151
|
Xie Q, Wu TP, Gimple RC, Li Z, Prager BC, Wu Q, Yu Y, Wang P, Wang Y, Gorkin DU, Zhang C, Dowiak AV, Lin K, Zeng C, Sui Y, Kim LJY, Miller TE, Jiang L, Lee-Poturalski C, Huang Z, Fang X, Zhai K, Mack SC, Sander M, Bao S, Kerstetter-Fogle AE, Sloan AE, Xiao AZ, Rich JN. N 6-methyladenine DNA Modification in Glioblastoma. Cell 2018; 175:1228-1243.e20. [PMID: 30392959 PMCID: PMC6433469 DOI: 10.1016/j.cell.2018.10.006] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/26/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
Abstract
Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.
Collapse
Affiliation(s)
- Qi Xie
- Department of Medicine, Division of Regenerative Medicine,
University of California, San Diego, La Jolla CA 92037, USA
| | - Tao P. Wu
- Department of Genetics and Yale Stem Cell Center, Yale
School of Medicine, New Haven CT 06520, USA,Present address: Department of Molecular and Human
Genetics, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | - Ryan C. Gimple
- Department of Medicine, Division of Regenerative Medicine,
University of California, San Diego, La Jolla CA 92037, USA,Department of Pathology, Case Western Reserve University,
Cleveland, OH 44120, USA
| | - Zheng Li
- Department of Genetics and Yale Stem Cell Center, Yale
School of Medicine, New Haven CT 06520, USA
| | - Briana C. Prager
- Department of Medicine, Division of Regenerative Medicine,
University of California, San Diego, La Jolla CA 92037, USA,Department of Pathology, Case Western Reserve University,
Cleveland, OH 44120, USA,Cleveland Clinic Lerner College of Medicine, Case Western
Reserve University, Cleveland OH 44195, USA
| | - Qiulian Wu
- Department of Medicine, Division of Regenerative Medicine,
University of California, San Diego, La Jolla CA 92037, USA
| | - Yang Yu
- Department of Chemistry, University of California,
Riverside CA 92521, USA
| | - Pengcheng Wang
- Department of Chemistry, University of California,
Riverside CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California,
Riverside CA 92521, USA
| | - David U. Gorkin
- Center for Epigenomics, Department of Cellular and
Molecular Medicine, University of California, San Diego, La Jolla CA 92037,
USA
| | - Cheng Zhang
- Center for Epigenomics, Department of Cellular and
Molecular Medicine, University of California, San Diego, La Jolla CA 92037,
USA
| | - Alexis V. Dowiak
- Center for Epigenomics, Department of Cellular and
Molecular Medicine, University of California, San Diego, La Jolla CA 92037,
USA
| | - Kaixuan Lin
- Department of Genetics and Yale Stem Cell Center, Yale
School of Medicine, New Haven CT 06520, USA
| | - Chun Zeng
- Departments of Pediatrics and Cellular and Molecular
Medicine, Pediatric Diabetes Research Center, University of California, San Diego,
La Jolla CA 92093, USA
| | - Yinghui Sui
- Departments of Pediatrics and Cellular and Molecular
Medicine, Pediatric Diabetes Research Center, University of California, San Diego,
La Jolla CA 92093, USA
| | - Leo J. Y. Kim
- Department of Medicine, Division of Regenerative Medicine,
University of California, San Diego, La Jolla CA 92037, USA,Department of Pathology, Case Western Reserve University,
Cleveland, OH 44120, USA
| | - Tyler E. Miller
- Department of Pathology, Case Western Reserve University,
Cleveland, OH 44120, USA
| | - Li Jiang
- Department of Medicine, Division of Regenerative Medicine,
University of California, San Diego, La Jolla CA 92037, USA
| | | | - Zhi Huang
- Department of Stem Cell Biology and Regenerative
Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195, USA
| | - Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative
Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195, USA
| | - Kui Zhai
- Department of Stem Cell Biology and Regenerative
Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195, USA
| | - Stephen C. Mack
- Department of Pediatrics, Division of Hematology and
Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston TX,
77030, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular
Medicine, Pediatric Diabetes Research Center, University of California, San Diego,
La Jolla CA 92093, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative
Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44195, USA
| | - Amber E. Kerstetter-Fogle
- Case Comprehensive Cancer Center, Case Western Reserve
University School of Medicine, Cleveland OH, 44106, USA,Department of Neurological Surgery, University
