151
|
Abstract
The retromer complex is a multimeric protein complex involved in recycling proteins from endosomes to the trans-Golgi network or plasma membrane. It thus regulates the abundance and subcellular distribution of its cargo within cells. Studies using model organisms show that the retromer complex is involved in specific developmental processes. Moreover, a number of recent studies implicate aberrant retromer function in photoreceptor degeneration, Alzheimer's disease and Parkinson's disease. Here, and in the accompanying poster, we provide an overview of the molecular and cellular mechanisms of retromer-mediated protein trafficking, highlighting key examples of retromer function in vivo.
Collapse
Affiliation(s)
- Shiuan Wang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
152
|
Du J, Wagner BA, Buettner GR, Cullen JJ. Role of labile iron in the toxicity of pharmacological ascorbate. Free Radic Biol Med 2015; 84:289-295. [PMID: 25857216 PMCID: PMC4739508 DOI: 10.1016/j.freeradbiomed.2015.03.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/17/2022]
Abstract
Pharmacological ascorbate has been shown to induce toxicity in a wide range of cancer cell lines. Pharmacological ascorbate in animal models has shown promise for use in cancer treatment. At pharmacological concentrations the oxidation of ascorbate produces a high flux of H2O2 via the formation of ascorbate radical (Asc(•-)). The rate of oxidation of ascorbate is principally a function of the level of catalytically active metals. Iron in cell culture media contributes significantly to the rate of H2O2 generation. We hypothesized that increasing intracellular iron would enhance ascorbate-induced cytotoxicity and that iron chelators could modulate the catalytic efficiency with respect to ascorbate oxidation. Treatment of cells with the iron-chelators deferoxamine (DFO) or dipyridyl (DPD) in the presence of 2mM ascorbate decreased the flux of H2O2 generated by pharmacological ascorbate and reversed ascorbate-induced toxicity. Conversely, increasing the level of intracellular iron by preincubating cells with Fe-hydroxyquinoline (HQ) increased ascorbate toxicity and decreased clonogenic survival. These findings indicate that redox metal metals, e.g., Fe(3+)/Fe(2+), have an important role in ascorbate-induced cytotoxicity. Approaches that increase catalytic iron could potentially enhance the cytotoxicity of pharmacological ascorbate in vivo.
Collapse
Affiliation(s)
- Juan Du
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Brett A Wagner
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Garry R Buettner
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - Joseph J Cullen
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA, USA; Veterans Affairs Medical Center, Iowa City, IA, USA.
| |
Collapse
|
153
|
Abstract
Microcytic anemia is the most common form of anemia, characterized by reduced hemoglobin (Hb) synthesis associated with decreased red blood cell volume (MCV). It is a very heterogeneous group of diseases that may be either acquired or inherited. Microcytic hypochromic anemia can result from defects in globin (hemoglobinopathies or thalassemias) or heme synthesis or in iron availability, or acquisition by the erythroid precursors. Diagnosis of microcytic anaemia appears to be important in children/adolescents, especially to set, where possible, a treatment plan on the basis of the etiology and pathogenesis. After excluding the acquired causes of microcytic anemia that represent the most frequent etiology, according to the differential diagnosis, the analysis of genetic causes, mostly hereditary, must be considered. This review will consider acquired and hereditary microcytic anemias due to heme synthesis or to iron metabolism defects and their diagnosis.
Collapse
Affiliation(s)
- Mariasole Bruno
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy; CEINGE, Advanced Biotechnologies, Naples, Italy; Department of Medicine, Section of Internal Medicine, University of Verona, AOUI-Policlinico GB Rossi, 37134 Verona, Italy
| | - Luigia De Falco
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy; CEINGE, Advanced Biotechnologies, Naples, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy; CEINGE, Advanced Biotechnologies, Naples, Italy.
| |
Collapse
|
154
|
Ali S. Questions and answers. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2015. [DOI: 10.4103/1110-7782.159479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
155
|
Song M, Schuschke DA, Zhou Z, Zhong W, Zhang J, Zhang X, Wang Y, McClain CJ. Kupffer cell depletion protects against the steatosis, but not the liver damage, induced by marginal-copper, high-fructose diet in male rats. Am J Physiol Gastrointest Liver Physiol 2015; 308:G934-45. [PMID: 25813056 PMCID: PMC4451322 DOI: 10.1152/ajpgi.00285.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/24/2015] [Indexed: 01/31/2023]
Abstract
High-fructose feeding impairs copper status and leads to low copper availability, which is a novel mechanism in obesity-related fatty liver. Copper deficiency-associated hepatic iron overload likely plays an important role in fructose-induced liver injury. Excess iron in the liver is distributed throughout hepatocytes and Kupffer cells (KCs). The aim of this study was to examine the role of KCs in the pathogenesis of nonalcoholic fatty liver disease induced by a marginal-copper high-fructose diet (CuMF). Male weanling Sprague-Dawley rats were fed either a copper-adequate or a marginally copper-deficient diet for 4 wk. Deionized water or deionized water containing 30% fructose (wt/vol) was also given ad libitum. KCs were depleted by intravenous administration of gadolinium chloride (GdCl3) before and/or in the middle of the experimental period. Hepatic triglyceride accumulation was completely eliminated with KC depletion in CuMF consumption rats, which was associated with the normalization of elevated plasma monocyte chemoattractant protein-1 (MCP-1) and increased hepatic sterol regulatory element binding protein-1 expression. However, hepatic copper and iron content were not significantly affected by KC depletion. In addition, KC depletion reduced body weight and epididymal fat weight as well as adipocyte size. Plasma endotoxin and gut permeability were markedly increased in CuMF rats. Moreover, MCP-1 was robustly increased in the culture medium when isolated KCs from CuMF rats were treated with LPS. Our data suggest that KCs play a critical role in the development of hepatic steatosis induced by marginal-copper high-fructose diet.
Collapse
Affiliation(s)
- Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky;
| | - Dale A. Schuschke
- 2Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky;
| | - Zhanxiang Zhou
- 6Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina; ,7Department of Nutrition, University of North Carolina at Greensboro, Kannapolis, North Carolina; and
| | - Wei Zhong
- 6Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina;
| | - Jiayuan Zhang
- 4Department of Chemistry, University of Louisville School of Medicine, Louisville, Kentucky;
| | - Xiang Zhang
- 3Department of Pharmacology and Toxicology, ,4Department of Chemistry, University of Louisville School of Medicine, Louisville, Kentucky;
| | - Yuhua Wang
- 8College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Craig J. McClain
- 1Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky; ,3Department of Pharmacology and Toxicology, ,5Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky;
| |
Collapse
|
156
|
Song B, Bian Q, Shao CH, Liu AA, Jing W, Liu R, Zhang YJ, Zhou YQ, Li G, Jin G. Sox2 function as a negative regulator to control HAMP expression. Biol Res 2015; 48:23. [PMID: 25943891 PMCID: PMC4440282 DOI: 10.1186/s40659-015-0013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 04/16/2015] [Indexed: 11/24/2022] Open
Abstract
Background Hepcidin, encoding by HAMP gene, is the pivotal regulator of iron metabolism, controlling the systemic absorption and transportation of irons from intracellular stores. Abnormal levels of HAMP expression alter plasma iron parameters and lead to iron metabolism disorders. Therefore, it is an important goal to understand the mechanisms controlling HAMP gene expression. Results Overexpression of Sox2 decrease basal expression of HAMP or induced by IL-6 or BMP-2, whereas, knockdown of Sox2 can increase HAMP expression, furthermore, two potential Sox2-binding sites were identified within the human HAMP promoter. Indeed, luciferase experiments demonstrated that deletion of any Sox2-binding site impaired the negative regulation of Sox2 on HAMP promoter transcriptional activity in basal conditions. ChIP experiments showed that Sox2 could directly bind to these sites. Finally, we verified the role of Sox2 to negatively regulate HAMP expression in human primary hepatocytes. Conclusion We found that Sox2 as a novel factor to bind with HAMP promoter to negatively regulate HAMP expression, which may be further implicated as a therapeutic option for the amelioration of HAMP-overexpression-related diseases, including iron deficiency anemia. Electronic supplementary material The online version of this article (doi:10.1186/s40659-015-0013-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Song
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Qi Bian
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Cheng-Hao Shao
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - An-An Liu
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Wei Jing
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Rui Liu
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Yi-Jie Zhang
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Ying-Qi Zhou
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Gang Li
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Gang Jin
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
157
|
Maras JS, Maiwall R, Harsha HC, Das S, Hussain MS, Kumar C, Bihari C, Rastogi A, Kumar M, Trehanpati N, Sharma S, Pandey A, Sarin SK. Dysregulated iron homeostasis is strongly associated with multiorgan failure and early mortality in acute-on-chronic liver failure. Hepatology 2015; 61:1306-20. [PMID: 25475192 DOI: 10.1002/hep.27636] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/22/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Acute-on-chronic liver failure (ACLF) is an ailment with high incidence of multiorgan failure (MOF) and consequent mortality. Dysregulated iron homeostasis and macrophage dysfunction are linked to increased incidence of MOF. We investigated whether a panel of circulating iron-regulating proteins are associated with development of MOF and can predict 15- or 30-day mortality in ACLF patients. One hundred twenty patients with ACLF, 20 patients with compensated cirrhosis, and 20 healthy controls were studied. Relative protein expression profiling was performed in the derivative cohort and confirmed in the validation cohort. A panel of iron regulators and indices were determined. Multiparametric flow cytometry for quantitation of labile iron pool (LIP) was performed. Validation studies confirmed lower serum transferrin (Tf) and ceruloplasmin levels in ACLF and ACLF-MOF, compared to patients with cirrhosis and controls (P < 0.01). Serum iron and ferritin levels were markedly elevated (P < 0.001; P < 0.05) and hepcidin levels were lower (P < 0.001) in ACLF patients with MOF than those without and other groups (P < 0.001). Percentage Tf saturation (%SAT) was higher in ACLF-MOF (39.2%; P < 0.001) and correlated with poor outcome (hazard ratio: 6.970; P < 0.01). Intracellular LIP indices were significantly elevated in the subsets of circulating macrophages in ACLF-MOF, compared to other groups (P < 0.01). Whereas expression of iron-regulatory genes was markedly down-regulated, genes related to endoplasmic reticulum stress, apoptosis, and inflammation were up-regulated in ACLF patients, compared to patients with cirrhosis. Severe dysregulation of autophagy mechanisms was also observed in the former. CONCLUSIONS Iron metabolism and transport are severely deranged in ACLF patients and more so in those with MOF. %SAT, circulating hepcidin, and LIP in macrophages correlate with disease severity and %SAT could be used for early prognostication in ACLF patients.
