant of expression variation. However, this relationship varies among the different categories of sex-biased expression, and trans factors might contribute more to male-specific gene expression than cis effects. Our analysis of sex-specific gene expression also shows that female-specific genes have been overlooked in analyses that only point to male-biased genes as having unusual patterns of evolution and that studies of sexually dimorphic traits need to recognize that the relationship between genetic and expression variation at these traits is different from the genome as a whole.
Collapse
Affiliation(s)
- Mara K N Lawniczak
- Division of Cell and Molecular Biology, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | |
Collapse
|
176
|
Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM, O'Grady PM, Rohde C, Valente VLS, Aguadé M, Anderson WW, Edwards K, Garcia ACL, Goodman J, Hartigan J, Kataoka E, Lapoint RT, Lozovsky ER, Machado CA, Noor MAF, Papaceit M, Reed LK, Richards S, Rieger TT, Russo SM, Sato H, Segarra C, Smith DR, Smith TF, Strelets V, Tobari YN, Tomimura Y, Wasserman M, Watts T, Wilson R, Yoshida K, Markow TA, Gelbart WM, Kaufman TC. Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 2008; 179:1601-55. [PMID: 18622037 PMCID: PMC2475758 DOI: 10.1534/genetics.107.086074] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 03/13/2008] [Indexed: 11/18/2022] Open
Abstract
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.
Collapse
Affiliation(s)
- Stephen W Schaeffer
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Potrzebowski L, Vinckenbosch N, Marques AC, Chalmel F, Jégou B, Kaessmann H. Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol 2008; 6:e80. [PMID: 18384235 PMCID: PMC2276528 DOI: 10.1371/journal.pbio.0060080] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 02/14/2008] [Indexed: 12/25/2022] Open
Abstract
Mammalian sex chromosomes stem from ancestral autosomes and have substantially differentiated. It was shown that X-linked genes have generated duplicate intronless gene copies (retrogenes) on autosomes due to this differentiation. However, the precise driving forces for this out-of-X gene "movement" and its evolutionary onset are not known. Based on expression analyses of male germ-cell populations, we here substantiate and extend the hypothesis that autosomal retrogenes functionally compensate for the silencing of their X-linked housekeeping parental genes during, but also after, male meiotic sex chromosome inactivation (MSCI). Thus, sexually antagonistic forces have not played a major role for the selective fixation of X-derived gene copies in mammals. Our dating analyses reveal that although retrogenes were produced ever since the common mammalian ancestor, selectively driven retrogene export from the X only started later, on the placental mammal (eutherian) and marsupial (metatherian) lineages, respectively. Together, these observations suggest that chromosome-wide MSCI emerged close to the eutherian-marsupial split approximately 180 million years ago. Given that MSCI probably reflects the spread of the recombination barrier between the X and Y, crucial for their differentiation, our data imply that these chromosomes became more widely differentiated only late in the therian ancestor, well after the divergence of the monotreme lineage. Thus, our study also provides strong independent support for the recent notion that our sex chromosomes emerged, not in the common ancestor of all mammals, but rather in the therian ancestor, and therefore are much younger than previously thought.
Collapse
Affiliation(s)
- Lukasz Potrzebowski
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Ana Claudia Marques
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Chalmel
- INSERM U625, IFR 140, Université Rennes I, Campus de Beaulieu, Rennes, France
| | - Bernard Jégou
- INSERM U625, IFR 140, Université Rennes I, Campus de Beaulieu, Rennes, France
| | - Henrik Kaessmann
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
178
|
Abstract
Chromosomes that harbor dominant sex determination loci are predicted to erode over time--losing genes, accumulating transposable elements, degenerating into a functional wasteland and ultimately becoming extinct. The Drosophila melanogaster Y chromosome is fairly far along this path to oblivion. The few genes on largely heterochromatic Y chromosome are required for spermatocyte-specific functions, but have no role in other tissues. Surprisingly, a recent paper shows that divergent Y chromosomes can substantially influence gene expression throughout the D. melanogaster genome.1 These results show that variation on Y has an important influence on the deployment of the genome.
Collapse
Affiliation(s)
- John H Malone
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | |
Collapse
|
179
|
Baines JF, Sawyer SA, Hartl DL, Parsch J. Effects of X-linkage and sex-biased gene expression on the rate of adaptive protein evolution in Drosophila. Mol Biol Evol 2008; 25:1639-50. [PMID: 18477586 DOI: 10.1093/molbev/msn111] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Patterns of polymorphism and divergence in Drosophila protein-coding genes suggest that a considerable fraction of amino acid differences between species can be attributed to positive selection and that genes with sex-biased expression, that is, those expressed predominantly in one sex, have especially high rates of adaptive evolution. Previous studies, however, have been restricted to autosomal sex-biased genes and, thus, do not provide a complete picture of the evolutionary forces acting on sex-biased genes across the genome. To determine the effects of X-linkage on sex-biased gene evolution, we surveyed DNA sequence polymorphism and divergence in 45 X-linked genes, including 17 with male-biased expression, 13 with female-biased expression, and 15 with equal expression in the 2 sexes. Using both single- and multilocus tests for selection, we found evidence for adaptive evolution in both groups of sex-biased genes. The signal of adaptive evolution was particularly strong for X-linked male-biased genes. A comparison with data from 91 autosomal genes revealed a "fast-X" effect, in which the rate of adaptive evolution was greater for X-linked than for autosomal genes. This effect was strongest for male-biased genes but could be seen in the other groups as well. A genome-wide analysis of coding sequence divergence that accounted for sex-biased expression also uncovered a fast-X effect for male-biased and unbiased genes, suggesting that recessive beneficial mutations play an important role in adaptation.
