151
|
Gerrits HL, Hopman MTE, Offringa C, Engelen BGM, Sargeant AJ, Jones DA, Haan A. Variability in fibre properties in paralysed human quadriceps muscles and effects of training. Pflugers Arch 2003; 445:734-40. [PMID: 12632195 DOI: 10.1007/s00424-002-0997-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2002] [Revised: 11/06/2002] [Accepted: 11/26/2002] [Indexed: 11/30/2022]
Abstract
A spinal cord injury usually leads to an increase in contractile speed and fatigability of the paralysed quadriceps muscles, which is probably due to an increased expression of fast myosin heavy chain (MHC) isoforms and reduced oxidative capacity. Sometimes, however, fatigue resistance is maintained in these muscles and also contractile speed is slower than expected. To obtain a better understanding of the diversity of these quadriceps muscles and to determine the effects of training on characteristics of paralysed muscles, fibre characteristics and whole muscle function were assessed in six subjects with spinal cord lesions before and after a 12-week period of daily low-frequency electrical stimulation. Relatively high levels of MHC type I were found in three subjects and this corresponded with a high degree of fusion in 10-Hz force responses (r=0.88). Fatigability was related to the activity of succinate dehydrogenase (SDH) (r=0.79). Furthermore, some differentiation between fibre types in terms of metabolic properties were present, with type I fibres expressing the highest levels of SDH and lowest levels of alpha-glycerophosphate dehydrogenase. After training, SDH activity increased by 76+/-26% but fibre diameter and MHC expression remained unchanged. The results indicate that expression of contractile proteins and metabolic properties seem to underlie the relatively normal functional muscle characteristics observed in some paralysed muscles. Furthermore, training-induced changes in fatigue resistance seem to arise, in part, from an improved oxidative capacity.
Collapse
Affiliation(s)
- H L Gerrits
- Institute for Fundamental and Clinical Human Movement Sciences, Vrije University Amsterdam, v/d Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
152
|
Hartkopp A, Harridge SDR, Mizuno M, Ratkevicius A, Quistorff B, Kjaer M, Biering-Sörensen F. Effect of training on contractile and metabolic properties of wrist extensors in spinal cord-injured individuals. Muscle Nerve 2003; 27:72-80. [PMID: 12508298 DOI: 10.1002/mus.10290] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Paretic human muscle rapidly loses strength and oxidative endurance, and electrical stimulation training may partly reverse this. We evaluated the effects of two training protocols on the contractile and metabolic properties of the wrist extensor in 12 C-5/6 tetraplegic individuals. The wrist extensor muscles were stimulated for 30 min/day, 5 days/week, for 12 weeks, using either a high-resistance (Hr) or a low-resistance (Lr) protocol. Total work output was similar in both protocols. The nontrained arm was used as a control. Maximum voluntary torque increased in the Hr (P < 0.05) but not the Lr group. Electrically stimulated peak tetanic torque at 15 HZ, 30 HZ, and 50 HZ were unchanged in the Lr group and tended to increase only at 15 HZ (P < 0.1) in the Hr group. Resistance to fatigue, however, increased (P < 0.05) in both Hr (42%) and Lr (41%) groups. Muscle metabolism was evaluated by (31)P nuclear magnetic resonance spectroscopy ((31)P-NMRS) during and following a continuous 40-s 10-HZ contraction. In the Hr group the cost of contraction decreased by 38% (P < 0.05) and the half-time of phosphocreatine (PCr) recovery was shortened by 52% (P < 0.05). Thus, long-term electrically induced stimulation of the wrist extensor muscles in spinal cord injury (SCI) increases fatigue resistance independent of training pattern. However, only the Hr protocol increased muscle strength and was shown to improve muscle aerobic metabolism after training. Muscle Nerve 27: 72-80, 2003
Collapse
Affiliation(s)
- Andreas Hartkopp
- Clinic for Para- and Tetraplegia, The Neuroscience Centre, Rigshospitalet, Copenhagen University Hospitals, Copehagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
BACKGROUND By affecting young people during the most productive period of their lives, spinal cord injury is a devastating problem for modern society. A decade ago, treating SCI seemed frustrating and hopeless because of the tremendous morbidity and mortality, life-shattering impact, and limited therapeutic options associated with the condition. Today, however, an understanding of the underlying pathophysiological mechanisms, the development of neuroprotective interventions, and progress toward regenerative interventions are increasing hope for functional restoration. REVIEW SUMMARY This study addresses the present understanding of SCI, including the etiology, pathophysiology, treatment, and scientific advances. The discussion of treatment options includes a critical review of high-dose methylprednisolone and GM-1 ganglioside therapy. The concept that limited rebuilding can provide a disproportionate improvement in quality of life is emphasized throughout. CONCLUSIONS New surgical procedures, pharmacologic treatments, and functional neuromuscular stimulation methods have evolved over the last decades that can improve functional outcomes after spinal cord injury, but limiting secondary injury remains the primary goal. Tissue replacement strategies, including the use of embryonic stem cells, become an important tool and can restore function in animal models. Controlled clinical trials are now required to confirm these observations. The ultimate goal is to harness the body's own potential to replace lost central nervous system cells by activation of endogenous progenitor cell repair mechanisms.