Collapse
Affiliation(s)
- Jaswinder Singh Maras
- Departments of Research, Institute of Liver & Biliary Sciences (ILBS), New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Aigner E, Weiss G, Datz C. Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver. World J Hepatol 2015; 7:177-188. [PMID: 25729473 PMCID: PMC4342600 DOI: 10.4254/wjh.v7.i2.177] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/12/2014] [Accepted: 12/31/2014] [Indexed: 02/06/2023] Open
Abstract
Elevated iron stores as indicated by hyperferritinemia with normal or mildly elevated transferrin saturation and mostly mild hepatic iron deposition are a characteristic finding in subjects with non-alcoholic fatty liver disease (NAFLD). Excess iron is observed in approximately one third of NAFLD patients and is commonly referred to as the “dysmetabolic iron overload syndrome”. Clinical evidence suggests that elevated body iron stores aggravate the clinical course of NAFLD with regard to liver-related and extrahepatic disease complications which relates to the fact that excess iron catalyses the formation of toxic hydroxyl-radicals subsequently resulting in cellular damage. Iron removal improves insulin sensitivity, delays the onset of type 2 diabetes mellitus, improves pathologic liver function tests and likewise ameliorates NAFLD histology. Several mechanisms contribute to pathologic iron accumulation in NAFLD. These include impaired iron export from hepatocytes and mesenchymal Kupffer cells as a consequence of imbalances in the concentrations of iron regulatory factors, such as hepcidin, cytokines, copper or other dietary factors. This review summarizes the knowledge about iron homeostasis in NAFLD and the rationale for its therapeutic implications.
Collapse
|
159
|
Tapryal N, Vivek G V, Mukhopadhyay CK. Catecholamine stress hormones regulate cellular iron homeostasis by a posttranscriptional mechanism mediated by iron regulatory protein: implication in energy homeostasis. J Biol Chem 2015; 290:7634-46. [PMID: 25572399 DOI: 10.1074/jbc.m114.592519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Adequate availability of iron is important for cellular energy metabolism. Catecholamines such as epinephrine and norepinephrine promote energy expenditure to adapt to conditions that arose due to stress. To restore the energy balance, epinephrine/norepinephrine-exposed cells may face higher iron demand. So far, no direct role of epinephrine/norepinephrine in cellular iron homeostasis has been reported. Here we show that epinephrine/norepinephrine regulates iron homeostasis components such as transferrin receptor-1 and ferritin-H in hepatic and skeletal muscle cells by promoting the binding of iron regulatory proteins to iron-responsive elements present in the UTRs of transferrin receptor-1 and ferritin-H transcripts. Increased transferrin receptor-1, decreased ferritin-H, and increased iron-responsive element-iron regulatory protein interaction are also observed in liver and muscle tissues of epinephrine/norepinephrine-injected mice. We demonstrate the role of epinephrine/norepinephrine-induced generation of reactive oxygen species in converting cytosolic aconitase (ACO1) into iron regulatory protein-1 to bind iron-responsive elements present in UTRs of transferrin receptor-1 and ferritin-H. Our study further reveals that mitochondrial iron content and mitochondrial aconitase (ACO2) activity are elevated by epinephrine/norepinephrine that are blocked by the antioxidant N-acetyl cysteine and iron regulatory protein-1 siRNA, suggesting involvement of reactive oxygen species and iron regulatory protein-1 in this mechanism. This study reveals epinephrine and norepinephrine as novel regulators of cellular iron homeostasis.
Collapse
Affiliation(s)
- Nisha Tapryal
- From the Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Vishnu Vivek G
- From the Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Chinmay K Mukhopadhyay
- From the Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110 067, India
| |
Collapse
|
160
|
Lukmantara AY, Kalinowski DS, Kumar N, Richardson DR. Synthesis and biological evaluation of 2-benzoylpyridine thiosemicarbazones in a dimeric system: Structure–activity relationship studies on their anti-proliferative and iron chelation efficacy. J Inorg Biochem 2014; 141:43-54. [DOI: 10.1016/j.jinorgbio.2014.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 01/22/2023]
|
161
|
Cohen-Solal A, Leclercq C, Mebazaa A, De Groote P, Damy T, Isnard R, Galinier M. Diagnosis and treatment of iron deficiency in patients with heart failure: expert position paper from French cardiologists. Arch Cardiovasc Dis 2014; 107:563-71. [PMID: 25239645 DOI: 10.1016/j.acvd.2014.07.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/28/2022]
Abstract
The prevalence of iron deficiency is high -even in the absence of anaemia- in patients with chronic heart failure (HF). Although iron deficiency is easily diagnosed with two biomarkers (serum ferritin and transferrin saturation), it is underdiagnosed in patients with HF. Iron is not only necessary for red blood cells, but also for cells in tissues with high-energy demands (heart, muscle, brain). Even before the onset of anaemia, HF patients with iron deficiency have decreased physical and cognitive performances and a poorer quality of life. Moreover, iron deficiency is a risk factor, independent of anaemia, of unfavourable outcome (death or heart transplantation) in patients with chronic HF. Several randomized controlled studies have shown improvement in exercise capacity, New York Heart Association functional class and quality of life after correction of iron deficiency. The results of these clinical trials, which are supported by European guidelines, suggest considering iron deficiency in HF as a possible therapeutic target.
Collapse
Affiliation(s)
- Alain Cohen-Solal
- UMR-S 942, Université Paris Diderot, DHU FIRE, Department of Cardiology, Lariboisière Hospital, AP-HP, 2, rue Ambroise-Paré, 75010 Paris, France.
| | - Christophe Leclercq
- Department of Cardiology and Vascular Disease, Pontchaillou Hospital, 35033 Rennes, France
| | - Alexandre Mebazaa
- UMR-S 942, Université Paris Diderot, DHU Neurovasculaire, Department of Anaesthesia and Critical Care Medicine, Lariboisière Hospital, AP-HP, 75010 Paris, France
| | - Pascal De Groote
- Department of Cardiology, Cardiology Hospital, CHRU de Lille, 59037 Lille, France
| | - Thibaud Damy
- INSERM U955, Université Paris Est, DHU ATVB, Department of Cardiology, Henri-Mondor Hospital, AP-HP, 94000 Créteil, France
| | - Richard Isnard
- Department of Cardiology, Pitié-Salpêtrière Hospital, AP-HP, Université Pierre et Marie Curie, 75005 Paris, France
| | - Michel Galinier
- Department of Cardiology, CHU Rangueil, Université de Toulouse, UMR 1048, 31059 Toulouse, France
| |
Collapse
|
162
|
Jung M, Mertens C, Brüne B. Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology 2014; 220:295-304. [PMID: 25260218 DOI: 10.1016/j.imbio.2014.09.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/07/2014] [Accepted: 09/05/2014] [Indexed: 12/28/2022]
Abstract
Macrophages are central in regulating iron homeostasis, which is tightly linked to their versatile role during innate immunity. They sequester iron by phagocytosis of senescent erythrocytes and represent a major source of available iron in the body. Macrophage iron homeostasis is coupled to the functional heterogeneity and plasticity of these cells, with their extreme roles during inflammation, immune modulation, and resolution of inflammation. It is now appreciated that the macrophage polarization process dictates expression profiles of genes involved in iron metabolism. Therefore, macrophages have evolved a multitude of mechanisms to sequester, transport, store, and release iron. A new, enigmatic protein entering the iron scene and affecting the macrophage phenotype is lipocalin-2. Iron sequestration in macrophages depletes the microenvironment, thereby limiting extracellular pathogen or tumor growth, while fostering inflammation. In contrast, iron release from macrophages contributes to bystander cell proliferation, which is important for tissue regeneration and repair. This dichotomy is also reflected by the dual role of lipocalin-2 in macrophages. Unfortunately, the iron release macrophage phenotype is also a characteristic of tumor-associated macrophages and stimulates tumor cell survival and growth. Iron sequestration versus its release is now appreciated to be associated with the macrophage polarization program and can be used to explain a number of biological functions attributed to distinct macrophage phenotypes. Here we discuss macrophage iron homeostasis with a special focus on lipocalin-2 related to the formation and function of tumor-associated macrophages.
