151
|
Abstract
For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.
Collapse
Affiliation(s)
| | - Wafik S El-Deiry
- The Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
152
|
Tumor protein 53 mutations in acute myeloid leukemia: conventional induction chemotherapy or novel therapeutics. Curr Opin Hematol 2020; 27:66-75. [PMID: 31922971 DOI: 10.1097/moh.0000000000000568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Tumor protein 53 (TP53) protein is involved in fundamental processes of cancer, aging, and DNA repair. Thus, TP53 dysfunction is implicated in malignant processes and remains the most commonly mutated gene in cancer but represents a relatively small proportion in acute myeloid leukemia (AML). Patients with TP53-mutated AML attain inferior responses to therapy resulting in poor overall outcomes. RECENT FINDINGS Traditional treatment approaches with conventional chemotherapy yields suboptimal responses for patients with TP53 mutant AML compared with wildtype TP53. In recent years, there is increasing interest in understanding the role and underlying biology of TP53 mutations in AML with efforts to harness the physiological tumor suppressive function of TP53 protein. Novel combination and targeted therapies may contribute to improved outcomes; however, responses to therapy may be short-lived and ongoing research is indicated to evaluate relapse-risk reduction strategies. These patients may benefit from consideration of enrollment in clinical trials or lower intensity therapy approaches in lieu of intensive chemotherapy. SUMMARY Pharmacological treatments targeting the TP53 pathway in addition to novel emerging therapeutics and immunotherapy-based approaches hold promise for treatment of TP53 mutant AML.
Collapse
|
153
|
Sallman DA. To target the untargetable: elucidation of synergy of APR-246 and azacitidine in TP53 mutant myelodysplastic syndromes and acute myeloid leukemia. Haematologica 2020; 105:1470-1472. [PMID: 32482751 PMCID: PMC7271586 DOI: 10.3324/haematol.2020.249060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
154
|
Cumbo C, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. TP53 in Myelodysplastic Syndromes: Recent Biological and Clinical Findings. Int J Mol Sci 2020; 21:E3432. [PMID: 32414002 PMCID: PMC7279310 DOI: 10.3390/ijms21103432] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
TP53 dysregulation plays a pivotal role in the molecular pathogenesis of myelodysplastic syndromes (MDS), identifying a subgroup of patients with peculiar features. In this review we report the recent biological and clinical findings of TP53-mutated MDS, focusing on the molecular pathways activation and on its impact on the cellular physiology. In MDS, TP53 mutational status is deeply associated with del(5q) syndrome and its dysregulation impacts on cell cycle, DNA repair and apoptosis inducing chromosomal instability and the clonal evolution of disease. TP53 defects influence adversely the MDS clinical outcome and the treatment response rate, thus new therapeutic approaches are being developed for these patients. TP53 allelic state characterization and the mutational burden evaluation can therefore predict prognosis and identify the subgroup of patients eligible for targeted therapy. For these reasons, in the era of precision medicine, the MDS diagnostic workup cannot do without the complete assessment of TP53 mutational profile.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (C.C.); (G.T.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
155
|
Copper-imidazo[1,2-a]pyridines induce intrinsic apoptosis and modulate the expression of mutated p53, haem-oxygenase-1 and apoptotic inhibitory proteins in HT-29 colorectal cancer cells. Apoptosis 2020; 24:623-643. [PMID: 31073781 DOI: 10.1007/s10495-019-01547-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metastatic colorectal cancer responds poorly to treatment and is a leading cause of cancer related deaths. Worldwide, chemotherapy of metastatic colorectal cancer remains plagued by poor efficacy, development of resistance and serious adverse effects. Copper-imidazo[1,2-a]pyridines were previously shown by our group to be selectively active against several cancer cell lines, with three complexes, JD46(27), JD47(29), and JD88(21), showing IC50 values between 0.8 and 1.8 μM against HT-29 cells. Here, we report that treatment with the copper complexes resulted in fragmented nuclei suggestive of apoptotic cell death, which was confirmed by increased annexin V binding and caspase-3/7 activity. The copper complexes caused a loss of mitochondrial membrane potential and increased caspase-9 activity. The absence of caspase-8 activity indicated activation of the intrinsic pathway. Proteomic analysis revealed that copper-imidazo[1,2-a]pyridines decreased the expression of phosphorylated forms of p53 [phospho-p53(S15), phospho-p53(S46) and phospho-p53(S392)]. The expression of inhibitor of apoptosis proteins, XIAP, cIAP1, livin, and the antiapoptotic proteins, Bcl-2 and Bcl-x, was decreased. HO/HMOX/HSP32, expression was notably increased, which suggested the accumulation of reactive oxygen species. Increased expression of TRAIL-R2/DR5 death receptor indicated the possible dual activation of both the extrinsic and intrinsic apoptotic pathways; however, caspase-8 activation could not be demonstrated. In conclusion, the copper-imidazo[1,2-a]pyridines were effective inducers of apoptotic cell death at low micromolar concentrations and changed the expression levels of proteins important for cell survival and cell death. These copper complexes may be useful tools to better understand the complexity of signalling networks in cancer cell death in response to cell stress.
Collapse
|
156
|
Chandhok NS, Lewis R, Prebet T. Hypomethylating agent based combinations in higher risk myelodysplastic syndrome. Leuk Lymphoma 2020; 61:1012-1027. [PMID: 31814484 DOI: 10.1080/10428194.2019.1697812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For over a decade the hypomethylating agents (HMA) azacitidine and decitabine have been the mainstay of therapy for myelodysplastic syndrome (MDS). There is a critical need to improve frontline therapy, given that only up to half of high-risk MDS patients will respond to HMA therapy, and responses are short-lived. Currently, a key strategy has been to combine HMAs with other novel agents to improve patient outcomes. While synergy of agents is the goal of combination therapy, combinations often come at the cost of increased side effects that are often intolerable in this vulnerable population. The purpose of this review is to critically examine clinically relevant HMA combinations and discuss the future of MDS management.