Collapse
Affiliation(s)
- Daniel Becker
- Department of Neurology, Spinal Cord Injury Neuro-Rehabilitation Section, Restorative Treatment and Research Program, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | | | | |
Collapse
|
154
|
Ditor DS, Hamilton S, Tarnopolsky MA, Green HJ, Craven BC, Parise G, Hicks AL. Na+,K+-ATPase concentration and fiber type distribution after spinal cord injury. Muscle Nerve 2003; 29:38-45. [PMID: 14694496 DOI: 10.1002/mus.10534] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Complete spinal cord injury (SCI) is characterized, in part, by reduced fatigue-resistance of the paralyzed skeletal muscle during stimulated contractions, but the underlying mechanisms are not fully understood. The effects of complete SCI on skeletal muscle Na(+),K(+)-adenosine triphosphatase (ATPase) concentration, and fiber type distribution were therefore investigated. Six individuals (aged 32.0 +/- 5.3 years) with complete paraplegia (T4-T10; 1-19 years since injury) participated. There was a significantly lower Na(+),K(+)-ATPase concentration in the paralyzed vastus lateralis (VL) when compared to either the subjects' own unaffected deltoid or literature values (from our laboratory, utilizing the same methodology) of VL Na(+),K(+)-ATPase concentration for the healthy able-bodied (141.6 +/- 50.0, 213.4 +/- 23.9, 339 +/- 16 pmol/g wet wt., respectively; P < 0.05). There was also a significant negative correlation between the Na(+),K(+)-ATPase concentration in the paralyzed VL and years since injury (r = -0.75, P < 0.05). These findings are clinically relevant as they suggest that reductions in Na(+),K(+)-ATPase contribute to the fatigability of paralyzed muscle after SCI. Unexpectedly, the VL muscles of our subjects had a higher proportion of their area represented by type I fibers compared to literature values for the VL of the healthy able-bodied (52.6 +/- 25.3% vs. 36 +/- 11.3%, respectively; P < 0.05). As all our subjects had upper motor neuron injuries and, therefore, experienced muscle spasticity, our findings warrant further investigation into the relationship between muscle spasticity and fiber type expression after SCI.
Collapse
Affiliation(s)
- D S Ditor
- Department of Kinesiology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | | | | | | | |
Collapse
|
155
|
Stein RB, Roetenberg D, Chong SL, James KB. A wheelchair modified for leg propulsion using voluntary activity or electrical stimulation. Med Eng Phys 2003; 25:11-9. [PMID: 12485782 DOI: 10.1016/s1350-4533(02)00116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A commercially available wheelchair has been modified for propulsion by movements of the lower legs. The feet are attached securely to a foot rest that can rotate around the knee joint. Movement is generated either with residual voluntary activation of the quadriceps (knee extensor) and hamstring (knee flexor) muscles, or with electrical stimulation of these muscles, if voluntary control is absent. Either a chain or a lever can couple the movements through a gearbox to the wheel to propel the wheelchair forward. Control of a wheelchair with the legs is more efficient than using the arms and has the potential to increase the mobility and whole-body fitness of many wheelchair users, but there is considerable variability between subjects. To address this variability, we measured for individual subjects the passive properties of the legs and foot at rest (effective stiffness and viscosity), the length-tension (torque-angle) properties of the active muscle groups, as well as their force-velocity curve and their activation and fatigue rates. The measured values were then inserted into a model of the leg-propelled wheelchair. The purpose of this paper is to test whether the model could predict the performance of individual subjects accurately and could be used, for example, to optimize the speed of the wheelchair for a given subject.
Collapse
Affiliation(s)
- R B Stein
- Centre for Neuroscience, 513 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada T6G 2S2.
| | | | | | | |
Collapse
|
156
|
Stein RB, Chong SL, James KB, Kido A, Bell GJ, Tubman LA, Bélanger M. Electrical stimulation for therapy and mobility after spinal cord injury. PROGRESS IN BRAIN RESEARCH 2002; 137:27-34. [PMID: 12440357 DOI: 10.1016/s0079-6123(02)37005-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
This article reviews the use of therapeutic and functional electrical stimulation in subjects after a spinal cord injury (SCI). Muscles become much weaker and more fatigable, while bone density decreases dramatically after SCI. Therapeutic stimulation of paralyzed muscles for about 1 h/day can reverse the atrophic changes and markedly increase muscle strength and endurance as well as bone density. Functional electrical stimulation can also improve the speed and efficiency of walking in people with an incomplete SCI. Finally, a modified wheelchair is described in which electrical stimulation or residual voluntary activation of leg muscles can produce movements of a footrest that is coupled to the wheels. The wheelchair can provide greater mobility and fitness to persons who are not functional walkers and currently use their arms to propel a wheelchair.