Collapse
Affiliation(s)
- Michaela Jung
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Christina Mertens
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
163
|
Iron and multiple sclerosis. Neurobiol Aging 2014; 35 Suppl 2:S51-8. [DOI: 10.1016/j.neurobiolaging.2014.03.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/28/2014] [Accepted: 03/14/2014] [Indexed: 11/23/2022]
|
164
|
Abstract
Lysosomal storage disorders are a group of about 50 rare metabolic diseases that result from defects in lysosomal function. The majority is recessively inherited and caused by mutations in genes encoding lysosomal proteins as the basis for its pathobiology. The lysosome plays a pivotal role in a cell's ability to recycle and degrade unwanted material. One of its functions relates to regulating iron levels throughout the body. Iron is a double-edged sword: It is absolutely required for an organism's survival, but high levels of iron quickly lead to cell death. In addition, recent results have put the lysosome on the map of pathways leading to common neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. It is plausible that the mechanisms through which the lysosome acts in these diseases also involve iron and this would have significant implications in our understanding of the molecular etiology of these disorders.
Collapse
|
165
|
Yang X, Yang J, Li L, Sun L, Yi X, Han X, Si W, Yan R, Chen Z, Xie G, Li W, Shang Y, Liang J. PAAT, a novel ATPase and trans-regulator of mitochondrial ABC transporters, is critically involved in the maintenance of mitochondrial homeostasis. FASEB J 2014; 28:4821-34. [PMID: 25063848 DOI: 10.1096/fj.14-254045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ATP-binding cassette (ABC) transporters are implicated in a diverse range of physiological and pathophysiological processes, such as cholesterol and lipid transportation and multidrug resistance. Despite the considerable efforts made in understanding of the cellular function of ABC proteins, the regulation mechanism of this type of protein is still poorly defined. Here we report the identification and functional characterization of a novel ATPase protein, protein associated with ABC transporters (PAAT), in humans. PAAT contains a nucleotide-binding domain (NBD)-like domain and a signal for intramitochondrial sorting. We showed that PAAT is localized in both the cytoplasm and the mitochondria and has an intrinsic ATPase activity. PAAT physically interacts with the 3 known mitochondrial inner membrane ABC proteins, ABCB7, ABCB8, and ABCB10, but not ABCB1, ABCB6, or ABCG2, and functionally regulates the transport of ferric nutrients and heme biosynthesis. Significantly, PAAT deficiency promotes cell death, reduces mitochondrial potential, and sensitizes mitochondria to oxidative stress-induced DNA damages. Our experiments revealed that PAAT is a novel ATPase and a trans-regulator of mitochondrial ABC transporters that plays an important role in the maintenance of mitochondrial homeostasis and cell survival.
Collapse
Affiliation(s)
- Xiaohan Yang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and
| | - Lei Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and
| | - Xia Yi
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and
| | - Xiao Han
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and
| | - Wenzhe Si
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Ruorong Yan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and
| | - Zhe Chen
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and
| | - Guojia Xie
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China; and
| |
Collapse
|
166
|
Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, Jonneaux A, Ryckewaert G, Garçon G, Rouaix N, Duhamel A, Jissendi P, Dujardin K, Auger F, Ravasi L, Hopes L, Grolez G, Firdaus W, Sablonnière B, Strubi-Vuillaume I, Zahr N, Destée A, Corvol JC, Pöltl D, Leist M, Rose C, Defebvre L, Marchetti P, Cabantchik ZI, Bordet R. Targeting chelatable iron as a therapeutic modality in Parkinson's disease. Antioxid Redox Signal 2014; 21:195-210. [PMID: 24251381 PMCID: PMC4060813 DOI: 10.1089/ars.2013.5593] [Citation(s) in RCA: 478] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS The pathophysiological role of iron in Parkinson's disease (PD) was assessed by a chelation strategy aimed at reducing oxidative damage associated with regional iron deposition without affecting circulating metals. Translational cell and animal models provided concept proofs and a delayed-start (DS) treatment paradigm, the basis for preliminary clinical assessments. RESULTS For translational studies, we assessed the effect of oxidative insults in mice systemically prechelated with deferiprone (DFP) by following motor functions, striatal dopamine (HPLC and MRI-PET), and brain iron deposition (relaxation-R2*-MRI) aided by spectroscopic measurements of neuronal labile iron (with fluorescence-sensitive iron sensors) and oxidative damage by markers of protein, lipid, and DNA modification. DFP significantly reduced labile iron and biological damage in oxidation-stressed cells and animals, improving motor functions while raising striatal dopamine. For a pilot, double-blind, placebo-controlled randomized clinical trial, early-stage Parkinson's patients on stabilized dopamine regimens enrolled in a 12-month single-center study with DFP (30 mg/kg/day). Based on a 6-month DS paradigm, early-start patients (n=19) compared to DS patients (n=18) (37/40 completed) responded significantly earlier and sustainably to treatment in both substantia nigra iron deposits (R2* MRI) and Unified Parkinson's Disease Rating Scale motor indicators of disease progression (p<0.03 and p<0.04, respectively). Apart from three rapidly resolved neutropenia cases, safety was maintained throughout the trial. INNOVATION A moderate iron chelation regimen that avoids changes in systemic iron levels may constitute a novel therapeutic modality for PD. CONCLUSIONS The therapeutic features of a chelation modality established in translational models and in pilot clinical trials warrant comprehensive evaluation of symptomatic and/or disease-modifying potential of chelation in PD.
Collapse
Affiliation(s)
- David Devos
- 1 Department of Medical Pharmacology, Faculté de Médecine Lille2, Lille Nord de France University , CHU Lille, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-β) superfamily of signaling molecules. In addition to protean roles in embryonic development, germ-line specification, and cellular differentiation, a central role in iron homeostasis has recently been demonstrated for certain BMPs. Specifically, BMP6 serves to relate hepatic iron stores to the hepatocellular expression of the iron-regulatory hormone hepcidin. This regulation occurs via cellular SMAD-signaling molecules and is strongly modulated by the BMP coreceptor hemojuvelin (HJV). Mutations in certain genes influencing signaling to hepcidin via the BMP/SMAD pathway are associated with human disorders of iron metabolism, such as hereditary hemochromatosis and iron-refractory iron-deficiency anemia. Evidence suggests that signals in addition to iron stores influence hepcidin expression via the BMP/SMAD pathway. This review summarizes the details of BMP/SMAD signaling, with a particular focus on its role in iron homeostasis and iron-related diseases.
Collapse
Affiliation(s)
- Nermi L Parrow
- Division of Molecular and Clinical Nutrition, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
168
|
Selvaraju V, Parinandi NL, Adluri RS, Goldman JW, Hussain N, Sanchez JA, Maulik N. Molecular mechanisms of action and therapeutic uses of pharmacological inhibitors of HIF-prolyl 4-hydroxylases for treatment of ischemic diseases. Antioxid Redox Signal 2014; 20:2631-65. [PMID: 23992027 PMCID: PMC4026215 DOI: 10.1089/ars.2013.5186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 08/06/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE In this review, we have discussed the efficacy and effect of small molecules that act as prolyl hydroxylase domain inhibitors (PHDIs). The use of these compounds causes upregulation of the pro-angiogenic factors and hypoxia inducible factor-1α and -2α (HIF-1α and HIF-2α) to enhance angiogenic, glycolytic, erythropoietic, and anti-apoptotic pathways in the treatment of various ischemic diseases responsible for significant morbidity and mortality in humans. RECENT ADVANCES Sprouting of new blood vessels from the existing vasculature and surgical intervention, such as coronary bypass and stent insertion, have been shown to be effective in attenuating ischemia. However, the initial reentry of oxygen leads to the formation of reactive oxygen species that cause oxidative stress and result in ischemia/reperfusion (IR) injury. This apparent "oxygen paradox" must be resolved to combat IR injury. During hypoxia, decreased activity of PHDs initiates the accumulation and activation of HIF-1α, wherein the modulation of both PHD and HIF-1α appears as promising therapeutic targets for the pharmacological treatment of ischemic diseases. CRITICAL ISSUES Research on PHDs and HIFs has shown that these molecules can serve as therapeutic targets for ischemic diseases by modulating glycolysis, erythropoiesis, apoptosis, and angiogenesis. Efforts are underway to identify and synthesize safer small-molecule inhibitors of PHDs that can be administered in vivo as therapy against ischemic diseases. FUTURE DIRECTIONS This review presents a comprehensive and current account of the existing small-molecule PHDIs and their use in the treatment of ischemic diseases with a focus on the molecular mechanisms of therapeutic action in animal models.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Narasimham L. Parinandi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ram Sudheer Adluri
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Joshua W. Goldman
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Naveed Hussain
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut
- Division of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Juan A. Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
169
|
Becerril-Ortega J, Bordji K, Fréret T, Rush T, Buisson A. Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer's disease. Neurobiol Aging 2014; 35:2288-301. [PMID: 24863668 DOI: 10.1016/j.neurobiolaging.2014.04.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 04/14/2014] [Accepted: 04/22/2014] [Indexed: 12/13/2022]
Abstract
Iron dyshomeostasis is proving increasingly likely to be involved in the pathology of Alzheimer's disease (AD); yet, its mechanism is not well understood. Here, we investigated the AD-related mechanism(s) of iron-sulfate exposure in vitro and in vivo, using cultured primary cortical neurons and APP/PS1 AD-model mice, respectively. In both systems, we observed iron-induced disruptions of amyloid precursor protein (APP) processing, neuronal signaling, and cognitive behavior. Iron overload increased production of amyloidogenic KPI-APP and amyloid beta. Further, this APP misprocessing was blocked by MK-801 in vitro, suggesting the effect was N-methyl-D-aspartate receptor (NMDAR) dependent. Calcium imaging confirmed that 24 hours iron exposure led to disrupted synaptic signaling by augmenting GluN2B-containing NMDAR expression-GluN2B messenger RNA and protein levels were increased and promoting excessing extrasynaptic NMDAR signaling. The disrupted GluN2B expression was concurrent with diminished expression of the splicing factors, sc35 and hnRNPA1. In APP/PS1 mice, chronic iron treatment led to hastened progression of cognitive impairment with the novel object recognition discrimination index, revealing a deficit at the age of 4 months, concomitant with augmented GluN2B expression. Together, these data suggest iron-induced APP misprocessing and hastened cognitive decline occur through inordinate extrasynaptic NMDAR activation.
