151
|
Olsson SK, Sellgren C, Engberg G, Landén M, Erhardt S. Cerebrospinal fluid kynurenic acid is associated with manic and psychotic features in patients with bipolar I disorder. Bipolar Disord 2012; 14:719-26. [PMID: 23030601 DOI: 10.1111/bdi.12009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Kynurenic acid (KYNA), an end metabolite of tryptophan degradation, antagonizes glutamatergic and cholinergic receptors in the brain. Recently, we reported elevated levels of cerebrospinal fluid (CSF) KYNA in male patients with bipolar disorder. Here, we investigate the relationship between symptomatology and the concentration of CSF KYNA in patients with bipolar I disorder. METHODS CSF KYNA levels from euthymic male {n = 21; mean age: 41 years [standard deviation (SD) = 14]} and female [n = 34; mean age: 37 years (SD = 14)] patients diagnosed with bipolar I disorder were analyzed using high-performance liquid chromatography (HPLC). RESULTS Euthymic bipolar I disorder patients with a lifetime occurrence of psychotic features had higher CSF levels of KYNA {2.0 nm [standard error of the mean (SEM) = 0.2]; n = 43} compared to patients without any history of psychotic features [1.3 nm (SEM = 0.2); n = 12] (p = 0.01). Logistic regression, with age as covariate, similarly showed an association between a history of psychotic features and CSF KYNA levels [n = 55; odds ratio (OR) = 4.9, p = 0.03]. Further, having had a recent manic episode (within the previous year) was also associated with CSF KYNA adjusted for age (n = 34; OR = 4.4, p = 0.03), and the association remained significant when adjusting for a lifetime history of psychotic features (OR = 4.1, p = 0.05). CONCLUSIONS Although the causality needs to be determined, the ability of KYNA to influence dopamine transmission and behavior, along with previous reports showing increased brain levels of the compound in patients with schizophrenia and bipolar disorder, may indicate a possible pathophysiological role of KYNA in the development of manic or psychotic symptoms.
Collapse
Affiliation(s)
- Sara K Olsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
152
|
Arnsten AFT, Wang MJ, Paspalas CD. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 2012; 76:223-39. [PMID: 23040817 PMCID: PMC3488343 DOI: 10.1016/j.neuron.2012.08.038] [Citation(s) in RCA: 400] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2012] [Indexed: 12/26/2022]
Abstract
This review describes unique neuromodulatory influences on working memory prefrontal cortical (PFC) circuits that coordinate cognitive strength with arousal state. Working memory arises from recurrent excitation within layer III PFC pyramidal cell NMDA circuits, which are afflicted in aging and schizophrenia. Neuromodulators rapidly and flexibly alter the efficacy of these synaptic connections, while leaving the synaptic architecture unchanged, a process called dynamic network connectivity (DNC). Increases in calcium-cAMP signaling open ion channels in long, thin spines, gating network connections. Inhibition of calcium-cAMP signaling by stimulating α2A-adrenoceptors on spines strengthens synaptic efficacy and increases network firing, whereas optimal stimulation of dopamine D1 receptors sculpts network inputs to refine mental representation. Generalized increases in calcium-cAMP signaling during fatigue or stress disengage dlPFC recurrent circuits, reduce firing and impair top-down cognition. Impaired DNC regulation contributes to age-related cognitive decline, while genetic insults to DNC proteins are commonly linked to schizophrenia.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale Medical School, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
153
|
Abstract
As a partial agonist at the glycine site of the NMDA receptor, D-cycloserine (DCS) has been viewed as lacking potency to fully test the NMDA receptor hypofunction theory of schizophrenia. However, findings of full agonist activity at a subset of NMDA receptors that may have particular relevance to schizophrenia, plus a growing body of evidence demonstrating enhancement of learning and neuroplasticity in animal models, suggest novel therapeutic strategies with DCS in schizophrenia. Preliminary studies with once-weekly administration have supported this potential new role for DCS in schizophrenia by demonstrating benefit for negative symptoms, memory consolidation, and facilitation of cognitive behavioral therapy for delusions.
Collapse
Affiliation(s)
- Donald C. Goff
- To whom correspondence should be addressed; Nathan Kline Psychiatric Research Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA; tel: (845) 398-5502, fax: (845) 398-5510, e-mail:
| |
Collapse
|
154
|
Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull 2012; 38:950-7. [PMID: 22355184 PMCID: PMC3446219 DOI: 10.1093/schbul/sbs010] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Gamma oscillations appear to be dependent on inhibitory neurotransmission from parvalbumin (PV)-containing gamma-amino butyric acid neurons. Thus, the abnormalities in PV neurons found in schizophrenia may underlie the deficits of gamma-band synchrony in the illness. Because gamma-band synchrony is thought to be crucial for cognition, cognitive deficits in schizophrenia may reflect PV neuron dysfunction in cortical neural circuits. Interestingly, it has been suggested that PV alterations in schizophrenia are the consequence of a hypofunction of signaling through N-methyl-D-aspartate (NMDA) receptors (NMDARs). Here, we review recent findings that address the question of how NMDAR hypofunction might produce deficits of PV neuron-mediated inhibition in schizophrenia. We conclude that while dysregulation of NMDARs may play an important role in the pathophysiology of schizophrenia, additional research is required to determine the particular cell type(s) that mediate dysfunctional NMDAR signaling in the illness.
Collapse
Affiliation(s)
- Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
155
|
Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Nurnberger JI, Corvin A, Geyer M, Tsuang MT, Salomon D, Schork NJ, Fanous AH, O'Donovan MC, Niculescu AB. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17:887-905. [PMID: 22584867 PMCID: PMC3427857 DOI: 10.1038/mp.2012.37] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.
Collapse
Affiliation(s)
- M Ayalew
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D F Levey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Jain
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - B Changala
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Winiger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Amdur
- Washington DC VA Medical Center, Washington, DC, USA
| | - D Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Corvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - M Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - M T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - D Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - N J Schork
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - A H Fanous
- Washington DC VA Medical Center, Washington, DC, USA
| | - M C O'Donovan
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
156
|
Grimm S, Luborzewski A, Schubert F, Merkl A, Kronenberg G, Colla M, Heuser I, Bajbouj M. Region-specific glutamate changes in patients with unipolar depression. J Psychiatr Res 2012; 46:1059-65. [PMID: 22595871 DOI: 10.1016/j.jpsychires.2012.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/12/2012] [Accepted: 04/23/2012] [Indexed: 12/25/2022]
Abstract
The present study aimed to investigate glutamate concentrations in patients with unipolar depression in the midcingulate cortex (MCC) as compared to the left dorsolateral prefrontal cortex (DLPFC). We hypothesized a dissociation of glutamate levels with unchanged levels in DLPFC and abnormally changed levels in MCC as well as differential effects of antidepressant pharmacotherapy. Glutamate was determined using magnetic resonance spectroscopy at 3 T in DLPFC and MCC in fourteen depressed patients and matched healthy volunteers. A follow-up measurement was performed after 4 weeks of antidepressant treatment. The main finding is a region-specific pattern of glutamate concentrations with increased MCC glutamate concentrations and no significant differences in DLPFC glutamate concentrations in unipolar depressive patients compared to healthy controls. Response and non-response to antidepressant pharmacotherapy were predicted by high glutamate at baseline in DLPFC and MCC, respectively. In addition, treatment responders showed a further increase in DLPFC glutamate levels after successful antidepressant treatment. Findings indicate altered region-specific glutamate concentrations in DLPFC and MCC that are predictive of response and non-response, respectively, to antidepressant pharmacotherapy. These findings might serve as a starting point for future studies in which the value of this metabolite pattern for treatment response prediction should be investigated.
Collapse
Affiliation(s)
- Simone Grimm
- Affective Neuroscience and Emotion Modulation, Department of Psychiatry, Campus Benjamin Franklin, Charité, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
157
|
de Bartolomeis A, Tomasetti C. Calcium-Dependent Networks in Dopamine–Glutamate Interaction: The Role of Postsynaptic Scaffolding Proteins. Mol Neurobiol 2012; 46:275-96. [DOI: 10.1007/s12035-012-8293-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/21/2012] [Indexed: 01/11/2023]
|
158
|
Zhao J, Bao AM, Qi XR, Kamphuis W, Luchetti S, Lou JS, Swaab DF. Gene expression of GABA and glutamate pathway markers in the prefrontal cortex of non-suicidal elderly depressed patients. J Affect Disord 2012; 138:494-502. [PMID: 22357337 DOI: 10.1016/j.jad.2012.01.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 01/17/2023]
Abstract
BACKGROUND The prefrontal cortex (PFC) is presumed to be involved in the pathogenesis of depression. METHODS We determined the gene expression of 32 markers of the pathways of the two main neurotransmitters of the PFC, gamma-aminobutyric acid (GABA) and l-glutamic acid (glutamate), by real-time quantitative PCR in human postmortem anterior cingulate cortex (ACC) and dorsolateral PFC (DLPFC) in elderly non-suicidal patients with major depressive disorder (MDD) or bipolar disorder (BD). RESULTS We found the transcript levels of GABA(A) receptor beta 2 (GABRB2) and post-synaptic density-95 (PSD-95) to be significantly decreased in the ACC in mood disorder. DLPFC mRNA expression of all the detected genes in the mood disorder group did not differ significantly from that of the non-psychiatric controls. LIMITATIONS Several inherent and potentially confounding factors of a postmortem study, such as medication and cause of death, did not seem to affect the conclusions. The group size was relatively small but well documented, both clinically and neuropathologically. CONCLUSIONS The observed alterations in the GABAergic and glutamatergic pathways indicate a diminished activity. These alterations were only present in the ACC and not in the DLPFC.
