151
|
Morrison-Whittle P, Goddard MR. From vineyard to winery: a source map of microbial diversity driving wine fermentation. Environ Microbiol 2017; 20:75-84. [PMID: 29052965 DOI: 10.1111/1462-2920.13960] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/12/2017] [Indexed: 11/30/2022]
Abstract
Humans have been making wine for thousands of years and microorganisms play an integral part in this process as they not only drive fermentation, but also significantly influence the flavour, aroma and quality of finished wines. Since fruits are ephemeral, they cannot comprise a permanent microbial habitat; thus, an age-old unanswered question concerns the origin of fruit and ferment associated microbes. Here we use next-generation sequencing approaches to examine and quantify the roles of native forest, vineyard soil, bark and fruit habitats as sources of fungal diversity in ferments. We show that microbial communities in harvested juice and ferments vary significantly across regions, and that while vineyard fungi account for ∼40% of the source of this diversity, uncultivated ecosystems outside of vineyards also prove a significant source. We also show that while communities in harvested juice resemble those found on grapes, these increasingly resemble fungi present on vine bark as the ferment proceeds.
Collapse
Affiliation(s)
- Peter Morrison-Whittle
- The School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Matthew R Goddard
- The School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand.,School of Life Sciences and Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln LN6 7DL, UK
| |
Collapse
|
152
|
Smukowski Heil C, Burton JN, Liachko I, Friedrich A, Hanson NA, Morris CL, Schacherer J, Shendure J, Thomas JH, Dunham MJ. Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C. Yeast 2017; 35:71-84. [PMID: 28892574 DOI: 10.1002/yea.3280] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022] Open
Abstract
Interspecific hybridization is a common mechanism enabling genetic diversification and adaptation; however, the detection of hybrid species has been quite difficult. The identification of microbial hybrids is made even more complicated, as most environmental microbes are resistant to culturing and must be studied in their native mixed communities. We have previously adapted the chromosome conformation capture method Hi-C to the assembly of genomes from mixed populations. Here, we show the method's application in assembling genomes directly from an uncultured, mixed population from a spontaneously inoculated beer sample. Our assembly method has enabled us to de-convolute four bacterial and four yeast genomes from this sample, including a putative yeast hybrid. Downstream isolation and analysis of this hybrid confirmed its genome to consist of Pichia membranifaciens and that of another related, but undescribed, yeast. Our work shows that Hi-C-based metagenomic methods can overcome the limitation of traditional sequencing methods in studying complex mixtures of genomes. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Joshua N Burton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Anne Friedrich
- Genetics, Genomics, and Microbiology, University of Strasbourg, Strasbourg, France
| | - Noah A Hanson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Joseph Schacherer
- Genetics, Genomics, and Microbiology, University of Strasbourg, Strasbourg, France
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
153
|
|
154
|
Futagami T, Kadooka C, Ando Y, Okutsu K, Yoshizaki Y, Setoguchi S, Takamine K, Kawai M, Tamaki H. Multi-gene phylogenetic analysis reveals that shochu-fermenting Saccharomyces cerevisiae strains form a distinct sub-clade of the Japanese sake cluster. Yeast 2017; 34:407-415. [PMID: 28703391 DOI: 10.1002/yea.3243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/06/2017] [Accepted: 07/09/2017] [Indexed: 02/04/2023] Open
Abstract
Shochu is a traditional Japanese distilled spirit. The formation of the distinguishing flavour of shochu produced in individual distilleries is attributed to putative indigenous yeast strains. In this study, we performed the first (to our knowledge) phylogenetic classification of shochu strains based on nucleotide gene sequences. We performed phylogenetic classification of 21 putative indigenous shochu yeast strains isolated from 11 distilleries. All of these strains were shown or confirmed to be Saccharomyces cerevisiae, sharing species identification with 34 known S. cerevisiae strains (including commonly used shochu, sake, ale, whisky, bakery, bioethanol and laboratory yeast strains and clinical isolate) that were tested in parallel. Our analysis used five genes that reflect genome-level phylogeny for the strain-level classification. In a first step, we demonstrated that partial regions of the ZAP1, THI7, PXL1, YRR1 and GLG1 genes were sufficient to reproduce previous sub-species classifications. In a second step, these five analysed regions from each of 25 strains (four commonly used shochu strains and the 21 putative indigenous shochu strains) were concatenated and used to generate a phylogenetic tree. Further analysis revealed that the putative indigenous shochu yeast strains form a monophyletic group that includes both the shochu yeasts and a subset of the sake group strains; this cluster is a sister group to other sake yeast strains, together comprising a sake-shochu group. Differences among shochu strains were small, suggesting that it may be possible to correlate subtle phenotypic differences among shochu flavours with specific differences in genome sequences. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Taiki Futagami
