152
|
Kootte RS, Levin E, Salojärvi J, Smits LP, Hartstra AV, Udayappan SD, Hermes G, Bouter KE, Koopen AM, Holst JJ, Knop FK, Blaak EE, Zhao J, Smidt H, Harms AC, Hankemeijer T, Bergman JJGHM, Romijn HA, Schaap FG, Olde Damink SWM, Ackermans MT, Dallinga-Thie GM, Zoetendal E, de Vos WM, Serlie MJ, Stroes ESG, Groen AK, Nieuwdorp M. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab 2017; 26:611-619.e6. [PMID: 28978426 DOI: 10.1016/j.cmet.2017.09.008] [Citation(s) in RCA: 655] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/15/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022]
Abstract
The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as γ-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.
Collapse
Affiliation(s)
- Ruud S Kootte
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Top Institute of Food and Nutrition, 6700 AN Wageningen, the Netherlands
| | - Evgeni Levin
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Horaizon BV, 3062 ME Rotterdam, the Netherlands
| | - Jarkko Salojärvi
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Loek P Smits
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Annick V Hartstra
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Shanti D Udayappan
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Gerben Hermes
- Top Institute of Food and Nutrition, 6700 AN Wageningen, the Netherlands; Laboratory of Microbiology, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - Kristien E Bouter
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Annefleur M Koopen
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, the Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Filip K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ellen E Blaak
- Top Institute of Food and Nutrition, 6700 AN Wageningen, the Netherlands; Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, the Netherlands
| | - Jing Zhao
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Hauke Smidt
- Top Institute of Food and Nutrition, 6700 AN Wageningen, the Netherlands; Laboratory of Microbiology, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - Amy C Harms
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Thomas Hankemeijer
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Jacques J G H M Bergman
- Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Hans A Romijn
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Frank G Schaap
- Department of Surgery, Maastricht University Medical Center, 6229 ER Maastricht, the Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Center, 6229 ER Maastricht, the Netherlands
| | - Mariette T Ackermans
- Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Geesje M Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Erwin Zoetendal
- Top Institute of Food and Nutrition, 6700 AN Wageningen, the Netherlands; Laboratory of Microbiology, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, 6703 HB Wageningen, the Netherlands; Immunobiology Research Program, Department of Bacteriology and Immunology, University of Helsinki, 00014 Helsinki, Finland
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Albert K Groen
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Top Institute of Food and Nutrition, 6700 AN Wageningen, the Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Top Institute of Food and Nutrition, 6700 AN Wageningen, the Netherlands; Department of Internal Medicine, VUMC, Free University, Amsterdam, the Netherlands; Wallenberg Laboratory, Sahlgrenska Hospital, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
153
|
El Hage R, Hernandez-Sanabria E, Van de Wiele T. Emerging Trends in "Smart Probiotics": Functional Consideration for the Development of Novel Health and Industrial Applications. Front Microbiol 2017; 8:1889. [PMID: 29033923 PMCID: PMC5626839 DOI: 10.3389/fmicb.2017.01889] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
The link between gut microbiota and human health is well-recognized and described. This ultimate impact on the host has contributed to explain the mutual dependence between humans and their gut bacteria. Gut microbiota can be manipulated through passive or active strategies. The former includes diet, lifestyle, and environment, while the latter comprise antibiotics, pre- and probiotics. Historically, conventional probiotic strategies included a phylogenetically limited diversity of bacteria and some yeast strains. However, biotherapeutic strategies evolved in the last years with the advent of fecal microbiota transplant (FMT), successfully applied for treating CDI, IBD, and other diseases. Despite the positive outcomes, long-term effects resulting from the uncharacterized nature of FMT are not sufficiently studied. Thus, developing strategies to simulate the FMT, using characterized gut colonizers with identified phylogenetic diversity, may be a promising alternative. As the definition of probiotics states that the microorganism should have beneficial effects on the host, several bacterial species with proven efficacy have been considered next generation probiotics. Non-conventional candidate strains include Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides fragilis, and members of the Clostridia clusters IV, XIVa, and XVIII. However, viable intestinal delivery is one of the current challenges, due to their stringent survival conditions. In this review, we will cover current perspectives on the development and assessment of next generation probiotics and the approaches that industry and stakeholders must consider for a successful outcome.