Collapse
Affiliation(s)
- J Zhao
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
159
|
Differential effects of AMPA receptor potentiators and glycine reuptake inhibitors on antipsychotic efficacy and prefrontal glutamatergic transmission. Psychopharmacology (Berl) 2012; 221:115-31. [PMID: 22068461 DOI: 10.1007/s00213-011-2554-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/17/2011] [Indexed: 12/30/2022]
Abstract
RATIONALE The α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor positive allosteric modulators (AMPA-PAMs), Org 24448 and Org 26576, and the glycine transporter-1 (GlyT-1) inhibitor Org 25935 are developed for treatment of schizophrenia. OBJECTIVES Here we examined experimentally the ability of co-administration of these AMPA-PAMs or the GlyT-1 inhibitor to augment the antipsychotic activity and effect on cortical N-methyl-D: -aspartate (NMDA) receptor-mediated transmission of risperidone, olanzapine, or haloperidol. METHODS We examined antipsychotic efficacy using the conditioned avoidance response (CAR) test, extrapyramidal side effect liability using a catalepsy test, and cortical NMDA receptor-mediated glutamatergic transmission using intracellular electrophysiological recording technique in vitro. RESULTS Both AMPA-PAMs enhanced the suppression of CAR induced by risperidone or olanzapine, and Org 24448 also enhanced the effect of haloperidol. In contrast, the GlyT-1 inhibitor did not cause any behaviorally significant effect in the CAR test. However, the GlyT-1 inhibitor, but not the AMPA-PAMs, produced a large facilitation of NMDA-induced currents. All three drugs potentiated the effect of risperidone but not haloperidol on these currents. The GlyT-1 inhibitor also facilitated the effect of olanzapine. All drugs potentiated the effect of risperidone on electrically stimulated excitatory postsynaptic potentials (EPSP) in cortical pyramidal cells, whereas only the GlyT inhibitor facilitated the effect of olanzapine. CONCLUSIONS Our results suggest that the AMPA-PAMs, when compared to the GlyT-1 inhibitor, show differential effects in terms of augmentation of antipsychotic efficacy, particularly when combined with risperidone or olanzapine. Both AMPA-PAMs and the GlyT-1 inhibitor may also improve negative symptoms and cognitive impairments in schizophrenia, in particular when combined with risperidone.
Collapse
|
160
|
Ohi K, Hashimoto R, Nakazawa T, Okada T, Yasuda Y, Yamamori H, Fukumoto M, Umeda-Yano S, Iwase M, Kazui H, Yamamoto T, Kano M, Takeda M. The p250GAP gene is associated with risk for schizophrenia and schizotypal personality traits. PLoS One 2012; 7:e35696. [PMID: 22530067 PMCID: PMC3329470 DOI: 10.1371/journal.pone.0035696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/19/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hypofunction of the glutamate N-Methyl-d-aspartate (NMDA) receptor has been implicated in the pathophysiology of schizophrenia. p250GAP is a brain-enriched NMDA receptor-interacting RhoGAP. p250GAP is involved in spine morphology, and spine morphology has been shown to be altered in the post-mortem brains of patients with schizophrenia. Schizotypal personality disorder has a strong familial relationship with schizophrenia. Several susceptibility genes for schizophrenia have been related to schizotypal traits. METHODS We first investigated the association of eight linkage disequilibrium-tagging single-nucleotide polymorphisms (SNPs) that cover the p250GAP gene with schizophrenia in a Japanese sample of 431 schizophrenia patients and 572 controls. We then investigated the impact of the risk genetic variant in the p250GAP gene on schizotypal personality traits in 180 healthy subjects using the Schizotypal Personality Questionnaire. RESULTS We found a significant difference in genotype frequency between the patients and the controls in rs2298599 (χ(2) = 17.6, p = 0.00015). The minor A/A genotype frequency of rs2298599 was higher in the patients (18%) than in the controls (9%) (χ(2) = 15.5, p = 0.000083). Moreover, we found that subjects with the rs2298599 risk A/A genotype, compared with G allele carriers, had higher scores of schizotypal traits (F(1,178) = 4.08, p = 0.045), particularly the interpersonal factor (F(1,178) = 5.85, p = 0.017). DISCUSSION These results suggest that a genetic variation in the p250GAP gene might increase susceptibility not only for schizophrenia but also for schizotypal personality traits. We concluded that the p250GAP gene might be a new candidate gene for susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Core Research for Evolutionary Science and Technology (CREST) of Japan Science and Technology Agency (JST), Saitama, Japan
- National Hospital Organization, Yamato Mental-Medical Center, Nara, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Core Research for Evolutionary Science and Technology (CREST) of Japan Science and Technology Agency (JST), Saitama, Japan
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Osaka, Japan
- * E-mail:
| | - Takanobu Nakazawa
- Division of Oncology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeya Okada
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Core Research for Evolutionary Science and Technology (CREST) of Japan Science and Technology Agency (JST), Saitama, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Core Research for Evolutionary Science and Technology (CREST) of Japan Science and Technology Agency (JST), Saitama, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Core Research for Evolutionary Science and Technology (CREST) of Japan Science and Technology Agency (JST), Saitama, Japan
- Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Motoyuki Fukumoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Core Research for Evolutionary Science and Technology (CREST) of Japan Science and Technology Agency (JST), Saitama, Japan
| | - Satomi Umeda-Yano
- Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masao Iwase
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Kazui
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Yamamoto
- Division of Oncology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Takeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Osaka, Japan
| |
Collapse
|
161
|
Kaur P, Armugam A, Jeyaseelan K. MicroRNAs in Neurotoxicity. J Toxicol 2012; 2012:870150. [PMID: 22523492 PMCID: PMC3317171 DOI: 10.1155/2012/870150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/16/2011] [Indexed: 12/04/2022] Open
Abstract
MicroRNAs are gaining importance as regulators of gene expression with the capability to fine-tune and modulate cellular events. The complex network with their selective targets (mRNAs/genes) pave way for regulation of many physiological processes. Dysregulation of normal neuronal activities could result in accumulation of substances that are detrimental to neuronal functions and subsequently result in neurotoxicity. Neurotoxicity-mediated pathophysiological conditions could then manifest as diseases or disabilities like Parkinson's and Alzheimer's which have debilitating implications. Such toxicity can be a result of individuals predisposed due to genetic inheritance or from other sources such as brain tumours. Neurotoxicity can also be brought about by external agents like drugs and alcohol as well as brain injury with miRNAs playing a pivotal role in diseases. It is therefore vital to understand the expression of these microRNAs and their impact on neuronal activities. In this paper, we discuss some of the neuronal pathophysiological conditions that could be caused by dysregulated microRNAs.
Collapse
Affiliation(s)
- Prameet Kaur
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597
| | - Arunmozhiarasi Armugam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597
| | - Kandiah Jeyaseelan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597
| |
Collapse
|
162
|
Beneyto M, Morris HM, Rovenski KC, Lewis DA. Lamina- and cell-specific alterations in cortical somatostatin receptor 2 mRNA expression in schizophrenia. Neuropharmacology 2012; 62:1598-605. [PMID: 21215273 PMCID: PMC3096699 DOI: 10.1016/j.neuropharm.2010.12.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 11/26/2022]
Abstract
Disturbed cortical γ-aminobutyric acid (GABA) neurotransmission in schizophrenia is evident from lamina- and cell type- specific alterations in presynaptic markers. In the dorsolateral prefrontal cortex (DLPFC), these alterations include lower transcript expression of glutamic acid decarboxylase (GAD67) and somatostatin (SST), a neuropeptide expressed in the Martinotti subpopulation of GABA neurons whose axons innervate the distal apical dendrites of pyramidal neurons. However, whether the alterations in SST-containing interneurons are associated with changes in post-synaptic receptors for SST has not been examined. Thus, we used in situ hybridization to quantify the mRNA expression levels of SST receptors subtype 1 (SSTR1) and subtype 2 (SSTR2) in DLPFC area 9 from 23 matched pairs of subjects with schizophrenia and normal comparison subjects. We also assessed the effects of potential confounding variables within the human subjects and in brain specimens from macaque monkeys with long term exposure to antipsychotic drugs. SSTR1 mRNA levels did not differ between subject groups. In contrast, mean cortical SSTR2 mRNA levels were significantly 19% lower in the subjects with schizophrenia. Laminar and cellular level analyses revealed that lower SSTR2 mRNA levels were localized to pyramidal cells in cortical layers 5-6. Expression of SSTR2 mRNA did not differ between monkeys exposed chronically to high doses of haloperidol or olanzapine and control animals, or between subjects with schizophrenia on or off antipsychotic medications at the time of death. However, levels of SSTR2 mRNA were significantly 37.6% lower in monkeys exposed chronically to low dose haloperidol, suggesting that the lower levels of SSTR2 mRNA selectively in pyramidal neurons in DLPFC layers 5-6 in schizophrenia should be interpreted with caution. In concert with prior findings of lower SST mRNA expression in the same subjects, the results of this study suggest the convergence of pre- and post-synaptic mechanisms to reduce inhibitory inputs to pyramidal neurons in the infragranular layers of the DLPFC.
Collapse
Affiliation(s)
- Monica Beneyto
- Department of Psychiatry University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Harvey M. Morris
- Department of Psychiatry University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychiatry Neuroscience University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Katherine C. Rovenski
- Department of Psychiatry Neuroscience University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A. Lewis
- Department of Psychiatry University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychiatry Neuroscience University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
163
|
Eriksson TM, Delagrange P, Spedding M, Popoli M, Mathé AA, Ögren SO, Svenningsson P. Emotional memory impairments in a genetic rat model of depression: involvement of 5-HT/MEK/Arc signaling in restoration. Mol Psychiatry 2012; 17:173-84. [PMID: 21242991 PMCID: PMC3265836 DOI: 10.1038/mp.2010.131] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cognitive dysfunctions are common in major depressive disorder, but have been difficult to recapitulate in animal models. This study shows that Flinders sensitive line (FSL) rats, a genetic rat model of depression, display a pronounced impairment of emotional memory function in the passive avoidance (PA) task, accompanied by reduced transcription of Arc in prefrontal cortex and hippocampus. At the cellular level, FSL rats have selective reductions in levels of NMDA receptor subunits, serotonin 5-HT(1A) receptors and MEK activity. Treatment with chronic escitalopram, but not with an antidepressant regimen of nortriptyline, restored memory performance and increased Arc transcription in FSL rats. Multiple pharmacological manipulations demonstrated that procognitive effects could also be achieved by either disinhibition of 5-HT(1A)R/MEK/Arc or stimulation of 5-HT₄R/MEK/Arc signaling cascades. Taken together, studies of FSL rats in the PA task revealed reversible deficits in emotional memory processing, providing a potential model with predictive and construct validity for assessments of procognitive actions of antidepressant drug therapies.