Collapse
Affiliation(s)
- Namrata S Chandhok
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Russell Lewis
- Smilow Cancer Center at Yale New Haven Hospital, New Haven, CT, USA
| | - Thomas Prebet
- Smilow Cancer Center at Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
157
|
van Dam L, Dansen TB. Cross-talk between redox signalling and protein aggregation. Biochem Soc Trans 2020; 48:379-397. [PMID: 32311028 PMCID: PMC7200635 DOI: 10.1042/bst20190054] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
It is well established that both an increase in reactive oxygen species (ROS: i.e. O2•-, H2O2 and OH•), as well as protein aggregation, accompany ageing and proteinopathies such as Parkinson's and Alzheimer's disease. However, it is far from clear whether there is a causal relation between the two. This review describes how protein aggregation can be affected both by redox signalling (downstream of H2O2), as well as by ROS-induced damage, and aims to give an overview of the current knowledge of how redox signalling affects protein aggregation and vice versa. Redox signalling has been shown to play roles in almost every step of protein aggregation and amyloid formation, from aggregation initiation to the rapid oligomerization of large amyloids, which tend to be less toxic than oligomeric prefibrillar aggregates. We explore the hypothesis that age-associated elevated ROS production could be part of a redox signalling-dependent-stress response in an attempt to curb protein aggregation and minimize toxicity.
Collapse
Affiliation(s)
- Loes van Dam
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | - Tobias B. Dansen
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| |
Collapse
|
158
|
Recent Synthetic Approaches towards Small Molecule Reactivators of p53. Biomolecules 2020; 10:biom10040635. [PMID: 32326087 PMCID: PMC7226499 DOI: 10.3390/biom10040635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor protein p53 is often called "the genome guardian" and controls the cell cycle and the integrity of DNA, as well as other important cellular functions. Its main function is to trigger the process of apoptosis in tumor cells, and approximately 50% of all cancers are related to the inactivation of the p53 protein through mutations in the TP53 gene. Due to the association of mutant p53 with cancer therapy resistance, different forms of restoration of p53 have been subject of intense research in recent years. In this sense, this review focus on the main currently adopted approaches for activation and reactivation of p53 tumor suppressor function, focusing on the synthetic approaches that are involved in the development and preparation of such small molecules.
Collapse
|
159
|
Condorelli R, Mosele F, Verret B, Bachelot T, Bedard PL, Cortes J, Hyman DM, Juric D, Krop I, Bieche I, Saura C, Sotiriou C, Cardoso F, Loibl S, Andre F, Turner NC. Genomic alterations in breast cancer: level of evidence for actionability according to ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 2020; 30:365-373. [PMID: 30715161 DOI: 10.1093/annonc/mdz036] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Better knowledge of the tumor genomic landscapes has helped to develop more effective targeted drugs. However, there is no tool to interpret targetability of genomic alterations assessed by next-generation sequencing in the context of clinical practice. Our aim is to rank the level of evidence of individual recurrent genomic alterations observed in breast cancer based on the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT) in order to help the clinicians to prioritize treatment. Analyses of databases suggested that there are around 40 recurrent driver alterations in breast cancer. ERBB2 amplification, germline BRCA1/2 mutations, PIK3CA mutations were classified tier of evidence IA based on large randomized trials showing antitumor activity of targeted therapies in patients presenting the alterations. NTRK fusions and microsatellite instability (MSI) were ranked IC. ESR1 mutations and PTEN loss were ranked tier IIA, and ERBB2 mutations and AKT1 mutations tier IIB. Somatic BRCA 1/2 mutations, MDM2 amplifications and ERBB 3 mutations were ranked tier III. Seventeen genes were ranked tier IV based on preclinical evidence. Finally, FGFR1 and CCND1 were ranked tier X alterations because previous studies have shown lack of actionability.
Collapse
Affiliation(s)
- R Condorelli
- Department of Medical Oncolo, INSERM U981, Université Paris Sud, Gustave Roussy, Villejuif, France; Institute of Oncology and Breast Unit of Southern Switzerland, Bellinzona, Switzerland
| | - F Mosele
- Department of Medical Oncolo, INSERM U981, Université Paris Sud, Gustave Roussy, Villejuif, France.
| | - B Verret
- Department of Medical Oncolo, INSERM U981, Université Paris Sud, Gustave Roussy, Villejuif, France
| | - T Bachelot
- Department of Medical Oncology, Cancer Research Center of Lyon Inserm, Lyon, France
| | - P L Bedard
- Division of Medical Oncology & Hematolog, Department of Medicine, Princess Margaret Cancer Centre, Toronto, Canada
| | - J Cortes
- Ramon y Cajal University Hospital, Madrid & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - D M Hyman
- Memorial Sloan Kettering Cancer Center, New York
| | - D Juric
- Massachusetts General Hospital (MGH), Boston
| | - I Krop
- Dana-Farber Cancer Institute, Boston, USA
| | - I Bieche
- Department of Genetics, Curie Institute, Paris, France
| | - C Saura
- Department of Medical Oncolog, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - C Sotiriou
- J.C. Heuson Breast Cancer Translational Research Laborator, Université Libre de Bruxelles, Institut Jules Bordet, Brussels, Belgium
| | - F Cardoso
- Breast Uni, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - S Loibl
- German Breast Group, Neu-Isenburg, Germany
| | - F Andre
- Department of Medical Oncolo, INSERM U981, Université Paris Sud, Gustave Roussy, Villejuif, France
| | - N C Turner
- Royal Marsden Hospital and Institute of Cancer Research, London, UK
| |
Collapse
|
160
|
|
161
|
Loh SN. Follow the Mutations: Toward Class-Specific, Small-Molecule Reactivation of p53. Biomolecules 2020; 10:biom10020303. [PMID: 32075132 PMCID: PMC7072143 DOI: 10.3390/biom10020303] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The mutational landscape of p53 in cancer is unusual among tumor suppressors because most of the alterations are of the missense type and localize to a single domain: the ~220 amino acid DNA-binding domain. Nearly all of these mutations produce the common effect of reducing p53’s ability to interact with DNA and activate transcription. Despite this seemingly simple phenotype, no mutant p53-targeted drugs are available to treat cancer patients. One of the main reasons for this is that the mutations exert their effects via multiple mechanisms—loss of DNA contacts, reduction in zinc-binding affinity, and lowering of thermodynamic stability—each of which involves a distinct type of physical impairment. This review discusses how this knowledge is informing current efforts to develop small molecules that repair these defects and restore function to mutant p53. Categorizing the spectrum of p53 mutations into discrete classes based on their inactivation mechanisms is the initial step toward personalized cancer therapy based on p53 allele status.
