151
|
Zhou Y, Hu J, Zhou J, Zeng Z, Cao Y, Wang Z, Chen C, Zheng C, Chen H, Lu H. Three-dimensional characterization of the microstructure in rabbit patella-patellar tendon interface using propagation phase-contrast synchrotron radiation microtomography. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1833-1840. [PMID: 30407196 DOI: 10.1107/s160057751801353x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Understanding the three-dimensional ultrastructure morphology of tendon-to-bone interface may allow the development of effective therapeutic interventions for enhanced interface healing. This study aims to assess the feasibility of propagation phase-contrast synchrotron radiation microtomography (PPC-SRµCT) for three-dimensional characterization of the microstructure in rabbit patella-patellar tendon interface (PPTI). Based on phase retrieval for PPC-SRµCT imaging, this technique is capable of visualizing the three-dimensional internal architecture of PPTI at a cellular high spatial resolution including bone and tendon, especially the chondrocytes lacuna at the fibrocartilage layer. The features on the PPC-SRµCT image of the PPTI are similar to those of a histological section using Safranin-O staining/fast green staining. The three-dimensional microstructure in the rabbit patella-patellar tendon interface and the spatial distributions of the chondrocytes lacuna and their quantification volumetric data are displayed. Furthermore, a color-coding map differentiating cell lacuna in terms of connecting beads is presented after the chondrocytes cell lacuna was extracted. This provides a more in-depth insight into the microstructure of the PPTI on a new scale, particularly the cell lacuna arrangement at the fibrocartilage layer. PPC-SRµCT techniques provide important complementary information to the conventional histological method for characterizing the microstructure of the PPTI, and may facilitate in investigations of the repair mechanism of the PPTI after injury and in evaluating the efficacy of a different therapy.
Collapse
Affiliation(s)
- Yongchun Zhou
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Jingyong Zhou
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Ziteng Zeng
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zhanwen Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Can Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Cheng Zheng
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Huabin Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
152
|
Pożarowszczyk B, Gołaś A, Chen A, Zając A, Kawczyński A. The Impact of Post Activation Potentiation on Achilles Tendon Stiffness, Elasticity and Thickness among Basketball Players. Sports (Basel) 2018; 6:117. [PMID: 30321992 PMCID: PMC6315499 DOI: 10.3390/sports6040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/24/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study is to examine and further understand the effects of post activation potentiation on Achilles tendon (AT) thickness, elasticity and stiffness among basketball players. Basketball is one of the world's most popular and widely viewed sports. One of the main factors which athletes depend on during their performance is elastic energy coming straight from the AT. Contractile activity increases the muscular force and is known in science as post activation potentiation (PAP). Twelve basketball players (aged 21.3 ± 2.1 years) from the first Polish league took part in this study. The PAP session consisted of single repetitions of the squat with loads corresponding to 60%, 70%, 80%, 90% and 100% of 1 repetition maximum (RM). The measurement method for AT thickness was ultrasonography and for the elasticity and stiffness was myotonometry. The measurements were taken before and immediately after PAP training session. Obtained results: AT stiffness increased significantly from the baseline post exercise, while AT thickness and elasticity decreased after the physical effort. The exercise in PAP caused significant changes in stiffness, elasticity and thickness of the AT.
Collapse
Affiliation(s)
- Beata Pożarowszczyk
- Department of Paralympics Sports, University School of Physical Education, 51-612 Wrocław, Poland.
| | - Artur Gołaś
- Department of Sports Training, The Jerzy Kukuczka Academy School of Physical Education, 40-001 Katowice, Poland.
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou 225009, China,
| | - Adam Zając
- Department of Sports Training, The Jerzy Kukuczka Academy School of Physical Education, 40-001 Katowice, Poland.
| | - Adam Kawczyński
- Department of Paralympics Sports, University School of Physical Education, 51-612 Wrocław, Poland.
| |
Collapse
|
153
|
Abstract
In the last few decades, several techniques have been used to optimize tendon, ligament, and musculoskeletal healing. The evidence in favor of these techniques is still not proven, and level I studies are lacking. We performed an analysis of the therapeutic strategies and tissue engineering projects recently published in this field. Here, we try to give an insight into the current status of cell therapies and the latest techniques of bioengineering applied to the field of orthopedic surgery. The future areas for research in the management of musculoskeletal injuries are outlined. There are emerging technologies developing into substantial clinical treatment options that need to be critically evaluated. Mechanical stimulation of the constructs reproduces a more propitious environment for effective healing.
Collapse
|
154
|
Abstract
A retro-odontoid pseudotumor is an uncommon non-neoplastic mass. They are mostly associated with rheumatoid arthritis and atlanto-axial subluxation. The pathogenesis is degeneration of the transverse ligament due to chronic mechanical stress. In this case report, an atlanto-occipital assimilation altered the biomechanics of the cervical spine, causing chronic mechanical stress on the transverse ligament and subsequently the development of a retro-odontoid pseudotumor. This is in accordance with previous studies that have attributed the development of retro-odontoid pseudotumor to a loss of mobility of the cervical spine, in cases without associated rheumatoid arthritis or atlanto-axial subluxation.
Collapse
|
155
|
Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biol 2018; 71-72:51-69. [PMID: 29803938 PMCID: PMC6146013 DOI: 10.1016/j.matbio.2018.05.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
Abstract
Hyaline cartilages, fibrocartilages and elastic cartilages play multiple roles in the human body including bearing loads in articular joints and intervertebral discs, providing joint lubrication, forming the external ears and nose, supporting the trachea, and forming the long bones during development and growth. The structure and organization of cartilage's extracellular matrix (ECM) are the primary determinants of normal function. Most diseases involving cartilage lead to dramatic changes in the ECM which can govern disease progression (e.g., in osteoarthritis), cause the main symptoms of the disease (e.g., dwarfism caused by genetically inherited mutations) or occur as collateral damage in pathological processes occurring in other nearby tissues (e.g., osteochondritis dissecans and inflammatory arthropathies). Challenges associated with cartilage diseases include poor understanding of the etiology and pathogenesis, delayed diagnoses due to the aneural nature of the tissue and drug delivery challenges due to the avascular nature of adult cartilages. This narrative review provides an overview of the clinical and pathological features as well as current treatment options available for various cartilage diseases. Late breaking advances are also described in the quest for development and delivery of effective disease modifying drugs for cartilage diseases including osteoarthritis, the most common form of arthritis that affects hundreds of millions of people worldwide.
Collapse
Affiliation(s)
- Yamini Krishnan
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
156
|
Vera MC, Abdala V, Aráoz E, Ponssa ML. Movement and joints: effects of overuse on anuran knee tissues. PeerJ 2018; 6:e5546. [PMID: 30186699 PMCID: PMC6120441 DOI: 10.7717/peerj.5546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/07/2018] [Indexed: 11/22/2022] Open
Abstract
Movement plays a main role in the correct development of joint tissues. In tetrapods, changes in normal movements produce alterations of such tissues during the ontogeny and in adult stages. The knee-joint is ideal for observing the influence of movement disorders, due to biomechanical properties of its components, which are involved in load transmission. We analyze the reaction of knee tissues under extreme exercise in juveniles and adults of five species of anurans with different locomotor modes. We use anurans as the case study because they undergo great mechanical stress during locomotion. We predicted that (a) knee tissues subjected to overuse will suffer a structural disorganization process; (b) adults will experience deeper morphological changes than juveniles; and (c) morphological changes will be higher in jumpers compared to walkers. To address these questions, we stimulated specimens on a treadmill belt during 2 months. We performed histological analyses of the knee of both treated and control specimens. As we expected, overuse caused structural changes in knee tissues. These alterations were gradual and higher in adults, and similar between jumpers and walkers species. This study represents a first approach to the understanding of the dynamics of anuran knee tissues during the ontogeny, and in relation to locomotion. Interestingly, the alterations found were similar to those observed in anurans subjected to reduced mobility and also to those described in joint diseases (i.e., osteoarthritis and tendinosis) in mammals, suggesting that among tetrapods, changes in movement generate similar responses in the tissues involved.