Collapse
Affiliation(s)
- T M Eriksson
- Center of Molecular Medicine, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - P Delagrange
- Inst De Recherches Servier, Experimental Sciences, Suresnes, France
| | - M Spedding
- Inst De Recherches Servier, Experimental Sciences, Suresnes, France
| | - M Popoli
- Center of Neuropharmacology, Department of Pharmacological Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - A A Mathé
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - S O Ögren
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - P Svenningsson
- Center of Molecular Medicine, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden,Center of Molecular Medicine, Department of Physiology and Pharmacology, Nanna Svartz väg 2, Karolinska Institute, Stockholm SE-171 77, Sweden. E-mail:
| |
Collapse
|
164
|
Oh DH, Park SC, Park YC, Kim SH. Excessive activation of the loop between the NR2B subunit of the N-methyl-d-aspartate receptor and glycogen synthase kinase-3β in the hippocampi of patients with major depressive disorder. Acta Neuropsychiatr 2012; 24:26-33. [PMID: 25288456 DOI: 10.1111/j.1601-5215.2011.00581.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objective:We showed previously that glycogen synthase kinase-3β(GSK-3β) levels are significantly elevated in the hippocampi of patients with major depressive disorder (MDD). However, the exact cause of this elevation and its function are unknown. Recent animal studies have suggested a mechanism involving the N-methyl-d-aspartate (NMDA) NR2B–GSK-3βloop.Methods:To investigate the existence of an NR2B–GSK-3βloop in the hippocampi of patients with MDD, we examined the expression of NR2B. We also attempted to identify markers that correlate with NR2B levels in the hippocampus, using the Stanley Neuropathology Consortium Integrative Database (SNCID). The SNCID is a web-based tool used to integrate Stanley Medical Research Institute (SMRI) data sets.Results:We found that hippocampal levels of NR2B and DLGAP1 mRNA were higher in the MDD group (n= 8) than in unaffected controls (n= 12) (p< 0.05). NR2B expression levels were correlated with the expression levels of NR2A, NR1, DLGAP1, GSK-3βand nitric oxide synthase 1, as well as with the number of calretinin-immunoreactive neurons in the hippocampus in all subjects in the SNC (n= 42,p< 0.001).Conclusion:The results of our study show the possible involvement of excessive activation of the NR2B–GSK-3βloop in the overexpression of GSK-3βin the hippocampi of patients with MDD.
Collapse
Affiliation(s)
- Dong Hoon Oh
- Department of Neuropsychiatry, College of Medicine and Institute of Mental Health, Hanyang University, Seoul, Korea
| | - Seon-Cheol Park
- Department of Neuropsychiatry, College of Medicine and Institute of Mental Health, Hanyang University, Seoul, Korea
| | - Yong Chon Park
- Department of Neuropsychiatry, College of Medicine and Institute of Mental Health, Hanyang University, Seoul, Korea
| | - Seok Hyeon Kim
- Department of Neuropsychiatry, College of Medicine and Institute of Mental Health, Hanyang University, Seoul, Korea
| |
Collapse
|
165
|
Marcus MM, Jardemark K, Malmerfelt A, Gertow J, Konradsson-Geuken Å, Svensson TH. Augmentation by escitalopram, but not citalopram or R-citalopram, of the effects of low-dose risperidone: Behavioral, biochemical, and electrophysiological evidence. Synapse 2011; 66:277-90. [DOI: 10.1002/syn.21510] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/05/2011] [Indexed: 12/21/2022]
|
166
|
Doucet MV, Harkin A, Dev KK. The PSD-95/nNOS complex: new drugs for depression? Pharmacol Ther 2011; 133:218-29. [PMID: 22133842 DOI: 10.1016/j.pharmthera.2011.11.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022]
Abstract
Drug treatment of major depressive disorder is currently limited to the use of agents which influence monoaminergic neuronal transmission including inhibitors of presynaptic transporters and monoamine oxidase. Typically improvement in depressive symptoms only emerges after several weeks of treatment, suggesting that downstream neuronal adaptations rather than the elevation in synaptic monoamine levels are responsible for antidepressant effects. In recent years, the NMDA receptor has emerged as a promising target for treating CNS disorders including stroke, pain and depression. In this review, we outline the molecular mechanisms underlying NMDA receptor signalling in neurons and in particular provide an overview of the role of the NMDAR/PSD-95/nNOS complex in CNS disorders. We discuss novel drug developments made that suggest the NMDAR/PSD-95/nNOS complex as a potential target for the treatment of depression. The review also provides examples of how PDZ-based protein-protein interactions can be exploited as novel drug targets for disease.
Collapse
Affiliation(s)
- Marika V Doucet
- Molecular Neuropharmacology, Department of Physiology, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
167
|
Expression profiling in neuropsychiatric disorders: emphasis on glutamate receptors in bipolar disorder. Pharmacol Biochem Behav 2011; 100:705-11. [PMID: 22005598 DOI: 10.1016/j.pbb.2011.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 09/20/2011] [Accepted: 09/30/2011] [Indexed: 02/08/2023]
Abstract
Functional genomics and proteomics approaches are being employed to evaluate gene and encoded protein expression changes with the tacit goal to find novel targets for drug discovery. Genome-wide association studies (GWAS) have attempted to identify valid candidate genes through single nucleotide polymorphism (SNP) analysis. Furthermore, microarray analysis of gene expression in brain regions and discrete cell populations has enabled the simultaneous quantitative assessment of relevant genes. The ability to associate gene expression changes with neuropsychiatric disorders, including bipolar disorder (BP), and their response to therapeutic drugs provides a novel means for pharmacotherapeutic interventions. This review summarizes gene and pathway targets that have been identified in GWAS studies and expression profiling of human postmortem brain in BP, with an emphasis on glutamate receptors (GluRs). Although functional genomic assessment of BP is in its infancy, results to date point towards a dysregulation of GluRs that bear some similarity to schizophrenia (SZ), although the pattern is complex, and likely to be more complementary than overlapping. The importance of single population expression profiling of specific neurons and intrinsic circuits is emphasized, as this approach provides informative gene expression profile data that may be underappreciated in regional studies with admixed neuronal and non-neuronal cell types.
Collapse
|
168
|
Marsden W. Stressor-induced NMDAR dysfunction as a unifying hypothesis for the aetiology, pathogenesis and comorbidity of clinical depression. Med Hypotheses 2011; 77:508-28. [DOI: 10.1016/j.mehy.2011.06.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/05/2011] [Indexed: 02/07/2023]
|
169
|
Gottlieb JD, Cather C, Shanahan M, Creedon T, Macklin EA, Goff DC. D-cycloserine facilitation of cognitive behavioral therapy for delusions in schizophrenia. Schizophr Res 2011; 131:69-74. [PMID: 21723096 PMCID: PMC3389827 DOI: 10.1016/j.schres.2011.05.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/23/2011] [Accepted: 05/31/2011] [Indexed: 12/18/2022]
Abstract
Glutamatergic N-methyl-D-aspartate (NMDA) receptor hypofunction has been proposed as a mechanism underlying psychosis. D-cycloserine, a partial agonist at the glycine site of the NMDA receptor, enhances learning in animal models, although tachyphylaxis develops with repeated dosing. Once-weekly dosing of D-cycloserine produces persistent improvement when combined with cognitive behavioral therapy (CBT) in anxiety disorders. Delusional beliefs can be conceptualized as a learning deficit, characterized by the failure to use contradictory evidence to modify the belief. CBT techniques have been developed with modest success to facilitate such reality-testing (or new learning) in delusional beliefs. The current study evaluated whether D-cycloserine could potentiate beneficial effects of CBT on delusional severity. Twenty-one outpatients with schizophrenia or schizoaffective disorder and moderately severe delusions were randomized in a double-blind cross-over design to receive a single-dose of either D-cycloserine 50mg or placebo in a counterbalanced order on two consecutive weeks 1h prior to a CBT intervention involving training in the generation of alternative beliefs. Assessments were completed at baseline, 7 days following the first study drug administration and 7 days following the second study drug administration. Contrary to prediction, there was no significant d-cycloserine treatment effect on delusional distress or severity as measured by the SAPS or PSYRATS. An unexpected finding was an order effect, whereby subjects who received D-cycloserine first had significantly reduced delusional severity, distress, and belief conviction on PSYRATS compared to subjects who received placebo first. However, this finding is consistent with animal models in which D-cycloserine enhances learning only when accompanying the first exposure to training.
Collapse
Affiliation(s)
- Jennifer D. Gottlieb
- Dartmouth Medical School Department of Psychiatry/Dartmouth Psychiatric Research Center, 105 Pleasant Street, Concord, NH 03301,Massachusetts General Hospital Schizophrenia Program, Freedom Trail Clinic, 25 Staniford Street, Boston, MA 02114
| | - Corinne Cather
- Massachusetts General Hospital Schizophrenia Program, Freedom Trail Clinic, 25 Staniford Street, Boston, MA 02114,Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Meghan Shanahan
- Massachusetts General Hospital Schizophrenia Program, Freedom Trail Clinic, 25 Staniford Street, Boston, MA 02114
| | - Timothy Creedon
- Massachusetts General Hospital Schizophrenia Program, Freedom Trail Clinic, 25 Staniford Street, Boston, MA 02114
| | - Eric A. Macklin
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115,Massachusetts General Hospital Biostatistics Center, 50 Staniford Street, Boston, MA 02114
| | - Donald C. Goff
- Massachusetts General Hospital Schizophrenia Program, Freedom Trail Clinic, 25 Staniford Street, Boston, MA 02114,Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| |
Collapse
|
170
|
Freedman D, Deicken R, Kegeles LS, Vinogradov S, Bao Y, Brown AS. Maternal-fetal blood incompatibility and neuromorphologic anomalies in schizophrenia: Preliminary findings. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1525-9. [PMID: 21570439 PMCID: PMC3142286 DOI: 10.1016/j.pnpbp.2011.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/21/2011] [Accepted: 04/27/2011] [Indexed: 01/08/2023]
Abstract
Prior research has shown that maternal-fetal Rhesus (Rh) and ABO blood incompatibility increase the risk for schizophrenia. In the present study, the relationship between blood incompatibility and volumes of brain structures previously implicated in schizophrenia was assessed in schizophrenia cases and controls from a large birth cohort. Rh/ABO incompatible cases had significantly reduced cortical gray matter volume compared to compatible cases, a finding which appears to be driven by significant volume reductions in the dorsolateral prefrontal cortex and inferior frontal cortex. Larger hippocampal and putamen volumes were also observed in exposed controls compared to unexposed controls. Although the sample size is small and replications are required, these data suggest that maternal-fetal blood incompatibility may increase the risk for altered brain morphology in both schizophrenia and in controls. The findings also suggest that the larger hippocampal volume in exposed controls may indicate a mechanism of adaptive resilience which diminishes the risk that controls will develop schizophrenia.