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Chihiro Kadooka
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Yoshinori Ando
- Kagoshima Prefectural Institute of Industrial Technology, Kagoshima, 899-5105, Japan
| | - Kayu Okutsu
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Yumiko Yoshizaki
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Shinji Setoguchi
- Kagoshima Prefectural Institute of Industrial Technology, Kagoshima, 899-5105, Japan
| | - Kazunori Takamine
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Mikihiko Kawai
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Hisanori Tamaki
- Education and Research Centre for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| |
Collapse
|
155
|
Campisano A, Albanese D, Yousaf S, Pancher M, Donati C, Pertot I. Temperature drives the assembly of endophytic communities' seasonal succession. Environ Microbiol 2017; 19:3353-3364. [PMID: 28654220 DOI: 10.1111/1462-2920.13843] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/16/2017] [Accepted: 06/17/2017] [Indexed: 12/19/2022]
Abstract
Endophytic microorganisms asymptomatically colonise plant tissues. Exploring the assembly dynamics of bacterial endophytic communities is essential to understand the functioning of the plant holobiont and to optimise their possible use as biopesticides or plant biostimulants. The variation in endophytic communities in above and below-ground organs in Vitis vinifera in the field were studied. To understand the specific effect of temperature on endophytic communities, a separate experiment was set up where grapevine cuttings were grown under controlled conditions at three different temperatures. The findings revealed the succession of endophytic communities over the year. Endophytic communities of roots and stems differ in terms of composition and dynamic response to temperature. Noticeably, compositional differences during the seasons affected bacterial taxa more in stems than in roots, suggesting that roots offer a more stable and less easily perturbed environment. Correlation abundance networks showed that the presence of several taxa (including Bradyrhizobium, Burkholderia, Dyella, Mesorhizobium, Propionibacterium and Ralstonia) is linked in both the field and the greenhouse.
Collapse
Affiliation(s)
- Andrea Campisano
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, TN, 38010, Italy
| | - Davide Albanese
- Fondazione Edmund Mach, Computational Biology Unit, Research and Innovation Centre, Via E. Mach 1, S. Michele all'Adige, TN, 38010, Italy
| | - Sohail Yousaf
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, TN, 38010, Italy.,Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Michael Pancher
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, TN, 38010, Italy
| | - Claudio Donati
- Fondazione Edmund Mach, Computational Biology Unit, Research and Innovation Centre, Via E. Mach 1, S. Michele all'Adige, TN, 38010, Italy
| | - Ilaria Pertot
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, TN, 38010, Italy
| |
Collapse
|
156
|
Belda I, Zarraonaindia I, Perisin M, Palacios A, Acedo A. From Vineyard Soil to Wine Fermentation: Microbiome Approximations to Explain the " terroir" Concept. Front Microbiol 2017; 8:821. [PMID: 28533770 PMCID: PMC5420814 DOI: 10.3389/fmicb.2017.00821] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 11/13/2022] Open
Abstract
Wine originally emerged as a serendipitous mix of chemistry and biology, where microorganisms played a decisive role. From these ancient fermentations to the current monitored industrial processes, winegrowers and winemakers have been continuously changing their practices according to scientific knowledge and advances. A new enology direction is emerging and aiming to blend the complexity of spontaneous fermentations with industrial safety of monitored fermentations. In this context, wines with distinctive autochthonous peculiarities have a great acceptance among consumers, causing important economic returns. The concept of terroir, far from being a rural term, conceals a wide range of analytical parameters that are the basis of the knowledge-based enology trend. In this sense, the biological aspect of soils has been underestimated for years, when actually it contains a great microbial diversity. This soil-associated microbiota has been described as determinant, not only for the chemistry and nutritional properties of soils, but also for health, yield, and quality of the grapevine. Additionally, recent works describe the soil microbiome as the reservoir of the grapevine associated microbiota, and as a contributor to the final sensory properties of wines. To understand the crucial roles of microorganisms on the entire wine making process, we must understand their ecological niches, population dynamics, and relationships between ‘microbiome- vine health’ and ‘microbiome-wine metabolome.’ These are critical steps for designing precision enology practices. For that purpose, current metagenomic techniques are expanding from laboratories, to the food industry. This review focuses on the current knowledge about vine and wine microbiomes, with emphasis on their biological roles and the technical basis of next-generation sequencing pipelines. An overview of molecular and informatics tools is included and new directions are proposed, highlighting the importance of –omics technologies in wine research and industry.