Collapse
Affiliation(s)
- Miriam Corina Vera
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical (IBN), UNT-CONICET, San Miguel de Tucumán, Argentina
| | - Ezequiel Aráoz
- Instituto de Ecología Regional, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina
| | - María Laura Ponssa
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
| |
Collapse
|
157
|
Lin B, Srikanth P, Castle AC, Nigwekar S, Malhotra R, Galloway JL, Sykes DB, Rajagopal J. Modulating Cell Fate as a Therapeutic Strategy. Cell Stem Cell 2018; 23:329-341. [PMID: 29910150 PMCID: PMC6128730 DOI: 10.1016/j.stem.2018.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In injured tissues, regeneration is often associated with cell fate plasticity, in that cells deviate from their normal lineage paths. It is becoming increasingly clear that this plasticity often creates alternative strategies to restore damaged or lost cells. Alternatively, cell fate plasticity is also part and parcel of pathologic tissue transformations that accompany disease. In this Perspective, we summarize a few illustrative examples of physiologic and aberrant cellular plasticity. Then, we speculate on how one could enhance endogenous plasticity to promote regeneration and reverse pathologic plasticity, perhaps inspiring interest in a new class of therapies targeting cell fate modulation.
Collapse
Affiliation(s)
- Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Priya Srikanth
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alison C Castle
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sagar Nigwekar
- Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rajeev Malhotra
- Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, MA 02114, USA.
| |
Collapse
|
158
|
Abstract
Ligaments serve as compliant connectors between hard tissues. In that role, they function under various load regimes and directions. The 3D structure of ligaments is considered to form as a uniform entity that changes due to function. The periodontal ligament (PDL) connects the tooth to the bone and sustains different types of loads in various directions. Using the PDL as a model, employing a fabricated motorized setup in a microCT, we demonstrate that the fibrous network structure within the PDL is not uniform, even before the tooth becomes functional. Utilizing morphological automated segmentation methods, directionality analysis, as well as second harmonic generation imaging, we find high correlation between blood vessel distribution and fiber density. We also show a structural feature in a form of a dense collar around the neck of the tooth as well as a preferred direction of the fibrous network. Finally, we show that the PDL develops as a nonuniform structure, with an architecture designed to sustain specific types of load in designated areas. Based on these findings, we propose that ligaments in general should be regarded as nonuniform entities, structured already at developmental stages for optimal functioning under variable load regimes.
Collapse
|
159
|
Abstract
OBJECTIVE The aim of this study was to describe cuboid pulley lesions and associated abnormalities on the basis of clinical findings and the results of MRI examinations of the ankle. MATERIALS AND METHODS A retrospective search was performed to identify patients who had a cuboid pulley lesion during a 10-year period. A cuboid pulley lesion was defined as bone marrow edema in the lateroplantar ridge of the cuboid that was shown to be wrapped by the peroneus longus tendon on MRI of the ankle. A total of 19 patients (11 men and eight women; mean age, 45.4 years) were included in the group of patients with a cuboid pulley lesion, and 38 age-and sex-matched patients without a cuboid pulley lesion were randomly selected as the control group. We reviewed medical records and assessed MRI findings that could be associated with a cuboid pulley lesion. RESULTS The mean (± SD) diameter of the cuboid pulley lesion was 8.9 ± 4.7 mm. Cuboid pulley lesions were associated with peroneal tenosynovitis (p < 0.001), Achilles enthesitis (p = 0.004), and a clinical diagnosis of inflammatory arthritis (p < 0.001). Eleven of the 19 patients in the group with cuboid pulley lesions had inflammatory arthritis (either rheumatoid arthritis [n = 7] or spondyloarthritis [n = 4]). The cuboid pulley lesions did not cause localized lateral foot pain and tenderness, except in one patient who had an accompanying stress fracture of the cuboid. CONCLUSION MRI of the ankle rarely but clearly shows cuboid pulley lesions, which themselves are not likely to cause localized pain, and cuboid pulley lesions show significant associations with peroneal tenosynovitis, Achilles enthesitis, and clinically diagnosed inflammatory arthritis.
Collapse
|
160
|
Bi C, Thoreson AR, Zhao C. The effects of lyophilization on flexural stiffness of extrasynovial and intrasynovial tendon. J Biomech 2018; 76:229-234. [PMID: 29935733 DOI: 10.1016/j.jbiomech.2018.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/30/2018] [Accepted: 06/09/2018] [Indexed: 11/28/2022]
Abstract
Tendon or ligament reconstructions often use autologous or allogenic tendons from either extrasynovial or intrasynovial sources. Allograft tendons must be lyophilized for preservation before transplantation, a process which can impact mechanical properties of the graft. Reconstituted graft properties that are similar to native tendon are desirable. Although tensile and compressive properties of tendons have been investigated, there is a paucity of information describing flexural properties of tendon, which can impact the gliding resistance. This study aims to design a testing method to quantify tendon flexural modulus, and investigate the effects of lyophilization/rehydration procedures on tendon flexibility. A total of 20 peroneus longus tendons (extrasynovial) and 20 flexor digitorum profundus tendons (intrasynovial) were collected. Ten of each tendon were processed with 5 freeze-thaw cycles followed by lyophilization and rehydration with saline solution (0.9%). Bend testing was conducted on tendons to quantify the flexural modulus with and without processing. As canine FDP tendons contain fibrous and fibrocartilaginous tissue regions, the flexural moduli were measured in both regions. Flexural modulus of rehydrated, lyophilized extrasynovial PL tendon was significantly lower than that of similarly processed intrasynovial FDP tendon (p < 0.001). Flexural moduli of both the fibrocartilaginous and non-fibrocartilaginous regions of intrasynovial tendon significantly increased after lyophilization (p < 0.001). The flexural modulus of the fibrocartilaginous region was significantly higher than that of the non-fibrocartilaginous region in intrasynovial tendon (p < 0.001). Lyophilization significantly increases the flexural modulus of extrasynovial and intrasynovial tendons, and flexural modulus differs significantly between these two tendon types. Increases in stiffness caused by lyophilization may impact the mechanical performance of the allograft in vivo.
Collapse
Affiliation(s)
- Chun Bi
- Soft Tissue Biology and Biomechanics Laboratory, Division of Orthopedic Research, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Orthopaedic Traumatology, Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 650 Xin Songjiang Road, Shanghai 201620, China
| | - Andrew R Thoreson
- Materials and Structural Testing Core Laboratory, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA
| | - Chunfeng Zhao
- Soft Tissue Biology and Biomechanics Laboratory, Division of Orthopedic Research, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
161
|
Abstract
The fabella is a sesamoid bone that is embedded in the lateral head of the gastrocnemius muscle and often articulates directly with the lateral femoral condyle. It is present in 10-30% of the general population with a higher incidence in Asians. The fabella can lead to various pathologies such as fabella pain syndrome and common fibular nerve palsy. Conservative treatment involves physical therapy or injecting local anesthetics or steroids around this bone. However, if symptoms persist, then a fabellectomy can be performed. Physicians should be aware of the fabella bone and the multiple pathologies associated with it in order to provide the best treatment and management for patients.
Collapse
Affiliation(s)
| | | | | | - R Shane Tubbs
- Neurosurgery, Seattle Science Foundation, Seattle, USA
| |
Collapse
|
162
|
Mediolateral Differences of Proteoglycans Distribution at the ACL Tibial Footprint: Experimental Study of 16 Cadaveric Knees. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3762580. [PMID: 29850508 PMCID: PMC5911328 DOI: 10.1155/2018/3762580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/17/2018] [Accepted: 02/27/2018] [Indexed: 01/19/2023]
Abstract
This study aimed to identify the staining pattern of ACL attachment blended with cartilage of the medial tibial plateau at the tibial insertion and histologically characterize the tibial footprint. Sixteen fresh frozen cadaveric knees (mean age: 52.0 ± 6.2 years) were used for this study. The specimens were bisected in the coronal plane, in accordance with the fiber orientation of the ACL tibial attachment. Adjacent sections were then stained with hematoxylin and eosin (H&E) to observe the morphology of the ACL insertion and with fast green and Safranin-O protocols to evaluate for collagen and proteoglycans (PG). The insertion area on the tibial footprint was divided into five zones in the medial to lateral direction, which was determined by division of the section from most prominent medial tibial spine to most lateral margin of ACL attachment. Then rectangular area with a vertical length that is twice the width of respective five zones was set. Stained areas of all images were quantified positively by using ImageJ software, and the value for staining area measured was defined in percentage by multiplying whole image area by 100. The mean proportion of Safranin-O staining is significantly greater nearer to the medial tibial spine (59% in zone 1, 32% in zone 2, 13% in zone 3, 13% in zone 4, and 4% in zone 5, P < 0.001). The medial section of the tibial insertion area grew in size and increased in PG staining with more densely organized collagen arrangement with more fibrocartilage cells. The ACL tibial insertion showed a medially eccentric staining pattern by histological evaluation of the ACL attachment to cartilage. Our histological results of the eccentric biomaterial property in the medial tibial spine of ACL insertion area can be considered in making a more functional anatomic tibial tunnel placement.