Collapse
Affiliation(s)
- Richard B Stein
- Centre for Neuroscience, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | | | | | | | | | | | | |
Collapse
|
157
|
Talmadge RJ, Roy RR, Caiozzo VJ, Edgerton VR. Mechanical properties of rat soleus after long-term spinal cord transection. J Appl Physiol (1985) 2002; 93:1487-97. [PMID: 12235051 DOI: 10.1152/japplphysiol.00053.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of a complete spinal cord transection (ST) on the mechanical properties of the rat soleus were assessed 3 and 6 mo post-ST and compared with age-matched controls. Maximal tetanic force was reduced by approximately 44 and approximately 25% at 3 and 6 mo post-ST, respectively. Similarly, maximum twitch force was reduced by approximately 29% in 3-mo and approximately 17% in 6-mo ST rats. ST resulted in faster twitch properties as evidenced by shorter time to peak tension (approximately 45%) and half-relaxation time (approximately 55%) at both time points. Maximum shortening velocity was significantly increased in ST rats whether measured by extrapolation from the force-velocity curve (approximately twofold at both time points) or by slack-test measurements (over twofold at both time points). A significant reduction in fatigue resistance of the soleus was observed at 3 (approximately 25%) and 6 mo (approximately 45%) post-ST. For the majority of the speed-related properties, no significant differences were detected between 3- and 6-mo ST rats. However, the fatigue resistance of the soleus was significantly lower in 6- vs. 3-mo ST rats. These data suggest that, between 3 and 6 mo post-ST, force-related properties tended to recover, speed-related properties plateaued, and fatigue-related properties continued to decline. Thus some specific functional properties of the rat soleus related to contractile force, speed, and fatigue adapted independently after ST.
Collapse
Affiliation(s)
- Robert J Talmadge
- Department of Biological Sciences, California State Polytechnic University, Pomona 91768, California, USA.
| | | | | | | |
Collapse
|
158
|
Marqueste T, Decherchi P, Dousset E, Berthelin F, Jammes Y. Effect of muscle electrostimulation on afferent activities from tibialis anterior muscle after nerve repair by self-anastomosis. Neuroscience 2002; 113:257-71. [PMID: 12127084 DOI: 10.1016/s0306-4522(02)00187-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous previous studies were devoted to the regeneration of motoneurons toward a denervated muscle after nerve repair by self-anastomosis but, to date, few investigations have evaluated the regeneration of sensory muscle endings. In a previous electrophysiological study (Decherchi et al., 2001) we showed that the functional characteristics of tibialis anterior muscle afferents are affected after self-anastomosis of the peroneal nerve even when the neuromuscular preparation was not chronically stimulated. The present study examines the regeneration of groups I-II (mechanosensitive) and groups III-IV (metabosensitive) muscle afferents by evaluating the recovery of their response to different test agents after self-anastomosis combined or not with chronic muscle stimulation for a 10-weeks period. We compared five groups of rats: C, control; L, nerve lesion without suture; LS, nerve lesion with suture; LSE(m): nerve lesion plus chronic muscle stimulation with a monophasic rectangular current; and LSE(b): nerve lesion plus chronic stimulation with a biphasic current with modulations of pulse duration and frequency, eliciting a pattern of activity resembling that delivered by the nerve to the muscle. Compared to the control group, (1) muscle kept only its original weight in the LSE(b) group, (2) in the LS group the response curve to tendon vibration was shifted toward the highest mechanical frequencies and the response of groups III-IV afferents after fatiguing muscle stimulation lowered, (3) in the LSE(m) group, the pattern of activation of mechanoreceptors by tendon vibrations was altered as in the LS group, and the response of metabosensitive afferents to KCl injections was markedly reduced, (4) in the LSE(b) group, the response to tendon vibration was not modified and the activation of metabosensitive units by increased extracellular potassium chloride concentration was conserved. Both LSE(b) and LSE(m) conditions were ineffective to maintain the post muscle stimulation activation of metabosensitive units as well as their activation by injected lactic acid solutions. Our data indicate that chronic muscle electrostimulation partially favors the recovery of mechano- and metabosensitivity in a denervated muscle and that biphasic modulated currents seem to provide better results.