Collapse
Affiliation(s)
- Javier Becerril-Ortega
- INSERM, U836, BP 170, Grenoble Cedex 9, F-38042, France; Université Joseph Fourier, Grenoble Institut des Neurosciences, BP 170, Grenoble Cedex 9, F-38042, France
| | - Karim Bordji
- Université de Caen-Basse Normandie, GIP Cyceron, CNRS UMR 6301 ISTCT, CERVOxy Group, Caen, France
| | - Thomas Fréret
- GMPc-EA4259, Université de Caen Basse-Normandie, GIP Cyceron 14032, Caen, France
| | - Travis Rush
- INSERM, U836, BP 170, Grenoble Cedex 9, F-38042, France; Université Joseph Fourier, Grenoble Institut des Neurosciences, BP 170, Grenoble Cedex 9, F-38042, France
| | - Alain Buisson
- INSERM, U836, BP 170, Grenoble Cedex 9, F-38042, France; Université Joseph Fourier, Grenoble Institut des Neurosciences, BP 170, Grenoble Cedex 9, F-38042, France.
| |
Collapse
|
170
|
Moroishi T, Yamauchi T, Nishiyama M, Nakayama KI. HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism. J Biol Chem 2014; 289:16430-41. [PMID: 24778179 DOI: 10.1074/jbc.m113.541490] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
FBXL5 (F-box and leucine-rich repeat protein 5) is the F-box protein subunit of, and therefore responsible for substrate recognition by, the SCF(FBXL5) ubiquitin-ligase complex, which targets iron regulatory protein 2 (IRP2) for proteasomal degradation. IRP2 plays a central role in the maintenance of cellular iron homeostasis in mammals through posttranscriptional regulation of proteins that contribute to control of the intracellular iron concentration. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo, given that mice lacking FBXL5 die during early embryogenesis as a result of unrestrained IRP2 activity and oxidative stress attributable to excessive iron accumulation. Despite its pivotal role in the control of iron homeostasis, however, little is known of the upstream regulation of FBXL5 activity. We now show that FBXL5 undergoes constitutive ubiquitin-dependent degradation at the steady state. With the use of a proteomics approach to the discovery of proteins that regulate the stability of FBXL5, we identified the large HECT-type ubiquitin ligase HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) as an FBXL5-associated protein. Inhibition of the HERC2-FBXL5 interaction or depletion of endogenous HERC2 by RNA interference resulted in the stabilization of FBXL5 and a consequent increase in its abundance. Such accumulation of FBXL5 in turn led to a decrease in the intracellular content of ferrous iron. Our results thus suggest that HERC2 regulates the basal turnover of FBXL5, and that this ubiquitin-dependent degradation pathway contributes to the control of mammalian iron metabolism.
Collapse
Affiliation(s)
- Toshiro Moroishi
- From the Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Takayoshi Yamauchi
- From the Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaaki Nishiyama
- From the Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- From the Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
171
|
Sakane H, Horii Y, Nogami S, Kawano Y, Kaneko-Kawano T, Shirataki H. α-Taxilin interacts with sorting nexin 4 and participates in the recycling pathway of transferrin receptor. PLoS One 2014; 9:e93509. [PMID: 24690921 PMCID: PMC3972091 DOI: 10.1371/journal.pone.0093509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/06/2014] [Indexed: 01/09/2023] Open
Abstract
Membrane traffic plays a crucial role in delivering proteins and lipids to their intracellular destinations. We previously identified α-taxilin as a binding partner of the syntaxin family, which is involved in intracellular vesicle traffic. α-Taxilin is overexpressed in tumor tissues and interacts with polymerized tubulin, but the precise function of α-taxilin remains unclear. Receptor proteins on the plasma membrane are internalized, delivered to early endosomes and then either sorted to the lysosome for degradation or recycled back to the plasma membrane. In this study, we found that knockdown of α-taxilin induced the lysosomal degradation of transferrin receptor (TfnR), a well-known receptor which is generally recycled back to the plasma membrane after internalization, and impeded the recycling of transferrin. α-Taxilin was immunoprecipitated with sorting nexin 4 (SNX4), which is involved in the recycling of TfnR. Furthermore, knockdown of α-taxilin decreased the number and length of SNX4-positive tubular structures. We report for the first time that α-taxilin interacts with SNX4 and plays a role in the recycling pathway of TfnR.
Collapse
Affiliation(s)
- Hiroshi Sakane
- Department of Molecular and Cell Biology, Graduate school of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Yukimi Horii
- Department of Molecular and Cell Biology, Graduate school of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Satoru Nogami
- Department of Molecular and Cell Biology, Graduate school of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Yoji Kawano
- Department of Molecular and Cell Biology, Graduate school of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Takako Kaneko-Kawano
- Department of Molecular and Cell Biology, Graduate school of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Hiromichi Shirataki
- Department of Molecular and Cell Biology, Graduate school of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
- * E-mail:
| |
Collapse
|
172
|
Molloy AM, Einri CN, Jain D, Laird E, Fan R, Wang Y, Scott JM, Shane B, Brody LC, Kirke PN, Mills JL. Is low iron status a risk factor for neural tube defects? ACTA ACUST UNITED AC 2014; 100:100-6. [PMID: 24535840 DOI: 10.1002/bdra.23223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Folic acid supplements can protect against neural tube defects (NTDs). Low folate and low vitamin B12 status may be maternal risk factors for having an NTD affected pregnancy. However, not all NTDs are preventable by having an adequate folate/ B12 status and other potentially modifiable factors may be involved. Folate and vitamin B12 status have important links to iron metabolism. Animal studies support an association between poor iron status and NTDs, but human data are scarce. We examined the relevance of low iron status in a nested NTD case-control study of women within a pregnant population-based cohort. METHODS Pregnant women were recruited between 1986 and 1990, when vitamin or iron supplementation in early pregnancy was rare. Blood samples, taken at an average of 14 weeks gestation, were used to measure ferritin and hemoglobin in 64 women during an NTD affected pregnancy and 207 women with unaffected pregnancies. RESULTS No significant differences in maternal ferritin or hemoglobin concentrations were observed between NTD affected and nonaffected pregnancies (case median ferritin 16.9 µg/L and hemoglobin 12.4 g/dl versus 15.4 µg/L and 12.3g/dl in controls). As reported previously, red cell folate and vitamin B12 concentrations were significantly lower in cases. Furthermore, there was no significant association of iron status with type of NTD lesion (anencephaly or spina bifida). CONCLUSION We conclude that low maternal iron status during early pregnancy is not an independent risk factor for NTDs. Adding iron to folic acid for periconceptional use may improve iron status but is not likely to prevent NTDs.