Collapse
|
163
|
Rahman H, Currier E, Johnson M, Goding R, Johnson AW, Kersh ME. Primary and Secondary Consequences of Rotator Cuff Injury on Joint Stabilizing Tissues in the Shoulder. J Biomech Eng 2018; 139:2654666. [PMID: 28916837 DOI: 10.1115/1.4037917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Indexed: 01/08/2023]
Abstract
Rotator cuff tears (RCTs) are one of the primary causes of shoulder pain and dysfunction in the upper extremity accounting over 4.5 million physician visits per year with 250,000 rotator cuff repairs being performed annually in the U.S. While the tear is often considered an injury to a specific tendon/tendons and consequently treated as such, there are secondary effects of RCTs that may have significant consequences for shoulder function. Specifically, RCTs have been shown to affect the joint cartilage, bone, the ligaments, as well as the remaining intact tendons of the shoulder joint. Injuries associated with the upper extremities account for the largest percent of workplace injuries. Unfortunately, the variable success rate related to RCTs motivates the need for a better understanding of the biomechanical consequences associated with the shoulder injuries. Understanding the timing of the injury and the secondary anatomic consequences that are likely to have occurred are also of great importance in treatment planning because the approach to the treatment algorithm is influenced by the functional and anatomic state of the rotator cuff and the shoulder complex in general. In this review, we summarized the contribution of RCTs to joint stability in terms of both primary (injured tendon) and secondary (remaining tissues) consequences including anatomic changes in the tissues surrounding the affected tendon/tendons. The mechanical basis of normal shoulder joint function depends on the balance between active muscle forces and passive stabilization from the joint surfaces, capsular ligaments, and labrum. Evaluating the role of all tissues working together as a system for maintaining joint stability during function is important to understand the effects of RCT, specifically in the working population, and may provide insight into root causes of shoulder injury.
Collapse
Affiliation(s)
- Hafizur Rahman
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 e-mail:
| | - Eric Currier
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 e-mail:
| | - Marshall Johnson
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 e-mail:
| | - Rick Goding
- Department of Orthopaedic, Joint Preservation Institute of Iowa, West Des Moines, IA 50266 e-mail:
| | - Amy Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 e-mail:
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 e-mail:
| |
Collapse
|
164
|
Ker DFE, Wang D, Behn AW, Wang ETH, Zhang X, Zhou BY, Mercado-Pagán ÁE, Kim S, Kleimeyer J, Gharaibeh B, Shanjani Y, Nelson D, Safran M, Cheung E, Campbell P, Yang YP. Functionally Graded, Bone- and Tendon-Like Polyurethane for Rotator Cuff Repair. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1707107. [PMID: 29785178 PMCID: PMC5959293 DOI: 10.1002/adfm.201707107] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 05/25/2023]
Abstract
Critical considerations in engineering biomaterials for rotator cuff repair include bone-tendon-like mechanical properties to support physiological loading and biophysicochemical attributes that stabilize the repair site over the long-term. In this study, UV-crosslinkable polyurethane based on quadrol (Q), hexamethylene diisocyante (H), and methacrylic anhydride (M; QHM polymers), which are free of solvent, catalyst, and photoinitiator, is developed. Mechanical characterization studies demonstrate that QHM polymers possesses phototunable bone- and tendon-like tensile and compressive properties (12-74 MPa tensile strength, 0.6-2.7 GPa tensile modulus, 58-121 MPa compressive strength, and 1.5-3.0 GPa compressive modulus), including the capability to withstand 10 000 cycles of physiological tensile loading and reduce stress concentrations via stiffness gradients. Biophysicochemical studies demonstrate that QHM polymers have clinically favorable attributes vital to rotator cuff repair stability, including slow degradation profiles (5-30% mass loss after 8 weeks) with little-to-no cytotoxicity in vitro, exceptional suture retention ex vivo (2.79-3.56-fold less suture migration relative to a clinically available graft), and competent tensile properties (similar ultimate load but higher normalized tensile stiffness relative to a clinically available graft) as well as good biocompatibility for augmenting rat supraspinatus tendon repair in vivo. This work demonstrates functionally graded, bone-tendon-like biomaterials for interfacial tissue engineering.
Collapse
Affiliation(s)
- Dai Fei Elmer Ker
- Department of Orthopaedic Surgery Stanford University 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Dan Wang
- Department of Orthopaedic Surgery Stanford University 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Anthony William Behn
- Department of Orthopaedic Surgery Stanford University 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Evelyna Tsi Hsin Wang
- Department of Material Science and Engineering Stanford University 496 Lomita Mall, Stanford, CA 94305, USA
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong New Territories, Hong Kong SAR
| | - Benjamin Yamin Zhou
- Department of Mathematics Stanford University Building 380, Sloan Mathematical Center, Stanford, CA 94305, USA
| | | | - Sungwoo Kim
- Department of Orthopaedic Surgery Stanford University 300 Pasteur Drive, Stanford, CA 94305, USA
| | - John Kleimeyer
- Department of Orthopaedic Surgery Stanford University 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Burhan Gharaibeh
- Department of Biological Sciences University of Pittsburgh 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Yaser Shanjani
- Department of Orthopaedic Surgery Stanford University 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Drew Nelson
- Department of Mechanical Engineering Stanford University 440 Escondido Mall, Stanford, CA 94305, USA
| | - Marc Safran
- Department of Orthopaedic Surgery Stanford University 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Emilie Cheung
- Department of Orthopaedic Surgery Stanford University 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Phil Campbell
- Engineering Research Accelerator Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery Stanford University 300 Pasteur Drive, Stanford, CA 94305, USA
| |
Collapse
|
165
|
Castelucci BG, Consonni SR, Rosa VS, Sensiate LA, Delatti PCR, Alvares LE, Joazeiro PP. Time-dependent regulation of morphological changes and cartilage differentiation markers in the mouse pubic symphysis during pregnancy and postpartum recovery. PLoS One 2018; 13:e0195304. [PMID: 29621303 PMCID: PMC5886480 DOI: 10.1371/journal.pone.0195304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/20/2018] [Indexed: 02/02/2023] Open
Abstract
Animal models commonly serve as a bridge between in vitro experiments and clinical applications; however, few physiological processes in adult animals are sufficient to serve as proof-of-concept models for cartilage regeneration. Intriguingly, some rodents, such as young adult mice, undergo physiological connective tissue modifications to birth canal elements such as the pubic symphysis during pregnancy; therefore, we investigated whether the differential expression of cartilage differentiation markers is associated with cartilaginous tissue morphological modifications during these changes. Our results showed that osteochondral progenitor cells expressing Runx2, Sox9, Col2a1 and Dcx at the non-pregnant pubic symphysis proliferated and differentiated throughout pregnancy, giving rise to a complex osteoligamentous junction that attached the interpubic ligament to the pubic bones until labour occurred. After delivery, the recovery of pubic symphysis cartilaginous tissues was improved by the time-dependent expression of these chondrocytic lineage markers at the osteoligamentous junction. This process potentially recapitulates embryologic chondrocytic differentiation to successfully recover hyaline cartilaginous pads at 10 days postpartum. Therefore, we propose that this physiological phenomenon represents a proof-of-concept model for investigating the mechanisms involved in cartilage restoration in adult animals.
Collapse
Affiliation(s)
- Bianca Gazieri Castelucci
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- * E-mail: (BGC); (SRC); (PPJ)
| | - Sílvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- * E-mail: (BGC); (SRC); (PPJ)
| | - Viviane Souza Rosa
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucimara Aparecida Sensiate
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Paula Cristina Rugno Delatti
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Paulo Pinto Joazeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- * E-mail: (BGC); (SRC); (PPJ)
| |
Collapse
|
166
|
Jensen PT, Lambertsen KL, Frich LH. Assembly, maturation, and degradation of the supraspinatus enthesis. J Shoulder Elbow Surg 2018; 27:739-750. [PMID: 29329904 DOI: 10.1016/j.jse.2017.10.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 02/01/2023]
Abstract
The development of the rotator cuff enthesis is still poorly understood. The processes in the early and late developmental steps are gradually elucidated, but it is still unclear how cell activities are coordinated during development and maturation of the structured enthesis. This review summarizes current knowledge about development and age-related degradation of the supraspinatus enthesis. Healing and repair of an injured and degenerated supraspinatus enthesis also remain a challenge, as the original graded transitional tissue of the fibrocartilaginous insertion is not re-created after the tendon is surgically reattached to bone. Instead, mechanically inferior and disorganized tissue forms at the healing site because of scar tissue formation. Consequently, the enthesis never reaches mechanical properties comparable to those of the native enthesis. So far, no novel biologic healing approach has been successful in enhancing healing of the injured enthesis. The results revealed in this review imply the need for further research to pave the way for better treatment of patients with rotator cuff disorder.