Collapse
Affiliation(s)
- T Marqueste
- Institut Fédératif de Recherche Jean ROCHE (IFR11), Faculté de Médecine Nord, Université de la Méditerranée (Aix-Marseille II), Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
159
|
Thomas CK, Nelson G, Than L, Zijdewind I. Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles. Muscle Nerve 2002; 25:797-804. [PMID: 12115967 DOI: 10.1002/mus.10111] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activation order of motor units during electrically evoked contractions of paralyzed or partially paralyzed thenar muscles was determined in seven subjects with chronic cervical spinal cord injury. The median nerve was stimulated percutaneously with pulses of graded intensity to produce increments in the compound electromyogram (EMG) and force. Each increment corresponded to the activation of another unit. The evoked unit EMG and force was obtained by digital subtraction. The thenar muscles had between 15 and 83 units (26 +/- 19) that produced 114.3 +/- 127.1 mN force (n = 290). In six subjects, a significant positive correlation was found between activation order and unit force indicating that weaker units were excited before stronger units. These data are contrary to the notion that a reversal of unit activation order occurs during evoked versus voluntary contractions.
Collapse
Affiliation(s)
- Christine K Thomas
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, P.O. Box 016960 (R-48), Miami, Florida 33136, USA.
| | | | | | | |
Collapse
|
160
|
Mela P, Veltink PH, Huijing PA, Salmons S, Jarvis JC. The optimal stimulation pattern for skeletal muscle is dependent on muscle length. IEEE Trans Neural Syst Rehabil Eng 2002; 10:85-93. [PMID: 12236451 DOI: 10.1109/tnsre.2002.1031976] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stimulation patterns can be optimized by maximizing the force-time integral (FTI) per stimulation pulse of the elicited muscle contraction. Such patterns, providing the desired force output with the minimum number of pulses, may reduce muscle fatigue, which has been shown to correlate to the number of pulses delivered. Applications of electrical stimulation to use muscle as a controllable biological actuator may, therefore, be improved. Although muscle operates over a range of lengths, optimized patterns have been determined only at optimal muscle length. In this study, the patterns with up to four pulses that produced the highest isometric FTI were determined at 10 muscle lengths for 11 rabbit tibialis anterior muscles. The interpulse intervals (IPIs) used ranged from 4 to 54 ms. At high muscle length, the optimal stimulation pattern consisted of an initial short IPI (doublet) followed by longer IPIs, in agreement with previous studies. However, at low length, the third pulse still elicited more than linear summation (triplet); furthermore, the relative enhancement of the FTI per pulse was considerably larger at low length than at high length, suggesting that optimal stimulation patterns are length dependent.
Collapse
Affiliation(s)
- Petra Mela
- Institute for Biomedical Technology, Department of Electrical Engineering, University of Twente, Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
161
|
Griffin L, Godfrey S, Thomas CK. Stimulation pattern that maximizes force in paralyzed and control whole thenar muscles. J Neurophysiol 2002; 87:2271-8. [PMID: 11976366 DOI: 10.1152/jn.2002.87.5.2271] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pattern of seven pulses that elicited maximal thenar force was determined for control muscles and those that have been paralyzed chronically by spinal cord injury. For each subject group (n = 6), the peak force evoked by two pulses occurred at a short interval (5-15 ms; a "doublet"), but higher mean relative forces were achieved in paralyzed versus control muscles (41.4 +/- 3.9% vs. 22.7 +/- 2.0% maximal). Thereafter, longer intervals evoked peak force in each type of muscle (mean: 35 +/- 1 ms, 36 +/- 2 ms, respectively). With seven pulses, paralyzed and control muscles reached 76.4 +/- 5.6% and 57.0 +/- 2.6% maximal force, respectively. These force differences resulted from significantly greater doublet/twitch and doublet/tetanic force ratios in paralyzed (2.73 +/- 0.08, 0.35 +/- 0.03) compared with control muscles (2.07 +/- 0.07, 0.25 +/- 0.01). The greater force enhancement produced in paralyzed muscles with two closely spaced pulses may relate to changes in muscle stiffness and calcium metabolism. Peak force-time integrals were also achieved with an initial short interpulse interval, followed by longer intervals. The postdoublet intervals that produced peak force-time integrals in paralyzed and control muscles were longer than those for peak force, however (77 +/- 3 ms, 95 +/- 4 ms, respectively). These data show that the pulse patterns that maximize force and force-time integral in paralyzed muscles are similar to those that maximize these parameters in single motor units and various whole muscles across species. Thus the changes in neuromuscular properties that occur with chronic paralysis do not strongly influence the pulse pattern that optimizes muscle force or force-time integral.