Hospitals-Cleveland Medical Center, Cleveland OH, 44106, USA
| | - Andrew E. Sloan
- Case Comprehensive Cancer Center, Case Western Reserve
University School of Medicine, Cleveland OH, 44106, USA,Department of Neurological Surgery, University
Hospitals-Cleveland Medical Center, Cleveland OH, 44106, USA
| | - Andrew Z. Xiao
- Department of Genetics and Yale Stem Cell Center, Yale
School of Medicine, New Haven CT 06520, USA,Correspondence to: Jeremy N. Rich
() and Andrew Z. Xiao
()
| | - Jeremy N. Rich
- Department of Medicine, Division of Regenerative Medicine,
University of California, San Diego, La Jolla CA 92037, USA,Department of Neurosciences, University of California,
San Diego, School of Medicine, La Jolla CA 92037, USA,Lead Contact,Correspondence to: Jeremy N. Rich
() and Andrew Z. Xiao
()
| |
Collapse
|
152
|
N6-Methyladenosine in RNA and DNA: An Epitranscriptomic and Epigenetic Player Implicated in Determination of Stem Cell Fate. Stem Cells Int 2018; 2018:3256524. [PMID: 30405719 PMCID: PMC6199872 DOI: 10.1155/2018/3256524] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Vast emerging evidences are linking the base modifications and determination of stem cell fate such as proliferation and differentiation. Among the base modification markers extensively studied, 5-methylcytosine (5-mC) and its oxidative derivatives (5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC)) dynamically occur in DNA and RNA and have been acknowledged as important epigenetic markers involved in regulation of cellular biological processes. N6-Methyladenosine modification in DNA (m6dA), mRNA (m6A), tRNA, and other noncoding RNAs has been defined as another important epigenetic and epitranscriptomic marker in eukaryotes in recent years. The mRNA m6A modification has been characterized biochemically, molecularly, and phenotypically, including elucidation of its methyltransferase complexes (m6A writer), demethylases (m6A eraser), and direct interaction proteins (readers), while limited information on the DNA m6dA is available. The levels and the landscapes of m6A in the epitranscriptomes and epigenomes are precisely and dynamically regulated by the fine-tuned coordination of the writers and erasers in accordance with stages of the growth, development, and reproduction as naturally programmed during the lifespan. Additionally, progress has been made in appreciation of the link between aberrant m6A modification in stem cells and diseases, like cancers and neurodegenerative disorders. These achievements are inspiring scientists to further uncover the epigenetic mechanisms for stem cell development and to dissect pathogenesis of the multiple diseases conferred by development aberration of the stem cells. This review article will highlight the research advances in the role of m6A methylation modifications of DNA and RNA in the regulation of stem cell and genesis of the closely related disorders. Additionally, this article will also address the research directions in the future.
Collapse
|
153
|
Zhou C, Wang C, Liu H, Zhou Q, Liu Q, Guo Y, Peng T, Song J, Zhang J, Chen L, Zhao Y, Zeng Z, Zhou DX. Identification and analysis of adenine N 6-methylation sites in the rice genome. NATURE PLANTS 2018; 4:554-563. [PMID: 30061746 DOI: 10.1038/s41477-018-0214-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 07/04/2018] [Indexed: 05/22/2023]
Abstract
DNA N6-methyladenine (6mA) is a non-canonical DNA modification that is present at low levels in different eukaryotes1-8, but its prevalence and genomic function in higher plants are unclear. Using mass spectrometry, immunoprecipitation and validation with analysis of single-molecule real-time sequencing, we observed that about 0.2% of all adenines are 6mA methylated in the rice genome. 6mA occurs most frequently at GAGG motifs and is mapped to about 20% of genes and 14% of transposable elements. In promoters, 6mA marks silent genes, but in bodies correlates with gene activity. 6mA overlaps with 5-methylcytosine (5mC) at CG sites in gene bodies and is complementary to 5mC at CHH sites in transposable elements. We show that OsALKBH1 may be potentially involved in 6mA demethylation in rice. The results suggest that 6mA is complementary to 5mC as an epigenomic mark in rice and reinforce a distinct role for 6mA as a gene expression-associated epigenomic mark in eukaryotes.