Collapse
Affiliation(s)
- Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
162
|
Li Y, Li N, Shi J, Ahmed T, Liu H, Guo J, Tang W, Guo Y, Zhang Q. Involvement of Glutathione Depletion in Selective Cytotoxicity of Oridonin to p53-Mutant Esophageal Squamous Carcinoma Cells. Front Oncol 2020; 9:1525. [PMID: 32010620 PMCID: PMC6974803 DOI: 10.3389/fonc.2019.01525] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023] Open
Abstract
Oridonin, a diterpenoid compound isolated from traditional Chinese medicine Rabdosia rubescens, has shown antitumor effects to esophageal cancer. However, its molecular mechanism is not fully understood, which limits its clinical application. In the present study, we used RNA-seq analysis to check the transcriptome changes after oridonin treatment and we found genes controlling the GSH-ROS system were up-regulated, namely SLC7A11, TXNRD1, TRIM16, SRXN1, GCLM, and GCLC. Furthermore, our data suggest that oridonin significantly increased the production of ROS in EC109 and TE1 cells, which can be inhibited by NAC. Interestingly, oridonin can dramatically reduce intracellular GSH levels in TE1 cells in a concentration and time-dependent manner. In addition, cell death caused by oridonin was strongly inhibited by GSH (1 mM), while GSSG (1 mM) had little effect. At the same time, we also found that oridonin showed selective cytotoxicity to esophageal squamous carcinoma cell with p53 mutation since mut-p53 cells had lower SLC7A11 expression, a component of the cystine/glutamate antiporter. We also found that γ-glutamyl cysteine synthetase inhibitor (BSO) synergizes with oridonin to strongly inhibit EC109 cells at a low dose. These results suggested that the antitumor effects of oridonin are based on its –SH reactivity and glutathione depletion. Esophageal squamous carcinoma cells with p53-mutation showed hypersensitivity to oridonin because of the suppression of SLC7A11 expression by p53 mutation.
Collapse
Affiliation(s)
- Yinchao Li
- Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, Zhengzhou, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Nana Li
- Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, Zhengzhou, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianxiang Shi
- Center for Precision Medicine, Zhengzhou University, Zhengzhou, China
| | - Tanzeel Ahmed
- Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, Zhengzhou, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongmin Liu
- Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, Zhengzhou, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiancheng Guo
- Center for Precision Medicine, Zhengzhou University, Zhengzhou, China
| | - Wenxue Tang
- Center for Precision Medicine, Zhengzhou University, Zhengzhou, China
| | - Yongjun Guo
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Zhang
- Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, Zhengzhou, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Center for Precision Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
163
|
SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot mutations. Biochim Biophys Acta Gen Subj 2020; 1864:129440. [DOI: 10.1016/j.bbagen.2019.129440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023]
|
164
|
Miller JJ, Gaiddon C, Storr T. A balancing act: using small molecules for therapeutic intervention of the p53 pathway in cancer. Chem Soc Rev 2020; 49:6995-7014. [DOI: 10.1039/d0cs00163e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small molecules targeting various aspects of the p53 protein pathway have shown significant promise in the treatment of a number of cancer types.
Collapse
Affiliation(s)
| | - Christian Gaiddon
- Inserm UMR_S 1113
- Université de Strasbourg
- Molecular Mechanisms of Stress Response and Pathologies
- ITI InnoVec
- Strasbourg
| | - Tim Storr
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| |
Collapse
|
165
|
PRIMA-1 MET cytotoxic effect correlates with p53 protein reduction in TP53-mutated chronic lymphocytic leukemia cells. Leuk Res 2019; 89:106288. [PMID: 31924585 DOI: 10.1016/j.leukres.2019.106288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
TP53 gene defects represent the most unfavorable prognostic factor in chronic lymphocytic leukemia (CLL). Although recently introduced small-molecule B-cell receptor signalling inhibitors have revolutionized CLL treatment, data for ibrutinib still point to impaired prognosis for TP53-affected patients. Among cancer-associated TP53 mutations, missense substitutions predominate and typically result in a high mutated-p53 protein level. Therefore, rescuing the p53 tumor suppressor function through specific small molecules restoring p53 wild-type (wt) conformation represents an attractive therapeutic strategy for cancer patients with TP53 missense mutations. We tested the effect of mutated-p53 reactivating molecule PRIMA-1MET in 62 clinical CLL samples characterized for TP53 mutations and p53 protein level. At the subtle PRIMA-1MET concentrations (1-4 μM), most samples manifested concentration-dependent viability decrease and, conversely, apoptosis induction, with the response being similar in both the TP53-mutated and TP53-wt groups, as well as in the TP53-mutated samples with p53 protein stabilization and without it. PRIMA-1MET was able to reduce mutated p53 protein in a proportion of TP53-mutated CLL samples, and this reduction correlated with a significantly stronger viability decrease and apoptosis induction than samples with stable p53 levels. CLL cells are mostly sensitive to PRIMA-1MET apart from those with stable mutated p53.
Collapse
|
166
|
Barbosa K, Li S, Adams PD, Deshpande AJ. The role of TP53 in acute myeloid leukemia: Challenges and opportunities. Genes Chromosomes Cancer 2019; 58:875-888. [PMID: 31393631 PMCID: PMC12042961 DOI: 10.1002/gcc.22796] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
The tumor suppressor gene TP53 is one of the most frequently mutated genes in human cancer. The central role of the TP53 protein in several fundamental processes such as cancer, aging, senescence, and DNA repair has ensured enormous attention. However, the role of TP53 in acute myeloid leukemia (AML) is enigmatic. Unlike many other human cancers, a vast majority of AMLs display no genomic TP53 alterations. There is now growing appreciation of the fact that the unaltered TP53 status of tumor cells can be exploited therapeutically. As most AMLs have an intact TP53 gene, its physiological tumor-suppressive roles could be harnessed. Therefore, the use of pharmacological activators of the TP53 pathway may provide clinical benefit in AML. Conversely, even though the frequency of TP53 mutations in AML is substantially lower than in other human cancers, TP53 mutations are associated with chemoresistance and high risk of relapse. In patients with TP53 mutations, these alterations may lead to novel, selective vulnerabilities, creating opportunities for therapeutic targeting of TP53 mutant AML. The mutational status of TP53 therefore poses challenges and opportunities in terms of advancing effective treatment strategies in AML. An increasing armamentarium of small-molecule activators of the TP53 pathway, and a growing understanding of molecular pathways triggered by mutant TP53 have accelerated efforts aimed at targeting TP53 function in AML. In combination with standard AML chemotherapy or emerging targeted therapies, pharmacological targeting of the TP53 pathway may provide therapeutic benefit in AML.