Collapse
Affiliation(s)
- Lisa Griffin
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
162
|
Mela P, Veltink PH, Huijing PA. Length Dependent Potentiation in Electrically Stimulated Human Ankle Dorsiflexor Muscles. Neuromodulation 2002; 5:120-30. [DOI: 10.1046/j.1525-1403.2002.02019.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
163
|
Gerrits HL, Hopman MTE, Sargeant AJ, Jones DA, De Haan A. Effects of training on contractile properties of paralyzed quadriceps muscle. Muscle Nerve 2002; 25:559-67. [PMID: 11932974 DOI: 10.1002/mus.10071] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Effects of two different training regimens on the contractile properties of the quadriceps muscle were studied in six individuals with spinal cord injury. Each subject had both limbs trained with the two regimens, consisting of stimulation with low frequencies (LF) at 10 HZ or high frequencies (HF) at 50 HZ; one limb of each subject was stimulated with the LF protocol and the other with the HF regimen. Twelve weeks of daily training increased tetanic tension by approximately 20%, which was not significantly different between training regimens. Interestingly, after HF but not LF training, the unusual high forces at the low frequency range of the force-frequency relationship decreased, possibly due to a reduced activation per impulse. After LF but not HF training, force oscillation amplitudes declined (by 33%) as relaxation tended to slow, which may have opposed possible effects of reduced activation as seen after HF training. Finally, fatigue resistance also increased rapidly after LF training (by 43%) but not after HF training. These results indicate that different types of training may selectively change different aspects of function in disused muscles.
Collapse
Affiliation(s)
- H L Gerrits
- Institute for Fundamental and Clinical Human Movement Sciences, Vrije University Amsterdam, v/d Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
164
|
Jeon JY, Weiss CB, Steadward RD, Ryan E, Burnham RS, Bell G, Chilibeck P, Wheeler GD. Improved glucose tolerance and insulin sensitivity after electrical stimulation-assisted cycling in people with spinal cord injury. Spinal Cord 2002; 40:110-7. [PMID: 11859437 DOI: 10.1038/sj.sc.3101260] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DESIGN Longitudinal training. OBJECTIVES The purpose was to determine the effect of electrical stimulation (ES)-assisted cycling (30 min/day, 3 days/week for 8 weeks) on glucose tolerance and insulin sensitivity in people with spinal cord injury (SCI). SETTING The Steadward Centre, Alberta, Canada. METHODS Seven participants with motor complete SCI (five males and two females aged 30 to 53 years, injured 3-40 years, C5-T10) underwent 2-h oral glucose tolerance tests (OGTT, n=7) and hyperglycaemic clamp tests (n=3) before and after 8 weeks of training with ES-assisted cycling. RESULTS Results indicated that subjects' glucose level were significantly lower at 2 h OGTT following 8 weeks of training (122.4+/-10 vs 139.9+/-16, P=0.014). Two-hour hyperglycaemic clamps tests showed improvement in all three people for glucose utilisation and in two of three people for insulin sensitivity. CONCLUSIONS These results suggested that exercise with ES-assisted cycling is beneficial for the prevention and treatment of Type 2 diabetes mellitus in people with SCI. SPONSORSHIP Supported by Alberta Paraplegic Foundation, Therapeutic Alliance.
Collapse
Affiliation(s)
- J Y Jeon
- The Steadward Centre for Personal and Physical Achievement, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Ross A, Leveritt M. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med 2002; 31:1063-82. [PMID: 11735686 DOI: 10.2165/00007256-200131150-00003] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The adaptations of muscle to sprint training can be separated into metabolic and morphological changes. Enzyme adaptations represent a major metabolic adaptation to sprint training, with the enzymes of all three energy systems showing signs of adaptation to training and some evidence of a return to baseline levels with detraining. Myokinase and creatine phosphokinase have shown small increases as a result of short-sprint training in some studies and elite sprinters appear better able to rapidly breakdown phosphocreatine (PCr) than the sub-elite. No changes in these enzyme levels have been reported as a result of detraining. Similarly, glycolytic enzyme activity (notably lactate dehydrogenase, phosphofructokinase and glycogen phosphorylase) has been shown to increase after training consisting of either long (>10-second) or short (<10-second) sprints. Evidence suggests that these enzymes return to pre-training levels after somewhere between 7 weeks and 6 months of detraining. Mitochondrial enzyme activity also increases after sprint training, particularly when long sprints or short recovery between short sprints are used as the training stimulus. Morphological adaptations to sprint training include changes in muscle fibre type, sarcoplasmic reticulum, and fibre cross-sectional area. An appropriate sprint training programme could be expected to induce a shift toward type IIa muscle, increase muscle cross-sectional area and increase the sarcoplasmic reticulum volume to aid release of Ca(2+). Training volume and/or frequency of sprint training in excess of what is optimal for an individual, however, will induce a shift toward slower muscle contractile characteristics. In contrast, detraining appears to shift the contractile characteristics towards type IIb, although muscle atrophy is also likely to occur. Muscle conduction velocity appears to be a potential non-invasive method of monitoring contractile changes in response to sprint training and detraining. In summary, adaptation to sprint training is clearly dependent on the duration of sprinting, recovery between repetitions, total volume and frequency of training bouts. These variables have profound effects on the metabolic, structural and performance adaptations from a sprint-training programme and these changes take a considerable period of time to return to baseline after a period of detraining. However, the complexity of the interaction between the aforementioned variables and training adaptation combined with individual differences is clearly disruptive to the transfer of knowledge and advice from laboratory to coach to athlete.