Collapse
Affiliation(s)
- John F Baines
- Section of Evolutionary Biology, Department of Biology, University of Munich, 82152 Munich, Germany
| | | | | | | |
Collapse
|
180
|
Angelopoulou R, Lavranos G, Manolakou P. Regulatory RNAs and chromatin modification in dosage compensation: a continuous path from flies to humans? Reprod Biol Endocrinol 2008; 6:12. [PMID: 18355403 PMCID: PMC2324084 DOI: 10.1186/1477-7827-6-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 03/20/2008] [Indexed: 11/20/2022] Open
Abstract
Chromosomal sex determination is a widely distributed strategy in nature. In the most classic scenario, one sex is characterized by a homologue pair of sex chromosomes, while the other includes two morphologically and functionally distinct gonosomes. In mammalian diploid cells, the female is characterized by the presence of two identical X chromosomes, while the male features an XY pair, with the Y bearing the major genetic determinant of sex, i.e. the SRY gene. In other species, such as the fruitfly, sex is determined by the ratio of autosomes to X chromosomes. Regardless of the exact mechanism, however, all these animals would exhibit a sex-specific gene expression inequality, due to the different number of X chromosomes, a phenomenon inhibited by a series of genetic and epigenetic regulatory events described as "dosage compensation". Since adequate available data is currently restricted to worms, flies and mammals, while for other groups of animals, such as reptiles, fish and birds it is very limited, it is not yet clear whether this is an evolutionary conserved mechanism. However certain striking similarities have already been observed among evolutionary distant species, such as Drosophila melanogaster and Mus musculus. These mainly refer to a) the need for a counting mechanism, to determine the chromosomal content of the cell, i.e. the ratio of autosomes to gonosomes (a process well understood in flies, but still hypothesized in mammals), b) the implication of non-translated, sex-specific, regulatory RNAs (roX and Xist, respectively) as key elements in this process and the location of similar mediators in the Z chromosome of chicken c) the inclusion of a chromatin modification epigenetic final step, which ensures that gene expression remains stably regulated throughout the affected area of the gonosome. This review summarizes these points and proposes a possible role for comparative genetics, as they seem to constitute proof of maintained cell economy (by using the same basic regulatory elements in various different scenarios) throughout numerous centuries of evolutionary history.
Collapse
Affiliation(s)
- Roxani Angelopoulou
- Department of Histology-Embryology, Medical School, Athens University, Greece
| | - Giagkos Lavranos
- Department of Histology-Embryology, Medical School, Athens University, Greece
| | - Panagiota Manolakou
- Department of Histology-Embryology, Medical School, Athens University, Greece
| |
Collapse
|
181
|
Lemos B. Gene expression: an X chromosome look beyond additive and nonadditive effects. Heredity (Edinb) 2008; 100:543-4. [PMID: 18349878 DOI: 10.1038/hdy.2008.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
182
|
Genomic degradation of a young Y chromosome in Drosophila miranda. Genome Biol 2008; 9:R30. [PMID: 18269752 PMCID: PMC2374705 DOI: 10.1186/gb-2008-9-2-r30] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/10/2007] [Accepted: 02/12/2008] [Indexed: 11/17/2022] Open
Abstract
Study of the recently formed neo-Y chromosome of Drosophila miranda demonstrate that degeneration of a recently formed Y-chromosome can proceed very rapidly. Background Y chromosomes are derived from ordinary autosomes and degenerate because of a lack of recombination. Well-studied Y chromosomes only have few of their original genes left and contain little information about their evolutionary origin. Here, we take advantage of the recently formed neo-Y chromosome of Drosophila miranda to study the processes involved in Y degeneration on a genomic scale. Results We obtained sequence information from 14 homologous bacterial artificial chromosome (BAC) clones from the neo-X and neo-Y chromosome of D. miranda, encompassing over 2.5 Mb of neo-sex-linked DNA. A large fraction of neo-Y DNA is composed of repetitive and transposable-element-derived DNA (20% of total DNA) relative to their homologous neo-X linked regions (1%). The overlapping regions of the neo-sex linked BAC clones contain 118 gene pairs, half of which are pseudogenized on the neo-Y. Pseudogenes evolve significantly faster on the neo-Y than functional genes, and both functional and non-functional genes show higher rates of protein evolution on the neo-Y relative to their neo-X homologs. No heterogeneity in levels of degeneration was detected among the regions investigated. Functional genes on the neo-Y are under stronger evolutionary constraint on the neo-X, but genes were found to degenerate randomly on the neo-Y with regards to their function or sex-biased expression patterns. Conclusion Patterns of genome evolution in D. miranda demonstrate that degeneration of a recently formed Y chromosome can proceed very rapidly, by both an accumulation of repetitive DNA and degeneration of protein-coding genes. Our data support a random model of Y inactivation, with little heterogeneity in degeneration among genomic regions, or between functional classes of genes or genes with sex-biased expression patterns.
Collapse
|
183
|
Gunter C. Genomics on the fly. Nat Rev Genet 2007. [DOI: 10.1038/nrg2283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|