Collapse
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Sha Li
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Peter D Adams
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Aniruddha J Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
167
|
|
168
|
Synnott NC, O’Connell D, Crown J, Duffy MJ. COTI-2 reactivates mutant p53 and inhibits growth of triple-negative breast cancer cells. Breast Cancer Res Treat 2019; 179:47-56. [DOI: 10.1007/s10549-019-05435-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
|
169
|
Maslah N, Salomao N, Drevon L, Verger E, Partouche N, Ly P, Aubin P, Naoui N, Schlageter MH, Bally C, Miekoutima E, Rahmé R, Lehmann-Che J, Ades L, Fenaux P, Cassinat B, Giraudier S. Synergistic effects of PRIMA-1 Met (APR-246) and 5-azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia. Haematologica 2019; 105:1539-1551. [PMID: 31488557 PMCID: PMC7271596 DOI: 10.3324/haematol.2019.218453] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Myelodysplastic syndromes and acute myeloid leukemia with TP53 mutations are characterized by frequent relapses, poor or short responses, and poor survival with the currently available therapies including chemotherapy and 5-azacitidine (AZA). PRIMA-1Met(APR-246,APR) is a methylated derivative of PRIMA-1, which induces apoptosis in human tumor cells through restoration of the transcriptional transactivation function of mutant p53. Here we show that low doses of APR on its own or in combination with AZA reactivate the p53 pathway and induce an apoptosis program. Functionally, we demonstrate that APR exerts these activities on its own and that it synergizes with AZA in TP53-mutated myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML) cell lines and in TP53-mutated primary cells from MDS/AML patients. Low doses of APR on its own or in combination with AZA also show significant efficacy in vivo Lastly, using transcriptomic analysis, we found that the APR + AZA synergy was mediated by downregulation of the FLT3 pathway in drug-treated cells. Activation of the FLT3 pathway by FLT3 ligand reversed the inhibition of cell proliferation by APR + AZA. These data suggest that TP53-mutated MDS/AML may be better targeted by the addition of APR-246 to conventional treatments.
Collapse
Affiliation(s)
- Nabih Maslah
- APHP, Service de Biologie Cellulaire, Hôpital Saint-Louis, Paris.,Faculté de Médecine Université Paris Diderot Paris 7, Paris.,INSERM UMR-S 1131, Hôpital Saint-Louis, Paris
| | | | | | - Emmanuelle Verger
- APHP, Service de Biologie Cellulaire, Hôpital Saint-Louis, Paris.,INSERM UMR-S 1131, Hôpital Saint-Louis, Paris
| | - Nicolas Partouche
- Faculté de Médecine Paris 12-UPEC, Hôpital Henri Mondor, APHP, Créteil
| | - Pierre Ly
- APHP, Service de Biologie Cellulaire, Hôpital Saint-Louis, Paris
| | - Philippe Aubin
- APHP, Service de Biologie Cellulaire, Hôpital Saint-Louis, Paris
| | - Nadia Naoui
- APHP, Service de Biologie Cellulaire, Hôpital Saint-Louis, Paris
| | - Marie-Helene Schlageter
- APHP, Service de Biologie Cellulaire, Hôpital Saint-Louis, Paris.,INSERM UMR-S 1131, Hôpital Saint-Louis, Paris
| | - Cecile Bally
- APHP, Service d'Hématologie Senior, Hôpital Saint-Louis, Paris
| | - Elsa Miekoutima
- APHP, Service d'Hématologie Senior, Hôpital Saint-Louis, Paris
| | - Ramy Rahmé
- APHP, Service d'Hématologie Senior, Hôpital Saint-Louis, Paris
| | - Jacqueline Lehmann-Che
- Faculté de Médecine Université Paris Diderot Paris 7, Paris.,Unité d'Oncologie Moléculaire, Hôpital Saint-Louis, APHP, Paris, France
| | - Lionel Ades
- Faculté de Médecine Université Paris Diderot Paris 7, Paris.,INSERM UMR-S 1131, Hôpital Saint-Louis, Paris.,APHP, Service d'Hématologie Senior, Hôpital Saint-Louis, Paris
| | - Pierre Fenaux
- Faculté de Médecine Université Paris Diderot Paris 7, Paris.,INSERM UMR-S 1131, Hôpital Saint-Louis, Paris.,APHP, Service d'Hématologie Senior, Hôpital Saint-Louis, Paris
| | - Bruno Cassinat
- APHP, Service de Biologie Cellulaire, Hôpital Saint-Louis, Paris.,INSERM UMR-S 1131, Hôpital Saint-Louis, Paris
| | - Stephane Giraudier
- Faculté de Médecine Université Paris Diderot Paris 7, Paris .,INSERM UMR-S 1131, Hôpital Saint-Louis, Paris
| |
Collapse
|
170
|
Demir S, Boldrin E, Sun Q, Hampp S, Tausch E, Eckert C, Ebinger M, Handgretinger R, Kronnie GT, Wiesmüller L, Stilgenbauer S, Selivanova G, Debatin KM, Meyer LH. Therapeutic targeting of mutant p53 in pediatric acute lymphoblastic leukemia. Haematologica 2019; 105:170-181. [PMID: 31073076 PMCID: PMC6939517 DOI: 10.3324/haematol.2018.199364] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Alterations of the tumor suppressor gene TP53 are found in different cancers, in particular in carcinomas of adults. In pediatric acute lymphoblastic leukemia (ALL), TP53 mutations are infrequent but enriched at relapse. As in most cancers, mainly DNA-binding domain missense mutations are found, resulting in accumulation of mutant p53, poor therapy response, and inferior outcome. Different strategies to target mutant p53 have been developed including reactivation of p53's wildtype function by the small molecule APR-246. We investigated TP53 mutations in cell lines and 62 B-cell precursor ALL samples and evaluated the activity of APR-246 in TP53-mutated or wildtype ALL. We identified cases with TP53 missense mutations, high (mutant) p53 expression and insensitivity to the DNA-damaging agent doxorubicin. In TP53-mutated ALL, APR-246 induced apoptosis showing strong anti-leukemia activity. APR-246 restored mutant p53 to its wildtype conformation, leading to pathway activation with induction of transcriptional targets and re-sensitization to genotoxic therapy in vitro and in vivo In addition, induction of oxidative stress contributed to APR-246-mediated cell death. In a preclinical model of patient-derived TP53-mutant ALL, APR-246 reduced leukemia burden and synergized strongly with the genotoxic agent doxorubicin, leading to superior leukemia-free survival in vivo Thus, targeting mutant p53 by APR-246, restoring its tumor suppressive function, seems to be an effective therapeutic strategy for this high-risk group of TP53-mutant ALL.