Collapse
Affiliation(s)
- Peter T Jensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kate L Lambertsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars H Frich
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Orthopaedics and Traumatology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
167
|
Kharaz YA, Canty-Laird EG, Tew SR, Comerford EJ. Variations in internal structure, composition and protein distribution between intra- and extra-articular knee ligaments and tendons. J Anat 2018; 232:943-955. [PMID: 29498035 PMCID: PMC5978954 DOI: 10.1111/joa.12802] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Tendons and ligaments play key roles in the musculoskeletal system in both man and animals. Both tissues can undergo traumatic injury, age‐related degeneration and chronic disease, causing discomfort, pain and increased susceptibility to wider degenerative joint disease. To date, tendon and ligament ultrastructural biology is relatively under‐studied in healthy, non‐diseased tissues. This information is essential to understand the pathology of these tissues with regard to function‐related injury and to assist with the future development of tissue‐engineered tendon and ligament structures. This study investigated the morphological, compositional and extracellular matrix protein distribution differences between tendons and ligaments around the non‐diseased canine stifle joint. The morphological, structural characteristics of different regions of the periarticular tendons and ligaments (the intra‐articular anterior cruciate ligament, the extra‐articular medial collateral ligament, the positional long digital extensor tendon and energy‐storing superficial digital flexor tendons) were identified using a novel semi‐objective histological scoring analysis and by determining their biochemical composition. Protein distribution of extracellular matrix collagens, proteoglycans and elastic fibre proteins in anterior cruciate ligament and long digital extensor tendon were also determined using immunostaining techniques. The anterior cruciate ligament was found to have significant morphological differences in comparison with the other three tissues, including less compact collagen architecture, differences in cell nuclei phenotype and increased glycosaminoglycan and elastin content. Intra‐ and interobserver differences of histology scoring resulted in an average score 0.7, indicative of good agreement between observers. Statistically significant differences were also found in the extracellular matrix composition in terms of glycosaminoglycan and elastin content, being more prominent in the anterior cruciate ligament than in the other three tissues. A different distribution of several extracellular matrix proteins was also found between long digital extensor tendon and anterior cruciate ligament, with a significantly increased immunostaining of aggrecan and versican in the anterior cruciate ligament. These findings directly relate to the different functions of tendon and ligament and indicate that the intra‐articular anterior cruciate ligament is subjected to more compressive forces, reflecting an adaptive response to normal or increased loads and resulting in different extracellular matrix composition and arrangement to protect the tissue from damage.
Collapse
Affiliation(s)
- Yalda A Kharaz
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.,The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - Simon R Tew
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.,The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - Eithne J Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.,The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK.,Institute of Veterinary Science, University of Liverpool, Neston, UK
| |
Collapse
|
168
|
Open questions on the 3D structures of collagen containing vertebrate mineralized tissues: A perspective. J Struct Biol 2018; 201:187-198. [DOI: 10.1016/j.jsb.2017.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022]
|
169
|
Lee-Barthel A, Lee CA, Vidal MA, Baar K. Localized BMP-4 release improves the enthesis of engineered bone-to-bone ligaments. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- A. Lee-Barthel
- Department of Biomedical Engineering; University of California Davis; Davis CA USA
| | - C. A. Lee
- Department of Orthopaedic Surgery; University of California Davis; Sacramento CA USA
| | - M. A. Vidal
- Department of Surgical and Radiological Sciences; University of California Davis; Davis CA USA
| | - K. Baar
- Department of Neurobiology, Physiology, and Behavior; University of California Davis; Davis CA USA
| |
Collapse
|
170
|
Yammine K. The Relationship Between Digit Independence and Digital Sesamoids in Humans and a Proposal of a New Digital Sesamoid Evolutionary Hypothesis. Anat Rec (Hoboken) 2018; 301:1046-1060. [DOI: 10.1002/ar.23774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 10/29/2017] [Accepted: 11/06/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Kaissar Yammine
- The Foot & Hand Clinic and The Center for Evidence-based Anatomy, Jdeideh Highway; Beirut Lebanon
- Lebanese American University Medical Center-Rizk Hospital; Achrafieh Lebanon
| |
Collapse
|
171
|
Barratt PA, Selfe J. A service evaluation and improvement project: a three year systematic audit cycle of the physiotherapy treatment for Lateral Epicondylalgia. Physiotherapy 2018; 104:209-216. [PMID: 29366541 DOI: 10.1016/j.physio.2017.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To improve outcomes of physiotherapy treatment for patients with Lateral Epicondylalgia. DESIGN A systematic audit and quality improvement project over three phases, each of one year duration. SETTING Salford Royal NHS Foundation Trust Teaching Hospital Musculoskeletal Physiotherapy out-patients department. PARTICIPANTS n=182. INTERVENTIONS Phase one - individual discretion; Phase two - strengthening as a core treatment however individual discretion regarding prescription and implementation; Phase three - standardised protocol using high load isometric exercise, progressing on to slow combined concentric & eccentric strengthening. MAIN OUTCOME MEASURES Global Rating of Change Scale, Pain-free grip strength, Patient Rated Tennis Elbow Evaluation, Tampa Scale of Kinesophobia-11. RESULTS Phase three demonstrated a reduction in the average number of treatments by 42% whilst improving the number of responders to treatment by 8% compared to phase one. Complete cessation of non-evidence based treatments was also observed by phase three. CONCLUSIONS Strengthening should be a core treatment for LE. Load setting needs to be sufficient. In phase three of the audit a standardised tendon loading programme using patient specific high load isometric exercises into discomfort/pain demonstrated a higher percentage of responders compared to previous phases.
Collapse
Affiliation(s)
- Paul A Barratt
- Physiotherapy Department, Salford Royal Foundation Trust, Stott Lane, Salford, M6 8HD, United Kingdom.
| | - James Selfe
- Department of Health Professions, Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Brooks Building, Birley, 53 Bonsall Street, Manchester, M15 6GX, United Kingdom
| |
Collapse
|
172
|
Pöschke A, Krähling B, Failing K, Staszyk C. Molecular Characteristics of the Equine Periodontal Ligament. Front Vet Sci 2018; 4:235. [PMID: 29376061 PMCID: PMC5768624 DOI: 10.3389/fvets.2017.00235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 12/14/2017] [Indexed: 02/04/2023] Open
Abstract
The equine periodontal ligament (PDL) is a fibrous connective tissue that covers the intra-alveolar parts of the tooth and anchors it to the alveolar bone-it, therefore, provides a similar function to a tendinous structure. While several studies have considered the formation and structure of tendons, there is insufficient information particularly on the molecular composition of the PDL. Especially for the equine PDL, there is limited knowledge concerning the expression of genes commonly regarded as typical for tendon tissue. In this study, the gene expression of, e.g., collagen type 1 alpha 1 (COL1), collagen type 3 alpha 1 (COL3), scleraxis (SCX), and fibrocartilage markers was examined in the functional mature equine PDL compared with immature and mature equine tendon tissue. PDL samples were obtained from incisor, premolar, and molar teeth from seven adult horses. Additionally, tendon samples were collected from four adult horses and five foals at different sampling locations. Analyses of gene expression were performed using real-time quantitative polymerase chain reaction (qRT-PCR). Significantly higher expression levels of COL1 and 3 were found in the mature equine PDL in comparison with mature tendon, indicating higher rates of collagen production and turnover in the mature equine PDL. The expression levels of SCX, a specific marker for tenogenic-differentiated cells, were on a similar level in functional mature PDL and in mature tendon tissue. Evidence of chondrogenic metaplasia, often found in tendon entheses or in pressurized regions of tendons, was not found in the mature equine PDL. The obtained results justify further experiments focused on the possible use of equine PDL cells for cell-based regenerative therapies.