Collapse
Affiliation(s)
- David Freedman
- Department of Epidemiology, Mailman School of Public Health of Columbia University, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
171
|
Lee YA, Goto Y. Chronic stress modulation of prefrontal cortical NMDA receptor expression disrupts limbic structure-prefrontal cortex interaction. Eur J Neurosci 2011; 34:426-36. [PMID: 21692885 DOI: 10.1111/j.1460-9568.2011.07750.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic stress causes various detrimental effects including cognitive and affective dysfunctions. Given the recent findings emphasizing the importance of information processing between the prefrontal cortex (PFC) and limbic structures on cognitive and affective functions, impairments of these functions caused by chronic stress may be associated with stress-induced adaptive and maladaptive responses in limbic structure-PFC interaction. In this study we have shown that chronic stress disrupts limbic structure-PFC interaction by modulating N-methyl-D-aspartate (NMDA) receptor expression in the PFC. We found that chronic stress decreased expression of NR1, NR2A and NR2B subunits of NMDA receptors in the PFC but not in the motor cortex. However, the reduction in NR2B subunits of NMDA receptors was larger in the dorsal part than the ventral part of PFC. In agreement with this observation, administration of the NMDA antagonist that was more selective for NMDA receptors containing NR2B subunits induced alterations of synchronous local field potentials between the PFC and limbic structures, synaptic plasticity induction in the limbic structure-PFC pathway, and spike firing of PFC neurons that were similar to those observed in the dorsal PFC of rats exposed to chronic stress. In contrast, administration of the NMDA antagonist that was not subunit-selective resulted in electrophysiological alterations resembling to those observed in the ventral PFC of rats exposed to chronic stress. These results suggest that chronic stress disrupts NMDA receptor-dependent limbic structure-PFC information processing.
Collapse
Affiliation(s)
- Young-A Lee
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, QC, Canada H3A 1A1
| | | |
Collapse
|
172
|
Geddes AE, Huang XF, Newell KA. Reciprocal signalling between NR2 subunits of the NMDA receptor and neuregulin1 and their role in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:896-904. [PMID: 21371516 DOI: 10.1016/j.pnpbp.2011.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/19/2011] [Accepted: 02/24/2011] [Indexed: 02/01/2023]
Abstract
Schizophrenia is a debilitating neurodevelopmental psychiatric disorder. Both the N-methyl-D-aspartate receptor (NMDAR) and neuregulin1 (NRG1) are key molecules involved in normal brain development that have been linked to schizophrenia pathology and aetiology. The NR2 proteins are critical structural and functional subunits of the NMDAR and are developmentally and spatially regulated. Altered NR2 gene and protein expression has been found in human post-mortem schizophrenia brain tissue together with changes in NRG1 and its receptor ErbB4. The NR2 subunits and ErbB4 share a common anchoring domain on the postsynaptic density and therefore a disruption to either of these molecules may influence the functioning of the other. It has been shown that NRG1 signalling can affect NMDAR levels and function, particularly phosphorylation of the NR2 subunits. However little is known about the possible effects of NMDAR dysfunction on NRG1 signalling, which is important with regards to schizophrenia aetiology as numerous risk factors for the disorder can alter NMDAR functioning during early brain development. This review focuses on the role of the NMDA receptor subunits and NRG1 signalling in schizophrenia and proposes a mechanism by which a disruption to the NMDAR, particularly via altering the balance of NR2 subunits during early development, could influence NRG1 signalling.
Collapse
Affiliation(s)
- Amy E Geddes
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, School of Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
173
|
Proctor DT, Coulson EJ, Dodd PR. Post-synaptic scaffolding protein interactions with glutamate receptors in synaptic dysfunction and Alzheimer's disease. Prog Neurobiol 2011; 93:509-21. [PMID: 21382433 DOI: 10.1016/j.pneurobio.2011.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 02/18/2011] [Accepted: 02/24/2011] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is characterized clinically by an insidious decline in cognition. Much attention has been focused on proposed pathogenic mechanisms that relate Aβ plaque and neurofibrillary tangle pathology to cognitive symptoms, but compelling evidence now identifies early synaptic loss and dysfunction, which precede plaque and tangle formation, as the more probable initiators of cognitive impairment. Glutamate-mediated transmission is severely altered in AD. Glutamate receptor expression is most markedly altered in regions of the AD brain that show the greatest pathological changes. Signaling via glutamate receptors controls synaptic strength and plasticity, and changes in these parameters are likely to contribute to memory and cognitive deficits in AD. Glutamate receptor expression and activity are modulated by interactions with post-synaptic scaffolding proteins that augment the strength and direction of signal cascades initiated by glutamate receptor activity. Scaffold proteins offer promising targets for more focused and effective drug therapy. In consequence, interest is developing into the roles these proteins play in neurological disease. In this review we discuss disruptions to excitatory neurotransmission at the level of glutamate receptor-post-synaptic scaffolding protein interactions that may contribute to synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Dustin T Proctor
- School of Chemistry and Molecular Biosciences, Molecular Biosciences Building #76, Coopers Road, St Lucia campus, University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
174
|
Markham JA, Koenig JI. Prenatal stress: role in psychotic and depressive diseases. Psychopharmacology (Berl) 2011; 214:89-106. [PMID: 20949351 PMCID: PMC3050113 DOI: 10.1007/s00213-010-2035-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/26/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE The birth of neurons, their migration to appropriate positions in the brain, and their establishment of the proper synaptic contacts happen predominately during the prenatal period. Environmental stressors during gestation can exert a major impact on brain development and thereby contribute to the pathogenesis of neuropsychiatric illnesses, such as depression and psychotic disorders including schizophrenia. OBJECTIVE The objectives here are to present recent preclinical studies of the impact of prenatal exposure to gestational stressors on the developing fetal brain and discuss their relevance to the neurobiological basis of mental illness. The focus is on maternal immune activation, psychological stresses, and malnutrition, due to the abundant clinical literature supporting their role in the etiology of neuropsychiatric illnesses. RESULTS Prenatal maternal immune activation, viral infection, unpredictable psychological stress, and malnutrition all appear to foster the development of behavioral abnormalities in exposed offspring that may be relevant to the symptom domains of schizophrenia and psychosis, including sensorimotor gating, information processing, cognition, social function, and subcortical hyperdopaminergia. Depression-related phenotypes, such as learned helplessness or anxiety, are also observed in some model systems. These changes appear to be mediated by the presence of proinflammatory cytokines and/or corticosteroids in the fetal compartment that alter the development the neuroanatomical substrates involved in these behaviors. CONCLUSION Prenatal exposure to environmental stressors alters the trajectory of brain development and can be used to generate animal preparations that may be informative in understanding the pathophysiological processes involved in several human neuropsychiatric disorders.
Collapse
Affiliation(s)
- Julie A. Markham
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA
| | - James I. Koenig
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA
| |
Collapse
|
175
|
English JA, Pennington K, Dunn MJ, Cotter DR. The neuroproteomics of schizophrenia. Biol Psychiatry 2011; 69:163-72. [PMID: 20887976 DOI: 10.1016/j.biopsych.2010.06.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/02/2010] [Accepted: 06/18/2010] [Indexed: 11/30/2022]
Abstract
Proteomics is the study of global gene expression of an organ, body system, fluid, or cellular compartment at the protein level. Proteomic findings are reflective of complex gene × environment interactions, and the importance of this is increasingly appreciated in schizophrenia research. In this review, we outline the main proteomic methods available to researchers in this area and summarize, for the first time, the findings of the main quantitative neuroproteomic investigations of schizophrenia brain. Our review of these data revealed 16 gray matter proteins, and eight white matter proteins that were differentially expressed in the same direction in two or more investigations. Pathway analysis identified cellular assembly and organization as particularly disrupted in both gray and white matter, whereas the glycolysis-gluconeogenesis pathway was the major signaling pathway significantly altered in both. Reassuringly, these findings show remarkable convergence with functional pathways and positional candidate genes implicated from genomic studies. The specificity of schizophrenia proteomic findings are also addressed in the context of neuroproteomic investigations of neurodegenerative disorders and bipolar disorder. Finally, we discuss the major challenges in the field of neuroproteomics, such as the need for high throughput validation methods and optimal sample preparation. Future directions in the neuroproteomics of schizophrenia, including the use of blood-based biomarker work, the need to focus on subproteomes, and the increasing use of mass spectrometry-based methods are all discussed. This area of research is still in its infancy and offers huge potential to our understanding of schizophrenia on a cellular level.
Collapse
Affiliation(s)
- Jane A English
- Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, and Medical Sciences, University College Dublin, Ireland
| | | | | | | |
Collapse
|
176
|
Bitanihirwe BKY, Woo TUW. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 2011; 35:878-93. [PMID: 20974172 PMCID: PMC3021756 DOI: 10.1016/j.neubiorev.2010.10.008] [Citation(s) in RCA: 342] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/18/2010] [Accepted: 10/17/2010] [Indexed: 01/17/2023]
Abstract
Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known to impair cell viability and function, which may subsequently account for the deteriorating course of the illness. Currently available evidence points towards an alteration in the activities of enzymatic and nonenzymatic antioxidant systems in schizophrenia. In fact, experimental models have demonstrated that oxidative stress induces behavioral and molecular anomalies strikingly similar to those observed in schizophrenia. These findings suggest that oxidative stress is intimately linked to a variety of pathophysiological processes, such as inflammation, oligodendrocyte abnormalities, mitochondrial dysfunction, hypoactive N-methyl-d-aspartate receptors and the impairment of fast-spiking gamma-aminobutyric acid interneurons. Such self-sustaining mechanisms may progressively worsen producing the functional and structural consequences associated with schizophrenia. Recent clinical studies have shown antioxidant treatment to be effective in ameliorating schizophrenic symptoms. Hence, identifying viable therapeutic strategies to tackle oxidative stress and the resulting physiological disturbances provide an exciting opportunity for the treatment and ultimately prevention of schizophrenia.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology, Zurich, Schorenstrasse 16, Schwerzenbach CH 8603, Switzerland.
| | | |
Collapse
|
177
|
Discordant behavioral effects of psychotomimetic drugs in mice with altered NMDA receptor function. Psychopharmacology (Berl) 2011; 213:143-53. [PMID: 20865248 PMCID: PMC4818544 DOI: 10.1007/s00213-010-2023-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/06/2010] [Indexed: 01/08/2023]
Abstract
RATIONALE Enhancement of N-methyl-D: -aspartate receptor (NMDAR) activity through its glycine modulatory site (GMS) is a novel therapeutic approach in schizophrenia. Brain concentrations of endogenous GMS agonist D: -serine and antagonist N-acetyl-aspartylglutamate are regulated by serine racemase (SR) and glutamic acid decarboxylase 2 (GCP2), respectively. Using mice genetically, under-expressing these enzymes may clarify the role of NMDAR-mediated neurotransmission in schizophrenia. OBJECTIVES We investigated the behavioral effects of two psychotomimetic drugs, the noncompetitive NMDAR antagonist, phencyclidine (PCP; 0, 1.0, 3.0, or 6.0 mg/kg), and the indirect dopamine receptor agonist, amphetamine (AMPH; 0, 1.0, 2.0, or 4.0 mg/kg), in SR -/- and GCP2 -/+ mice. Outcome measures were locomotor activity and prepulse inhibition (PPI) of the acoustic startle reflex. Acute effects of an exogenous GMS antagonist, gavestinel (0, 3.0, or 10.0 mg/kg), on PCP-induced behaviors were examined in wild-type mice for comparison to the mutants with reduced GMS activity. RESULTS PCP-induced hyperactivity was increased in GCP2 -/+ mice, and PCP-enhanced startle reactivity was increased in SR -/- mice. PCP disruption of PPI was unaffected in either mutant. In contrast, gavestinel attenuated PCP-induced PPI disruption without effect on baseline PPI or locomotor activity. AMPH effects were similar to controls in both mutant strains. CONCLUSIONS The results of the PCP experiments demonstrate that convergence of pharmacological and genetic manipulations at NMDARs may confound the predictive validity of these preclinical assays for the effects of GMS activation in schizophrenia. The AMPH data provide additional evidence that hyperdopaminergia in schizophrenia may be distinct from NMDAR hypofunction.