Collapse
Affiliation(s)
- A Ross
- School of Human Movement Studies, University of Queensland, St Lucia, Queensland, Australia.
| | | |
Collapse
|
166
|
Talmadge RJ, Castro MJ, Apple DF, Dudley GA. Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J Appl Physiol (1985) 2002; 92:147-54. [PMID: 11744654 DOI: 10.1152/japplphysiol.000247.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of spinal cord injury (SCI) on the profile of sarco(endo) plasmic reticulum calcium-ATPase (SERCA) and myosin heavy chain (MHC) isoforms in individual vastus lateralis (VL) muscle fibers were determined. Biopsies from the VL were obtained from SCI subjects 6 and 24 wk postinjury (n = 6). Biopsies from nondisabled (ND) subjects were obtained at two time points 18 wk apart (n = 4). In ND subjects, the proportions of VL fibers containing MHC I, MHC IIa, and MHC IIx were 46 +/- 3, 53 +/- 3, and 1 +/- 1%, respectively. Most MHC I fibers contained SERCA2. Most MHC IIa fibers contained SERCA1. All MHC IIx fibers contained SERCA1 exclusively. SCI resulted in significant increases in fibers with MHC IIx (14 +/- 4% at 6 wk and 16 +/- 2% at 24 wk). In addition, SCI resulted in high proportions of MHC I and MHC IIa fibers with both SERCA isoforms (29% at 6 wk and 54% at 24 wk for MHC I fibers and 16% at 6 wk and 38% at 24 wk for MHC IIa fibers). Thus high proportions of VL fibers were mismatched for SERCA and MHC isoforms after SCI (19 +/- 3% at 6 wk and 36 +/- 9% at 24 wk) compared with only ~5% in ND subjects. These data suggest that, in the early time period following SCI, fast fiber isoforms of both SERCA and MHC are elevated disproportionately, resulting in fibers that are mismatched for SERCA and MHC isoforms. Thus the adaptations in SERCA and MHC isoforms appear to occur independently.
Collapse
Affiliation(s)
- R J Talmadge
- Muscle Function Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
167
|
Gerrits HL, de Haan A, Sargeant AJ, van Langen H, Hopman MT. Peripheral vascular changes after electrically stimulated cycle training in people with spinal cord injury. Arch Phys Med Rehabil 2001; 82:832-9. [PMID: 11387591 DOI: 10.1053/apmr.2001.23305] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To test whether a short period of training leads to adaptations in the cross-sectional area of large conduit arteries and improved blood flow to the paralyzed legs of individuals with spinal cord injury (SCI). DESIGN Before-after trial. SETTING Rehabilitation center, academic medical center. PARTICIPANTS Nine men with spinal cord lesions. INTERVENTION Six weeks of cycling using a functional electrically stimulated leg cycle ergometer (FES-LCE). MAIN OUTCOME MEASURES Longitudinal images and simultaneous velocity spectra were measured in the common carotid (CA) and femoral (FA) arteries using quantitative duplex Doppler ultrasound examination. Arterial diameters, peak systolic inflow volumes (PSIVs), mean inflow volumes (MIVs), and a velocity index (VI), representing the peripheral resistance, were obtained at rest. PSIVs and VI were obtained during 3 minutes of hyperemia following 20 minutes of FA occlusion. RESULTS Training resulted in significant increases in diameter (p < .01), PSIVs (p < .01), and MIVs (p < .05), and reduced VI (p < .01) of the FA, whereas values in the CA remained unchanged. Postocclusive hyperemic responses were augmented, indicated by significantly higher PSIVs (p <.01) and a trend toward lower VI. CONCLUSION Six weeks of FES-LCE training increased the cross-sectional area of large conduit arteries and improved blood flow to the paralyzed legs of individuals with SCI.
Collapse
Affiliation(s)
- H L Gerrits
- Institute for Fundamental and Clinical Human Movement Sciences, Vrije University Amsterdam, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
168
|
Mela P, Veltink PH, Huijing PA. The influence of stimulation frequency and ankle joint angle on the moment exerted by human dorsiflexor muscles. J Electromyogr Kinesiol 2001; 11:53-63. [PMID: 11166608 DOI: 10.1016/s1050-6411(00)00036-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The purpose of this study was to investigate the force-frequency relationships and the post-tetanic twitch potentiation as a function of joint angle (i.e. muscle length) in human skeletal muscles under isometric conditions. The dorsiflexor muscles of healthy subjects were stimulated at different ankle joint angles by means of constant frequency bursts at seven submaximal frequencies (50, 33, 25, 20, 16, 12, 8 Hz) with a duration of two seconds. Particular attention has been focused on the stability of recruitment in the range of joint angles examined. The results show that moment-frequency curves of human dorsiflexors change as a function of ankle angle: especially for the lower stimulation frequency range (8, 12, 16, 20 Hz), the normalized moment increases from dorsiflexion to plantar flexion (i.e. with increasing muscle length) resulting in a leftward shift of the normalized moment-frequency curves. Post-tetanic twitch potentiation is shown to be ankle joint dependent as well.