Collapse
Affiliation(s)
- Ignacio Belda
- Biome Makers Inc., San FranciscoCA, USA.,Department of Microbiology, Biology Faculty, Complutense University of MadridMadrid, Spain
| | - Iratxe Zarraonaindia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque CountryLeioa, Spain.,IKERBASQUE - Basque Foundation for ScienceBilbao, Spain
| | | | - Antonio Palacios
- Biome Makers Inc., San FranciscoCA, USA.,Laboratorios Excell IbericaLogroño, Spain
| | | |
Collapse
|
157
|
Raymond Eder ML, Reynoso C, Lauret SC, Rosa AL. Isolation and Identification of the Indigenous Yeast Population during Spontaneous Fermentation of Isabella ( Vitis labrusca L.) Grape Must. Front Microbiol 2017; 8:532. [PMID: 28424672 PMCID: PMC5372804 DOI: 10.3389/fmicb.2017.00532] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/14/2017] [Indexed: 11/13/2022] Open
Abstract
Grape must harbors a complex community of yeast species responsible for spontaneous alcoholic fermentation. Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, less is known about the diversity and behavior of yeast communities present on fermenting grape must from other species of Vitis. In this work, we used a culture-dependent method to study the identity and dynamics of the indigenous yeast population present during the spontaneous fermentation of Isabella (Vitis labrusca L.) grape must. Alcoholic fermentation was conducted using standard enological practices, and the associated non-Saccharomyces and S. cerevisiae yeast community was analyzed using selective growth media and 5.8-ITS DNA sequencing. Candida californica, Candida hellenica, Starmerella bacillaris (synonym Candida zemplinina), Hanseniaspora uvarum, and Hanseniaspora vineae were the main non-Saccharomyces species identified on Isabella fermenting must. Issatchenkia hanoiensis, a yeast species rarely found on Vitis vinifera L. grapes, was also recognized on Isabella grape must. Candida azymoides, Candida californica and Pichia cecembensis, identified in this work on Isabella fermenting must, have not previously been found on Vitis vinifera L. grape must. Interestingly, C. azymoides, I. hanoiensis and P. cecembensis have recently been isolated from the surface of Vitis labrusca L. grapes from vineyards in the Azores archipelago, suggesting that specific Vitis-yeast species associations are formed independently of geographic origin. We suggest that C. azymoides, C. californica, and P. cecembensis are yeast species preferentially associated with Vitis labrusca L. grapes. Specific biological interactions between grapevines and yeast species may underlie the assembly of differential Vitis-microbial communities.
Collapse
Affiliation(s)
- María L Raymond Eder
- Laboratorio de Genética y Biología Molecular, IRNASUS-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Católica de CórdobaCórdoba, Argentina
| | | | | | - Alberto L Rosa
- Laboratorio de Genética y Biología Molecular, IRNASUS-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Católica de CórdobaCórdoba, Argentina
| |
Collapse
|
158
|
|
159
|
Biogeography of Oenococcus oeni Reveals Distinctive but Nonspecific Populations in Wine-Producing Regions. Appl Environ Microbiol 2017; 83:AEM.02322-16. [PMID: 27864168 DOI: 10.1128/aem.02322-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/10/2016] [Indexed: 01/19/2023] Open
Abstract
Understanding the mechanisms behind the typicity of regional wines inevitably brings attention to microorganisms associated with their production. Oenococcus oeni is the main bacterial species involved in wine and cider making. It develops after the yeast-driven alcoholic fermentation and performs the malolactic fermentation, which improves the taste and aromatic complexity of most wines. Here, we have evaluated the diversity and specificity of O. oeni strains in six regions. A total of 235 wines and ciders were collected during spontaneous malolactic fermentations and used to isolate 3,212 bacterial colonies. They were typed by multilocus variable analysis, which disclosed a total of 514 O. oeni strains. Their phylogenetic relationships were evaluated by a second typing method based on single nucleotide polymorphism (SNP) analysis. Taken together, the results indicate that each region holds a high diversity of strains that constitute a unique population. However, strains present in each region belong to diverse phylogenetic groups, and the same groups can be detected in different regions, indicating that strains are not genetically adapted to regions. In contrast, greater strain identity was seen for cider, white wine, or red wine of Burgundy, suggesting that genetic adaptation to these products occurred. IMPORTANCE This study reports the isolation, genotyping, and geographic distribution analysis of the largest collection of O. oeni strains performed to date. It reveals that there is very high diversity of strains in each region, the majority of them being detected in a single region. The study also reports the development of an SNP genotyping method that is useful for analyzing the distribution of O. oeni phylogroups. The results show that strains are not genetically adapted to regions but to specific types of wines. They reveal new phylogroups of strains, particularly two phylogroups associated with white wines and red wines of Burgundy. Taken together, the results shed light on the diversity and specificity of wild strains of O. oeni, which is crucial for understanding their real contribution to the unique properties of wines.