Collapse
|
178
|
Karlsgodt KH, Robleto K, Trantham-Davidson H, Jairl C, Cannon TD, Lavin A, Jentsch JD. Reduced dysbindin expression mediates N-methyl-D-aspartate receptor hypofunction and impaired working memory performance. Biol Psychiatry 2011; 69:28-34. [PMID: 21035792 PMCID: PMC4204919 DOI: 10.1016/j.biopsych.2010.09.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/13/2010] [Accepted: 09/07/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND Schizophrenia is a heritable disorder associated with disrupted neural transmission and dysfunction of brain systems involved in higher cognition. The gene encoding dystrobrevin-binding-protein-1 (dysbindin) is a putative candidate gene associated with cognitive impairments, including memory deficits, in both schizophrenia patients and unaffected individuals. The underlying mechanism is thought to be based in changes in glutamatergic and dopaminergic function within the corticostriatal networks known to be critical for schizophrenia. This hypothesis derives support from studies of mice with a null mutation in the dysbindin gene that exhibit memory dysfunction and excitatory neurotransmission abnormalities in prefrontal and hippocampal networks. At a cellular level, dysbindin is thought to mediate presynaptic glutamatergic transmission. METHODS We investigated the relationship between glutamate receptor dynamics and memory performance in dysbindin mutant mice. We assessed N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor function in prefrontal cortex pyramidal neurons in vitro with whole-cell recordings, molecular quantitative analyses (reverse transcription-polymerase chain reaction) of the mandatory NMDA receptor subunit NR1, and cognitive function with a spatial working memory task. RESULTS Decreases in dysbindin are associated with specific decreases in NMDA-evoked currents in prefrontal pyramidal neurons, as well as decreases in NR1 expression. Furthermore, the degree of NR1 expression correlates with spatial working memory performance, providing a mechanistic explanation for cognitive changes previously associated with dysbindin expression. CONCLUSIONS These data show a significant downregulation of NMDA receptors due to dysbindin deficiency and illuminate molecular mechanisms mediating the association between dysbindin insufficiency and cognitive impairments associated with schizophrenia, encouraging study of the dysbindin/NR1 expression association in humans with schizophrenia.
Collapse
Affiliation(s)
- Katherine H Karlsgodt
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
Genetic and functional analysis of the DLG4 gene encoding the post-synaptic density protein 95 in schizophrenia. PLoS One 2010; 5:e15107. [PMID: 21151988 PMCID: PMC2996301 DOI: 10.1371/journal.pone.0015107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/21/2010] [Indexed: 01/09/2023] Open
Abstract
Hypofunction of N-methyl-D-aspartate (NMDA) receptor-mediated signal transduction has been implicated in the pathophysiology of schizophrenia. Post-synaptic density protein 95 (PSD95) plays a critical role in regulating the trafficking and activity of the NMDA receptor and altered expression of the PSD95 has been detected in the post-mortem brain of patients with schizophrenia. The study aimed to examine whether the DLG4 gene that encodes the PSD95 may confer genetic susceptibility to schizophrenia. We re-sequenced the core promoter, all the exons, and 3′ untranslated regions (UTR) of the DLG4 gene in 588 Taiwanese schizophrenic patients and conducted an association study with 539 non-psychotic subjects. We did not detect any rare mutations at the protein-coding sequences of the DLG4 gene associated with schizophrenia. Nevertheless, we identified four polymorphic markers at the core promoter and 5′ UTR and one single nucleotide polymorphism (SNP) at the 3′UTR of the DLG4 gene in this sample. Genetic analysis showed an association of a haplotype (C–D) derived from 2 polymorphic markers at the core promoter (odds ratio = 1.26, 95% confidence interval = 1.06–1.51, p = 0.01), and a borderline association of the T allele of the rs13331 at 3′UTR with schizophrenia (odds ratio = 1.19, 95% confidence interval = 0.99–1.43, p = 0.06). Further reporter gene assay showed that the C-D-C-C and the T allele of the rs13331 had significant lower activity than their counter parts. Our data indicate that the expression of the DLG4 gene is subject to regulation by the polymorphic markers at the core promoter region, 5′ and 3′UTR of the gene, and is associated with the susceptibility of schizophrenia.
Collapse
|
180
|
Baharnoori M, Bartholomeusz C, Boucher AA, Buchy L, Chaddock C, Chiliza B, Föcking M, Fornito A, Gallego JA, Hori H, Huf G, Jabbar GA, Kang SH, El Kissi Y, Merchán-Naranjo J, Modinos G, Abdel-Fadeel NA, Neubeck AK, Ng HP, Novak G, Owolabi O, Prata DP, Rao NP, Riecansky I, Smith DC, Souza RP, Thienel R, Trotman HD, Uchida H, Woodberry KA, O'Shea A, DeLisi LE. The 2nd Schizophrenia International Research Society Conference, 10-14 April 2010, Florence, Italy: summaries of oral sessions. Schizophr Res 2010; 124:e1-62. [PMID: 20934307 PMCID: PMC4182935 DOI: 10.1016/j.schres.2010.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 01/06/2023]
Abstract
The 2nd Schizophrenia International Research Society Conference, was held in Florence, Italy, April 10-15, 2010. Student travel awardees served as rapporteurs of each oral session and focused their summaries on the most significant findings that emerged from each session and the discussions that followed. The following report is a composite of these reviews. It is hoped that it will provide an overview for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research.
Collapse
Affiliation(s)
- Moogeh Baharnoori
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Montreal, Quebec, Canada H4H 1R3, phone (514) 761-6131 ext 3346,
| | - Cali Bartholomeusz
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Level 2-3, Alan Gilbert Building, 161 Barry St, Carlton South, Victoria 3053, Australia, phone +61 3 8344 1878, fax +61 3 9348 0469,
| | - Aurelie A. Boucher
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown NSW 2050, Australia, phone +61 (0)2 9351 0948, fax +61 (0)2 9351 0652,
| | - Lisa Buchy
- Douglas Hospital Research Centre, 6875 LaSalle Blvd, Verdun, Québec, Canada, H4H 1R3 phone: 514-761-6131 x 3386, fax: 514-888-4064,
| | - Christopher Chaddock
- PO67, Section of Neuroimaging, Division of Psychological Medicine, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, phone 020 7848 0919, mobile 07734 867854 fax 020 7848 0976,
| | - Bonga Chiliza
- Department of Psychiatry, University of Stellenbosch, Tygerberg, 7505, South Africa, phone: +27 (0)21 9389227, fax +27 (0)21 9389738,
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland, phone +353 1 809 3857, fax +353 1 809 3741,
| | - Alex Fornito
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Downing Site, Downing St, Cambridge, UK, CB2 3EB, phone +44 (0) 1223 764670, fax +44 (0) 1223 336581,
| | - Juan A. Gallego
- The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd St, Glen Oaks, NY 11004, phone 718-470-8177, fax 718-343-1659,
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8502, JAPAN, phone: +81 42 341 2711; fax: +81 42 346 1744,
| | - Gisele Huf
- National Institute of Quality Control in Health - Oswaldo Cruz Foundation.Av. Brasil 4365 Manguinhos Rio de Janeiro RJ BRAZIL 21045-900, phone + 55 21 38655112, fax + 55 21 38655139,
| | - Gul A. Jabbar
- Clinical Research Coordinator, Harvard Medical School Department of Psychiatry, 940 Belmont Street 2-B, Brockton, MA 02301, office (774) 826-1624, cell (845) 981-9514, fax (774) 286-1076,
| | - Shi Hyun Kang
- Seoul National Hospital, 30-1 Junggok3-dong Gwangjin-gu, Seoul, 143-711, Korea, phone +82-2-2204-0326, fax +82-2-2204-0394,
| | - Yousri El Kissi
- Psychiatry department, Farhat Hached Hospital. Ibn Jazzar Street, 4002 Sousse. Tunisia. phone + 216 98468626, fax + 216 73226702,
| | - Jessica Merchán-Naranjo
- Adolescent Unit. Department of Psychiatry. Hospital General Universitario Gregorio Marañón. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain. C/Ibiza 43, C.P:28009, phone +34 914265005, fax +34 914265004,
| | - Gemma Modinos
- Department of Psychosis Studies (PO67), Institute of Psychiatry, King's College London, King's Health Partners, De Crespigny Park, SE5 8AF London, United Kingdo, phone +44 (0)20 78480917, fax +44 (0)20 78480976,
| | - Nashaat A.M. Abdel-Fadeel
- Minia University, Egypt, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, phone 617 953 0414, fax 617-998-5007, ,
| | - Anna-Karin Neubeck
- Project Manager at Karolinska Institute, Skinnarviksringen 12, 117 27 Stockholm, Sweden, phone +46708777908,
| | - Hsiao Piau Ng
- Singapore Bioimaging Consortium, A*STAR, Singapore; Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, phone 857-544-0192, fax 617-525-6150,
| | - Gabriela Novak
- University of Toronto, Medical Sciences Building, Room 4345, 1 King's College Circle, Toronto, Ontario, M5S 1A8, phone (416) 946-8219, fax (416) 971-2868,
| | - Olasunmbo.O. Owolabi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Science University of Ilorin, Ilorin, Nigeria, phone +2348030764811,
| | - Diana P. Prata
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK, phone +44(0)2078480917, fax +44(0)2078480976,
| | - Naren P. Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029 Karnataka, India, phone +91 9448342379,
| | - Igor Riecansky
- Address: Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia, phone +421-2-52 92 62 76, fax +421-2-52 96 85 16,
| | - Darryl C. Smith
- 3336 Mt Pleasant St. NW #2, Washington, DC 20010, phone 202.494.3892,
| | - Renan P. Souza
- Centre for Addiction and Mental Health 250 College St R31 Toronto - Ontario - Canada M5T1R8, phone +14165358501 x4883, fax +14169794666,
| | - Renate Thienel
- Postdoctoral Research Fellow, PRC Brain and Mental Health, University of Newcastle, Mc Auley Centre Level 5, Mater Hospital, Edith Street, Waratah NSW 2298, phone +61 (2) 40335636,
| | - Hanan D. Trotman
- 36 Eagle Row, Atlanta, GA 30322, phone 404-727-8384, fax 404-727-1284,
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Psychopharmacology Research Program, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan, phone +81.3.3353.1211(x62454), fax +81.3.5379.0187,
| | - Kristen A. Woodberry
- Landmark Center 2 East, 401 Park Drive, Boston, MA 02215, phone 617-998-5022, fax 617-998-5007,
| | - Anne O'Shea
- Coordinator of reports. Harvard Medical School, VA Boston Healthcare System, 940 Belmont Street, Brockton, MA 02301, phone 774-826-1374, anne_o’
| | - Lynn E. DeLisi
- VA Boston Healthcare System and Harvard Medical School, 940 Belmont Street, Brockton, MA 02301, phone 774-826-1355, fax 774-826-2721
| |
Collapse
|
181
|
Markham JA, Taylor AR, Taylor SB, Bell DB, Koenig JI. Characterization of the cognitive impairments induced by prenatal exposure to stress in the rat. Front Behav Neurosci 2010; 4:173. [PMID: 21151368 PMCID: PMC2996142 DOI: 10.3389/fnbeh.2010.00173] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/24/2010] [Indexed: 11/13/2022] Open
Abstract
We have previously shown that male rats exposed to gestational stress exhibit phenotypes resembling what is observed in schizophrenia, including hypersensitivity to amphetamine, blunted sensory gating, disrupted social behavior, impaired stress axis regulation, and aberrant prefrontal expression of genes involved in synaptic plasticity. Maternal psychological stress during pregnancy has been associated with adverse cognitive outcomes among children, as well as an increased risk for developing schizophrenia, which is characterized by significant cognitive deficits. We sought to characterize the long-term cognitive outcome of prenatal stress using a preclinical paradigm, which is readily amenable to the development of novel therapeutic strategies. Rats exposed to repeated variable prenatal stress during the third week of gestation were evaluated using a battery of cognitive tests, including the novel object recognition task, cued and contextual fear conditioning, the Morris water maze, and iterative versions of a paradigm in which working and reference memory for both objects and spatial locations can be assessed (the "Can Test"). Prenatally stressed males were impaired relative to controls on each of these tasks, confirming the face validity of this preclinical paradigm and extending the cognitive implications of prenatal stress exposure beyond the hippocampus. Interestingly, in experiments where both sexes were included, the performance of females was found to be less affected by prenatal stress compared to that of males. This could be related to the finding that women are less vulnerable than men to schizophrenia, and merits further investigation.