Collapse
Affiliation(s)
- Anne M Molloy
- The Institute of Molecular Medicine, School of Medicine, Trinity College Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
A ratiometric fluorescent probe for iron(III) and its application for detection of iron(III) in human blood serum. Anal Chim Acta 2014; 812:145-51. [DOI: 10.1016/j.aca.2013.12.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 11/13/2022]
|
174
|
Cau M, Melis MA, Congiu R, Galanello R. Iron-deficiency anemia secondary to mutations in genes controlling hepcidin. Expert Rev Hematol 2014; 3:205-16. [DOI: 10.1586/ehm.10.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
175
|
Shikata T, Sasaki N, Ueda M, Kimura T, Itohara K, Sugahara M, Fukui M, Manabe E, Masuyama T, Tsujino T. Use of Proton Pump Inhibitors Is Associated With Anemia in Cardiovascular Outpatients. Circ J 2014; 79:193-200. [DOI: 10.1253/circj.cj-14-0582] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Toshiyuki Shikata
- Graduate School of Pharmacy, Hyogo University of Health Sciences
- Department of Pharmacy, Hyogo College of Medicine Hospital
| | - Naoko Sasaki
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences
| | - Masahiro Ueda
- Department of Pharmacy, Hyogo College of Medicine Hospital
| | - Takeshi Kimura
- Department of Pharmacy, Hyogo College of Medicine Hospital
| | - Kanako Itohara
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine
| | - Masataka Sugahara
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine
| | - Miho Fukui
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine
| | - Eri Manabe
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine
| | - Tohru Masuyama
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine
| | - Takeshi Tsujino
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences
- Graduate School of Pharmacy, Hyogo University of Health Sciences
| |
Collapse
|
176
|
Cabantchik ZI, Munnich A, Youdim MB, Devos D. Regional siderosis: a new challenge for iron chelation therapy. Front Pharmacol 2013; 4:167. [PMID: 24427136 PMCID: PMC3875873 DOI: 10.3389/fphar.2013.00167] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/15/2013] [Indexed: 01/01/2023] Open
Abstract
The traditional role of iron chelation therapy has been to reduce body iron burden via chelation of excess metal from organs and fluids and its excretion via biliary-fecal and/or urinary routes. In their present use for hemosiderosis, chelation regimens might not be suitable for treating disorders of iron maldistribution, as those are characterized by toxic islands of siderosis appearing in a background of normal or subnormal iron levels (e.g., sideroblastic anemias, neuro- and cardio-siderosis in Friedreich ataxia- and neurosiderosis in Parkinson's disease). We aimed at clearing local siderosis from aberrant labile metal that promotes oxidative damage, without interfering with essential local functions or with hematological iron-associated properties. For this purpose we introduced a conservative mode of iron chelation of dual activity, one based on scavenging labile metal but also redeploying it to cell acceptors or to physiological transferrin. The “scavenging and redeployment” mode of action was designed both for correcting aberrant iron distribution and also for minimizing/preventing systemic loss of chelated metal. We first examine cell models that recapitulate iron maldistribution and associated dysfunctions identified with Friedreich ataxia and Parkinson's disease and use them to explore the ability of the double-acting agent deferiprone, an orally active chelator, to mediate iron scavenging and redeployment and thereby causing functional improvement. We subsequently evaluate the concept in translational models of disease and finally assess its therapeutic potential in prospective double-blind pilot clinical trials. We claim that any chelator applied to diseases of regional siderosis, cardiac, neuronal or endocrine ought to preserve both systemic and regional iron levels. The proposed deferiprone-based therapy has provided a paradigm for treating regional types of siderosis without affecting hematological parameters and systemic functions.
Collapse
Affiliation(s)
- Zvi Ioav Cabantchik
- Department of Biological Chemistry, Adelina and Massimo Della Pergola Chair, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem Givat Ram, Jerusalem, Israel
| | - Arnold Munnich
- Clinical Research Unit, Medical Genetic Clinic and Research Unit INSERM 781, Hôpital Necker-Enfants Malades and Université Paris V René Descartes Paris, France
| | - Moussa B Youdim
- Technion-Rappaport Family Faculty of Medicine, Eve Topf Center of Excellence Haifa, Israel
| | - David Devos
- Department of Medical Pharmacology, EA1046, Faculty of Medicine, Lille Nord de France University and Lille University Medical Center Lille, France
| |
Collapse
|
177
|
Imran ul-haq M, Hamilton JL, Lai BFL, Shenoi RA, Horte S, Constantinescu I, Leitch HA, Kizhakkedathu JN. Design of long circulating nontoxic dendritic polymers for the removal of iron in vivo. ACS NANO 2013; 7:10704-16. [PMID: 24256569 DOI: 10.1021/nn4035074] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Patients requiring chronic red blood cell (RBC) transfusions for inherited or acquired anemias are at risk of developing transfusional iron overload, which may impact negatively on organ function and survival. Current iron chelators are suboptimal due to the inconvenient mode of administration and/or side effects. Herein, we report a strategy to engineer low molecular weight iron chelators with long circulation lifetime for the removal of excess iron in vivo using a multifunctional dendritic nanopolymer scaffold. Desferoxamine (DFO) was conjugated to hyperbranched polyglycerol (HPG) and the plasma half-life (t1/2) in mice is defined by the structural features of the scaffold. There was a 484 fold increase in t1/2 between the DFO (5 min) versus the HPG-DFO (44 h). In an iron overloaded mouse model, efficient iron excretion by HPG-DFO in the urine and feces was demonstrated (p = 0.0002 and 0.003, respectively) as was a reduction in liver, heart, kidney, and pancreas iron content, and plasma ferritin level (p = 0.003, 0.001, 0.001, 0.001, and 0.003, respectively) compared to DFO. Conjugates showed no apparent toxicity in several analyses including body weight, serum lactate dehydrogenase level, necropsy analysis, and by histopathological examination of organs. These findings were supported by in vitro biocompatibility analyses, including blood coagulation, platelet activation, complement activation, red blood cell aggregation, hemolysis, and cell viability. This nanopolymer-based chelating system would potentially benefit patients suffering from transfusional iron overload.
Collapse
Affiliation(s)
- Muhammad Imran ul-haq
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, and ‡Department of Chemistry, University of British Columbia , Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Zhang Z, Jia H, Zhang Q, Wan Y, Zhou Y, Jia Q, Zhang W, Yuan W, Cheng T, Zhu X, Fang X. Assessment of hematopoietic failure due to Rpl11 deficiency in a zebrafish model of Diamond-Blackfan anemia by deep sequencing. BMC Genomics 2013; 14:896. [PMID: 24341334 PMCID: PMC3890587 DOI: 10.1186/1471-2164-14-896] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/10/2013] [Indexed: 01/18/2023] Open
Abstract
Background Diamond–Blackfan anemia is a rare congenital red blood cell dysplasia that develops soon after birth. RPL11 mutations account for approximately 4.8% of human DBA cases with defective hematopoietic phenotypes. However, the mechanisms by which RPL11 regulates hematopoiesis in DBA remain elusive. In this study, we analyzed the transcriptome using deep sequencing data from an Rpl11-deficient zebrafish model to identify Rpl11-mediated hematopoietic failure and investigate the underlying mechanisms. Results We characterized hematological defects in Rpl11-deficient zebrafish embryos by identifying affected hematological genes, hematopoiesis-associated pathways, and regulatory networks. We found that hemoglobin biosynthetic and hematological defects in Rpl11-deficient zebrafish were related to dysregulation of iron metabolism-related genes, including tfa, tfr1b, alas2 and slc25a37, which are involved in heme and hemoglobin biosynthesis. In addition, we found reduced expression of the hematopoietic stem cells (HSC) marker cmyb and HSC transcription factors tal1 and hoxb4a in Rpl11-deficient zebrafish embryos, indicating that the hematopoietic defects may be related to impaired HSC formation, differentiation, and proliferation. However, Rpl11 deficiency did not affect the development of other blood cell lineages such as granulocytes and myelocytes. Conclusion We identified hematopoietic failure of Rpl11-deficient zebrafish embryos using transcriptome deep sequencing and elucidated potential underlying mechanisms. The present analyses demonstrate that Rpl11-deficient zebrafish may serve as a model of DBA and may provide insights into the pathogenesis of mutant RPL11-mediated human DBA disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaofan Zhu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | | |
Collapse
|
179
|
Honsa ES, Johnson MDL, Rosch JW. The roles of transition metals in the physiology and pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol 2013; 3:92. [PMID: 24364001 PMCID: PMC3849628 DOI: 10.3389/fcimb.2013.00092] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/19/2013] [Indexed: 01/01/2023] Open
Abstract
For bacterial pathogens whose sole environmental reservoir is the human host, the acquisition of essential nutrients, particularly transition metals, is a critical aspect of survival due to tight sequestration and limitation strategies deployed to curtail pathogen outgrowth. As such, these bacteria have developed diverse, specialized acquisition mechanisms to obtain these metals from the niches of the body in which they reside. To oppose the spread of infection, the human host has evolved multiple mechanisms to counter bacterial invasion, including sequestering essential metals away from bacteria and exposing bacteria to lethal concentrations of metals. Hence, to maintain homeostasis within the host, pathogens must be able to acquire necessary metals from host proteins and to export such metals when concentrations become detrimental. Furthermore, this acquisition and efflux equilibrium must occur in a tissue-specific manner because the concentration of metals varies greatly within the various microenvironments of the human body. In this review, we examine the functional roles of the metal import and export systems of the Gram-positive pathogen Streptococcus pneumoniae in both signaling and pathogenesis.
Collapse
Affiliation(s)
- Erin S Honsa
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Michael D L Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| |
Collapse
|
180
|
Morgenthau A, Pogoutse A, Adamiak P, Moraes TF, Schryvers AB. Bacterial receptors for host transferrin and lactoferrin: molecular mechanisms and role in host–microbe interactions. Future Microbiol 2013; 8:1575-85. [DOI: 10.2217/fmb.13.125] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Iron homeostasis in the mammalian host limits the availability of iron to invading pathogens and is thought to restrict iron availability for microbes inhabiting mucosal surfaces. The presence of surface receptors for the host iron-binding glycoproteins transferrin (Tf) and lactoferrin (Lf) in globally important Gram-negative bacterial pathogens of humans and food production animals suggests that Tf and Lf are important sources of iron in the upper respiratory or genitourinary tracts, where they exclusively reside. Lf receptors have the additional function of protecting against host cationic antimicrobial peptides, suggesting that the bacteria expressing these receptors reside in a niche where exposure is likely. In this review we compare Tf and Lf receptors with respect to their structural and functional features, their role in colonization and infection, and their distribution among pathogenic and commensal bacteria.
