151
|
Kim DW, Tu KJ, Wei A, Lau AJ, Gonzalez-Gil A, Cao T, Braunstein K, Ling JP, Troncoso JC, Wong PC, Blackshaw S, Schnaar RL, Li T. Amyloid-beta and tau pathologies act synergistically to induce novel disease stage-specific microglia subtypes. Mol Neurodegener 2022; 17:83. [PMID: 36536457 PMCID: PMC9762062 DOI: 10.1186/s13024-022-00589-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Amongst risk alleles associated with late-onset Alzheimer's disease (AD), those that converged on the regulation of microglia activity have emerged as central to disease progression. Yet, how canonical amyloid-β (Aβ) and tau pathologies regulate microglia subtypes during the progression of AD remains poorly understood. METHODS We use single-cell RNA-sequencing to profile microglia subtypes from mice exhibiting both Aβ and tau pathologies across disease progression. We identify novel microglia subtypes that are induced in response to both Aβ and tau pathologies in a disease-stage-specific manner. To validate the observation in AD mouse models, we also generated a snRNA-Seq dataset from the human superior frontal gyrus (SFG) and entorhinal cortex (ERC) at different Braak stages. RESULTS We show that during early-stage disease, interferon signaling induces a subtype of microglia termed Early-stage AD-Associated Microglia (EADAM) in response to both Aβ and tau pathologies. During late-stage disease, a second microglia subtype termed Late-stage AD-Associated Microglia (LADAM) is detected. While similar microglia subtypes are observed in other models of neurodegenerative disease, the magnitude and composition of gene signatures found in EADAM and LADAM are distinct, suggesting the necessity of both Aβ and tau pathologies to elicit their emergence. Importantly, the pattern of EADAM- and LADAM-associated gene expression is observed in microglia from AD brains, during the early (Braak II)- or late (Braak VI/V)- stage of the disease, respectively. Furthermore, we show that several Siglec genes are selectively expressed in either EADAM or LADAM. Siglecg is expressed in white-matter-associated LADAM, and expression of Siglec-10, the human orthologue of Siglecg, is progressively elevated in an AD-stage-dependent manner but not shown in non-AD tauopathy. CONCLUSIONS Using scRNA-Seq in mouse models bearing amyloid-β and/or tau pathologies, we identify novel microglia subtypes induced by the combination of Aβ and tau pathologies in a disease stage-specific manner. Our findings suggest that both Aβ and tau pathologies are required for the disease stage-specific induction of EADAM and LADAM. In addition, we revealed Siglecs as biomarkers of AD progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Kevin J. Tu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Alice Wei
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Ashley J. Lau
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Tianyu Cao
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Kerstin Braunstein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jonathan P. Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Philip C. Wong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Ronald L. Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Tong Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
152
|
Chen X, Holtzman DM. Emerging roles of innate and adaptive immunity in Alzheimer's disease. Immunity 2022; 55:2236-2254. [PMID: 36351425 PMCID: PMC9772134 DOI: 10.1016/j.immuni.2022.10.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, with characteristic extracellular amyloid-β (Aβ) deposition and intracellular accumulation of hyperphosphorylated, aggregated tau. Several key regulators of innate immune pathways are genetic risk factors for AD. While these genetic risk factors as well as in vivo data point to key roles for microglia, emerging evidence also points to a role of the adaptive immune response in disease pathogenesis. We review the roles of innate and adaptive immunity, their niches, their communication, and their contributions to AD development and progression. We also summarize the cellular compositions and physiological functions of immune cells in the parenchyma, together with those in the brain border structures that form a dynamic disease-related immune niche. We propose that both innate and adaptive immune responses in brain parenchyma and border structures could serve as important therapeutic targets for treating both the pre-symptomatic and the symptomatic stages of AD.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
153
|
Li N, Deng M, Hu G, Li N, Yuan H, Zhou Y. New Insights into Microglial Mechanisms of Memory Impairment in Alzheimer's Disease. Biomolecules 2022; 12:1722. [PMID: 36421736 PMCID: PMC9687453 DOI: 10.3390/biom12111722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common progressive and irreversible neurodegeneration characterized by the impairment of memory and cognition. Despite years of studies, no effective treatment and prevention strategies are available yet. Identifying new AD therapeutic targets is crucial for better elucidating the pathogenesis and establishing a valid treatment of AD. Growing evidence suggests that microglia play a critical role in AD. Microglia are resident macrophages in the central nervous system (CNS), and their core properties supporting main biological functions include surveillance, phagocytosis, and the release of soluble factors. Activated microglia not only directly mediate the central immune response, but also participate in the pathological changes of AD, including amyloid-beta (Aβ) aggregation, tau protein phosphorylation, synaptic dissection, neuron loss, memory function decline, etc. Based on these recent findings, we provide a new framework to summarize the role of microglia in AD memory impairment. This evidence suggests that microglia have the potential to become new targets for AD therapy.