Collapse
Affiliation(s)
- Julie A Markham
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland-Baltimore School of Medicine Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
182
|
Yüksel C, Öngür D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 2010; 68:785-94. [PMID: 20728076 PMCID: PMC2955841 DOI: 10.1016/j.biopsych.2010.06.016] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 12/13/2022]
Abstract
In mood disorders, there is growing evidence for glutamatergic abnormalities derived from peripheral measures of glutamatergic metabolites in patients, postmortem studies on glutamate-related markers, and animal studies on the mechanism of action of available treatments. Magnetic resonance spectroscopy (MRS) has the potential to corroborate and extend these findings with the advantage of in vivo assessment of glutamate-related metabolites in different disease states, in response to treatment, and in relation with functional imaging data. In this article, we first review the biological significance of glutamate, glutamine, and Glx (composed mainly of glutamate and glutamine). Next, we review the MRS literature in mood disorders, examining these glutamate-related metabolites. Here, we find a highly consistent pattern of Glx-level reductions in major depressive disorder and elevations in bipolar disorder. In addition, studies of depression, regardless of diagnosis, provide suggestive evidence for reduced glutamine/glutamate ratio and in mania for elevated glutamine/glutamate ratio. These patterns suggest that the glutamate-related metabolite pool (not all of it necessarily relevant to neurotransmission) is constricted in major depressive disorder and expanded in bipolar disorder. Depressive and manic episodes may be characterized by modulation of the glutamine/glutamate ratio in opposite directions, possibly suggesting reduced versus elevated glutamate conversion to glutamine by glial cells, respectively. We discuss the implications of these results for the pathophysiology of mood disorders and suggest future directions for MRS studies.
Collapse
Affiliation(s)
- Cagri Yüksel
- Istanbul University, Istanbul Medical School, Istanbul, Turkey
- McLean Hospital, Belmont, MA
| | - Dost Öngür
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
183
|
Silberberg G, Ben-Shachar D, Navon R. Genetic analysis of nitric oxide synthase 1 variants in schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1318-28. [PMID: 20645313 DOI: 10.1002/ajmg.b.31112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO) is a neurotransmitter that acts as a second messenger of the N-methyl-D-aspartate receptor and interacts with the dopaminergic and the serotonergic systems. NO involvement in pathological processes relevant to neuropsychiatric disorders stems from its ability to modulate certain forms of synaptic plasticity, and from its capacity to be transformed to a highly active free radical. Additionally, multiple links have been reported between the NO-producing enzyme, nitric oxide synthase (NOS) 1, and both schizophrenia and bipolar disorder (BPD). RNA and DNA isolated from dorsolateral-prefrontal cortices of schizophrenia patients, bipolar patients and controls (n = 26, 30 and 29, respectively) were donated by the Stanley Foundation Brain Collection. Gene expression was measured by Real-Time-PCR. Genetic polymorphisms were genotyped by restriction-fragment length-polymorphism analysis, and by product-size determination of PCR products amplified with a fluorescent primer.Expression analysis of pan-NOS1, as well as of 2 of its isoforms, "NOS1_1d" and "NOS1_1f", which differ in their first exons and translational strength, revealed a trend for pan-NOS1 over-expression (P = 0.075) in schizophrenia patients (1.33-fold), and significant over-expression (P < 0.05) of NOS1_1d and NOS1_1f in this group (1.54-fold and 1.61-fold, respectively). No expressional alteration was observed in BPD. Polymorphisms at the promoters of NOS1_1d and NOS1_1f, previously shown to be functional in vitro, revealed no significant allelic or genotypic differences among clinical groups and showed no effect on these transcripts' expression. In conclusion, understanding the molecular mechanisms underlying the over-expression of specific NOS1 isoforms, which is unique to schizophrenia, may assist in identifying targets for new drugs.
Collapse
Affiliation(s)
- Gilad Silberberg
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | |
Collapse
|
184
|
Su PH, Chang YZ, Chen JY. Infant with in utero ketamine exposure: quantitative measurement of residual dosage in hair. Pediatr Neonatol 2010; 51:279-84. [PMID: 20951358 DOI: 10.1016/s1875-9572(10)60054-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/01/2010] [Accepted: 02/13/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The drug ketamine is frequently abused for recreational use in Asia, but few studies in humans have focused on the effects of ketamine exposure during pregnancy on the health of neonates. Here, we report a neonate whose mother was suspected of ketamine abuse during pregnancy. The case was confirmed by testing hair samples of the neonate. METHODS Hair samples of the neonate were taken on the first day of referral. Levels of common drugs of abuse in Asia were measured in the hair sample by gas chromatography-mass spectrometry using our previously reported method with modifications. This method was developed and validated to simultaneously quantify levels of amphetamine, ketamine and opiate in human hair. RESULTS The neonate was a female baby, born full term, with a low birth weight of 2250 g. Very high levels of ketamine were detected in the neonate's hair, even though the mother stated that she had stopped abusing ketamine during the early stage of pregnancy. The neonate suffered from general hypotonia; moderate cerebral dysfunction was found by electroencephalography. Fortunately, her hypotonia improved gradually within 21 days. CONCLUSION This is the first report of ketamine exposure during late pregnancy detected by hair testing. We noted several clinical features in this case, including the infant being small for gestational age, intrauterine growth retardation, remarkable hypotonia, and poor reflex responses. Although the mother denied the use of ketamine during the late stage of her pregnancy, significant amount of ketamine and norketamine was still found in hair samples (only 2 cm long and 25 mg) from the infant.
Collapse
Affiliation(s)
- Pen-Hua Su
- Division of Genetics, Department of Pediatrics, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | |
Collapse
|
185
|
Kantrowitz JT, Javitt DC. N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 2010; 83:108-21. [PMID: 20417696 PMCID: PMC2941541 DOI: 10.1016/j.brainresbull.2010.04.006] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 03/12/2010] [Accepted: 04/18/2010] [Indexed: 11/19/2022]
Abstract
Schizophrenia is a severe mental disorder associated with a characteristic constellation of symptoms and neurocognitive deficits. At present, etiological mechanisms remain relatively unknown, although multiple points of convergence have been identified over recent years. One of the primary convergence points is dysfunction of N-methyl-d-aspartate (NMDAR)-type glutamate receptors. Antagonists of NMDAR produce a clinical syndrome that closely resembles, and uniquely incorporates negative and cognitive symptoms of schizophrenia, along with the specific pattern of neurocognitive dysfunction seen in schizophrenia. Genetic polymorphisms involving NMDAR subunits, particularly the GRIN2B subunit have been described. In addition, polymorphisms have been described in modulatory systems involving the NMDAR, including the enzymes serine racemase and d-amino acid oxidase/G72 that regulate brain d-serine synthesis. Reductions in plasma and brain glycine, d-serine and glutathione levels have been described as well, providing potential mechanisms underlying NMDAR dysfunction. Unique characteristics of the NMDAR are described that may explain the characteristic pattern of symptoms and neurocognitive deficits observed in schizophrenia. Finally, the NMDAR complex represents a convergence point for potential new treatment approaches in schizophrenia aimed at correcting underlying abnormalities in synthesis and regulation of allosteric modulators, as well as more general potentiation of pre- and post-synaptic glutamatergic and NMDAR function.
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research/New York University School of Medicine, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | | |
Collapse
|
186
|
Schilström B, Konradsson-Geuken Å, Ivanov V, Gertow J, Feltmann K, Marcus MM, Jardemark K, Svensson TH. Effects of S-citalopram, citalopram, and R-citalopram on the firing patterns of dopamine neurons in the ventral tegmental area, N-methyl-D-aspartate receptor-mediated transmission in the medial prefrontal cortex and cognitive function in the rat. Synapse 2010; 65:357-67. [DOI: 10.1002/syn.20853] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 07/27/2010] [Indexed: 11/10/2022]
|
187
|
The NADPH oxidase NOX2 controls glutamate release: a novel mechanism involved in psychosis-like ketamine responses. J Neurosci 2010; 30:11317-25. [PMID: 20739552 DOI: 10.1523/jneurosci.1491-10.2010] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Subanesthetic doses of NMDA receptor antagonist ketamine induce schizophrenia-like symptoms in humans and behavioral changes in rodents. Subchronic administration of ketamine leads to loss of parvalbumin-positive interneurons through reactive oxygen species (ROS), generated by the NADPH oxidase NOX2. However, ketamine induces very rapid alterations, in both mice and humans. Thus, we have investigated the role of NOX2 in acute responses to subanesthetic doses of ketamine. In wild-type mice, ketamine caused rapid (30 min) behavioral alterations, release of neurotransmitters, and brain oxidative stress, whereas NOX2-deficient mice did not display such alterations. Decreased expression of the subunit 2A of the NMDA receptor after repetitive ketamine exposure was also precluded by NOX2 deficiency. However, neurotransmitter release and behavioral changes in response to amphetamine were not altered in NOX2-deficient mice. Our results suggest that NOX2 is a major source of ROS production in the prefrontal cortex controlling glutamate release and associated behavioral alterations after acute ketamine exposure. Prolonged NOX2-dependent glutamate release may lead to neuroadaptative downregulation of NMDA receptor subunits.