Collapse
|
160
|
Baselga I, Zafra O, Pérez Lago E, Francisco-Álvarez R, Rodriguez-Tarduchy G, Santos C. An AFLP based method for the detection and identification of indigenous yeast in complex must samples without a microbiological culture. Int J Food Microbiol 2017; 241:89-97. [DOI: 10.1016/j.ijfoodmicro.2016.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
|
161
|
Portugal CB, de Silva AP, Bortoletto AM, Alcarde AR. How native yeasts may influence the chemical profile of the Brazilian spirit, cachaça? Food Res Int 2017; 91:18-25. [DOI: 10.1016/j.foodres.2016.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022]
|
162
|
Morgan SC, Scholl CM, Benson NL, Stone ML, Durall DM. Sulfur dioxide addition at crush alters Saccharomyces cerevisiae strain composition in spontaneous fermentations at two Canadian wineries. Int J Food Microbiol 2016; 244:96-102. [PMID: 28086153 DOI: 10.1016/j.ijfoodmicro.2016.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/08/2016] [Accepted: 12/29/2016] [Indexed: 11/15/2022]
Abstract
During winemaking, sulfur dioxide (SO2) is often added prior to the onset of alcoholic fermentation to prevent the growth of spoilage microorganisms and to create an environment that promotes the rapid colonization of the grape must by Saccharomyces cerevisiae. Most recent research has focused on the impacts of SO2 additions on spoilage microorganisms or on the yeast community at a species level, but less is known about the impacts that SO2 additions have on S. cerevisiae populations. We investigated whether different levels of SO2 addition at crush (0, 20, or 40mg/L SO2) have an effect upon the relative abundance and composition of S. cerevisiae strains conducting spontaneous fermentations of two grape varietals at two commercial wineries. Yeast isolates collected from fermentations were identified to the strain level using microsatellite analysis. Commercial strains made up the majority (64-98%) of the S. cerevisiae strains isolated during fermentation, and most of these commercial strains were used as inoculants by their respective wineries. Different SO2 additions were found to significantly alter S. cerevisiae strain compositions at both wineries (p≤0.002). The results of this study demonstrate that initial SO2 addition significantly alters the S. cerevisiae strain composition in spontaneous fermentations, and highlights the dominance of commercial strains in commercial winery environments. Because different yeast strains are known to produce different chemical and sensory profiles, our findings have important implications for winemakers. In addition, adding different concentrations of SO2 may be a way for winemakers to manage or control the strain composition during spontaneous fermentations.
Collapse
Affiliation(s)
- Sydney C Morgan
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna V1V 1V7, Canada.
| | - Chrystal M Scholl
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna V1V 1V7, Canada
| | - Natasha L Benson
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna V1V 1V7, Canada
| | - Morgan L Stone
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna V1V 1V7, Canada
| | - Daniel M Durall
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna V1V 1V7, Canada
| |
Collapse
|
163
|
De Filippis F, La Storia A, Blaiotta G. Monitoring the mycobiota during Greco di Tufo and Aglianico wine fermentation by 18S rRNA gene sequencing. Food Microbiol 2016; 63:117-122. [PMID: 28040157 DOI: 10.1016/j.fm.2016.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/18/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022]
Abstract
Spontaneous alcoholic fermentation of grape must is a complex process, carried out by indigenous yeast populations arising from the vineyard or the winery environment and therefore representing an autochthonous microbial terroir of the production area. Microbial diversity at species and biotype level is extremely important in order to develop the composite and typical flavour profile of DOCG (Appellation of Controlled and Guaranteed Origin) wines. In this study, we monitored fungal populations involved in spontaneous fermentations of Aglianico and Greco di Tufo grape must by high-throughput sequencing (HTS) of 18S rRNA gene amplicons. We firstly proposed an alternative/addition to ITS as target gene in HTS studies and highlighted consistency between the culture-dependent and -independent approaches. A complex mycobiota was found at the beginning of the fermentation, mainly characterized by non-Saccharomyces yeasts and several moulds, with differences between the two types of grapes. Moreover, Interdelta patterns revealed a succession of several Saccharomyces cerevisiae biotypes and a high genetic diversity within this species.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy.
| | - Antonietta La Storia
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, Division of Grape and Wine Sciences, University of Naples Federico II, Viale Italia, 83100 Avellino, Italy
| |
Collapse
|
164
|
Gayevskiy V, Lee S, Goddard MR. European derived Saccharomyces cerevisiae colonisation of New Zealand vineyards aided by humans. FEMS Yeast Res 2016; 16:fow091. [PMID: 27744274 PMCID: PMC5094284 DOI: 10.1093/femsyr/fow091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 12/16/2022] Open
Abstract
Humans have acted as vectors for species and expanded their ranges since at least the dawn of agriculture. While relatively well characterised for macrofauna and macroflora, the extent and dynamics of human-aided microbial dispersal is poorly described. We studied the role which humans have played in manipulating the distribution of Saccharomyces cerevisiae, one of the world's most important microbes, using whole genome sequencing. We include 52 strains representative of the diversity in New Zealand to the global set of genomes for this species. Phylogenomic approaches show an exclusively European origin of the New Zealand population, with a minimum of 10 founder events mostly taking place over the last 1000 years. Our results show that humans have expanded the range of S. cerevisiae and transported it to New Zealand where it was not previously present, where it has now become established in vineyards, but radiation to native forests appears limited. Genome sequencing shows that humans have unwittingly transported wine yeast to the other side of the planet, where this species has become established in vineyards.