Collapse
Affiliation(s)
- Na Li
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Medicine, Qingdao Binhai University, Qingdao 266555, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Mingru Deng
- Department of Neurology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao 266042, China
| | - Gonghui Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Nan Li
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao 266042, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| |
Collapse
|
154
|
Wei W, Wang S, Xu C, Zhou X, Lian X, He L, Li K. Gut microbiota, pathogenic proteins and neurodegenerative diseases. Front Microbiol 2022; 13:959856. [PMID: 36466655 PMCID: PMC9715766 DOI: 10.3389/fmicb.2022.959856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 12/20/2023] Open
Abstract
As the world's population ages, neurodegenerative diseases (NDs) have brought a great burden to the world. However, effective treatment measures have not been found to alleviate the occurrence and development of NDs. Abnormal accumulation of pathogenic proteins is an important cause of NDs. Therefore, effective inhibition of the accumulation of pathogenic proteins has become a priority. As the second brain of human, the gut plays an important role in regulate emotion and cognition functions. Recent studies have reported that the disturbance of gut microbiota (GM) is closely related to accumulation of pathogenic proteins in NDs. On the one hand, pathogenic proteins directly produced by GM are transmitted from the gut to the central center via vagus nerve. On the other hand, The harmful substances produced by GM enter the peripheral circulation through intestinal barrier and cause inflammation, or cross the blood-brain barrier into the central center to cause inflammation, and cytokines produced by the central center cause the production of pathogenic proteins. These pathogenic proteins can produced by the above two aspects can cause the activation of central microglia and further lead to NDs development. In addition, certain GM and metabolites have been shown to have neuroprotective effects. Therefore, modulating GM may be a potential clinical therapeutic approach for NDs. In this review, we summarized the possible mechanism of NDs caused by abnormal accumulation of pathogenic proteins mediated by GM to induce the activation of central microglia, cause central inflammation and explore the therapeutic potential of dietary therapy and fecal microbiota transplantation (FMT) in NDs.
Collapse
Affiliation(s)
- Wei Wei
- The Mental Hospital of Yunnan Province, Mental Health Center Affiliated to Kunming Medical University, Kunming, China
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xinqing Lian
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center Affiliated to Kunming Medical University, Kunming, China
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
155
|
Wu Q, Zou C. Microglial Dysfunction in Neurodegenerative Diseases via RIPK1 and ROS. Antioxidants (Basel) 2022; 11:antiox11112201. [PMID: 36358573 PMCID: PMC9686917 DOI: 10.3390/antiox11112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Microglial dysfunction is a major contributor to the pathogenesis of multiple neurodegenerative diseases. The neurotoxicity of microglia associated with oxidative stress largely depends on NF-κB pathway activation, which promotes the production and release of microglial proinflammatory cytokines and chemokines. In this review, we discuss the current literature on the essential role of the NF-κB pathway on microglial activation that exacerbates neurodegeneration, with a particular focus on RIPK1 kinase activity-dependent microglial dysfunction. As upregulated RIPK1 kinase activity is associated with reactive oxygen species (ROS) accumulation in neurodegenerative diseases, we also discuss the current knowledge about the mechanistic links between RIPK1 activation and ROS generation. Given RIPK1 kinase activity and oxidative stress are closely regulated with each other in a vicious cycle, future studies are required to be conducted to fully understand how RIPK1 and ROS collude together to disturb microglial homeostasis that drives neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Qiaoyan Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd, Pudong District, Shanghai 201210, China