Collapse
|
188
|
Beneyto M, Abbott A, Hashimoto T, Lewis DA. Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia. ACTA ACUST UNITED AC 2010; 21:999-1011. [PMID: 20843900 DOI: 10.1093/cercor/bhq169] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysfunction of the dorsolateral prefrontal cortex (DLPFC) in schizophrenia is associated with lamina-specific alterations in particular subpopulations of interneurons. In pyramidal cells, postsynaptic γ-aminobutyric acid (GABA(A)) receptors containing different α subunits are inserted preferentially in distinct subcellular locations targeted by inputs from specific interneuron subpopulations. We used in situ hybridization to quantify the laminar expression of α1, α2, α3, and α5 subunit, and of β1-3 subunit, mRNAs in the DLFPC of schizophrenia, and matched normal comparison subjects. In subjects with schizophrenia, mean GABA(A) α1 mRNA expression was 17% lower in layers 3 and 4, α2 expression was 14% higher in layer 2, α5 expression was 15% lower in layer 4, and α3 expression did not differ relative to comparison subjects. The mRNA expression of β2, which preferentially assembles with α1 subunits, was also 20% lower in layers 3 and 4, whereas β1 and β3 mRNA levels were not altered in schizophrenia. These expression differences were not attributable to medication effects or other potential confounds. These findings suggest that GABA neurotransmission in the DLPFC is altered at the postsynaptic level in a receptor subunit- and layer-specific manner in subjects with schizophrenia and support the hypothesis that GABA neurotransmission in this illness is predominantly impaired in certain cortical microcircuits.
Collapse
Affiliation(s)
- Monica Beneyto
- Department of Psychiatry, University of Pittsburgh, W1656 Biomedical Science Tower, 3811 O'Hara Street, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
189
|
Adjunctive alpha2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission. Int J Neuropsychopharmacol 2010; 13:891-903. [PMID: 19835668 DOI: 10.1017/s1461145709990794] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Compared to both first- and second-generation antipsychotic drugs (APDs), clozapine shows superior efficacy in treatment-resistant schizophrenia. In contrast to most APDs clozapine possesses high affinity for alpha2-adrenoceptors, and clinical and preclinical studies provide evidence that the alpha2-adrenoceptor antagonist idazoxan enhances the antipsychotic efficacy of typical D2 receptor antagonists as well as olanzapine. Risperidone has lower affinity for alpha2-adrenoceptors than clozapine but higher than most other APDs. Here we examined, in rats, the effects of adding idazoxan to risperidone on antipsychotic effect using the conditioned avoidance response (CAR) test, extrapyramidal side-effect (EPS) liability using the catalepsy test, brain dopamine efflux using in-vivo microdialysis in freely moving animals, cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission using intracellular electrophysiological recording in vitro, and ex-vivo autoradiography to assess the in-vivo alpha2A- and alpha2C-adrenoceptor occupancies by risperidone. The dose of risperidone needed for antipsychotic effect in the CAR test was approximately 0.4 mg/kg, which produced 11% and 17% in-vivo receptor occupancy at alpha2A- and alpha2C-adrenoceptors, respectively. Addition of idazoxan (1.5 mg/kg) to a low dose of risperidone (0.25 mg/kg) enhanced the suppression of CAR, but did not enhance catalepsy. Both cortical dopamine release and NMDA receptor-mediated responses were enhanced. These data propose that the therapeutic effect of risperidone in schizophrenia can be enhanced and its EPS liability reduced by adjunctive treatment with an alpha2-adrenoceptor antagonist, and generally support the notion that the potent alpha2-adrenoceptor antagonistic action of clozapine may be highly important for its unique efficacy in schizophrenia.
Collapse
|
190
|
Marcus MM, Jardemark K, Malmerfelt A, Björkholm C, Svensson TH. Reboxetine enhances the olanzapine-induced antipsychotic-like effect, cortical dopamine outflow and NMDA receptor-mediated transmission. Neuropsychopharmacology 2010; 35:1952-61. [PMID: 20463659 PMCID: PMC3055636 DOI: 10.1038/npp.2010.69] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D(2/3) antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain.
Collapse
Affiliation(s)
- Monica M Marcus
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kent Jardemark
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Malmerfelt
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carl Björkholm
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torgny H Svensson
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden,Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz väg 2, Stockholm, S 171 77, Sweden. Tel: +46 852 487 921, Fax: 468 308 424, E-mail:
| |
Collapse
|
191
|
Ide M, Lewis DA. Altered cortical CDC42 signaling pathways in schizophrenia: implications for dendritic spine deficits. Biol Psychiatry 2010; 68:25-32. [PMID: 20385374 PMCID: PMC2900524 DOI: 10.1016/j.biopsych.2010.02.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Spine density on the basilar dendrites of pyramidal neurons is lower in layer 3, but not in layers 5 and 6, in the dorsolateral prefrontal cortex (DLPFC) of subjects with schizophrenia. The expression of CDC42 (cell division cycle 42), a RhoGTPase that regulates the outgrowth of the actin cytoskeleton and promotes spine formation, is also lower in schizophrenia; however, CDC42 mRNA is lower across layers 3-6, suggesting that other lamina-specific molecular alterations are critical for the spine deficits in the illness. The CDC42 effector proteins 3 and 4 (CDC42EP3, CDC42EP4) are preferentially expressed in DLPFC layers 2 and 3, and CDC42EP3 appears to assemble septin filaments in spine necks. Therefore, alterations in CDC42EP3 could contribute to the lamina-specific spine deficits in schizophrenia. METHODS We measured transcript levels of CDC42, CDC42EP3, CDC42EP4; their interacting proteins (septins [SEPT2, 3, 5, 6, 7, 8, and 11], anillin), and other spine-specific proteins (spinophilin, PSD-95, and synaptopodin) in the DLPFC from 31 subjects with schizophrenia and matched normal comparison subjects. RESULTS The expression of CDC42EP3 mRNA was significantly increased by 19.7%, and SEPT7 mRNA was significantly decreased by 6.9% in subjects with schizophrenia. Cortical levels of CDC42EP3 and SEPT7 mRNAs were not altered in monkeys chronically exposed to antipsychotic medications. CONCLUSIONS Activated CDC42 is thought to disrupt septin filaments transiently in spine necks, allowing the molecular translocations required for synaptic potentiation. Thus, altered CDC42 signaling via CDC42EP3 may perturb synaptic plasticity and contribute to the spine deficits observed in layer 3 pyramidal neurons in schizophrenia.
Collapse
Affiliation(s)
- Masayuki Ide
- Department of Psychiatry, University of Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
192
|
Increased stress-evoked nitric oxide signalling in the Flinders sensitive line (FSL) rat: a genetic animal model of depression. Int J Neuropsychopharmacol 2010; 13:461-73. [PMID: 19627650 DOI: 10.1017/s1461145709990241] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stress engenders the precipitation and progression of affective disorders, while stress-related release of excitatory mediators is implicated in the degenerative pathology observed especially in the hippocampus of patients with severe depression. Nitric oxide (NO) release following stress-evoked N-methyl-d-aspartate (NMDA) receptor activation modulates neurotransmission, cellular memory and neuronal toxicity. We have investigated the Flinders rat (FSL/FRL), a genetic animal model of depression, regarding the response of the hippocampal nitrergic system following exposure to an escapable stress/inescapable stress (ES-IS) paradigm. Hippocampal tissue from naive FSL/FRL rats and those exposed to ES-IS were studied with respect to constitutive nitric oxide synthase (cNOS) activity and neuronal nitric oxide synthase (nNOS) protein levels, as well as transcript expression of upstream regulatory proteins in the NMDA-NO signalling pathway, including NMDAR1, nNOS, CAPON, PIN and PSD95. Within stress-naive animals, no differences in hippocampal cNOS activity and nNOS expression or PIN were evident in FSL and FRL rats, although transcripts for NMDAR1 and CAPON were increased in FSL rats. Within the group of ES-IS animals, we found an increase in total hippocampal cNOS activity, nNOS protein levels and mRNA expression in FSL vs. FRL rats, together with an increase in PSD95 transcripts, and a reduction in PIN. In conclusion, ES-IS enhanced hippocampal cNOS activity in FSL rats, but not FRL rats, confirming the NMDA-NO cascade as an important vulnerability factor in the depressive phenotype of the FSL rat.
Collapse
|
193
|
Ampuero E, Rubio FJ, Falcon R, Sandoval M, Diaz-Veliz G, Gonzalez RE, Earle N, Dagnino-Subiabre A, Aboitiz F, Orrego F, Wyneken U. Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex. Neuroscience 2010; 169:98-108. [PMID: 20417256 DOI: 10.1016/j.neuroscience.2010.04.035] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/14/2010] [Accepted: 04/16/2010] [Indexed: 12/16/2022]
Abstract
It has been postulated that chronic administration of antidepressant drugs induces delayed structural and molecular adaptations at glutamatergic forebrain synapses that might underlie mood improvement. To gain further insight into these changes in the cerebral cortex, rats were treated with fluoxetine (flx) for 4 weeks. These animals showed decreased anxiety and learned helplessness. N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunit levels (NR1, NR2A, NR2B, GluR1 and GluR2) were analysed in the forebrain by both western blot of homogenates and immunohistochemistry. Both methods demonstrated an upregulation of NR2A, GluR1 and GluR2 that was especially significant in the retrosplenial granular b cortex (RSGb). However, when analysing subunit content in postsynaptic densities and synaptic membranes, we found increases of NR2A and GluR2 but not GluR1. Instead, GluR1 was augmented in a microsomal fraction containing intracellular membranes. NR1 and GluR2 were co-immunoprecipitated from postsynaptic densities and synaptic membranes. In the immunoprecipitates, NR2A was increased while GluR1 was decreased supporting a change in receptor stoichiometry. The changes of subunit levels were associated with an upregulation of dendritic spine density and of large, mushroom-type spines. These molecular and structural adaptations might be involved in neuronal network stabilization following long-term flx treatment.