Collapse
Affiliation(s)
| | | | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
154
|
Brodmann T, Endo A, Gueimonde M, Vinderola G, Kneifel W, de Vos WM, Salminen S, Gómez-Gallego C. Safety of Novel Microbes for Human Consumption: Practical Examples of Assessment in the European Union. Front Microbiol 2017; 8:1725. [PMID: 28955311 PMCID: PMC5601064 DOI: 10.3389/fmicb.2017.01725] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Novel microbes are either newly isolated genera and species from natural sources or bacterial strains derived from existing bacteria. Novel microbes are gaining increasing attention for the general aims to preserve and modify foods and to modulate gut microbiota. The use of novel microbes to improve health outcomes is of particular interest because growing evidence points to the importance of gut microbiota in human health. As well, some recently isolated microorganisms have promise for use as probiotics, although in-depth assessment of their safety is necessary. Recent examples of microorganisms calling for more detailed evaluation include Bacteroides xylanisolvens, Akkermansia muciniphila, fructophilic lactic acid bacteria (FLAB), and Faecalibacterium prausnitzii. This paper discusses each candidate's safety evaluation for novel food or novel food ingredient approval according to European Union (EU) regulations. The factors evaluated include their beneficial properties, antibiotic resistance profiling, history of safe use (if available), publication of the genomic sequence, toxicological studies in agreement with novel food regulations, and the qualified presumptions of safety. Sufficient evidences have made possible to support and authorize the use of heat-inactivated B. xylanisolvens in the European Union. In the case of A. muciniphila, the discussion focuses on earlier safety studies and the strain's suitability. FLAB are also subjected to standard safety assessments, which, along with their proximity to lactic acid bacteria generally considered to be safe, may lead to novel food authorization in the future. Further research with F. prausnitzii will increase knowledge about its safety and probiotic properties and may lead to its future use as novel food. Upcoming changes in EUU Regulation 2015/2283 on novel food will facilitate the authorization of future novel products and might increase the presence of novel microbes in the food market.
Collapse
Affiliation(s)
- Theodor Brodmann
- Department of Food Sciences and Technology, University of Natural Resources and Life Science ViennaVienna, Austria
| | - Akihito Endo
- Department of Food and Cosmetic Science, Tokyo University of AgricultureHokkaido, Japan
| | - Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias, Spanish Higher Research CouncilVillaviciosa, Spain
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (UNL-CONICET), National University of the LitoralSanta Fe, Argentina
| | - Wolfgang Kneifel
- Department of Food Sciences and Technology, University of Natural Resources and Life Science ViennaVienna, Austria
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University and ResearchWageningen, Netherlands
- Immunobiology Research Program, Research Programs Unit, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of TurkuTurku, Finland
| | | |
Collapse
|
155
|
O'Toole PW, Paoli M. The contribution of microbial biotechnology to sustainable development goals: microbiome therapies. Microb Biotechnol 2017; 10:1066-1069. [PMID: 28696041 PMCID: PMC5609341 DOI: 10.1111/1751-7915.12752] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 11/28/2022] Open
Abstract
Complex communities of microbes live on and in plants, humans and other animals. These communities are collectively referred to as the microbiota or microbiome. Plants and animals evolved to co-exist with these microbes. In mammals, particular kinds of alteration of the microbiome (dysbiosis) are associated with loss of health, most likely due to loss of microbial metabolites, signalling molecules, or regulators of host pathways. Modern life-style diseases such as Inflammatory Bowel Disease (IBD), Irritable Bowel Syndrome (IBS), type 2 diabetes, obesity and metabolic syndrome have been linked to dysbiosis. These multifactorial diseases involve multiple risk factors and triggers, depletion of certain gut microbiota species being one of them. Live Biotherapeutics operate by restoring microbial products or activities in affected subjects. They are being developed as adjuncts, alternatives or new treatment options for diseases that affect a growing proportion of global citizens.
Collapse
Affiliation(s)
- Paul W O'Toole
- School of Microbiology, and APC Microbiome Institute, University College Cork, Cork, Ireland.,The World Academy of Sciences, Strada Costiera 11, 34151, Trieste, Italy
| | - Max Paoli
- The World Academy of Sciences, Strada Costiera 11, 34151, Trieste, Italy
| |
Collapse
|