Collapse
Affiliation(s)
- Antje Pöschke
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Bastian Krähling
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus Failing
- Department of Biomathematics, Justus Liebig University Giessen, Giessen, Germany
| | - Carsten Staszyk
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
173
|
An anatomical and histological study of the equine proximal manica flexoria. Vet Comp Orthop Traumatol 2017; 30:91-98. [DOI: 10.3415/vcot-16-01-0016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 11/16/2016] [Indexed: 11/17/2022]
Abstract
SummaryObjectives: The main aim was to describe the gross and histological appearance of the equine manica flexoria and to identify any differences between the forelimbs and hind-limbs. An additional aim was to relate the findings to diagnostic and surgical anatomy of the manica flexoria.Methods: Measurements of the manica flex-oria were made on cadaveric limbs from horses free from pathology within the digital flexor tendon sheath. Histological sections, stained with haematoxylin and eosin and alcian- periodic acid schiff, were evaluated based on three micro-anatomical zones from dorsal to palmar or plantar. The prevalent tenocyte morphology, number, and distribution of blood vessels and nerves were described in each zone. Forelimb and hindlimb measurements were compared using a Students T-test.Results: Proximally, the manica flexoria attaches to the digital flexor tendon sheath via a reflection of areolar tissue. The fibrous manica flexoria is longer in the forelimb (32.0 ± 4.2 mm) than the hindlimb (29.4 ± 3.8 mm) (p = 0.04), with the areolar portion longer in the hindlimb (22.9 ± 5.3 mm) compared to the forelimb (16.7 ± 4.3 mm) limb (p = 0.0005). Histologically, degenerate blood vessels were prevalent in the palmar/ plantar regions and were associated with chondrocyte-like tenocytes, indicative of fibrocartilagenous metaplasia.Clinical significance: The study has provided a detailed anatomical description of the manica flexoria relevant for interpretation of diagnostic and surgical evaluation. Fibrocartilaginous metaplasia occurs on the palmar/plantar surfaces of the manica flex-oria.
Collapse
|
174
|
Effect of different resistance-training protocols on the extracellular matrix of the calcaneal tendon of rats. Ann Anat 2017; 216:75-81. [PMID: 29229272 DOI: 10.1016/j.aanat.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 08/08/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023]
Abstract
The calcaneal tendon extracellular matrix (ECM) is composed of collagen, non-collagenous glycoproteins and proteoglycans, and able to adapt to various biomechanical stimuli. The objective of this study was to analyze the response of different resistance-training protocols, such as hypertrophy, strength and resistance, on the organization of the calcaneal tendon after training. Wistar rats were divided into four groups: untrained (UT), resistance training (RT), hypertrophy training (HT), and strength training (ST). The protocol in a vertical climbing platform was performed thrice per week over twelve weeks. For biochemical study, the tendons of each group were minced and analyzed for gelatinases, quantification of non-collagenous proteins, sulfated glycosaminoglycans, and hydroxyproline. For morphological analysis, sections were stained with HE and toluidine blue. Non-stained sections were used for birefringence analysis under polarization microscopy. The highest hydroxyproline concentrations were found in HT (154.8±14.2) and RT (173.6±25.2) compared with UT (122.4±27.0). A higher concentration of non-collagenous proteins was detected in the RT group (14.98mg/g) compared with the other groups. In polarization microscopy, major birefringence was observed in HT and the lowest in ST compared with UT, indicating higher organization of collagen bundles in HT. In analysis for zymography, the presence of latent MMP-9 was more prominent in the ST group and the active MMP-9 more prominent in the HT group. For MMP-2, significant differences in the latent isoform between the HT (184,867±6765) and UT (173,018±9696) groups were found. In sections stained with toluidine blue (TB), higher metachromasia was observed in the tendon's distal region in HT and RT groups, indicating a greater amount of proteoglycans. We conclude that the different training protocols produced different responses in the ECM. The remarkable presence of MMP-2 and -9 in the hypertrophy training group may be related to the highest organization of collagen bundles and possibly a more efficient remodeling process, observed in that group, as demonstrated by images and measurements of birefringence.
Collapse
|
175
|
Calcific tendonitis of the rotator cuff: From formation to resorption. Joint Bone Spine 2017; 85:687-692. [PMID: 29195923 DOI: 10.1016/j.jbspin.2017.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/19/2017] [Indexed: 01/15/2023]
Abstract
Calcific tendonitis of the rotator cuff is due to apatite deposits in the shoulder tendons. Patients affected by calcific tendonitis have chronic shoulder pain and disability. Although the disease is frequent, about 10 to 42% of painful shoulders, mechanisms leading to this pathological mineralization are still largely unknown. Research reported in the 1990s suggested that the formation of calcific deposits is linked to cells looking like chondrocytes identified around calcium deposits within a fibrocartilage area. They were considered to be derived from tenocytes but more recently, tendon stem cells, able to differentiate into chondrocytes, were isolated. The pro-mineralizing properties of these chondrocytes-like cells, especially the role of alkaline phosphatase, are not currently clarified. The calcium deposits contain poorly crystalline carbonated apatite associated with protein. Among these proteins, only osteopontin has been consistently identified as a potential regulating factor. During the disease, spontaneous resorption can occur with migration of apatite crystals into the subacromial bursa causing severe pain and restriction of movement. In in vivo and in vitro experiments, apatite crystals were able to induce an influx of leucocytes and a release of IL-1β and IL-18 through the activation of the NLRP3 inflammasome. However, mechanisms leading to spontaneous resolution of this inflammation and disappearance of the calcification still need to be elucidated.
Collapse
|
176
|
Qu D, Subramony SD, Boskey AL, Pleshko N, Doty SB, Lu HH. Compositional mapping of the mature anterior cruciate ligament-to-bone insertion. J Orthop Res 2017; 35:2513-2523. [PMID: 28176356 PMCID: PMC5548644 DOI: 10.1002/jor.23539] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/27/2017] [Indexed: 02/04/2023]
Abstract
The anterior cruciate ligament (ACL)-to-bone interface constitutes a complex, multi-tissue structure comprised of contiguous ligament, non-mineralized fibrocartilage, mineralized fibrocartilage, and bone regions. This composite structure enables load transfer between structurally and functionally dissimilar tissues and is critical for ligament homeostasis and joint stability. Presently, there is a lack of quantitative understanding of the matrix composition and organization across this junction, especially after the onset of skeletal maturity. The objective of this study is to characterize the adult bovine ACL-to-bone interface using Fourier transform infrared spectroscopic imaging (FTIRI), testing the hypothesis that regional changes in collagen, proteoglycan, and mineral distribution, as well as matrix organization, persist at the mature insertion. It was observed that while collagen content increases continuously across the adult interface, collagen alignment decreases between ligament and bone. Proteoglycans were primarily localized to the fibrocartilage region and an exponential increase in mineral content was observed between the non-mineralized and mineralized regions. These observations reveal significant changes in collagen distribution and alignment with maturity, and these trends underscore the role of physiologic loading in postnatal matrix remodeling. Findings from this study provide new insights into interface organization and serve as benchmark design criteria for interface regeneration and integrative soft tissue repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2513-2523, 2017.
Collapse
Affiliation(s)
- Dovina Qu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Siddarth D. Subramony
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Adele L. Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021
| | - Nancy Pleshko
- Tissue Imaging and Spectroscopy Laboratory, Department of Bioengineering, Temple University, Philadelphia, PA 19122
| | - Stephen B. Doty
- Analytical Microscopy Laboratory, Hospital for Special Surgery, New York, NY 10021
| | - Helen H. Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027,To whom all correspondence should be addressed: Helen H. Lu, Ph.D., Department of Biomedical Engineering, Columbia University1210 Amsterdam Avenue, 351 Engineering Terrace, MC 8904, New York, NY 10027, 212-854-4071 (office), 212-854-8725 (fax),
| |
Collapse
|
177
|
Ravosa MJ, Kane RJ. Dietary variation and mechanical properties of articular cartilage in the temporomandibular joint: implications for the role of plasticity in mechanobiology and pathobiology. ZOOLOGY 2017; 124:42-50. [PMID: 29032864 DOI: 10.1016/j.zool.2017.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 01/26/2023]
Abstract
Due to their nature as tissue composites, skeletal joints pose an additional challenge in terms of evaluating the functional significance of morphological variation in their bony and cartilaginous components in response to altered loading conditions. Arguably, this complexity requires more direct means of investigating joint plasticity and performance than typically employed to analyze macro- and micro-anatomical phenomena. To address a significant gap in our understanding of the plasticity of the mammalian temporomandibular joint (TMJ), we investigated the histology and mechanical properties of condylar articular cartilage in rabbits subjected to long-term variation in diet-induced masticatory stresses, specifically cyclical loading. Three cohorts of male weanlings were raised for six months on different diets until adulthood. Following euthanasia, the TMJ condyles on one side were dissected away, fixed, decalcified, dehydrated, embedded and sectioned. Safranin O staining was employed to identify variation in proteoglycan content, which in turn was used to predict patterns of articular cartilage stiffness in contralateral condylar specimens for each treatment group. Hematoxylin and eosin staining was used to quantify diet-induced changes in chondrocyte hypertrophy and cellularity. Mechanical tests document significant decreases in articular cartilage stiffness corresponding to patterns of extracellular matrix relative protein abundance in rabbits subjected to greater cyclical loading. This indicates that TMJs routinely subjected to higher masticatory stresses due to a challenging diet eventually develop postnatal decreases in the ability to counter compressive loads during postcanine biting and chewing. These findings provide novel information regarding TMJ performance, with broader implications about the costs and benefits of phenotypic plasticity as well as implications for how such biological processes affect connective tissue mechanobiology and pathobiology.