Collapse
Affiliation(s)
- Salih Demir
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.,International Graduate School of Molecular Medicine, Ulm University, Ulm, Germany
| | - Elena Boldrin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.,International Graduate School of Molecular Medicine, Ulm University, Ulm, Germany.,PhD Program in Biosciences, University of Padova, Padova, Italy
| | - Qian Sun
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Stephanie Hampp
- Department of Obstetrics and Gynecology, Ulm University Medical Center, Ulm, Germany
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Eckert
- Department of Pediatrics, Charité Center Gynecology, Perinatal, Pediatric and Adolescent Medicine, Berlin, Germany
| | - Martin Ebinger
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Hematology and Oncology, Children's University Hospital Tübingen, Tübingen, Germany
| | - Geertruy Te Kronnie
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder Hinrich Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
171
|
Chokr N, Pine AB, Bewersdorf JP, Shallis RM, Stahl M, Zeidan AM. Getting personal with myelodysplastic syndromes: is now the right time? Expert Rev Hematol 2019; 12:215-224. [PMID: 30977414 PMCID: PMC6540985 DOI: 10.1080/17474086.2019.1592673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Commonly used scoring systems rely on blood counts, histological and cytological examination of bone marrow and peripheral blood as well as cytogenetic assessments to estimate prognosis of patients with myelodysplastic syndromes (MDS) and guide therapy decisions. Next-generation sequencing (NGS) has identified recurrent genetic abnormalities in up to 90% of patients with MDS and may provide important information regarding the pathogenesis of the disease, diagnostic and prognostic evaluation, and therapy selection. Areas covered: Herein, the authors review the role of NGS in diagnosis, treatment, and prognosis of MDS at various disease stages, and discuss advantages and caveats of incorporating molecular genetics in routine management of MDS. While a vast majority of patients harbor recurrent mutations implicated in MDS pathogenesis, similar mutations can be detected in otherwise healthy individuals with other hematologic malignancies. Besides establishing a diagnosis, NGS may be used to monitor minimal residual disease following treatment. Expert opinion: As more targeted therapies become available, assessment of genetic mutations will become central to individualized therapy selection and may improve diagnostic accuracy and further guide management for each patient. However, multiple challenges remain before NGS can be incorporated into routine clinical practice.
Collapse
Affiliation(s)
- Nora Chokr
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA
| | - Alexander B. Pine
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA
| | - Jan Philipp Bewersdorf
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA
| | - Rory M. Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA
| | - Maximilian Stahl
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA
| |
Collapse
|
172
|
Jiang L, Malik N, Acedo P, Zawacka-Pankau J. Protoporphyrin IX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and induces apoptosis in B-cell chronic lymphocytic leukemia cells. Cell Death Discov 2019; 5:77. [PMID: 30886745 PMCID: PMC6412042 DOI: 10.1038/s41420-019-0157-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022] Open
Abstract
p53 is a tumor suppressor, which belongs to the p53 family of proteins. The family consists of p53, p63 and p73 proteins, which share similar structure and function. Activation of wild-type p53 or TAp73 in tumors leads to tumor regression, and small molecules restoring the p53 pathway are in clinical development. Protoporphyrin IX (PpIX), a metabolite of aminolevulinic acid, is a clinically approved drug applied in photodynamic diagnosis and therapy. PpIX induces p53-dependent and TAp73-dependent apoptosis and inhibits TAp73/MDM2 and TAp73/MDM4 interactions. Here we demonstrate that PpIX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and activates apoptosis in B-cell chronic lymphocytic leukemia cells without illumination and without affecting normal cells. PpIX stabilizes p53 and TAp73 proteins, induces p53-downstream apoptotic targets and provokes cancer cell death at doses non-toxic to normal cells. Our findings open up new opportunities for repurposing PpIX for treating lymphoblastic leukemia with wild-type TP53.