| | - Chengyu Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd, Pudong District, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, 100 Haike Rd, Pudong District, Shanghai 201210, China
- Correspondence:
| |
Collapse
|
156
|
Zhu R, Luo Y, Li S, Wang Z. The role of microglial autophagy in Parkinson's disease. Front Aging Neurosci 2022; 14:1039780. [PMID: 36389074 PMCID: PMC9664157 DOI: 10.3389/fnagi.2022.1039780] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Studies have shown that abnormal accumulation of α-synuclein (α-Syn) in the substantia nigra is a specific pathological characteristic of PD. Abnormal accumulation of α-Syn in PD induces the activation of microglia. Microglia, which are immune cells in the central nervous system, are involved in the function and regulation of inflammation in PD by autophagy. The role of microglial autophagy in the pathophysiology of PD has become a hot-pot issue. This review outlines the pathways of microglial autophagy, and explores the key factor of microglial autophagy in the mechanism of PD and the possibility of microglial autophagy as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Rui Zhu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yuyi Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China,*Correspondence: Zhengbo Wang,
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China,*Correspondence: Zhengbo Wang,
| |
Collapse
|
157
|
Szego EM, Malz L, Bernhardt N, Rösen-Wolff A, Falkenburger BH, Luksch H. Constitutively active STING causes neuroinflammation and degeneration of dopaminergic neurons in mice. eLife 2022; 11:81943. [PMID: 36314770 PMCID: PMC9767458 DOI: 10.7554/elife.81943] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/31/2022] [Indexed: 12/30/2022] Open
Abstract
Stimulator of interferon genes (STING) is activated after detection of cytoplasmic dsDNA by cGAS (cyclic GMP-AMP synthase) as part of the innate immunity defence against viral pathogens. STING binds TANK-binding kinase 1 (TBK1). TBK1 mutations are associated with familial amyotrophic lateral sclerosis, and the STING pathway has been implicated in the pathogenesis of further neurodegenerative diseases. To test whether STING activation is sufficient to induce neurodegeneration, we analysed a mouse model that expresses the constitutively active STING variant N153S. In this model, we focused on dopaminergic neurons, which are particularly sensitive to stress and represent a circumscribed population that can be precisely quantified. In adult mice expressing N153S STING, the number of dopaminergic neurons was smaller than in controls, as was the density of dopaminergic axon terminals and the concentration of dopamine in the striatum. We also observed alpha-synuclein pathology and a lower density of synaptic puncta. Neuroinflammation was quantified by staining astroglia and microglia, by measuring mRNAs, proteins and nuclear translocation of transcription factors. These neuroinflammatory markers were already elevated in juvenile mice although at this age the number of dopaminergic neurons was still unaffected, thus preceding the degeneration of dopaminergic neurons. More neuroinflammatory markers were blunted in mice deficient for inflammasomes than in mice deficient for signalling by type I interferons. Neurodegeneration, however, was blunted in both mice. Collectively, these findings demonstrate that chronic activation of the STING pathway is sufficient to cause degeneration of dopaminergic neurons. Targeting the STING pathway could therefore be beneficial in Parkinson's disease and further neurodegenerative diseases.