Collapse
Affiliation(s)
- Chao Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Changshi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qiangwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yan Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ting Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiaming Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lingling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhixiong Zeng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Institute of Plant Science of Paris-Saclay (IPS2), CNRS, INRA, Université Paris-sud 11, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
154
|
Ren R, Horton JR, Zhang X, Blumenthal RM, Cheng X. Detecting and interpreting DNA methylation marks. Curr Opin Struct Biol 2018; 53:88-99. [PMID: 30031306 DOI: 10.1016/j.sbi.2018.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022]
Abstract
The generation, alteration, recognition, and erasure of epigenetic modifications of DNA are fundamental to controlling gene expression in mammals. These covalent DNA modifications include cytosine methylation by AdoMet-dependent methyltransferases and 5-methylcytosine oxidation by Fe(II)-dependent and α-ketoglutarate-dependent dioxygenases. Sequence-specific transcription factors are responsible for interpreting the modification status of specific regions of chromatin. This review focuses on recent developments in characterizing the functional and structural links between the modification status of two DNA bases: 5-methylcytosine and 5-methyluracil (thymine).
Collapse
Affiliation(s)
- Ren Ren
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
155
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, Okamoto M, Aoki S, Ishihara T. Juvenile stress induces behavioral change and affects perineuronal net formation in juvenile mice. BMC Neurosci 2018; 19:41. [PMID: 30012101 PMCID: PMC6048828 DOI: 10.1186/s12868-018-0442-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
Background Many neuropsychiatric disorders develop in early life. Although the mechanisms involved have not been elucidated, it is possible that functional abnormalities of parvalbumin-positive interneurons (PV neurons) are present. Several previous studies have shown that juvenile stress is implicated in the development of neuropsychiatric disorders. We aimed to clarify the effects of juvenile stress on behavior and on the central nervous system. We investigated behavioral abnormalities of chronically-stressed mice during juvenilehood and the effect of juvenile stress on PV neurons and WFA-positive perineuronal nets (PNNs), which are associated with vulnerability and plasticity in the mouse brain. Results Due to juvenile stress, mice showed neurodevelopmental disorder-like behavior. Juvenile stressed mice did not show depressive-like behaviors, but on the contrary, they showed increased activity and decreased anxiety-like behavior. In the central nervous system of juvenile stressed mice, the fluorescence intensity of WFA-positive PNNs decreased, which may signify increased vulnerability. Conclusion This study suggested that juvenile stressed mice showed behavioral abnormalities, resembling those seen in neuropsychiatric disorders, and increased brain vulnerability.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan. .,Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Shozo Aoki
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
156
|
A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat Methods 2018; 15:499-504. [PMID: 29941872 DOI: 10.1038/s41592-018-0038-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/23/2018] [Indexed: 01/02/2023]
Abstract
DNA immunoprecipitation followed by sequencing (DIP-seq) is a common enrichment method for profiling DNA modifications in mammalian genomes. However, the results of independent DIP-seq studies often show considerable variation between profiles of the same genome and between profiles obtained by alternative methods. Here we show that these differences are primarily due to the intrinsic affinity of IgG for short unmodified DNA repeats. This pervasive experimental error accounts for 50-99% of regions identified as 'enriched' for DNA modifications in DIP-seq data. Correction of this error profoundly altered DNA-modification profiles for numerous cell types, including mouse embryonic stem cells, and subsequently revealed novel associations among DNA modifications, chromatin modifications and biological processes. We conclude that both matched input and IgG controls are essential in order for the results of DIP-based assays to be interpreted correctly, and that complementary, non-antibody-based techniques should be used to validate DIP-based findings to avoid further misinterpretation of genome-wide profiling data.