Collapse
Affiliation(s)
- Velimir Gayevskiy
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Soon Lee
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Matthew R Goddard
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand The School of Life Sciences, The University of Lincoln, Lincoln LN6 7DL, UK
| |
Collapse
|
165
|
Banilas G, Sgouros G, Nisiotou A. Development of microsatellite markers for Lachancea thermotolerans typing and population structure of wine-associated isolates. Microbiol Res 2016; 193:1-10. [PMID: 27825476 DOI: 10.1016/j.micres.2016.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 12/20/2022]
Abstract
Lachancea (Kluyveromyces) thermotolerans is an important member of the grape/wine yeast community with great technological potential for the wine industry. Although several molecular marker techniques have been developed for typing different yeast species, no one has been designed so far for L. thermotolerans. Here we present a simple and efficient method based on a multilocus SSR analysis for molecular typing and genetic diversity assessment of L. thermotolerans isolates. Following whole genome screening, five polymorphic microsatellite markers were selected and tested on a panel of grape isolates from different vineyards of two geographically separated viticultural zones, Nemea and Peza, in Greece. The SSR method proved quite discriminatory as compared to tandem repeat-tRNA-PCR, a fingerprinting method for typing non-Saccharomyces yeasts. Genetic analysis based on SSR data revealed a clear structure between the populations of the two zones. Furthermore, significant differences were also detected in a number of phenotypic characters of enological interest. A positive correlation was observed between phenotypic and genotypic diversity. Taking together, present results support the microbial terroir concept in the case of L. thermotolerans in Greece, which is an important prerequisite for the exploitation of selected genotypes as fermentation starters with region-specific characters.
Collapse
Affiliation(s)
- Georgios Banilas
- Department of Enology and Beverage Technology, Technological Educational Institute of Athens, Ag. Spyridonos Street, 12210, Greece
| | - Georgios Sgouros
- Institute of Technology of Agricultural Products, ELGO DEMETER, 1 S. Venizelou Str., Lykovrysi, 14123, Greece; Department of Molecular Biology and Genetics, Democritus University of Thrace Dragana, Alexandroupolis, 68100, Greece
| | - Aspasia Nisiotou
- Institute of Technology of Agricultural Products, ELGO DEMETER, 1 S. Venizelou Str., Lykovrysi, 14123, Greece.
| |
Collapse
|
166
|
Martiniuk JT, Pacheco B, Russell G, Tong S, Backstrom I, Measday V. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery. PLoS One 2016; 11:e0160259. [PMID: 27551920 PMCID: PMC4995015 DOI: 10.1371/journal.pone.0160259] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 07/16/2016] [Indexed: 01/05/2023] Open
Abstract
Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae) yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation methods, commercial strains may dominate spontaneous fermentations. We elucidate the impact of the winery environment and commercial strain use on S. cerevisiae population structure in spontaneous fermentations over two vintages by comparing S. cerevisiae populations in aseptically fermented grapes from a Canadian Pinot Noir vineyard to S. cerevisiae populations in winery-conducted fermentations of grapes from the same vineyard. We also characterize the vineyard-associated S. cerevisiae populations in two other geographically separate Pinot Noir vineyards farmed by the same winery. Winery fermentations were not dominated by commercial strains, but by a diverse number of strains with genotypes similar to commercial strains, suggesting that a population of S. cerevisiae derived from commercial strains is resident in the winery. Commercial and commercial-related yeast were also identified in the three vineyards examined, although at a lower frequency. There is low genetic differentiation and S. cerevisiae population structure between vineyards and between the vineyard and winery that persisted over both vintages, indicating commercial yeast are a driver of S. cerevisiae population structure. We also have evidence of distinct and persistent populations of winery and vineyard-associated S. cerevisiae populations unrelated to commercial strains. This study is the first to characterize S. cerevisiae populations in Canadian vineyards.