Collapse
Affiliation(s)
- Eva M Szego
- Department of Neurology, TU Dresden, Dresden, Germany
| | - Laura Malz
- Departments of Neurology & Pediatrics, TU Dresden, Dresden, Germany
| | | | | | - Björn H Falkenburger
- Department of Neurology, TU Dresden, Dresden, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Dresden, Germany
| | - Hella Luksch
- Department of Pediatrics, TU Dresden, Dresden, Germany
| |
Collapse
|
158
|
Kim Y, Park H, Kim Y, Kim SH, Lee JH, Yang H, Kim SJ, Li CM, Lee H, Na DH, Moon S, Shin Y, Kam TI, Lee HW, Kim S, Song JJ, Jung YK. Pathogenic Role of RAGE in Tau Transmission and Memory Deficits. Biol Psychiatry 2022; 93:829-841. [PMID: 36759256 DOI: 10.1016/j.biopsych.2022.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND In tauopathies, brain regions with tau accumulation strongly correlate with clinical symptoms, and spreading of misfolded tau along neural network leads to disease progression. However, the underlying mechanisms by which tau proteins enter neurons during pathological propagation remain unclear. METHODS To identify membrane receptors responsible for neuronal propagation of tau oligomers, we established a cell-based tau uptake assay and screened complementary DNA expression library. Tau uptake and propagation were analyzed in vitro and in vivo using a microfluidic device and stereotactic injection. The cognitive function of mice was assessed using behavioral tests. RESULTS From a genome-wide cell-based functional screening, RAGE (receptor for advanced glycation end products) was isolated to stimulate the cellular uptake of tau oligomers. Rage deficiency reduced neuronal uptake of pathological tau prepared from rTg4510 mouse brains or cerebrospinal fluid from patients with Alzheimer's disease and slowed tau propagation between neurons cultured in a 3-chamber microfluidic device. RAGE levels were increased in the brains of rTg4510 mice and tau oligomer-treated neurons. Rage knockout decreased tau transmission in the brains of nontransgenic mice after injection with Alzheimer's disease patient-derived tau and ameliorated memory loss after injection with GFP-P301L-tau-AAV. Treatment of RAGE antagonist FPS-ZM1 blocked transsynaptic tau propagation and inflammatory responses and alleviated cognitive impairment in rTg4510 mice. CONCLUSIONS These results suggest that in neurons and microglia, RAGE binds to pathological tau and facilitates neuronal tau pathology progression and behavioral deficits in tauopathies.
Collapse
Affiliation(s)
- Youbin Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Republic of Korea; School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Park
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Youngwon Kim
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seo-Hyun Kim
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Hoon Lee
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Hanseul Yang
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seo Jin Kim
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Cathena Meiling Li
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Haneul Lee
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Do-Hyeong Na
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seowon Moon
- School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yumi Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Tae-In Kam
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Han-Woong Lee
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yong-Keun Jung
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Republic of Korea; School of the Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
159
|
Ayyubova G. Dysfunctional microglia and tau pathology in Alzheimer’s disease. Rev Neurosci 2022; 34:443-458. [DOI: 10.1515/revneuro-2022-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Extensive human studies and animal models show that chronic immune system stimulation involving microglia, inflammasome, complement activation, synthesis of cytokines, and reactive oxygen species exacerbates neurodegeneration in Alzheimer’s disease (AD) and other tauopathies. Abnormalities in tau, Aβ, and microglial activation are frequently observed in dementia patients and indicate that these elements may work in concert to cause cognitive impairment. Contradicting reports from postmortem studies demonstrating the presence of Aβ aggregates in the brains of cognitively healthy individuals, as well as other investigations, show that tau aggregation is more strongly associated with synapse loss, neurodegeneration, and cognitive decline than amyloid pathology. Tau association with microtubules’ surface promotes their growth and maintains their assembly, dynamicity, and stability. In contrast, the reduced affinity of hyperphosphorylated and mislocalized tau to microtubules leads to axonal deficits and neurofibrillary tangles (NFTs). Loss of microglial neuroprotective and phagocytic functions, as indicated by the faulty clearance of amyloid plaques, as well as correlations between microglial activation and tau tangle spread, all demonstrate the critical involvement of malfunctioning microglia in driving tau propagation. This review discusses the recent reports on the contribution of microglial cells to the development and progression of tau pathology. The detailed study of pathogenic mechanisms involved in interactions between neuroinflammation and tau spread is critical in identifying the targets for efficacious treatment strategies in AD.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology , Azerbaijan Medical University , S. Vurgun Street , Baku 1102 , Azerbaijan
| |
Collapse
|
160
|