Collapse
Affiliation(s)
- Matthew J Ravosa
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Anthropology, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Robert J Kane
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
178
|
Kim JH, Oh SH, Min HK, Lee JH. Dual growth factor-immobilized asymmetrically porous membrane for bone-to-tendon interface regeneration on rat patellar tendon avulsion model. J Biomed Mater Res A 2017; 106:115-125. [PMID: 28880464 DOI: 10.1002/jbm.a.36212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
Insufficient repair of the bone-to-tendon interface (BTI) with structural/compositional gradients has been a significant challenge in orthopedics. In this study, dual growth factor (platelet-derived growth factor-BB [PDGF-BB] and bone morphogenetic protein-2 [BMP-2])-immobilized polycaprolactone (PCL)/Pluronic F127 asymmetrically porous membrane was fabricated to estimate its feasibility as a potential strategy for effective regeneration of BTI injury. The growth factors immobilized (via heparin-intermediated interactions) on the membrane were continuously released for up to ∼80% of the initial loading amount after 5 weeks without a significant initial burst. From the in vivo animal study using a rat patellar tendon avulsion model, it was observed that the PDGF-BB/BMP-2-immobilized membrane accelerates the regeneration of the BTI injury, probably because of the continuous release of both growth factors (biological stimuli) and their complementary effect to create a multiphasic structure (bone, fibrocartilage, and tendon) like a native structure, as well as the role of the asymmetrically porous membrane as a physical barrier (nanopore side; prevention of fibrous tissue invasion into the defect site) and scaffold (micropore side; guidance for tissue regeneration). © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 115-125, 2018.
Collapse
Affiliation(s)
- Joong-Hyun Kim
- Department of Nanobiomedical Science, Dankook University, 119 Dandae Ro, Dongnam Gu, Cheonan, 31116, Republic of Korea.,Department of Periodontology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, 567 Baekjedae Ro, Deokjin Gu, Jeonju, 54896, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, 119 Dandae Ro, Dongnam Gu, Cheonan, 31116, Republic of Korea.,Department of Pharmaceutical Engineering, Dankook University, 119 Dandae Ro, Dongnam Gu, Cheonan, 31116, Republic of Korea
| | - Hyun Ki Min
- Department of Advanced Materials and Chemical Engineering, Hannam University, 1646 Yuseong Daero, Yuseong Gu, Daejeon, 34054, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering, Hannam University, 1646 Yuseong Daero, Yuseong Gu, Daejeon, 34054, Republic of Korea
| |
Collapse
|
179
|
Boys AJ, McCorry MC, Rodeo S, Bonassar LJ, Estroff LA. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces. MRS COMMUNICATIONS 2017; 7:289-308. [PMID: 29333332 PMCID: PMC5761353 DOI: 10.1557/mrc.2017.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/28/2017] [Indexed: 05/17/2023]
Abstract
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Collapse
Affiliation(s)
- Alexander J Boys
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | | | - Scott Rodeo
- Orthopedic Surgery, Hospital for Special Surgery, New York, NY
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, NY
- Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, NY
- Orthopedic Surgery, Weill Medical College of Cornell University, Cornell University, New York, NY
- New York Giants, East Rutherford, NJ
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Kavli Institute at Cornell, Cornell University, Ithaca, NY
| |
Collapse
|
180
|
Abdala V, Vera MC, Ponssa ML. On the Presence of the Patella in Frogs. Anat Rec (Hoboken) 2017; 300:1747-1755. [PMID: 28667673 DOI: 10.1002/ar.23629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/11/2016] [Accepted: 01/06/2017] [Indexed: 01/30/2023]
Abstract
The patella is one of the most studied sesamoids. Historically, the patella is described as a big sesamoid embedded in the tendon of the quadriceps femoris muscle. This sesamoid is studied from developmental, functional, clinical, and anatomical perspectives. The presence of a patella is reported in squamatans, birds, and mammals. Lissamphibians are identified as the major lineage that fail to develop a patella. However, this sesamoid is reported at least once in anurans, but without detailed anatomical discussions. Through anatomical and histological studies we examined the topography and tissue composition of two structures that we identify as the proximal and distal patellae in several anuran species. We explored the evolution of these sesamoids through ancestral state reconstruction, finding that they are ancestral for amphibians and possibly tetrapods as a whole. The presence of these patellae in anurans would roll back their origin to the last common ancestor of tetrapods. From a functional perspective, the overwhelming evidence of fibrocartilage as a clear response to compression suggests that the fibrocartilaginous patellae could also withstand the mechanical stress generated on the knee undergoing compression during limb extension. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1747-1755, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Virginia Abdala
- IBN CONICET-UNT, Horco Molle s/n. Cátedra de Biología General, Facultad de Ciencias Naturales e IML, Instituto de Biodiversidad Neotropical, Miguel Lillo 205, San Miguel de Tucumán, 4000, Argentina
| | - Miriam C Vera
- UEL CONICET-FML, Unidad Ejecutora Lillo, Miguel Lillo 251, San Miguel de Tucumán, 4000, Argentina
| | - María Laura Ponssa
- UEL CONICET-FML, Unidad Ejecutora Lillo, Miguel Lillo 251, San Miguel de Tucumán, 4000, Argentina
| |
Collapse
|
181
|
Ashraf Kharaz Y, Zamboulis D, Sanders K, Comerford E, Clegg P, Peffers M. Comparison between chaotropic and detergent-based sample preparation workflow in tendon for mass spectrometry analysis. Proteomics 2017; 17:1700018. [PMID: 28547889 PMCID: PMC5575552 DOI: 10.1002/pmic.201700018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/12/2023]
Abstract
Exploring the tendon proteome is a challenging but important task for understanding the mechanisms of physiological/pathological processes during ageing and disease and for the development of new treatments. Several extraction methods have been utilised for tendon mass spectrometry, however different extraction methods have not been simultaneously compared. In the present study we compared protein extraction in tendon with two chaotropic agents, guanidine hydrochloride (GnHCl) and urea, a detergent, RapiGest™, and their combinations for shotgun mass spectrometry. An initial proteomic analysis was performed following urea, GnHCl, and RapiGest™ extraction of equine superficial digital flexor tendon (SDFT) tissue. Subsequently, another proteomic analysis was performed following extraction with GnHCl, Rapigest™, and their combinations. Between the two chaotropic agents, GnHCl extracted more proteins, whilst a greater number of proteins were solely identified after Rapigest™ extraction. Protein extraction with a combination of GnHCl followed by RapiGest™ on the insoluble pellet demonstrated, after label-free quantification, increased abundance of identified collagen proteins and low sample to sample variability. In contrast, GnHCl extraction on its own showed increased abundance of identified proteoglycans and cellular proteins. Therefore, the selection of protein extraction method for tendon tissue for mass spectrometry analysis should reflect the focus of the study.
Collapse
Affiliation(s)
- Yalda Ashraf Kharaz
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Danae Zamboulis
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Karen Sanders
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Eithne Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Peter Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- The MRC‐Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA)LiverpoolUK
| | - Mandy Peffers
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- The MRC‐Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA)LiverpoolUK
| |
Collapse
|
182
|
Abstract
Sesamoids are elements that originate as intratendinous structures due to genetic and epigenetic factors. These elements have been reported frequently in vertebrates, although cranial sesamoids have been recorded almost exclusively in non-tetrapod Osteichthyes. The only tetrapod cranial sesamoids reported until now have been the transiliens cartilage (of crocodiles and turtles), and another one located in the quadrate-mandibular joint of birds. Here, we examined seven squamate species using histological sections, dissections of preserved specimens, dry skeletons, cleared and stained specimens, computed tomographies (CT), and report the presence of other cranial sesamoids. One is attached to the cephalic condyle of the quadrate, embedded in the bodenaponeurosis and jaw adductor muscles of Ophiodes intermedius (Anguidae). The other sesamoid is found at the base of the basicranium of several squamates, capping the sphenoccipital tubercle, on the lateral side of the basioccipital-basisphenoid suture. This bone has previously been reported as "element X." We reinterpret it as a basicranial sesamoid, as it is associated with tendons of the cranio-cervical muscles. This bone seems to have the function of resisting tension-compression forces generated by the muscle during flexion the head. This element was previously known in several squamates, and we confirmed its presence in three additional squamate families: Gymnophthalmidae, Gekkonidae, and Pygopodidae. The evidence suggests that cranial sesamoids are a widespread character in squamates, and it is possible that this feature has been present since the origin of the group.