Collapse
Affiliation(s)
- Ari Morgenthau
- Department of Microbiology, Immunology & Infectious Diseases, Health Sciences Centre, 3330 Hospital Drive Northwest Calgary, Alberta, T2N 4N1, Canada
| | - Anastassia Pogoutse
- Department of Biochemistry, Medical Sciences Building, King’s College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Paul Adamiak
- Department of Microbiology, Immunology & Infectious Diseases, Health Sciences Centre, 3330 Hospital Drive Northwest Calgary, Alberta, T2N 4N1, Canada
| | - Trevor F Moraes
- Department of Biochemistry, Medical Sciences Building, King’s College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Anthony B Schryvers
- Department of Biochemistry & Molecular Biology, Health Sciences Centre, 3330 Hospital Drive Northwest Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
181
|
|
182
|
Effect of Nerium oleander (N.O.) leaves extract on serum hepcidin, total iron, and infiltration of ED1 positive cells in albino rat. BIOMED RESEARCH INTERNATIONAL 2013; 2013:125671. [PMID: 24069586 PMCID: PMC3773409 DOI: 10.1155/2013/125671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022]
Abstract
To gain insight into the hepatohistological alterations in noninjured rat liver, Nerium oleander (N.O.) leaves extract was injected intramuscularly to induce an acute phase reaction (APR). Histopathological changes were studied after 3, 12, and 24 h time course of sterile muscle abscess. Tissue integrity and any infiltration of inflammatory cells in the liver were investigated by Hematoxylin and Eosin and ED1 peroxidase stainings. The administration of N.O. leaves extract (10 mL/kg) in H & E stained sections showed a general vacuolization of cytoplasm resulting loss of polarity with prominent nucleoli after 3 h of induction. At 12 h, eccentric nuclei were also observed in the sections. Marked infiltration of leucocytes with predominate macrophages was also found after 24 h as seen by ED1 positive staining. In the present study, a possible relationship between serum hepcidin and total iron level was also investigated in vivo. An early increase of hepcidin and total iron level (3 h) with a maximum at 12 h (P < 0.01; P < 0.001) was observed. These changes indicate that sterile muscle abscess may induce APR resulting in hepatic damage which is evident with the recruitment of inflammatory cells into the organ.
Collapse
|
183
|
Asci R, Vallefuoco F, Andolfo I, Bruno M, De Falco L, Iolascon A. Trasferrin receptor 2 gene regulation by microRNA 221 in SH-SY5Y cells treated with MPP⁺ as Parkinson's disease cellular model. Neurosci Res 2013; 77:121-7. [PMID: 24055409 DOI: 10.1016/j.neures.2013.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is one of the most frequent human neurodegenerations. The neurodegeneration in PD is related to cellular iron increase but the mechanisms involved in iron accumulation remain unclear. Transferrin receptor type 2 (TFR2) is a protein expressed on cell membrane and involved in the cellular iron uptake. We hypothesized that microRNA 221 could regulate the expression of TfR2 in an in vitro model of Parkinson's disease, SH-SY5Y cells treated with MPP⁺. The miRNA 221 was selected by in silico analysis of several miRNAs predicted to target the TFR2 gene in SHSY5Y cells treated with MPP⁺. Taqman miRNA assay was used to evaluate the expression of the selected miRNAs. Using a luciferase assay we demonstrated the inhibition of TFR2 by miRNA 221. We show that in PD cellular model, TFR2 expression is regulated by miRNA 221. TFR2 and miR 221 are inversely correlated in SHSY5Y cells during the treatment with MPP⁺. Moreover, overexpression of miRNA 221 decreases the expression of TFR2, respectively, at the mRNA and protein levels. The inhibition of endogenous miRNA 221 also is able to regulate TFR2. These data suggest that miRNA 221 regulate TFR2 in PD model.
Collapse
Affiliation(s)
- Roberta Asci
- CEINGE, Biotecnologie Avanzate, Naples, Italy; Department of Biochemistry and Medical Biotechnologies, "Federico II" University of Naples, Naples, Italy
| | | | | | | | | | | |
Collapse
|
184
|
Tian C, Liu J. Repulsive guidance molecules (RGMs) and neogenin in bone morphogenetic protein (BMP) signaling. Mol Reprod Dev 2013; 80:700-17. [PMID: 23740870 DOI: 10.1002/mrd.22199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/28/2013] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFβ) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type-I and type-II serine/threonine kinase receptors and intracellular Smad proteins, which regulate multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases, and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type-I transmembrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | | |
Collapse
|
185
|
Hare D, Ayton S, Bush A, Lei P. A delicate balance: Iron metabolism and diseases of the brain. Front Aging Neurosci 2013; 5:34. [PMID: 23874300 PMCID: PMC3715022 DOI: 10.3389/fnagi.2013.00034] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/25/2013] [Indexed: 12/12/2022] Open
Abstract
Iron is the most abundant transition metal within the brain, and is vital for a number of cellular processes including neurotransmitter synthesis, myelination of neurons, and mitochondrial function. Redox cycling between ferrous and ferric iron is utilized in biology for various electron transfer reactions essential to life, yet this same chemistry mediates deleterious reactions with oxygen that induce oxidative stress. Consequently, there is a precise and tightly controlled mechanism to regulate iron in the brain. When iron is dysregulated, both conditions of iron overload and iron deficiencies are harmful to the brain. This review focuses on how iron metabolism is maintained in the brain, and how an alteration to iron and iron metabolism adversely affects neurological function.
Collapse
Affiliation(s)
- Dominic Hare
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
- Elemental Bio-imaging Facility, University of TechnologySydney, NSW, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
| | - Ashley Bush
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
| | - Peng Lei
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
| |
Collapse
|
186
|
Lawen A, Lane DJR. Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid Redox Signal 2013. [PMID: 23199217 DOI: 10.1089/ars.2011.4271] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is a crucial factor for life. However, it also has the potential to cause the formation of noxious free radicals. These double-edged sword characteristics demand a tight regulation of cellular iron metabolism. In this review, we discuss the various pathways of cellular iron uptake, cellular iron storage, and transport. Recent advances in understanding the reduction and uptake of non-transferrin-bound iron are discussed. We also discuss the recent progress in the understanding of transcriptional and translational regulation by iron. Furthermore, we discuss recent advances in the understanding of the regulation of cellular and systemic iron homeostasis and several key diseases resulting from iron deficiency and overload. We also discuss the knockout mice available for studying iron metabolism and the related human conditions.
Collapse
Affiliation(s)
- Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia.
| | | |
Collapse
|
187
|
Abstract
Hepcidin is a key hormone that is involved in the control of iron homeostasis in the body. Physiologically, hepcidin is controlled by iron stores, inflammation, hypoxia, and erythropoiesis. The regulation of hepcidin expression by iron is a complex process that requires the coordination of multiple proteins, including hemojuvelin, bone morphogenetic protein 6 (BMP6), hereditary hemochromatosis protein, transferrin receptor 2, matriptase-2, neogenin, BMP receptors, and transferrin. Misregulation of hepcidin is found in many disease states, such as the anemia of chronic disease, iron refractory iron deficiency anemia, cancer, hereditary hemochromatosis, and ineffective erythropoiesis, such as β-thalassemia. Thus, the regulation of hepcidin is the subject of interest for the amelioration of the detrimental effects of either iron deficiency or overload.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
188
|
Paesano R, Natalizi T, Berlutti F, Valenti P. Body iron delocalization: the serious drawback in iron disorders in both developing and developed countries. Pathog Glob Health 2013; 106:200-16. [PMID: 23265420 DOI: 10.1179/2047773212y.0000000043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over 2 billion people in both developing as well as developed countries - over 30% of the world's population - are anaemic. With the classical preconception that oral iron administration or the intake of foods rich in iron increase haemoglobin concentration and reduce the prevalence of anaemia, specific programs have been designed, but iron supplementations have been less effective than expected. Of note, this hazardous simplification on iron status neglects its distribution in the body. The correct balance of iron, defined iron homeostasis, involves a physiological ratio of iron between tissues/secretions and blood, thus avoiding its delocalization as iron accumulation in tissues/secretions and iron deficiency in blood. Changes in iron status can affect the inflammatory response in multiple ways, particularly in the context of infection, an idea that is worth remembering when considering the value of iron supplementation in areas of the world where infections are highly prevalent. The enhanced availability of free iron can increase susceptibility and severity of microbial and parasitic infections. The discovery of the hepcidin-ferroportin (Fpn) complex, which greatly clarified the enigmatic mechanism that supervises the iron homeostasis, should prompt to a critical review on iron supplementation, ineffective on the expression of the most important proteins of iron metabolism. Therefore, it is imperative to consider new safe and efficient therapeutic interventions to cure iron deficiency (ID) and ID anaemia (IDA) associated or not to the inflammation. In this respect, lactoferrin (Lf) is emerging as an important regulator of both iron and inflammatory homeostasis. Oral administration of Lf in subjects suffering of ID and IDA is safe and effective in significantly increasing haematological parameters and contemporary decreasing serum IL-6 levels, thus restoring iron localization through the direct or indirect modulation of hepcidin and ferroportin synthesis. Of note, the nuclear localization of Lf suggests that this molecule may be involved in the transcriptional regulation of some genes of host inflammatory response. We recently also reported that combined administration of oral and intravaginal Lf on ID and IDA pregnant women with preterm delivery threat, significantly increased haematological parameters, reduced IL-6 levels in both serum and cervicovaginal fluid, cervicovaginal prostaglandin PGF2α, and suppressed uterine contractility. Moreover, Lf combined administration blocked further the shortening of cervical length and the increase of foetal fibronectin, thus prolonging the length of pregnancy until the 37th-38th week of gestation. These new Lf functions effective in curing ID and IDA through the restoring of iron and inflammatory homeostasis and in preventing preterm delivery, could have a great relevance in developing countries, where ID and IDA and inflammation-associated anaemia represent the major risk factors of preterm delivery and maternal and neonatal death.