Congdon EE, Pan R, Jiang Y, Sandusky-Beltran LA, Dodge A, Lin Y, Liu M, Kuo MH, Kong XP, Sigurdsson EM. Single domain antibodies targeting pathological tau protein: Influence of four IgG subclasses on efficacy and toxicity. EBioMedicine 2022; 84:104249. [PMID: 36099813 PMCID: PMC9475275 DOI: 10.1016/j.ebiom.2022.104249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Eleven tau immunoglobulin G (IgG) antibodies have entered clinical trials to treat tauopathies, including Alzheimer's disease, but it is unclear which IgG subclass/subtype has the ideal efficacy and safety profile. Only two subtypes, with or without effector function, have been examined in the clinic and not for the same tau antibody. The few preclinical studies on this topic have only compared two subtypes of one antibody each and have yielded conflicting results. METHODS We selected two single domain antibodies (sdAbs) derived from a llama immunized with tau proteins and utilized them to generate an array of Fc-(sdAb)2 subclasses containing identical tau binding domains but differing Fc region. Unmodified sdAbs and their IgG subclasses were tested for efficacy in primary cultures and in vivo microdialysis using JNPL3 tauopathy mice. FINDINGS Unmodified sdAbs were non-toxic, blocked tau toxicity and promoted tau clearance. However, the efficacy/safety profile of their Fc-(sdAb)2 subclasses varied greatly within and between sdAbs. For one of them, all its subtypes were non-toxic, only those with effector function cleared tau, and were more effective in vivo than unmodified sdAb. For the other sdAb, all its subtypes were toxic in tauopathy cultures but not in wild-type cells, suggesting that bivalent binding of its tau epitope stabilizes a toxic conformation of tau, with major implications for tau pathogenesis. Likewise, its subclasses were less effective than the unmodified sdAb in clearing tau in vivo. INTERPRETATION These findings indicate that tau antibodies with effector function are safe and better at clearing pathological tau than effectorless antibodies, Furthermore, tau antibodies can provide a valuable insight into tau pathogenesis, and some may aggravate it. FUNDING Funding for these studies was provided by the National Institute of Health (R01 AG032611, R01 NS077239, RF1 NS120488, R21 AG 069475, R21 AG 058282, T32AG052909), and the NYU Alzheimer's Disease Center Pilot Grant Program (via P30 AG008051).
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Leslie A Sandusky-Beltran
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Andie Dodge
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
161
|
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022; 12:1310. [PMID: 36139149 PMCID: PMC9496100 DOI: 10.3390/biom12091310] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment (CI) is one of the major clinical features of many neurodegenerative diseases. It can be aging-related or even appear in non-central nerve system (CNS) diseases. CI has a wide spectrum that ranges from the cognitive complaint with normal screening tests to mild CI and, at its end, dementia. Ginsenosides, agents extracted from a key Chinese herbal medicine (ginseng), show great promise as a new therapeutic option for treating CI. This review covered both clinical trials and preclinical studies to summarize the possible mechanisms of how ginsenosides affect CI in different diseases. It shows that ginsenosides can modulate signaling pathways associated with oxidative stress, apoptosis, inflammation, synaptic plasticity, and neurogenesis. The involved signaling pathways mainly include the PI3K/Akt, CREB/BDNF, Keap1/Nrf2 signaling, and NF-κB/NLRP3 inflammasome pathways. We hope to provide a theoretical basis for the treatment of CI for related diseases by ginsenosides.
Collapse
Affiliation(s)
- Hui Feng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Mei Xue
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Hao Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300073, China
| | - Shiqi Cheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Yue Hu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Chunxiang Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| |
Collapse
|
162
|
Zhu B, Liu Y, Hwang S, Archuleta K, Huang H, Campos A, Murad R, Piña-Crespo J, Xu H, Huang TY. Trem2 deletion enhances tau dispersion and pathology through microglia exosomes. Mol Neurodegener 2022; 17:58. [PMID: 36056435 PMCID: PMC9438095 DOI: 10.1186/s13024-022-00562-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/14/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that manifests sequential Aβ and tau brain pathology with age-dependent onset. Variants in the microglial immune receptor TREM2 are associated with enhanced risk of onset in sporadic Alzheimer's disease (AD). While recent studies suggest TREM2 dysfunction can aggravate tau pathology, mechanisms underlying TREM2-dependent modulation of tau pathology remains elusive. METHODS Here, we characterized differences in progressive tau spreading from the medial entorhinal cortex (MEC) to the hippocampus in wildtype (WT) and Trem2 knockout (KO) mice by injection of AAV-P301L tau into the MEC, and correlated changes in hippocampal tau histopathology with spatial and fear memory. We also compared effects of intraneuronal dispersion between cultured microglia and neurons using a microfluidic dispersion assay, analyzed differences in microglial tau trafficking following uptake, and quantified exosomal tau secretion and pathogenicity from purified WT and Trem2 KO exosomes. RESULTS Trem2 deletion in mice (Trem2 KO) can enhance tau spreading from the medial entorhinal cortex (MEC) to the hippocampus, which coincides with impaired synaptic function and memory behavior. Trem2 deletion in microglia enhances intraneuronal dispersion of tau in vitro between neuronal layers cultured in a microfluidic chamber, and the presence of exosome inhibitors can significantly reduce tau in exosomes and extracellular media from tau-loaded microglia. Although microglial Trem2 deletion has no effect on tau uptake, Trem2 deletion enhances distribution to endosomal and cellular pre-exosomal compartments following internalization. Trem2 deletion has little effect on exosome size, however, proteomic analysis indicates that Trem2 deletion can modulate changes in the microglial proteomic landscape with tau and LPS/ATP treatment conditions associated with exosome induction. Furthermore, exosomes from Trem2 KO microglia show elevated tau levels, and feature enhanced tau-seeding capacity in a tau FRET reporter line compared to exosomes from WT microglia. CONCLUSION Together, our results reveal a role for Trem2 in suppressing exosomal tau pathogenicity, and demonstrates that Trem2 deletion can enhance tau trafficking, distribution and seeding through microglial exosomes.