Collapse
Affiliation(s)
- Jonathan T. Martiniuk
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Braydon Pacheco
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gordon Russell
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie Tong
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian Backstrom
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivien Measday
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
167
|
Capece A, Granchi L, Guerrini S, Mangani S, Romaniello R, Vincenzini M, Romano P. Diversity of Saccharomyces cerevisiae Strains Isolated from Two Italian Wine-Producing Regions. Front Microbiol 2016; 7:1018. [PMID: 27446054 PMCID: PMC4928102 DOI: 10.3389/fmicb.2016.01018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
Numerous studies, based on different molecular techniques analyzing DNA polymorphism, have provided evidence that indigenous Saccharomyces cerevisiae populations display biogeographic patterns. Since the differentiated populations of S. cerevisiae seem to be responsible for the regional identity of wine, the aim of this work was to assess a possible relationship between the diversity and the geographical origin of indigenous S. cerevisiae isolates from two different Italian wine-producing regions (Tuscany and Basilicata). For this purpose, sixty-three isolates from Aglianico del Vulture grape must (main cultivar in the Basilicata region) and from Sangiovese grape must (main cultivar in the Tuscany region) were characterized genotypically, by mitochondrial DNA restriction analysis and MSP-PCR by using (GTG)5 primers, and phenotypically, by determining technological properties and metabolic compounds of oenological interest after alcoholic fermentation. All the S. cerevisiae isolates from each region were inoculated both in must obtained from Aglianico grape and in must obtained from Sangiovese grape to carry out fermentations at laboratory-scale. Numerical analysis of DNA patterns resulting from both molecular methods and principal component analysis of phenotypic data demonstrated a high diversity among the S. cerevisiae strains. Moreover, a correlation between genotypic and phenotypic groups and geographical origin of the strains was found, supporting the concept that there can be a microbial aspect to terroir. Therefore, exploring the diversity of indigenous S. cerevisiae strains can allow developing tailored strategies to select wine yeast strains better adapted to each viticultural area.
Collapse
Affiliation(s)
- Angela Capece
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, PotenzaItaly
| | - Lisa Granchi
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Simona Guerrini
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Silvia Mangani
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Rossana Romaniello
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, PotenzaItaly
| | - Massimo Vincenzini
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Patrizia Romano
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, PotenzaItaly
| |
Collapse
|
168
|
Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics. mBio 2016; 7:mBio.00631-16. [PMID: 27302757 PMCID: PMC4959672 DOI: 10.1128/mbio.00631-16] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Regionally distinct wine characteristics (terroir) are an important aspect of wine production and consumer appreciation. Microbial activity is an integral part of wine production, and grape and wine microbiota present regionally defined patterns associated with vineyard and climatic conditions, but the degree to which these microbial patterns associate with the chemical composition of wine is unclear. Through a longitudinal survey of over 200 commercial wine fermentations, we demonstrate that both grape microbiota and wine metabolite profiles distinguish viticultural area designations and individual vineyards within Napa and Sonoma Counties, California. Associations among wine microbiota and fermentation characteristics suggest new links between microbiota, fermentation performance, and wine properties. The bacterial and fungal consortia of wine fermentations, composed from vineyard and winery sources, correlate with the chemical composition of the finished wines and predict metabolite abundances in finished wines using machine learning models. The use of postharvest microbiota as an early predictor of wine chemical composition is unprecedented and potentially poses a new paradigm for quality control of agricultural products. These findings add further evidence that microbial activity is associated with wine terroir. Wine production is a multi-billion-dollar global industry for which microbial control and wine chemical composition are crucial aspects of quality. Terroir is an important feature of consumer appreciation and wine culture, but the many factors that contribute to terroir are nebulous. We show that grape and wine microbiota exhibit regional patterns that correlate with wine chemical composition, suggesting that the grape microbiome may influence terroir. In addition to enriching our understanding of how growing region and wine properties interact, this may provide further economic incentive for agricultural and enological practices that maintain regional microbial biodiversity.
Collapse
|
169
|
Cellar-Associated Saccharomyces cerevisiae Population Structure Revealed High-Level Diversity and Perennial Persistence at Sauternes Wine Estates. Appl Environ Microbiol 2016; 82:2909-2918. [PMID: 26969698 DOI: 10.1128/aem.03627-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/02/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Three wine estates (designated A, B, and C) were sampled in Sauternes, a typical appellation of the Bordeaux wine area producing sweet white wine. From those wine estates, 551 yeast strains were collected between 2012 and 2014, added to 102 older strains from 1992 to 2011 from wine estate C. All the strains were analyzed through 15 microsatellite markers, resulting in 503 unique Saccharomyces cerevisiae genotypes, revealing high genetic diversity and a low presence of commercial yeast starters. Population analysis performed using Fst genetic distance or ancestry profiles revealed that the two closest wine estates, B and C, which have juxtaposed vineyard plots and common seasonal staff, share more related isolates with each other than with wine estate A, indicating exchange between estates. The characterization of isolates collected 23 years ago at wine estate C in relation to recent isolates obtained at wine estate B revealed the long-term persistence of isolates. Last, during the 2014 harvest period, a temporal succession of ancestral subpopulations related to the different batches associated with the selective picking of noble rotted grapes was highlighted. IMPORTANCE High genetic diversity of S. cerevisiae isolates from spontaneous fermentation on wine estates in the Sauternes appellation of Bordeaux was revealed. Only 7% of all Sauternes strains were considered genetically related to specific commercial strains. The long-term persistence (over 20 years) of S. cerevisiae profiles on a given wine estate is highlighted.