Collapse
Affiliation(s)
- Liren Jiang
- 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden.,2Department of Immunology, Genetics and Pathology, Medical Faculty, Uppsala University, Box 256, 75105 Uppsala, Sweden.,3Present Address: Department of Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, 200080 Shanghai, China
| | - Natasha Malik
- 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Pilar Acedo
- 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Joanna Zawacka-Pankau
- 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| |
Collapse
|
173
|
Tessoulin B, Descamps G, Dousset C, Amiot M, Pellat-Deceunynck C. Targeting Oxidative Stress With Auranofin or Prima-1 Met to Circumvent p53 or Bax/Bak Deficiency in Myeloma Cells. Front Oncol 2019; 9:128. [PMID: 30895171 PMCID: PMC6414792 DOI: 10.3389/fonc.2019.00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
Prima-1Met (APR-246) was previously shown to be dependent on glutathione inhibition and on ROS induction in cancer cells with mutated or deleted TP53. Because this ROS induction was, at least in part, due to a direct interference with the thioredoxin reductase enzyme, we investigated whether activity of Prima-1Met could be mimicked by auranofin, an inhibitor of the thioredoxin reductase. We thus compared the activity of auranofin and Prima-1Met in 18 myeloma cell lines and in 10 samples from patients with multiple myeloma or plasma cell leukemia. We showed that, similar to Prima-1Met, the activity of auranofin was not dependent on either TP53 status or p53 expression; was inhibited by N-acetyl-L-cysteine, a ROS scavenger; displayed a dramatic synergy with L-buthionine sulfoximine, an irreversible inhibitor of glutathione synthesis; and induced cell death that was not dependent on Bax/Bak expression. These data showed that auranofin and Prima-1Met similarly overcome cell death resistance in myeloma cells due to either p53 deficiency or to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Benoit Tessoulin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,L'Héma-NexT, i-Site NexT, Université de Nantes, Nantes, France.,SIRIC ILIAD, Angers, Nantes, France.,Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU de Nantes, Nantes, France
| | - Geraldine Descamps
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,L'Héma-NexT, i-Site NexT, Université de Nantes, Nantes, France.,SIRIC ILIAD, Angers, Nantes, France
| | - Christelle Dousset
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,L'Héma-NexT, i-Site NexT, Université de Nantes, Nantes, France.,SIRIC ILIAD, Angers, Nantes, France
| | - Martine Amiot
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,L'Héma-NexT, i-Site NexT, Université de Nantes, Nantes, France.,SIRIC ILIAD, Angers, Nantes, France
| | - Catherine Pellat-Deceunynck
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,L'Héma-NexT, i-Site NexT, Université de Nantes, Nantes, France.,SIRIC ILIAD, Angers, Nantes, France
| |
Collapse
|
174
|
Levine AJ. Targeting Therapies for the p53 Protein in Cancer Treatments. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055455] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Half of all human cancers contain TP53 mutations, and in many other cancers, the function of the p53 protein is compromised. The diversity of these mutations and phenotypes presents a challenge to the development of drugs that target p53 mutant cancer cells. This review describes the rationale for many different approaches in the development of p53 targeted therapies: ( a) viruses and gene therapies, ( b) increased levels and activity of wild-type p53 proteins in cancer cells, ( c) p53 protein gain-of-function inhibitors, ( d) p53 protein loss-of-function structural correctors, ( e) mutant p53 protein synthetic lethal drugs interfering with the p53 pathway, and ( f) cellular immune responses to mutant p53 protein antigens. As these types of therapies are developed, tested, and evaluated, the best of them will have a significant impact upon cancer treatments and possibly prevention.
Collapse
|
175
|
Activation of TAp73 and inhibition of TrxR by Verteporfin for improved cancer therapy in TP53 mutant pancreatic tumors. Future Sci OA 2019; 5:FSO366. [PMID: 30820346 PMCID: PMC6391631 DOI: 10.4155/fsoa-2018-0082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
Aim: TAp73 is a tumor suppressor, which compensates for p53 loss and induces apoptosis in tumors in response to genotoxic stress or small-molecule treatments. Pancreatic ductal adenocarcinoma has a late onset of the disease, responds poorly to the existing therapies and has a very low survival rates. Result: Here, using drug-repurposing approach, we found that protoporphyrin IX (PpIX) and benzoporphyrin derivative (BPD) monoacid ring A activate TAp73 and induce apoptosis in pancreatic cancer cells. PpIX and BPD induce reactive oxygen species and inhibit thioredoxin reductase 1. Conclusion: Thus, PpIX and BPD target cancer cells’ vulnerabilities namely activate TAp73 tumor suppressor and inhibit oncogenic Trx1. Our findings may contribute to faster repurposing of PpIX and BPD to treat pancreatic tumors. Despite all efforts, pancreatic cancer remains one of the most aggressive tumors. Late diagnoses, often linked with the asymptomatic disease progression, make pancreatic cancer extremely difficult to treat. We have assessed drugs that are already clinically used in the photodynamic therapy of actinic keratosis and age-related macular degeneration and showed that the compounds induce apoptotic death of cancer cells. The mechanism is via activation of the p73 tumor suppressor and inhibition of the oncogenic thioredoxin reductase. Molecules with a complementary mechanism of action inducing cell death might be very promising candidates for improved cancer therapy in pancreatic cancer patients.
Two pathways leading to the induction of potent apoptosis by protoporphyrin IX and Verteporfin in mutant TP53 pancreatic cancer cells. One pathway is through inhibition of TAp73/MDM2 interactions and induction of TAp73-related apoptosis and the second pathway converges on inhibition of oncogenic TrxR and accumulation of reactive oxygen species.
Collapse
|
176
|
Lee JH, List A, Sallman DA. Molecular pathogenesis of myelodysplastic syndromes with deletion 5q. Eur J Haematol 2019; 102:203-209. [PMID: 30578738 DOI: 10.1111/ejh.13207] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
The molecular pathogenesis of deletion 5q (del(5q)) myelodysplastic syndrome (MDS) has recently been realized as a result of major advances in our understanding of the mechanisms responsible for clinical phenotype. Identification of commonly deleted genes such as RPS14, miRNA-145, HSPA9, CD78, and CSNK1a1 have elucidated the precise biological changes responsible for the anemia, leukopenia, and thrombocytosis that characterizes del(5q) MDS and highlighted the importance of allelic haploinsufficiency in the hematological phenotype. Recent elegant investigations have also identified a critical role of innate immune signaling in del(5q) pathogenesis. TP53 and Wnt/β-catenin pathways have also been found to be involved in clonal expansion and progression of the disease as well as resistance and poor outcomes to available therapy. Understanding the molecular pathogenesis of the disease has provided a critical foundation in identifying the biological targets of lenalidomide in del(5q) MDS, which has led to the development of novel therapeutic agents in hematologic malignancies as well as potential alternative targets to exploit in patients who have failed lenalidomide treatment.