Collapse
Affiliation(s)
- Bing Zhu
- grid.479509.60000 0001 0163 8573Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Yan Liu
- grid.479509.60000 0001 0163 8573Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Spring Hwang
- grid.479509.60000 0001 0163 8573Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Kailey Archuleta
- grid.479509.60000 0001 0163 8573Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Huijie Huang
- grid.479509.60000 0001 0163 8573Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Alex Campos
- grid.479509.60000 0001 0163 8573Proteomics Facility Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Rabi Murad
- grid.479509.60000 0001 0163 8573Bioinformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Juan Piña-Crespo
- grid.479509.60000 0001 0163 8573Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Huaxi Xu
- Present address: Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China.
| | - Timothy Y. Huang
- grid.479509.60000 0001 0163 8573Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| |
Collapse
|
163
|
APOE4 drives inflammation in human astrocytes via TAGLN3 repression and NF-κB activation. Cell Rep 2022; 40:111200. [PMID: 35977506 DOI: 10.1016/j.celrep.2022.111200] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/23/2022] [Accepted: 07/21/2022] [Indexed: 01/04/2023] Open
Abstract
Apolipoprotein E4 (APOEε4) is the major allelic risk factor for late-onset sporadic Alzheimer's disease (sAD). Inflammation is increasingly considered as critical in sAD initiation and progression. Identifying brain molecular mechanisms that could bridge these two risk factors remain unelucidated. Leveraging induced pluripotent stem cell (iPSC)-based strategies, we demonstrate that APOE controls inflammation in human astrocytes by regulating Transgelin 3 (TAGLN3) expression and, ultimately, nuclear factor κB (NF-κB) activation. We uncover that APOE4 specifically downregulates TAGLN3, involving histone deacetylases activity, which results in low-grade chronic inflammation and hyperactivated inflammatory responses. We show that APOE4 exerts a dominant negative effect to prime astrocytes toward a pro-inflammatory state that is pharmacologically reversible by TAGLN3 supplementation. We further confirm that TAGLN3 is downregulated in the brain of patients with sAD. Our findings highlight the APOE-TAGLN3-NF-κB axis regulating neuroinflammation in human astrocytes and reveal TAGLN3 as a molecular target to modulate neuroinflammation, as well as a potential biomarker for AD.
Collapse
|
164
|
Kang JY, Baek DC, Son CG, Lee JS. Succinum extracts inhibit microglial-derived neuroinflammation and depressive-like behaviors. Front Pharmacol 2022; 13:991243. [PMID: 36052132 PMCID: PMC9425083 DOI: 10.3389/fphar.2022.991243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are emerging as important targets for the treatment of neuropsychiatric disorders. The phagocytic microglial phenotype and the resulting neuroinflammation lead to synaptic loss and neuronal cell death. To explore potential candidates that inhibit microglial hyperactivation, we first investigated ten candidate extracts of traditional Chinese medicine (TCM) using lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Among the candidates, Pinus spp. succinum extract (PSE) was superior; thus, we further investigated its pharmacological activity and underlying mechanisms both in vitro and in vivo. Pretreatment with PSE (10, 20, and 40 μg/ml) attenuated the increases in inflammatory factors (nitric oxide and tumor necrosis factor-α), translocation of nuclear factor-kappa B (NF-κB), and phenotypic transformations (phagocytic and migratory) in a dose-dependent manner. These inhibitory effects of PSE on microglia were supported by its regulatory effects on the CX3C chemokine receptor 1 (CX3CR1)/nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. In particular, intragastric administration of PSE (100 mg/kg) considerably improved sickness, anxiety, and depressive-like behaviors in mice subjected to chronic restraint stress (CRS). Our results suggest that PSE has strong antineuroinflammatory and antidepressant properties, and the underlying mechanisms may involve not only the regulation of NF-κB translocation but also the normalization of the CX3CR1/Nrf2 pathway.