Collapse
|
157
|
Yoon KJ, Vissers C, Ming GL, Song H. Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. J Cell Biol 2018; 217:1901-1914. [PMID: 29666150 PMCID: PMC5987727 DOI: 10.1083/jcb.201802117] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022] Open
Abstract
Yoon et al. review epigenetic and epitranscriptomic mechanisms that regulate the lineage specification of neural progenitor cells in the developing brain. During embryonic brain development, neural progenitor/stem cells (NPCs) sequentially give rise to different subtypes of neurons and glia via a highly orchestrated process. To accomplish the ordered generation of distinct progenies, NPCs go through multistep transitions of their developmental competence. The molecular mechanisms driving precise temporal coordination of these transitions remains enigmatic. Epigenetic regulation, including changes in chromatin structures, DNA methylation, and histone modifications, has been extensively investigated in the context of cortical neurogenesis. Recent studies of chemical modifications on RNA, termed epitranscriptomics, have also revealed their critical roles in neural development. In this review, we discuss advances in understanding molecular regulation of the sequential lineage specification of NPCs in the embryonic mammalian brain with a focus on epigenetic and epitranscriptomic mechanisms. In particular, the discovery of lineage-specific gene transcripts undergoing rapid turnover in NPCs suggests that NPC developmental fate competence is determined much earlier, before the final cell division, and is more tightly controlled than previously appreciated. We discuss how multiple regulatory systems work in harmony to coordinate NPC behavior and summarize recent findings in the context of a model of epigenetic and transcriptional prepatterning to explain NPC developmental competence.
Collapse
Affiliation(s)
- Ki-Jun Yoon
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA
| | - Caroline Vissers
- The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA.,The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA .,The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA.,The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
158
|
Liu X, Lai W, Zhang N, Wang H. Predominance of N 6-Methyladenine-Specific DNA Fragments Enriched by Multiple Immunoprecipitation. Anal Chem 2018; 90:5546-5551. [PMID: 29652489 DOI: 10.1021/acs.analchem.8b01087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N6-methyladenine (6mA) is a rediscovered DNA modification in eukaryotic genomes. To explore the distribution and functions of 6mA, it is of paramount option to use immunoprecipitation to select 6mA-containing DNA fragments for genome-wide sequencing. Presumably, most of the 6mA-free fragments are removed, and the copulling down of the residual is stochastic and sequence-independent and thus they should not be called as peaks by computation. Surprisingly, here we show the predominance of 6mA-free fragments in the pulled-down fractions. By taking advantage of the submicromolar affinity of the antibodies, we further develop an elegant, multiple-round immunoprecipitation (MrIP) approach and show that 6mA-containing fragments can be enriched over 9100-fold and dominate in the final pulled-down fractions. This biochemical approach would greatly reduce the peak calling bias, which is caused by handling of dominated 6mA-free DNA fragments with an assumption-based algorithm computation and facilitates 6mA-pertinent data mining. The MrIP concept is extendable for the genome-wide sequencing of diverse DNA modifications.
Collapse
Affiliation(s)
- Xiaoling Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 10085 , China.,University of Chinese Academy of Sciences , Beijing , 10085 , China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 10085 , China.,University of Chinese Academy of Sciences , Beijing , 10085 , China
| | - Ning Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 10085 , China.,University of Chinese Academy of Sciences , Beijing , 10085 , China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 10085 , China.,University of Chinese Academy of Sciences , Beijing , 10085 , China.,Institute of Environment and Health , Jianghan University , Wuhan , 430056 , China
| |
Collapse
|
159
|
Zhou H, Wang B, Sun H, Xu X, Wang Y. Epigenetic Regulations in Neural Stem Cells and Neurological Diseases. Stem Cells Int 2018; 2018:6087143. [PMID: 29743892 PMCID: PMC5878882 DOI: 10.1155/2018/6087143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Among the regulatory mechanisms of the renewal and differentiation of neural stem cells, recent evidences support that epigenetic modifications such as DNA methylation, histone modification, and noncoding RNAs play critical roles in the regulation on the proliferation and differentiation of neural stem cells. In this review, we discussed recent advances of DNA modifications on the regulative mechanisms of neural stem cells. Among these epigenetic modifications, DNA 5-hydroxymethylcytosine (5hmC) modification is emerging as an important modulator on the proliferation and differentiation of neural stem cells. At the same time, Ten-eleven translocation (Tet) methylcytosine dioxygenases, the rate-limiting enzyme for the 5-hydroxymethylation reaction from 5-methylcytosine to 5-hydroxymethylcytosine, play a critical role in the tumorigenesis and the proliferation and differentiation of stem cells. The functions of 5hmC and TET proteins on neural stem cells and their roles in neurological diseases are discussed.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hao Sun