Collapse
Affiliation(s)
- R Paesano
- Department of Woman Health and Territorial Medicine, Sapienza University of Rome, Italy
| | | | | | | |
Collapse
|
189
|
Li X, Xu F, Karoopongse E, Marcondes AM, Lee K, Kowdley KV, Miao CH, Trobridge GD, Campbell JS, Deeg HJ. Allogeneic transplantation, Fas signaling, and dysregulation of hepcidin. Biol Blood Marrow Transplant 2013; 19:1210-9. [PMID: 23707854 DOI: 10.1016/j.bbmt.2013.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022]
Abstract
Hepatic iron overload is common in patients undergoing hematopoietic cell transplantation. We showed previously in a murine model that transplantation of allogeneic T cells induced iron deposition and down-regulation of hepcidin (Hamp) in hepatocytes. We hypothesized that hepatic injury was related to disrupted iron homeostasis triggered by the interaction of Fas-ligand, expressed on activated T cells, with Fas on hepatocytes. In the current study, we determined the effects of modified expression of the Flice inhibitory protein (FLIP long [FLIPL]), which interferes with Fas signaling, on the impact of Fas-initiated signals on the expression of IL-6 and Stat3 and their downstream target, Hamp. To exclude a possible contribution by other pathways, we used agonistic anti-Fas antibodies (rather than allogeneic T cells) to trigger Fas signaling. Inhibition of FLIPL by RNA interference resulted, as expected, not only in enhanced hepatocyte apoptosis in response to Fas signals, but also in decreased levels of IL-6, Stat3, and Hamp. In contrast, overexpression of FLIPL protected hepatocytes against agonistic anti-Fas antibody-mediated apoptosis and increased the levels of IL-6 and Stat3, thereby maintaining the expression of Hamp in an NF-κB-dependent fashion. In vivo overexpression of FLIPL in the liver via hydrodynamic transfection, similarly, interfered with Fas-initiated apoptosis and prevented down-regulation of IL-6, Stat3, and Hamp. These data indicate that Fas-dependent signals alter the regulation of iron homeostasis and suggest that signals initiated by Fas may contribute to peritransplantation iron accumulation.
Collapse
Affiliation(s)
- Xiang Li
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Guo X, Zhang Z, Zhang F, Tao Y, An P, Wu Q, Wang CY, Knutson MD, Wang F. Fine-mapping and genetic analysis of the loci affecting hepatic iron overload in mice. PLoS One 2013; 8:e63280. [PMID: 23675470 PMCID: PMC3651197 DOI: 10.1371/journal.pone.0063280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/29/2013] [Indexed: 12/12/2022] Open
Abstract
The liver, as the major organ for iron storage and production of hepcidin, plays pivotal roles in maintaining mammalian iron homeostasis. A previous study showed that Quantitative Trait Loci (QTLs) on chromosome 7 (Chr7) and 16 (Chr16) may control hepatic non-heme iron overload in an F2 intercross derived from C57BL/6J (B6) and SWR/J (SWR) mice. In this study, we aimed to validate the existence of these loci and identify the genes responsible for the phenotypic variations by generating congenic mice carrying SWR chromosome segments expanding these QTLs (D7Mit68-D7Mit71 and D16Mit125-D16Mit185, respectively). We excluded involvement of Chr7 based on the lack of iron accumulation in congenic mice. In contrast, liver iron accumulation was observed in Chr16 congenic mice. Through use of a series of subcongenic murine lines the interval on Chr16 was further fine-mapped to a 0.8 Mb segment spanning 11 genes. We found that the mRNA expression pattern in the liver remained unchanged for all 11 genes tested. Most importantly, we detected 4 missense mutations in 3 candidate genes including Sidt1 (P172R), Spice1(R708S), Boc (Q1051R) and Boc (S450-insertion in B6 allele) in the liver of SWR homozygous congenic mice. To further delineate potential modifier gene(s), we reconstituted seven candidate genes, Sidt1, Boc, Zdhhc23, Gramd1c, Atp6v1a, Naa50 and Gtpbp8, in mouse liver through hydrodynamic transfection. However, we were unable to detect significant changes in liver iron levels upon reconstitution of these candidate genes. Taken together, our work provides strong genetic evidence of the existence of iron modifiers on Chr16. Moreover, we were able to delineate the phenotypically responsible region to a 0.8 Mb region containing 11 coding genes, 3 of which harbor missense mutations, using a series of congenic mice.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Nutrition and Metabolism, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
- Department of Nutrition, Institute of
Nutrition and Food Safety, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou,
P.R. China
| | - Zhuzhen Zhang
- Key Laboratory of Nutrition and Metabolism, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
- Department of Nutrition, Institute of
Nutrition and Food Safety, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou,
P.R. China
| | - Fan Zhang
- Key Laboratory of Nutrition and Metabolism, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
- Department of Nutrition, Institute of
Nutrition and Food Safety, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou,
P.R. China
| | - Yunlong Tao
- Key Laboratory of Nutrition and Metabolism, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
- Department of Nutrition, Institute of
Nutrition and Food Safety, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou,
P.R. China
| | - Peng An
- Key Laboratory of Nutrition and Metabolism, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
- Department of Nutrition, Institute of
Nutrition and Food Safety, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou,
P.R. China
| | - Qian Wu
- Key Laboratory of Nutrition and Metabolism, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
- Department of Nutrition, Institute of
Nutrition and Food Safety, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou,
P.R. China
| | - Chia-Yu Wang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, United States of America
| | - Mitchell D. Knutson
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, United States of America
| | - Fudi Wang
- Department of Nutrition, Institute of
Nutrition and Food Safety, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou,
P.R. China
- * E-mail:
| |
Collapse
|
191
|
Abstract
AI (anaemia of inflammation) often manifests in patients with chronic immune activation due to cancer, chronic infections, autoimmune disorders, rheumatoid arthritis and other diseases. The pathogenesis of AI is complex and involves cytokine-mediated inhibition of erythropoiesis, insufficient erythropoietin production and diminished sensitivity of erythroid progenitors to this hormone, and retention of iron in haemoglobin-processing macrophages. NO (nitric oxide) is a gaseous molecule produced by activated macrophages that has been identified as having numerous effects on iron metabolism. In the present study, we explore the possibility that NO affects iron metabolism in reticulocytes and our results suggest that NO may also contribute to AI. We treated reticulocytes with the NO donor SNP (sodium nitroprusside). The results indicate that NO inhibits haem synthesis dramatically and rapidly at the level of erythroid-specific 5-aminolaevulinic acid synthase 2, which catalyses the first step of haem synthesis in erythroid cells. We also show that NO leads to the inhibition of iron uptake via the Tf (transferrin)-Tf receptor pathway. In addition, NO also causes an increase in eIF2α (eukaryotic initiation factor 2α) phosphorylation levels and decreases globin translation. The profound impairment of haem synthesis, iron uptake and globin translation in reticulocytes by NO raises the possibility that this gas may also contribute to AI.
Collapse
|
192
|
Galliera E, Dozio E, Dogliotti G, Vassena C, Colloredo Mels L, Romano CL, Mattina R, Corsi MM, Drago L. Iron status evaluation as a marker of postoperative joint infection: a pilot study. Int J Immunopathol Pharmacol 2013; 25:1149-55. [PMID: 23298506 DOI: 10.1177/039463201202500433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We evaluated the effect of different inflammatory conditions on iron status and, as a consequence, the possible use of iron markers as indicators of infection in the diagnosis of postoperative prosthetic orthopaedic joint infections. The study population was consisted of 26 patients undergoing revision of total hip or total knee joint arthroplasty and subdivided into three groups according to the cause of prosthesis implant failure: 10 as having had previous infection (Group A), 10 patients were categorized as having infection (Group B); and the remaining 6 (Group C) as not having infection. These patients were assayed for mean corpuscular haemoglobin concentration (MCHC) and serum values of iron (Fe), ferritin (Fer), transferrin (Tf), soluble transferrin receptor (sTfR), and transferrin saturation (sat Tf). Septic patients display statistically significant lower serum iron concentration, higher sTfR and ferritin levels, lower, but not statistically significant, MCHC compared to non septic ones. Little differences were observed for Tf, sat Tf, tibc, TfR index, among the three groups of patients. Our study suggests that iron status parameters, in particular serum iron, ferritin, sTfR and TfR index, could be useful tools for the early detection and the diagnosis of orthopaedic prosthetic joint infections.