Collapse
Affiliation(s)
- Jung-Hoon Lee
- University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Alan List
- Malignant Hematology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - David A Sallman
- Malignant Hematology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
177
|
Moufarrij S, Dandapani M, Arthofer E, Gomez S, Srivastava A, Lopez-Acevedo M, Villagra A, Chiappinelli KB. Epigenetic therapy for ovarian cancer: promise and progress. Clin Epigenetics 2019; 11:7. [PMID: 30646939 PMCID: PMC6334391 DOI: 10.1186/s13148-018-0602-0] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the deadliest gynecologic malignancy, with a 5-year survival rate of approximately 47%, a number that has remained constant over the past two decades. Early diagnosis improves survival, but unfortunately only 15% of ovarian cancers are diagnosed at an early or localized stage. Most ovarian cancers are epithelial in origin and treatment prioritizes surgery and cytoreduction followed by cytotoxic platinum and taxane chemotherapy. While most tumors will initially respond to this treatment, recurrence is likely to occur within a median of 16 months for patients who present with advanced stage disease. New treatment options separate from traditional chemotherapy that take advantage of advances in understanding of the pathophysiology of ovarian cancer are needed to improve outcomes. Recent work has shown that mutations in genes encoding epigenetic regulators are mutated in ovarian cancer, driving tumorigenesis and resistance to treatment. Several of these epigenetic modifiers have emerged as promising drug targets for ovarian cancer therapy. In this article, we delineate epigenetic abnormalities in ovarian cancer, discuss key scientific advances using epigenetic therapies in preclinical ovarian cancer models, and review ongoing clinical trials utilizing epigenetic therapies in ovarian cancer.
Collapse
Affiliation(s)
- Sara Moufarrij
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, D.C., 20052 USA
- Department of Obstetrics & Gynecology, The George Washington University, Washington, D.C., 20052 USA
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Monica Dandapani
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, D.C., 20052 USA
- Department of Obstetrics & Gynecology, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Elisa Arthofer
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Stephanie Gomez
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Aneil Srivastava
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Micael Lopez-Acevedo
- Department of Obstetrics & Gynecology, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Alejandro Villagra
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Katherine B. Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| |
Collapse
|
178
|
Rangel LP, Ferretti GDS, Costa CL, Andrade SMMV, Carvalho RS, Costa DCF, Silva JL. p53 reactivation with induction of massive apoptosis-1 (PRIMA-1) inhibits amyloid aggregation of mutant p53 in cancer cells. J Biol Chem 2019; 294:3670-3682. [PMID: 30602570 DOI: 10.1074/jbc.ra118.004671] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/28/2018] [Indexed: 12/15/2022] Open
Abstract
p53 mutants can form amyloid-like structures that accumulate in cells. p53 reactivation with induction of massive apoptosis-1 (PRIMA-1) and its primary active metabolite, 2-methylene-3-quinuclidinone (MQ), can restore unfolded p53 mutants to a native conformation that induces apoptosis and activates several p53 target genes. However, whether PRIMA-1 can clear p53 aggregates is unclear. In this study, we investigated whether PRIMA-1 can restore aggregated mutant p53 to a native form. We observed that the p53 mutant protein is more sensitive to both PRIMA-1 and MQ aggregation inhibition than WT p53. The results of anti-amyloid oligomer antibody assays revealed that PRIMA-1 reverses mutant p53 aggregate accumulation in cancer cells. Size-exclusion chromatography of the lysates from mutant p53-containing breast cancer and ovarian cell lines confirmed that PRIMA-1 substantially decreases p53 aggregates. We also show that MDA-MB-231 cell lysates can "seed" aggregation of the central core domain of recombinant WT p53, corroborating the prion-like behavior of mutant p53. We also noted that this aggregation effect was inhibited by MQ and PRIMA-1. This study provides the first demonstration that PRIMA-1 can rescue amyloid-state p53 mutants, a strategy that could be further explored as a cancer treatment.
Collapse
Affiliation(s)
- Luciana P Rangel
- From the Faculdade de Farmácia, .,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, and
| | - Giulia D S Ferretti
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, and.,Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil and
| | - Caroline L Costa
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, and.,Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil and
| | | | | | - Danielly C F Costa
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, and.,the Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, Brazil
| | - Jerson L Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, and .,Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil and
| |
Collapse
|
179
|
Sznarkowska A, Kostecka A, Kawiak A, Acedo P, Lion M, Inga A, Zawacka-Pankau J. Reactivation of TAp73 tumor suppressor by protoporphyrin IX, a metabolite of aminolevulinic acid, induces apoptosis in TP53-deficient cancer cells. Cell Div 2018; 13:10. [PMID: 30603043 PMCID: PMC6306007 DOI: 10.1186/s13008-018-0043-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Background The p73 protein is a tumor suppressor that shares structural and functional similarity with p53. p73 is expressed in two major isoforms; the TA isoform that interacts with p53 pathway, thus acting as tumor suppressor and the N-terminal truncated ΔN isoform that inhibits TAp73 and p53 and thus, acts as an oncogene. Results By employing a drug repurposing approach, we found that protoporphyrin IX (PpIX), a metabolite of aminolevulinic acid applied in photodynamic therapy of cancer, stabilizes TAp73 and activates TAp73-dependent apoptosis in cancer cells lacking p53. The mechanism of TAp73 activation is via disruption of TAp73/MDM2 and TAp73/MDMX interactions and inhibition of TAp73 degradation by ubiquitin ligase Itch. Finally, PpIX showed potent antitumor effect and inhibited the growth of xenograft human tumors in mice. Conclusion Our findings may in future contribute to the successful repurposing of PpIX into clinical practice. Electronic supplementary material The online version of this article (10.1186/s13008-018-0043-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicja Sznarkowska
- 1Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Anna Kostecka
- 1Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Anna Kawiak
- 1Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Pilar Acedo
- 2Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Mattia Lion
- 3Centre for Integrative Biology, CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy.,4Present Address: Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Alberto Inga
- 3Centre for Integrative Biology, CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Joanna Zawacka-Pankau
- 2Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65 Stockholm, Sweden
| |
Collapse
|
180
|
Omar SI, Tuszynski J. The molecular mechanism of action of methylene quinuclidinone and its effects on the structure of p53 mutants. Oncotarget 2018; 9:37137-37156. [PMID: 30647850 PMCID: PMC6324685 DOI: 10.18632/oncotarget.26440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/26/2018] [Indexed: 11/25/2022] Open
Abstract
One of the most important tumor suppressor proteins in eukaryotic cells is the transcription factor called p53. The importance of this protein in cells comes from the fact that it regulates a wide variety of cellular processes including the cell cycle, metabolism, DNA repair, senescence and apoptosis. In cancer cells, p53 is a major target as the most mutated protein, which has led to the search for potential activators of the mutant protein. Currently, the only mutated-p53 activator in clinical trials is a small molecule called APR-246. There is evidence that the active metabolite of APR-246 binds covalently to mutant p53 and restores its wild-type (wt) activity. In this work, we created atomistic in silico models of the wt, mutant and drugged mutant p53 proteins each in complex with DNA. Using molecular dynamics simulations we generated equilibrated models of the complexes. Detailed analysis revealed that the binding of the APR-246 active metabolite to the mutant proteins alters their interaction with DNA. In particular, the binding of the molecule at loop L1 of the protein allows the loop to anchor the protein to DNA similarly to wt p53. Several important p53-DNA interactions lost due to mutation were also restored in the drugged mutants. These findings, not only provide a possible mechanism of action of this drug, but also criteria to use in virtual screening campaigns for other p53 activators.