Collapse
Affiliation(s)
- E Ampuero
- Laboratorio de Neurociencias, Universidad de los Andes, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Sarachana T, Zhou R, Chen G, Manji HK, Hu VW. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med 2010; 2:23. [PMID: 20374639 PMCID: PMC2873801 DOI: 10.1186/gm144] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/19/2010] [Accepted: 04/07/2010] [Indexed: 12/12/2022] Open
Abstract
Background Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by abnormalities in reciprocal social interactions and language development and/or usage, and by restricted interests and repetitive behaviors. Differential gene expression of neurologically relevant genes in lymphoblastoid cell lines from monozygotic twins discordant in diagnosis or severity of autism suggested that epigenetic factors such as DNA methylation or microRNAs (miRNAs) may be involved in ASD. Methods Global miRNA expression profiling using lymphoblasts derived from these autistic twins and unaffected sibling controls was therefore performed using high-throughput miRNA microarray analysis. Selected differentially expressed miRNAs were confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis, and the putative target genes of two of the confirmed miRNA were validated by knockdown and overexpression of the respective miRNAs. Results Differentially expressed miRNAs were found to target genes highly involved in neurological functions and disorders in addition to genes involved in gastrointestinal diseases, circadian rhythm signaling, as well as steroid hormone metabolism and receptor signaling. Novel network analyses of the putative target genes that were inversely expressed relative to the relevant miRNA in these same samples further revealed an association with ASD and other co-morbid disorders, including muscle and gastrointestinal diseases, as well as with biological functions implicated in ASD, such as memory and synaptic plasticity. Putative gene targets (ID3 and PLK2) of two RT-PCR-confirmed brain-specific miRNAs (hsa-miR-29b and hsa-miR-219-5p) were validated by miRNA overexpression or knockdown assays, respectively. Comparisons of these mRNA and miRNA expression levels between discordant twins and between case-control sib pairs show an inverse relationship, further suggesting that ID3 and PLK2 are in vivo targets of the respective miRNA. Interestingly, the up-regulation of miR-23a and down-regulation of miR-106b in this study reflected miRNA changes previously reported in post-mortem autistic cerebellum by Abu-Elneel et al. in 2008. This finding validates these differentially expressed miRNAs in neurological tissue from a different cohort as well as supports the use of the lymphoblasts as a surrogate to study miRNA expression in ASD. Conclusions Findings from this study strongly suggest that dysregulation of miRNA expression contributes to the observed alterations in gene expression and, in turn, may lead to the pathophysiological conditions underlying autism.
Collapse
Affiliation(s)
- Tewarit Sarachana
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 Eye St NW, Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|
195
|
Kovacs K, Lajtha A, Sershen H. Effect of nicotine and cocaine on neurofilaments and receptors in whole brain tissue and synaptoneurosome preparations. Brain Res Bull 2010; 82:109-17. [DOI: 10.1016/j.brainresbull.2010.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/16/2010] [Accepted: 02/18/2010] [Indexed: 12/25/2022]
|
196
|
Bitanihirwe BK, Lim MP, Woo TUW. N-methyl-D-aspartate receptor expression in parvalbumin-containing inhibitory neurons in the prefrontal cortex in bipolar disorder. Bipolar Disord 2010; 12:95-101. [PMID: 20148871 PMCID: PMC2856327 DOI: 10.1111/j.1399-5618.2009.00785.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Inhibitory neural circuits and the glutamatergic regulation of these circuits in the cerebral cortex appear to be disturbed in bipolar disorder. In this study, we addressed the hypothesis that, in the prefrontal cortex (PFC), disturbances of glutamatergic regulation of the class of inhibitory neurons that contain the calcium buffer parvalbumin (PV) via N-methyl-D-aspartate (NMDA) receptor may contribute to the pathophysiology of bipolar disorder. METHODS We used double in situ hybridization with a sulfur-35-labeled riboprobe for the NR2A subunit of the NMDA receptor and a digoxigenin-labeled riboprobe for PV in a cohort of 18 subjects with bipolar disorder and 18 demographically matched normal control subjects. RESULTS We observed no differences in the relative density and laminar distribution of the PV-expressing neurons between subjects with bipolar disorder and matched normal control subjects. Furthermore, the density of the PV neurons that co-expressed NR2A messenger RNA (mRNA) or the cellular expression of NR2A mRNA in the PV neurons that exhibited a detectable level of this transcript was unaltered in subjects with bipolar disorder. CONCLUSIONS These findings suggest that, in the PFC, glutamatergic regulation of PV-containing inhibitory neurons via NR2A-containing NMDA receptors does not appear to be altered in bipolar disorder. However, the possibility that other subsets of gamma-aminobutyric acid (GABA) neurons or other glutamate receptor subtypes are affected cannot be excluded.
Collapse
|
197
|
NMDA receptor phosphorylation at a site affected in schizophrenia controls synaptic and behavioral plasticity. J Neurosci 2009; 29:11965-72. [PMID: 19776282 DOI: 10.1523/jneurosci.2109-09.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation of the NR1 subunit of NMDA receptors (NMDARs) at serine (S) 897 is markedly reduced in schizophrenia patients. However, the role of NR1 S897 phosphorylation in normal synaptic function and adaptive behaviors are unknown. To address these questions, we generated mice in which the NR1 S897 is replaced with alanine (A). This knock-in mutation causes severe impairment in NMDAR synaptic incorporation and NMDAR-mediated synaptic transmission. Furthermore, the phosphomutant animals have reduced AMPA receptor (AMPAR)-mediated synaptic transmission, decreased AMPAR GluR1 subunit in the synapse, and impaired long-term potentiation. Finally, the mutant mice exhibit behavioral deficits in social interaction and sensorimotor gating. Our results suggest that an impairment in NR1 phosphorylation leads to glutamatergic hypofunction that can contribute to behavioral deficits associated with psychiatric disorders.
Collapse
|
198
|
Wang HX, Gao WJ. Cell type-specific development of NMDA receptors in the interneurons of rat prefrontal cortex. Neuropsychopharmacology 2009; 34:2028-40. [PMID: 19242405 PMCID: PMC2730038 DOI: 10.1038/npp.2009.20] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 01/27/2009] [Accepted: 01/29/2009] [Indexed: 12/20/2022]
Abstract
In the prefrontal cortex, N-methyl-D-aspartic acid (NMDA) receptors (NMDARs) are critical not only for normal prefrontal functions but also for the pathological processes of schizophrenia. Little is known, however, about the developmental properties of NMDARs in the functionally diverse sub-populations of interneurons. We investigated the developmental changes of NMDARs in rat prefrontal interneurons using patch clamp recording in cortical slices. We found that fast-spiking (FS) interneurons exhibited properties of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA currents distinct from those in regular spiking (RS) and low-threshold spiking (LTS) interneurons, particularly during the adolescent period. In juvenile animals, most (73%) of the FS cells demonstrated both AMPA and NMDA currents. The NMDA currents, however, gradually became undetectable during cortical development, with most (74%) of the FS cells exhibiting no NMDA current in adults. In contrast, AMPA and NMDA currents in RS and LTS interneurons were relatively stable, without significant changes from juveniles to adults. Moreover, even in FS cells with NMDA currents, the NMDA/AMPA ratio dramatically decreased during the adolescent period but returned to juvenile level in adults, compared with the relatively stable ratios in RS and LTS interneurons. These data suggest that FS interneurons in the prefrontal cortex undergo dramatic changes in glutamatergic receptors during the adolescent period. These properties may make FS cells particularly sensitive and vulnerable to epigenetic stimulation, thus contributing to the onset of many psychiatric disorders, including schizophrenia.
Collapse
Affiliation(s)
- Huai-Xing Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Wen-Jun Gao
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
199
|
Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 2009; 65:1006-14. [PMID: 19121517 DOI: 10.1016/j.biopsych.2008.11.019] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 12/29/2022]
Abstract
BACKGROUND Prefrontal deficits in gamma-aminobutyric acid (GABA)ergic gene expression, including neuropeptide Y (NPY), somatostatin (SST), and parvalbumin (PV) messenger RNAs (mRNAs), have been reported for multiple schizophrenia cohorts. Preclinical models suggest that a subset of these GABAergic markers (NPY/SST) is regulated by brain-derived neurotrophic factor (BDNF), which in turn is under the inhibitory influence of small noncoding RNAs. However, it remains unclear if these mechanisms are important determinants for dysregulated NPY and SST expression in prefrontal cortex (PFC) of subjects with schizophrenia. METHODS Using a postmortem case-control design, the association between BDNF protein, NPY/SST/PV mRNAs, and two BDNF-regulating microRNAs (miR-195 and miR-30a-5p) was determined in samples from the PFC of 20 schizophrenia and 20 control subjects. Complementary studies were conducted in cerebral cortex of mice subjected to antipsychotic treatment or a brain-specific ablation of the Bdnf gene. RESULTS Subjects with schizophrenia showed deficits in NPY and PV mRNAs. Within-pair differences in BDNF protein levels showed strong positive correlations with NPY and SST and a robust inverse association with miR-195 levels, which in turn were not affected by antipsychotic treatment or genetic ablation of Bdnf. CONCLUSIONS Taken together, these results suggest that prefrontal deficits in a subset of GABAergic mRNAs, including NPY, are dependent on the regional supply of BDNF, which in turn is fine-tuned through a microRNA (miRNA)-mediated mechanism.
Collapse
|
200
|
MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci U S A 2009; 106:3507-12. [PMID: 19196972 DOI: 10.1073/pnas.0805854106] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) glutamate receptors are regulators of fast neurotransmission and synaptic plasticity in the brain. Disruption of NMDA-mediated glutamate signaling has been linked to behavioral deficits displayed in psychiatric disorders such as schizophrenia. Recently, noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators of neuronal functions. Here we show that pharmacological (dizocilpine) or genetic (NR1 hypomorphism) disruption of NMDA receptor signaling reduces levels of a brain-specific miRNA, miR-219, in the prefrontal cortex (PFC) of mice. Consistent with a role for miR-219 in NMDA receptor signaling, we identify calcium/calmodulin-dependent protein kinase II gamma subunit (CaMKIIgamma), a component of the NMDA receptor signaling cascade, as a target of miR-219. In vivo inhibition of miR-219 by specific antimiR in the murine brain significantly modulated behavioral responses associated with disrupted NMDA receptor transmission. Furthermore, pretreatment with the antipsychotic drugs haloperidol and clozapine prevented dizocilpine-induced effects on miR-219. Taken together, these data support an integral role for miR-219 in the expression of behavioral aberrations associated with NMDA receptor hypofunction.
Collapse
|