Collapse
|
193
|
Enns CA, Ahmed R, Wang J, Ueno A, Worthen C, Tsukamoto H, Zhang AS. Increased iron loading induces Bmp6 expression in the non-parenchymal cells of the liver independent of the BMP-signaling pathway. PLoS One 2013; 8:e60534. [PMID: 23565256 PMCID: PMC3615098 DOI: 10.1371/journal.pone.0060534] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/27/2013] [Indexed: 02/07/2023] Open
Abstract
Bone morphogenetic protein 6 (BMP6) is an essential cytokine for the expression of hepcidin, an iron regulatory hormone secreted predominantly by hepatocytes. Bmp6 expression is upregulated by increased iron-levels in the liver. Both hepatocytes and non-parenchymal liver cells have detectable Bmp6 mRNA. Here we showed that induction of hepcidin expression in hepatocytes by dietary iron is associated with an elevation of Bmp6 mRNA in the non-parenchymal cells of the liver. Consistently, incubation with iron-saturated transferrin induces Bmp6 mRNA expression in isolated hepatic stellate cells, but not in hepatocytes. These observations suggest an important role of the non-parenchymal liver cells in regulating iron-homeostasis by acting as a source of Bmp6.
Collapse
Affiliation(s)
- Caroline A. Enns
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (CAE); (A-SZ)
| | - Riffat Ahmed
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jiaohong Wang
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Akiko Ueno
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Christal Worthen
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Hidekazu Tsukamoto
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Veteran Affairs, Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - An-Sheng Zhang
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (CAE); (A-SZ)
| |
Collapse
|
194
|
Satoh T, Kidoya H, Naito H, Yamamoto M, Takemura N, Nakagawa K, Yoshioka Y, Morii E, Takakura N, Takeuchi O, Akira S. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature 2013; 495:524-8. [PMID: 23515163 DOI: 10.1038/nature11930] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 01/22/2013] [Indexed: 01/09/2023]
Abstract
Macrophages consist of at least two subgroups, M1 and M2 (refs 1-3). Whereas M1 macrophages are proinflammatory and have a central role in host defence against bacterial and viral infections, M2 macrophages are associated with responses to anti-inflammatory reactions, helminth infection, tissue remodelling, fibrosis and tumour progression. Trib1 is an adaptor protein involved in protein degradation by interacting with COP1 ubiquitin ligase. Genome-wide association studies in humans have implicated TRIB1 in lipid metabolism. Here we show that Trib1 is critical for the differentiation of F4/80(+)MR(+) tissue-resident macrophages--that share characteristics with M2 macrophages (which we term M2-like macrophages)--and eosinophils but not for the differentiation of M1 myeloid cells. Trib1 deficiency results in a severe reduction of M2-like macrophages in various organs, including bone marrow, spleen, lung and adipose tissues. Aberrant expression of C/EBPα in Trib1-deficient bone marrow cells is responsible for the defects in macrophage differentiation. Unexpectedly, mice lacking Trib1 in haematopoietic cells show diminished adipose tissue mass accompanied by evidence of increased lipolysis, even when fed a normal diet. Supplementation of M2-like macrophages rescues the pathophysiology, indicating that a lack of these macrophages is the cause of lipolysis. In response to a high-fat diet, mice lacking Trib1 in haematopoietic cells develop hypertriglyceridaemia and insulin resistance, together with increased proinflammatory cytokine gene induction. Collectively, these results demonstrate that Trib1 is critical for adipose tissue maintenance and suppression of metabolic disorders by controlling the differentiation of tissue-resident M2-like macrophages.
Collapse
Affiliation(s)
- Takashi Satoh
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Rao VA. Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxid Redox Signal 2013; 18:930-55. [PMID: 22900902 PMCID: PMC3557438 DOI: 10.1089/ars.2012.4877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. RECENT ADVANCES The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2α). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2α inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. CRITICAL ISSUES While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. FUTURE DIRECTIONS Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed.
Collapse
Affiliation(s)
- V Ashutosh Rao
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
196
|
Merlot AM, Kalinowski DS, Richardson DR. Novel chelators for cancer treatment: where are we now? Antioxid Redox Signal 2013; 18:973-1006. [PMID: 22424293 DOI: 10.1089/ars.2012.4540] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Under normal circumstances, cellular iron levels are tightly regulated due to the potential toxic effects of this metal ion. There is evidence that tumors possess altered iron homeostasis, which is mediated by the perturbed expression of iron-related proteins, for example, transferrin receptor 1, ferritin and ferroportin 1. The de-regulation of iron homeostasis in cancer cells reveals a particular vulnerability to iron-depletion using iron chelators. In this review, we examine the absorption of iron from the gut; its transport, metabolism, and homeostasis in mammals; and the molecular pathways involved. Additionally, evidence for alterations in iron processing in cancer are described along with the perturbations in other biologically important transition metal ions, for example, copper(II) and zinc(II). These changes can be therapeutically manipulated by the use of novel chelators that have recently been shown to be highly effective in terms of inhibiting tumor growth. RECENT ADVANCES Such chelators include those of the thiosemicarbazone class that were originally thought to target only ribonucleotide reductase, but are now known to have multiple effects, including the generation of cytotoxic radicals. CRITICAL ISSUES Several chelators have shown marked anti-tumor activity in vivo against a variety of solid tumors. An important aspect is the toxicology and the efficacy of these agents in clinical trials. FUTURE DIRECTIONS As part of the process of the clinical assessment of the new chelators, an extensive toxicological assessment in multiple animal models is essential for designing appropriate dosing protocols in humans.
Collapse
Affiliation(s)
- Angelica M Merlot
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
197
|
Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab 2013; 17:329-41. [PMID: 23473030 PMCID: PMC3648340 DOI: 10.1016/j.cmet.2013.02.007] [Citation(s) in RCA: 378] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/03/2012] [Accepted: 11/29/2012] [Indexed: 02/06/2023]
Abstract
Iron overload is a risk factor for diabetes. The link between iron and diabetes was first recognized in pathologic conditions-hereditary hemochromatosis and thalassemia-but high levels of dietary iron also impart diabetes risk. Iron plays a direct and causal role in diabetes pathogenesis mediated both by β cell failure and insulin resistance. Iron also regulates metabolism in most tissues involved in fuel homeostasis, with the adipocyte in particular serving an iron-sensing role. The underlying molecular mechanisms mediating these effects are numerous and incompletely understood but include oxidant stress and modulation of adipokines and intracellular signal transduction pathways.
Collapse
Affiliation(s)
- Judith A Simcox
- Departments of Medicine and Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
198
|
Honsa ES, Owens CP, Goulding CW, Maresso AW. The near-iron transporter (NEAT) domains of the anthrax hemophore IsdX2 require a critical glutamine to extract heme from methemoglobin. J Biol Chem 2013; 288:8479-8490. [PMID: 23364793 DOI: 10.1074/jbc.m112.430009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several gram-positive pathogenic bacteria employ near-iron transporter (NEAT) domains to acquire heme from hemoglobin during infection. However, the structural requirements and mechanism of action for NEAT-mediated heme extraction remains unknown. Bacillus anthracis exhibits a rapid growth rate during systemic infection, suggesting that the bacterium expresses efficient iron acquisition systems. To understand how B. anthracis acquires iron from heme sources, which account for 80% of mammalian iron stores, we investigated the properties of the five-NEAT domain hemophore IsdX2. Using a combination of bioinformatics and site-directed mutagenesis, we determined that the heme extraction properties of IsdX2 are dependent on an amino acid with an amide side chain within the 310-helix of the NEAT domain. Additionally, we used a spectroscopic analysis to show that IsdX2 NEAT domains only scavenge heme from methemoglobin (metHb) and that autoxidation of oxyhemoglobin to metHb must occur prior to extraction. We also report the crystal structures of NEAT5 wild type and a Q29T mutant and present surface plasmon resonance data that indicate that the loss of this amide side chain reduces the affinity of the NEAT domain for metHb. We propose a model whereby the amide side chain is first required to drive an interaction with metHb that destabilizes heme, which is subsequently extracted and coordinated in the aliphatic heme-binding environment of the NEAT domain. Because an amino acid with an amide side chain in this position is observed in NEAT domains of several genera of gram-positive pathogenic bacteria, these results suggest that specific targeting of this or nearby residues may be an entry point for inhibitor development aimed at blocking bacterial iron acquisition during infection.
Collapse
Affiliation(s)
- Erin S Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Cedric P Owens
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92617
| | - Celia W Goulding
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92617
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
199
|
Lukmantara AY, Kalinowski DS, Kumar N, Richardson DR. Structure–activity studies of 4-phenyl-substituted 2′-benzoylpyridine thiosemicarbazones with potent and selective anti-tumour activity. Org Biomol Chem 2013; 11:6414-25. [DOI: 10.1039/c3ob41109e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
200
|
Kim SY, Cho B. Helicobacter pyloriInfection and Hematologic Diseases. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2013. [DOI: 10.7704/kjhugr.2013.13.4.214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sang Yong Kim
- Department of Pediatrics, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Bin Cho
- Department of Pediatrics, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|