Collapse
|
170
|
|
171
|
Ludlow CL, Cromie GA, Garmendia-Torres C, Sirr A, Hays M, Field C, Jeffery EW, Fay JC, Dudley AM. Independent Origins of Yeast Associated with Coffee and Cacao Fermentation. Curr Biol 2016; 26:965-71. [PMID: 27020745 DOI: 10.1016/j.cub.2016.02.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 01/01/2023]
Abstract
Modern transportation networks have facilitated the migration and mingling of previously isolated populations of plants, animals, and insects. Human activities can also influence the global distribution of microorganisms. The best-understood example is yeasts associated with winemaking. Humans began making wine in the Middle East over 9,000 years ago [1, 2]. Selecting favorable fermentation products created specialized strains of Saccharomyces cerevisiae [3, 4] that were transported along with grapevines. Today, S. cerevisiae strains residing in vineyards around the world are genetically similar, and their population structure suggests a common origin that followed the path of human migration [3-7]. Like wine, coffee and cacao depend on microbial fermentation [8, 9] and have been globally dispersed by humans. Theobroma cacao originated in the Amazon and Orinoco basins of Colombia and Venezuela [10], was cultivated in Central America by Mesoamerican peoples, and was introduced to Europeans by Hernán Cortés in 1530 [11]. Coffea, native to Ethiopia, was disseminated by Arab traders throughout the Middle East and North Africa in the 6(th) century and was introduced to European consumers in the 17(th) century [12]. Here, we tested whether the yeasts associated with coffee and cacao are genetically similar, crop-specific populations or genetically diverse, geography-specific populations. Our results uncovered populations that, while defined by niche and geography, also bear signatures of admixture between major populations in events independent of the transport of the plants. Thus, human-associated fermentation and migration may have affected the distribution of yeast involved in the production of coffee and chocolate.
Collapse
Affiliation(s)
| | - Gareth A Cromie
- Pacific Northwest Diabetes Research Institute, Seattle, WA 98122, USA
| | | | - Amy Sirr
- Pacific Northwest Diabetes Research Institute, Seattle, WA 98122, USA
| | - Michelle Hays
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | | - Eric W Jeffery
- Pacific Northwest Diabetes Research Institute, Seattle, WA 98122, USA
| | - Justin C Fay
- Department of Genetics, Washington University, St. Louis, MO 63110, USA; Center for Genome Sciences and Systems Biology, Washington University, St. Louis, MO 63110, USA
| | - Aimée M Dudley
- Pacific Northwest Diabetes Research Institute, Seattle, WA 98122, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
172
|
Dashko S, Liu P, Volk H, Butinar L, Piškur J, Fay JC. Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations. Front Microbiol 2016; 7:215. [PMID: 26941733 PMCID: PMC4764737 DOI: 10.3389/fmicb.2016.00215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/09/2016] [Indexed: 11/23/2022] Open
Abstract
Saccharomyces cerevisiae and its sibling species Saccharomyces paradoxus are known to inhabit temperate arboreal habitats across the globe. Despite their sympatric distribution in the wild, S. cerevisiae is predominantly associated with human fermentations. The apparent ecological differentiation of these species is particularly striking in Europe where S. paradoxus is abundant in forests and S. cerevisiae is abundant in vineyards. However, ecological differences may be confounded with geographic differences in species abundance. To compare the distribution and abundance of these two species we isolated Saccharomyces strains from over 1200 samples taken from vineyard and forest habitats in Slovenia. We isolated numerous strains of S. cerevisiae and S. paradoxus, as well as a small number of Saccharomyces kudriavzevii strains, from both vineyard and forest environments. We find S. cerevisiae less abundant than S. paradoxus on oak trees both within and outside the vineyard, but more abundant on grapevines and associated substrates. Analysis of the uncultured microbiome shows, that both S. cerevisiae and S. paradoxus are rare species in soil and bark samples, but can be much more common in grape must. In contrast to S. paradoxus, European strains of S. cerevisiae have acquired multiple traits thought to be important for life in the vineyard and dominance of wine fermentations. We conclude, that S. cerevisiae and S. paradoxus currently share both vineyard and non-vineyard habitats in Slovenia and we discuss factors relevant to their global distribution and relative abundance.