Collapse
|
165
|
Sun E, Motolani A, Campos L, Lu T. The Pivotal Role of NF-kB in the Pathogenesis and Therapeutics of Alzheimer's Disease. Int J Mol Sci 2022; 23:8972. [PMID: 36012242 PMCID: PMC9408758 DOI: 10.3390/ijms23168972] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease worldwide, with a high prevalence that is expected to double every 20 years. Besides the formation of Aβ plaques and neurofibrillary tangles, neuroinflammation is one the major phenotypes that worsens AD progression. Indeed, the nuclear factor-κB (NF-κB) is a well-established inflammatory transcription factor that fuels neurodegeneration. Thus, in this review, we provide an overview of the NF-κB role in the pathogenesis of AD, including its interaction with various molecular factors in AD mice models, neurons, and glial cells. Some of these cell types and molecules include reactive microglia and astrocytes, β-secretase, APOE, glutamate, miRNA, and tau protein, among others. Due to the multifactorial nature of AD development and the failure of many drugs designed to dampen AD progression, the pursuit of novel targets for AD therapeutics, including the NF-κB signaling pathway, is rising. Herein, we provide a synopsis of the drug development landscape for AD treatment, offering the perspective that NF-κB inhibitors may generate widespread interest in AD research in the future. Ultimately, the additional investigation of compounds and small molecules that target NF-κB signaling and the complete understanding of NF-κB mechanistic activation in different cell types will broaden and provide more therapeutic options for AD patients.
Collapse
Affiliation(s)
- Emily Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biological Sciences, Columbia University, 70 Morning Drive, New York, NY 10027, USA
| | - Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leonardo Campos
- Department of Biological Sciences, Columbia University, 70 Morning Drive, New York, NY 10027, USA
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
166
|
Li T, Lu L, Pember E, Li X, Zhang B, Zhu Z. New Insights into Neuroinflammation Involved in Pathogenic Mechanism of Alzheimer's Disease and Its Potential for Therapeutic Intervention. Cells 2022; 11:cells11121925. [PMID: 35741054 PMCID: PMC9221885 DOI: 10.3390/cells11121925] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting more than 50 million people worldwide with an estimated increase to 139 million people by 2050. The exact pathogenic mechanisms of AD remain elusive, resulting in the fact that the current therapeutics solely focus on symptomatic management instead of preventative or curative strategies. The two most widely accepted pathogenic mechanisms of AD include the amyloid and tau hypotheses. However, it is evident that these hypotheses cannot fully explain neuronal degeneration shown in AD. Substantial evidence is growing for the vital role of neuroinflammation in AD pathology. The neuroinflammatory hypothesis provides a new, exciting lead in uncovering the underlying mechanisms contributing to AD. This review aims to highlight new insights into the role of neuroinflammation in the pathogenesis of AD, mainly including the involvement of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3)/caspase-1 axis, triggering receptor expressed on myeloid cells 2 (TREM2) and cGAS-STING as key influencers in augmenting AD development. The inflammasomes related to the pathways of NF-κB, NLRP3, TREM2, and cGAS-STING as biomarkers of the neuroinflammation associated with AD, as well as an overview of novel AD treatments based on these biomarkers as potential drug targets reported in the literature or under clinical trials, are explored.
Collapse
Affiliation(s)
- Tiantian Li
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
| | - Li Lu
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
| | - Eloise Pember
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
| | - Xinuo Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211112, China;
| | - Bocheng Zhang
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
- Correspondence:
| |
Collapse
|