Collapse
Affiliation(s)
- Ricardo Montero
- Cátedra Vertebrados, Facultad de Ciencias Naturales, Universidad Nacional de Tucumán; Instituto de Herpetología, Fundación Miguel Lillo, Tucumán, Argentina
| | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, 77340
| | - Aaron M Bauer
- Department of Biology, Villanova University, Villanova, Pennsylvania, 19085
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical, UNT-CONICET. Cátedra de Biología General, Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Argentina
| |
Collapse
|
183
|
Mutsuzaki H, Nakajima H, Nomura S, Sakane M. Differences in placement of calcium phosphate-hybridized tendon grafts within the femoral bone tunnel during ACL reconstruction do not influence tendon-to-bone healing. J Orthop Surg Res 2017; 12:80. [PMID: 28577573 PMCID: PMC5455123 DOI: 10.1186/s13018-017-0583-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/22/2017] [Indexed: 12/02/2022] Open
Abstract
Background Calcium phosphate (CaP)-hybridization of tendon grafts has been shown to improve tendon-to-bone healing. The purpose of this study was to clarify the influence of different tendon graft placement methods on tendon-to-bone healing using CaP-hybridized tendon grafts in anterior cruciate ligament (ACL) reconstructions in rabbits. Methods We compared two methods of tendon graft placement within the femoral bone tunnel: suspension of the tendon graft within the bone tunnel (suspension group) and implantation of the tendon graft coherent with the bone socket (coherence group). CaP-hybridized tendon grafts were used in both groups. Fifty-six male Japanese white rabbits were used for this study. The results of biomechanical tests (n = 9) and histological analyses (n = 5) were evaluated at 2 and 4 weeks after surgery. Results The ultimate failure load, stiffness, stress, soft tissue remaining in bone tunnel after biomechanical testing, and direct bonding area at tendon–bone interface did not differ significantly between the suspension and coherence groups at either 2 or 4 weeks after surgery (p > 0.05). In both groups, the ultimate failure load, stress, soft tissue remaining in the bone tunnel, and direct bonding area at interface at 4 weeks after surgery were significantly greater than those at 2 weeks after surgery (p < 0.05). Conclusions Tendon-to-bone healing in both groups progressed until the endpoint of 4 weeks. There was no influence of the CaP-hybridized tendon graft placement method on tendon-to-bone healing at 4 weeks after ACL reconstruction in rabbits. Thus, the CaP-hybridized tendon grafts were unaffected by differences in their placement within the bone tunnel and became equally anchored to the bone tunnel during the early postoperative period. The tendon graft placement method may not influence tendon-to-bone healing in ACL reconstruction when CaP-hybridized tendon grafts are used.
Collapse
Affiliation(s)
- Hirotaka Mutsuzaki
- Department of Orthopaedic Surgery, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki-gun, Ibaraki, 300-0394, Japan.
| | - Hiromi Nakajima
- Department of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Shunsuke Nomura
- Department of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Masataka Sakane
- Department of Orthopaedic Surgery, Tsukuba Gakuen Hospital, 2573-1 Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| |
Collapse
|
184
|
Behrendt P, Häfelein K, Preusse-Prange A, Bayer A, Seekamp A, Kurz B. IL-10 ameliorates TNF-α induced meniscus degeneration in mature meniscal tissue in vitro. BMC Musculoskelet Disord 2017; 18:197. [PMID: 28511649 PMCID: PMC5434535 DOI: 10.1186/s12891-017-1561-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
Background Joint inflammation causes meniscus degeneration and can exacerbate post-traumatic meniscus injuries by extracellular matrix degradation, cellular de-differentiation and cell death. The aim of this study was to examine whether anti-inflammatory interleukin-10 exerts protective effects in an in vitro model of TNF-α-induced meniscus degeneration. Methods Meniscus tissue was harvested from the knees of adult cows. After 24 h of equilibrium explants were simultaneously treated with bovine TNF-α and IL-10. After an incubation time of 72 h cell death was measured histomorphometrically (nuclear blebbing, NB) and release of glycosaminoglycans (GAG, DMMB assay) and nitric oxide (NO, Griess-reagent) were analysed. Transcription levels (mRNA) of matrix degrading enzymes, collagen type X (COL10A1) and nitric oxide synthetase 2 (NOS2) were measured by quantitative real time PCR. TNF-α-dependent formation of the aggrecanase-specific aggrecan neoepitope NITEGE was visualised by immunostaining. Differences between groups were calculated using a one-way ANOVA with a Bonferroni post hoc test. Results Administration of IL-10 significantly prevented the TNF-α-related cell death (P .001), release of NO (P .003) and NOS2 expression (P .04). Release of GAG fragments (P .001), NITEGE formation and expression of MMP3 (P .007), -13 (P .02) and ADAMTS4 (P .001) were significantly reduced. The TNF-α-dependent increase in COL10A1 expression was also antagonized by IL-10 (P .02). Conclusion IL-10 prevented crucial mechanisms of meniscal degeneration induced by a key cytokine of OA, TNF-α. Administration of IL-10 might improve the biological regeneration and provide a treatment approach in degenerative meniscus injuries and in conditions of post-traumatic sports injuries.
Collapse
Affiliation(s)
- P Behrendt
- Department of Orthopaedics and Trauma Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - K Häfelein
- Institute of Anatomy, Christian Albrechts-University, Kiel, Germany
| | - A Preusse-Prange
- Institute of Anatomy, Christian Albrechts-University, Kiel, Germany
| | - A Bayer
- Department of Cardiovascular Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - A Seekamp
- Department of Orthopaedics and Trauma Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - B Kurz
- Institute of Anatomy, Christian Albrechts-University, Kiel, Germany
| |
Collapse
|
185
|
Lin JD, Jang AT, Kurylo MP, Hurng J, Yang F, Yang L, Pal A, Chen L, Ho SP. Periodontal ligament entheses and their adaptive role in the context of dentoalveolar joint function. Dent Mater 2017; 33:650-666. [PMID: 28476202 DOI: 10.1016/j.dental.2017.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/09/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The dynamic bone-periodontal ligament (PDL)-tooth fibrous joint consists of two adaptive functionally graded interfaces (FGI), the PDL-bone and PDL-cementum that respond to mechanical strain transmitted during mastication. In general, from a materials and mechanics perspective, FGI prevent catastrophic failure during prolonged cyclic loading. This review is a discourse of results gathered from literature to illustrate the dynamic adaptive nature of the fibrous joint in response to physiologic and pathologic simulated functions, and experimental tooth movement. METHODS Historically, studies have investigated soft to hard tissue transitions through analytical techniques that provided insights into structural, biochemical, and mechanical characterization methods. Experimental approaches included two dimensional to three dimensional advanced in situ imaging and analytical techniques. These techniques allowed mapping and correlation of deformations to physicochemical and mechanobiological changes within volumes of the complex subjected to concentric and eccentric loading regimes respectively. RESULTS Tooth movement is facilitated by mechanobiological activity at the interfaces of the fibrous joint and generates elastic discontinuities at these interfaces in response to eccentric loading. Both concentric and eccentric loads mediated cellular responses to strains, and prompted self-regulating mineral forming and resorbing zones that in turn altered the functional space of the joint. SIGNIFICANCE A multiscale biomechanics and mechanobiology approach is important for correlating joint function to tissue-level strain-adaptive properties with overall effects on joint form as related to physiologic and pathologic functions. Elucidating the shift in localization of biomolecules specifically at interfaces during development, function, and therapeutic loading of the joint is critical for developing "functional regeneration and adaptation" strategies with an emphasis on restoring physiologic joint function.