- Department of Orthopedics, Clinical Medical School, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Xingshun Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yongxiang Wang
- Department of Orthopedics, Clinical Medical School, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| |
Collapse
|
160
|
Kim H, Wang X, Jin P. Developing DNA methylation-based diagnostic biomarkers. J Genet Genomics 2018; 45:87-97. [PMID: 29496486 DOI: 10.1016/j.jgg.2018.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
An emerging paradigm shift for disease diagnosis is to rely on molecular characterization beyond traditional clinical and symptom-based examinations. Although genetic alterations and transcription signature were first introduced as potential biomarkers, clinical implementations of these markers are limited due to low reproducibility and accuracy. Instead, epigenetic changes are considered as an alternative approach to disease diagnosis. Complex epigenetic regulation is required for normal biological functions and it has been shown that distinctive epigenetic disruptions could contribute to disease pathogenesis. Disease-specific epigenetic changes, especially DNA methylation, have been observed, suggesting its potential as disease biomarkers for diagnosis. In addition to specificity, the feasibility of detecting disease-associated methylation marks in the biological specimens collected noninvasively, such as blood samples, has driven the clinical studies to validate disease-specific DNA methylation changes as a diagnostic biomarker. Here, we highlight the advantages of DNA methylation signature for diagnosis in different diseases and discuss the statistical and technical challenges to be overcome before clinical implementation.
Collapse
Affiliation(s)
- Hyerim Kim
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xudong Wang
- Department of Gastroenterological Surgery, The Second Hospital, Jilin University, Changchun 130041, China.
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
161
|
Masser DR, Hadad N, Porter H, Stout MB, Unnikrishnan A, Stanford DR, Freeman WM. Analysis of DNA modifications in aging research. GeroScience 2018; 40:11-29. [PMID: 29327208 PMCID: PMC5832665 DOI: 10.1007/s11357-018-0005-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
As geroscience research extends into the role of epigenetics in aging and age-related disease, researchers are being confronted with unfamiliar molecular techniques and data analysis methods that can be difficult to integrate into their work. In this review, we focus on the analysis of DNA modifications, namely cytosine methylation and hydroxymethylation, through next-generation sequencing methods. While older techniques for modification analysis performed relative quantitation across regions of the genome or examined average genome levels, these analyses lack the desired specificity, rigor, and genomic coverage to firmly establish the nature of genomic methylation patterns and their response to aging. With recent methodological advances, such as whole genome bisulfite sequencing (WGBS), bisulfite oligonucleotide capture sequencing (BOCS), and bisulfite amplicon sequencing (BSAS), cytosine modifications can now be readily analyzed with base-specific, absolute quantitation at both cytosine-guanine dinucleotide (CG) and non-CG sites throughout the genome or within specific regions of interest by next-generation sequencing. Additional advances, such as oxidative bisulfite conversion to differentiate methylation from hydroxymethylation and analysis of limited input/single-cells, have great promise for continuing to expand epigenomic capabilities. This review provides a background on DNA modifications, the current state-of-the-art for sequencing methods, bioinformatics tools for converting these large data sets into biological insights, and perspectives on future directions for the field.
Collapse
Affiliation(s)
- Dustin R Masser
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Niran Hadad
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hunter Porter
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Archana Unnikrishnan
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David R Stanford
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
162
|
N 6-methyladenine is an epigenetic marker of mammalian early life stress. Sci Rep 2017; 7:18078. [PMID: 29273787 PMCID: PMC5741724 DOI: 10.1038/s41598-017-18414-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/12/2017] [Indexed: 01/01/2023] Open
Abstract
Recent evidence described 6-methyladenine (6 mA) as a novel epigenetic regulator in a variety of multicellular species, including rodents; however, its capacity to influence gene expression in the mammalian brain remains unknown. We examined if 6 mA is present and regulated by early life stress associated with predator odor exposure (POE) within the developing rat amygdala. Our results provide evidence that 6 mA is present in the mammalian brain, is altered within the Htr2a gene promoter by early life stress and biological sex, and increased 6 mA is associated with gene repression. These data suggest that methylation of adenosine within mammalian DNA may be used as an additional epigenetic biomarker for investigating the development of stress-induced neuropathology.
Collapse
|