Collapse
Affiliation(s)
- Sofia Dashko
- Wine Research Center, University of Nova GoricaVipava, Slovenia; Department of Biology, Lund UniversityLund, Sweden
| | - Ping Liu
- Department of Genetics and Center for Genome Sciences and System Biology, Washington University St. Louis, MO, USA
| | - Helena Volk
- Wine Research Center, University of Nova Gorica Vipava, Slovenia
| | - Lorena Butinar
- Wine Research Center, University of Nova Gorica Vipava, Slovenia
| | - Jure Piškur
- Wine Research Center, University of Nova GoricaVipava, Slovenia; Department of Biology, Lund UniversityLund, Sweden
| | - Justin C Fay
- Department of Genetics and Center for Genome Sciences and System Biology, Washington University St. Louis, MO, USA
| |
Collapse
|
173
|
Bokulich NA, Lewis ZT, Boundy-Mills K, Mills DA. A new perspective on microbial landscapes within food production. Curr Opin Biotechnol 2016; 37:182-189. [PMID: 26773388 PMCID: PMC4913695 DOI: 10.1016/j.copbio.2015.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023]
Abstract
High-throughput, 'next-generation' sequencing tools offer many exciting new possibilities for food research. From investigating microbial dynamics within food fermentations to the ecosystem of the food-processing built environment, amplicon sequencing, metagenomics, and transcriptomics present novel applications for exploring microbial communities in, on, and around our foods. This review discusses the many uses of these tools for food-related and food facility-related research and highlights where they may yield nuanced insight into the microbial world of food production systems.
Collapse
Affiliation(s)
- Nicholas A Bokulich
- Department of Viticulture and Enology, University of California, Davis, CA 95616,United States; Department of Food Science and Technology, University of California, Davis, CA 95616,United States; Foods for Health Institute, University of California, Davis, CA 95616, United States
| | - Zachery T Lewis
- Department of Food Science and Technology, University of California, Davis, CA 95616,United States; Foods for Health Institute, University of California, Davis, CA 95616, United States
| | - Kyria Boundy-Mills
- Department of Food Science and Technology, University of California, Davis, CA 95616,United States
| | - David A Mills
- Department of Viticulture and Enology, University of California, Davis, CA 95616,United States; Department of Food Science and Technology, University of California, Davis, CA 95616,United States; Foods for Health Institute, University of California, Davis, CA 95616, United States.
| |
Collapse
|
174
|
Stefanini I, Albanese D, Cavazza A, Franciosi E, De Filippo C, Donati C, Cavalieri D. Dynamic changes in microbiota and mycobiota during spontaneous 'Vino Santo Trentino' fermentation. Microb Biotechnol 2016; 9:195-208. [PMID: 26780037 PMCID: PMC4767281 DOI: 10.1111/1751-7915.12337] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 02/03/2023] Open
Abstract
Vino Santo is a sweet wine produced from late harvesting and pressing of Nosiola grapes in a small, well-defined geographical area in the Italian Alps. We used metagenomics to characterize the dynamics of microbial communities in the products of three wineries, resulting from spontaneous fermentation with almost the same timing and procedure. Comparing fermentation dynamics and grape microbial composition, we show a rapid increase in a small number of wine yeast species, with a parallel decrease in complexity. Despite the application of similar protocols, slight changes in the procedures led to significant differences in the microbiota in the three cases of fermentation: (i) fungal content of the must varied significantly in the different wineries, (ii) Pichia membranifaciens persisted in only one of the wineries, (iii) one fermentation was characterized by the balanced presence of Saccharomyces cerevisiae and Hanseniaspora osmophila during the later phases. We suggest the existence of a highly winery-specific 'microbial-terroir' contributing significantly to the final product rather than a regional 'terroir'. Analysis of changes in abundance during fermentation showed evident correlations between different species, suggesting that fermentation is the result of a continuum of interaction between different species and physical-chemical parameters.
Collapse
Affiliation(s)
- Irene Stefanini
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Davide Albanese
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Agostino Cavazza
- Food Quality Nutrition & Health Department, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Elena Franciosi
- Food Quality Nutrition & Health Department, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Carlotta De Filippo
- Food Quality Nutrition & Health Department, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy.,Institute of Biometeorology - IBIMET, National Research Council, Florence, Italy
| | - Claudio Donati
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Duccio Cavalieri
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy.,Institute of Biometeorology - IBIMET, National Research Council, Florence, Italy.,Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
175
|
Silva GAD, Agustini BC, Mello LMRD, Tonietto J. Autochthonous yeast populations from different brazilian geographic indications. BIO WEB OF CONFERENCES 2016. [DOI: 10.1051/bioconf/20160702030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
176
|
|