Collapse
Affiliation(s)
- P Mela
- Institute for Biomedical Technology (BMTI), Biomedical Signals and Systems, Department of Electrical Engineering, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | |
Collapse
|
169
|
Gerrits HL, Hopman MT, Sargeant AJ, de Haan A. Reproducibility of contractile properties of the human paralysed and non-paralysed quadriceps muscle. CLINICAL PHYSIOLOGY (OXFORD, ENGLAND) 2001; 21:105-13. [PMID: 11168304 DOI: 10.1046/j.1365-2281.2001.00293.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study assessed the reproducibility of electrically evoked, isometric quadriceps contractile properties in eight people with spinal cord injury (SCI) and eight able-bodied (AB) individuals. Over all, the pooled coefficients of variation (CVps) in the SCI group were significantly lower (ranging from 0.03 to 0.15) than in the AB group (ranging from 0.08 to 0.21) (P<0.05). Furthermore, in all subjects, the variability of force production increased as stimulation frequency decreased (P<0.01). In subjects with SCI, variables of contractile speed are clearly less reproducible than tetanic tension or resistance to fatigue. Contractile properties of quadriceps muscles of SCI subjects were significantly different from that of AB subjects. Muscles of people with SCI were less fatigue resistant (P<0.05) and produced force-frequency relationships that were shifted to the left, compared with AB controls (P<.01). In addition, fusion of force responses resulting from 10 Hz stimulation was reduced (P<.05) and speed of contraction (but not relaxation) was increased (P<0.05), indicating an increased contractile speed in paralysed muscles compared with non-paralysed muscles. These results correspond with an expected predominance of fast glycolytic muscle fibres in paralysed muscles. It is concluded that quadriceps dynamometry is a useful technique to study muscle function in non-paralysed as well as in paralysed muscles. Furthermore, these techniques can be reliably used, for example, to assess therapeutic interventions on paralysed muscles provided that expected differences in relative tetanic tension and fatigue resistance are larger than approximately 5% and differences in contractile speed are larger than approximately 15%.
Collapse
Affiliation(s)
- H L Gerrits
- Institute for Fundamental and Clinical Human Movement Sciences, Vrije University Amsterdam, v/d Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
170
|
Abstract
In this review, the adaptations in myosin heavy chain (MHC) isoform expression induced by chronic reductions in neuromuscular activity (including electrical activation and load bearing) of the intact neuromuscular unit are summarized and evaluated. Several different animal models and human clinical conditions of reduced neuromuscular activity are categorized based on the manner and extent to which they alter the levels of electrical activation and load bearing, resulting in three main categories of reduced activity. These are: 1) reduced activation and load bearing (including spinal cord injury, spinal cord transection, and limb immobilization with the muscle in a shortened position); 2) reduced loading (including spaceflight, hindlimb unloading, bed rest, and unilateral limb unloading); and 3) inactivity (including spinal cord isolation and blockage of motoneuron action potential conduction by tetrodotoxin). All of the models discussed resulted in increased expression of fast MHC isoforms at the protein and/or mRNA levels in slow and fast muscles (with the possible exception of unilateral limb unloading in humans). However, the specific fast MHC isoforms that are induced (usually the MHC-IIx isoform in slow muscle and the MHC-IIb isoform in fast muscle) and the degree and rate of adaptation are dependent upon the animal species and the specific model or condition that is being studied. Recent studies designed to elucidate the mechanisms by which electrical activation and load bearing alter expression of MHC isoforms at the cellular and genetic levels are also reviewed. Two main mechanisms have been proposed, the myogenin:MyoD and calcineurin:NF-AT pathways. Collectively, the data suggest that the regulation of MHC isoform expression involves a complex interaction of multiple control mechanisms including the myogenin:MyoD and calcineurin:NF-AT pathways; however, other intracellular signaling pathways are likely to contribute.