Collapse
Affiliation(s)
- Sara Ibrahim Omar
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jack Tuszynski
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Physics, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada.,Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
181
|
Synnott NC, Madden SF, Bykov VJN, Crown J, Wiman KG, Duffy MJ. The Mutant p53-Targeting Compound APR-246 Induces ROS-Modulating Genes in Breast Cancer Cells. Transl Oncol 2018; 11:1343-1349. [PMID: 30196236 PMCID: PMC6132178 DOI: 10.1016/j.tranon.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/01/2023] Open
Abstract
TP53 is the most frequently mutated gene in human cancer and thus an attractive target for novel cancer therapy. Several compounds that can reactive mutant p53 protein have been identified. APR-246 is currently being tested in a phase II clinical trial in high-grade serous ovarian cancer. We have used RNA-seq analysis to study the effects of APR-246 on gene expression in human breast cancer cell lines. Although the effect of APR-246 on gene expression was largely cell line dependent, six genes were upregulated across all three cell lines studied, i.e., TRIM16, SLC7A11, TXNRD1, SRXN1, LOC344887, and SLC7A11-AS1. We did not detect upregulation of canonical p53 target genes such as CDKN1A (p21), 14-3-3σ, BBC3 (PUMA), and PMAIP1 (NOXA) by RNA-seq, but these genes were induced according to analysis by qPCR. Gene ontology analysis showed that APR-246 induced changes in pathways such as response to oxidative stress, gene expression, cell proliferation, response to nitrosative stress, and the glutathione biosynthesis process. Our results are consistent with the dual action of APR-246, i.e., reactivation of mutant p53 and modulation of redox activity. SLC7A11, TRIM16, TXNRD1, and SRXN1 are potential new pharmacodynamic biomarkers for assessing the response to APR-246 in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Naoise C Synnott
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Vladimir J N Bykov
- Karolinska Institutet, Dept. of Oncology-Pathology, Cancer Center Karolinska (CCK), Stockholm, Sweden
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Klas G Wiman
- Karolinska Institutet, Dept. of Oncology-Pathology, Cancer Center Karolinska (CCK), Stockholm, Sweden
| | - Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland.
| |
Collapse
|
182
|
Santini V. Society of Hematologic Oncology (SOHO) State of the Art Updates and Next Questions: Myelodysplastic Syndromes. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:495-500. [PMID: 29907542 DOI: 10.1016/j.clml.2018.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
In the past few months, 2 main streams of research have dominated the panorama of myelodysplastic syndrome (MDS) investigations: deepening the insight into the pathogenic role, hierarchy, and prognostic effect of somatic mutations and, as a consequence, into the effect of inherited congenital predisposing conditions and the second, quite interlinked with the first, analyzing inflammation and innate immunity in patients with MDS. The research devoted to clarifying the mechanisms of action and mechanisms of resistance to hypomethylating agents has also advanced, mostly resulting from different approaches to the study of DNA methylation. Recent observations have reinforced support for targeted therapies for selected subgroups of MDS patients.
Collapse
Affiliation(s)
- Valeria Santini
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy.
| |
Collapse
|
183
|
Hypoxia-Induced Cisplatin Resistance in Non-Small Cell Lung Cancer Cells Is Mediated by HIF-1α and Mutant p53 and Can Be Overcome by Induction of Oxidative Stress. Cancers (Basel) 2018; 10:cancers10040126. [PMID: 29690507 PMCID: PMC5923381 DOI: 10.3390/cancers10040126] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 01/06/2023] Open
Abstract
The compound APR-246 (PRIMA-1MET) is a known reactivator of (mutant) p53 and inducer of oxidative stress which can sensitize cancer cells to platinum-based chemotherapeutics. However, the effect of a hypoxic tumor environment has been largely overlooked in this interaction. This study focusses on the role of hypoxia-inducible factor-1α (HIF-1α) and the p53 tumor suppressor protein in hypoxia-induced cisplatin resistance in non-small cell lung cancer (NSCLC) cells and the potential of APR-246 to overcome this resistance. We observed that hypoxia-induced cisplatin resistance only occurred in the p53 mutant NCI-H2228Q331* cell line, and not in the wild type A549 and mutant NCI-H1975R273H cell lines. Cisplatin reduced HIF-1α protein levels in NCI-H2228Q331* cells, leading to a shift in expression from HIF-1α-dependent to p53-dependent transcription targets under hypoxia. APR-246 was able to overcome hypoxia-induced cisplatin resistance in NCI-H2228Q331* cells in a synergistic manner without affecting mutant p53Q331* transcriptional activity, but significantly depleting total glutathione levels more efficiently under hypoxic conditions. Synergism was dependent on the presence of mutant p53Q331* and the induction of reactive oxygen species, with depletion of one or the other leading to loss of synergism. Our data further support the rationale of combining APR-246 with cisplatin in NSCLC, since their synergistic interaction is retained or enforced under hypoxic conditions in the presence of mutant p53.
Collapse
|