Collapse
Affiliation(s)
- R J Talmadge
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0430, USA.
| |
Collapse
|
171
|
|
172
|
Hartkopp A, Andersen JL, Harridge SD, Crone C, Gruschy-Knudsen T, Kjaer M, Masao M, Ratkevicius A, Quistorff B, Zhou S, Biering-Sørensen F. High expression of MHC I in the tibialis anterior muscle of a paraplegic patient. Muscle Nerve 1999; 22:1731-7. [PMID: 10567091 DOI: 10.1002/(sici)1097-4598(199912)22:12<1731::aid-mus20>3.0.co;2-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A long-term paraplegic man presented exclusively (>99%) myosin heavy chain I (MHC I) in the tibialis anterior muscle (TA). This was coupled to a slow speed of contraction, a high resistance to fatigue, and a rapid resynthesis of phosphocreatine after an electrically evoked fatiguing contraction when compared with the TA muscles of 9 other paraplegic individuals. In contrast, the MHC composition of his vastus lateralis, gastrocnemius, and soleus muscles was that expected of a muscle from a spinal cord injured individual. This information may be of clinical importance in terms of the expected morphological and functional adaptations of skeletal muscle to different types of electrical stimulation therapy.
Collapse
Affiliation(s)
- A Hartkopp
- Center for Spinal Cord Injured, The Neuroscience Center, H:S Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Gerrits HL, De Haan A, Hopman MT, van Der Woude LH, Jones DA, Sargeant AJ. Contractile properties of the quadriceps muscle in individuals with spinal cord injury. Muscle Nerve 1999; 22:1249-56. [PMID: 10454722 DOI: 10.1002/(sici)1097-4598(199909)22:9<1249::aid-mus13>3.0.co;2-n] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Selected contractile properties and fatigability of the quadriceps muscle were studied in seven spinal cord-injured (SCI) and 13 able-bodied control (control) individuals. The SCI muscles demonstrated faster rates of contraction and relaxation than did control muscles and extremely large force oscillation amplitudes in the 10-Hz signal (65 +/- 22% in SCI versus 23 +/- 8% in controls). In addition, force loss and slowing of relaxation following repeated fatiguing contractions were greater in SCI compared with controls. The faster contractile properties and greater fatigability of the SCI muscles are in agreement with a characteristic predominance of fast glycolytic muscle fibers. Unexpectedly, the SCI muscles exhibited a force-frequency relationship shifted to the left, most likely as the result of relatively large twitch amplitudes. The results indicate that the contractile properties of large human locomotory muscles can be characterized using the approach described and that the transformation to faster properties consequent upon changes in contractile protein expression following SCI can be assessed. These measurements may be useful to optimize stimulation characteristics for functional electrical stimulation and to monitor training effects induced by electrical stimulation during rehabilitation of paralyzed muscles.
Collapse
Affiliation(s)
- H L Gerrits
- Institute for Fundamental and Clinical Human Movement Sciences, Vrije University Amsterdam, v/d Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
174
|
Stimulation électrique fonctionnelle et fatigue musculaire du muscle paralysé chez le blessé médullaire paraplégique: effet de la vitesse d'activation et du niveau d'activation des unités motrices. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0168-6054(99)80056-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
175
|
Castro MJ, Apple DF, Staron RS, Campos GE, Dudley GA. Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J Appl Physiol (1985) 1999; 86:350-8. [PMID: 9887150 DOI: 10.1152/jappl.1999.86.1.350] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the influence of spinal cord injury (SCI) on affected skeletal muscle. The right vastus lateralis muscle was biopsied in 12 patients as soon as they were clinically stable (average 6 wk after SCI), and 11 and 24 wk after injury. Samples were also taken from nine able-bodied controls at two time points 18 wk apart. Surface electrical stimulation (ES) was applied to the left quadriceps femoris muscle to assess fatigue at these same time intervals. Biopsies were analyzed for fiber type percent and cross-sectional area (CSA), fiber type-specific succinic dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPDH) activities, and myosin heavy chain percent. Controls showed no change in any variable over time. Patients showed 27-56% atrophy (P = 0.000) of type I, IIa, and IIax+IIx fibers from 6 to 24 wk after injury, resulting in fiber CSA approximately one-third that of controls. Their fiber type specific SDH and GPDH activities increased (P </= 0.001) from 32 to 90% over the 18 wk, thereby approaching or surpassing control values. The relative CSA of type I fibers and percentage of myosin heavy chain type I did not change. There was apparent conversion among type II fiber subtypes; type IIa decreased and type IIax+IIx increased (P </= 0.012). Force loss during ES did not change over time for either group but was greater (P = 0.000) for SCI patients than for controls overall (27 vs. 9%). The results indicate that vastus lateralis muscle shows marked fiber atrophy, no change in the proportion of type I fibers, and a relative independence of metabolic enzyme levels from activation during the first 24 wk after clinically complete SCI. Over this time, quadriceps femoris muscle showed moderately greater force loss during ES in patients than in controls. It is suggested that the predominant response of mixed human skeletal muscle within 6 mo of SCI is loss of contractile protein. Therapeutic interventions could take advantage of this to increase muscle mass.
Collapse
Affiliation(s)
- M J Castro
- Department of Exercise Science, The University of Georgia, Athens 30602, USA
| | | | | | | | | |
Collapse
|