Collapse
Affiliation(s)
- Jeremy D Lin
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Andrew T Jang
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Michael P Kurylo
- South of Market Health Center, San Francisco, CA 94103, United States
| | - Jonathan Hurng
- Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Feifei Yang
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Lynn Yang
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Arvin Pal
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Ling Chen
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Sunita P Ho
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
186
|
Kharaz YA, Tew SR, Peffers M, Canty-Laird EG, Comerford E. Proteomic differences between native and tissue-engineered tendon and ligament. Proteomics 2017; 16:1547-56. [PMID: 27080496 PMCID: PMC5132062 DOI: 10.1002/pmic.201500459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/02/2016] [Accepted: 04/08/2016] [Indexed: 01/18/2023]
Abstract
Tendons and ligaments (T/Ls) play key roles in the musculoskeletal system, but they are susceptible to traumatic or age‐related rupture, leading to severe morbidity as well as increased susceptibility to degenerative joint diseases such as osteoarthritis. Tissue engineering represents an attractive therapeutic approach to treating T/L injury but it is hampered by our poor understanding of the defining characteristics of the two tissues. The present study aimed to determine differences in the proteomic profile between native T/Ls and tissue engineered (TE) T/L constructs. The canine long digital extensor tendon and anterior cruciate ligament were analyzed along with 3D TE fibrin‐based constructs created from their cells. Native tendon and ligament differed in their content of key structural proteins, with the ligament being more abundant in fibrocartilaginous proteins. 3D T/L TE constructs contained less extracellular matrix (ECM) proteins and had a greater proportion of cellular‐associated proteins than native tissue, corresponding to their low collagen and high DNA content. Constructs were able to recapitulate native T/L tissue characteristics particularly with regard to ECM proteins. However, 3D T/L TE constructs had similar ECM and cellular protein compositions indicating that cell source may not be an important factor for T/L tissue engineering.
Collapse
Affiliation(s)
- Yalda A Kharaz
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, UK
| | - Simon R Tew
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, UK
| | - Mandy Peffers
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, UK.,The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, UK.,The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - Eithne Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, UK
| |
Collapse
|
187
|
|
188
|
Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis. Nat Commun 2017; 8:14779. [PMID: 28327586 PMCID: PMC5364438 DOI: 10.1038/ncomms14779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/02/2017] [Indexed: 01/10/2023] Open
Abstract
The hindlimb of theropod dinosaurs changed appreciably in the lineage leading to extant birds, becoming more ‘crouched' in association with changes to body shape and gait dynamics. This postural evolution included anatomical changes of the foot and ankle, altering the moment arms and control of the muscles that manipulated the tarsometatarsus and digits, but the timing of these changes is unknown. Here, we report cellular-level preservation of tendon- and cartilage-like tissues from the lower hindlimb of Early Cretaceous Confuciusornis. The digital flexor tendons passed through cartilages, cartilaginous cristae and ridges on the plantar side of the distal tibiotarsus and proximal tarsometatarsus, as in extant birds. In particular, fibrocartilaginous and cartilaginous structures on the plantar surface of the ankle joint of Confuciusornis may indicate a more crouched hindlimb posture. Recognition of these specialized soft tissues in Confuciusornis is enabled by our combination of imaging and chemical analyses applied to an exceptionally preserved fossil. Birds have a more crouched posture compared to their theropod dinosaur ancestors. Here, Jiang and colleagues describe a lower hindlimb of the Early Cretaceous bird Confuciusornis with soft tissues apparently preserved even as molecules, indicating a somewhat more modern posture in ancient birds.
Collapse
|
189
|
Mehdizadeh A, Gardiner BS, Lavagnino M, Smith DW. Predicting tenocyte expression profiles and average molecular concentrations in Achilles tendon ECM from tissue strain and fiber damage. Biomech Model Mechanobiol 2017; 16:1329-1348. [DOI: 10.1007/s10237-017-0890-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/18/2017] [Indexed: 11/28/2022]
|
190
|
Andrews SHJ, Adesida AB, Abusara Z, Shrive NG. Current concepts on structure-function relationships in the menisci. Connect Tissue Res 2017; 58:271-281. [PMID: 28267400 DOI: 10.1080/03008207.2017.1303489] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The menisci are intricately organized structures that perform many tasks in the knee. We review their structure and function and introduce new data about their tibial and femoral surfaces. As the femur and tibia approach each other when the knee is bearing load, circumferential tension develops in the menisci, enabling the transmission of compressive load between the femoral and tibial cartilage layers. A low shear modulus is necessary for the tissue to adapt its shape to the changing radius of the femur as that bone moves relative to the tibia during joint articulation. The organization of the meniscus facilitates its functions. In the outer region of the menisci, intertwined collagen fibrils, fibers, and fascicles with predominantly circumferential orientation are prevalent; these structures are held together by radial tie fibers and sheets. Toward the inner portion of the menisci, there is more proteoglycan and the structure becomes more cartilage-like. The transition between these structural forms is gradual and seamless. The flexible roots, required for rigid body motion of the menisci, meld with both the tibia and the outer portion of the menisci to maintain continuity for resistance to the circumferential tension. Our new data demonstrate that the femoral and tibial surfaces of the menisci are structurally analogous to the surfaces of articular cartilage, enabling consistent modes of lubrication and load transfer to occur at the interfacing surfaces throughout motion. The structure and function of the menisci are thus shown to be strongly related to one another: form clearly complements function.
Collapse
Affiliation(s)
| | | | - Ziad Abusara
- b Faculty of Kinesiology , University of Calgary , Calgary , Canada
| | - Nigel G Shrive
- c McCaig Institute for Bone and Joint Health, and Department of Civil Engineering , University of Calgary , Calgary , Canada
| |
Collapse
|
191
|
He S, Xue W, Duan Z, Sun Q, Li X, Gan H, Huang J, Qu JY. Multimodal nonlinear optical microscopy reveals critical role of kinesin-1 in cartilage development. BIOMEDICAL OPTICS EXPRESS 2017; 8:1771-1782. [PMID: 28663865 PMCID: PMC5480580 DOI: 10.1364/boe.8.001771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
We developed a multimodal nonlinear optical (NLO) microscope system by integrating stimulated Raman scattering (SRS), second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) imaging. The system was used to study the morphological and biochemical characteristics of tibial cartilage in a kinesin-1 (Kif5b) knockout mouse model. The detailed structure of fibrillar collagen in the extracellular matrix of cartilage was visualized by the forward and backward SHG signals, while high resolution imaging of chondrocytes was achieved by capturing endogenous TPEF and SRS signals of the cells. The results demonstrate that collagen fibrils in the superficial surface of the articular cartilage decreased significantly in the absence of Kif5b. The distorted morphology along with accumulated intracellular collagen was observed in the Kif5b-deficient chondrocytes, indicating the critical roles of kinesin-1 in the chondrocyte morphogenesis and collagen secretion. The study shows that multimodal NLO imaging method is an effective approach to investigate early development of cartilage.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- These authors contributed equally to this work
| | - Wenqian Xue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- These authors contributed equally to this work
| | - Zhigang Duan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Qiqi Sun
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xuesong Li
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Huiyan Gan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
- Shenzhen Institute of Advanced Technologies, Shenzhen, Guangdong, China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
192
|
Trudel G, Melkus G, Cron GO, Louati H, Sheikh A, Larson PE, Schweitzer M, Lapner P, Uhthoff HK, Laneuville O. Imaging of the rabbit supraspinatus enthesis at 7 Tesla: a 4-week time course after repair surgery and effect of channeling. J Magn Reson Imaging 2017; 46:461-467. [DOI: 10.1002/jmri.25589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Guy Trudel
- Bone and Joint Research Laboratory, Department of Medicine, Division of Psychiatry; University of Ottawa; Ottawa ON Canada
- The Ottawa Hospital Rehabilitation Center and Ottawa Hospital Research Institute; Ottawa ON Canada
| | - Gerd Melkus
- Department of Radiology; The Ottawa Hospital; Ottawa ON Canada
| | - Greg O. Cron
- Department of Radiology; The Ottawa Hospital; Ottawa ON Canada
| | - Hakim Louati
- Department of Surgery Division of Orthopaedic Surgery; The Ottawa Hospital; Ottawa ON Canada
| | - Adnan Sheikh
- Department of Radiology; The Ottawa Hospital; Ottawa ON Canada
| | - Peder E.Z. Larson
- Department of Radiology; University of California at San Francisco; San Francisco California USA
| | - Mark Schweitzer
- Department of Radiology; Stony Brook University NY; New York New York USA
| | - Peter Lapner
- Department of Surgery Division of Orthopaedic Surgery; The Ottawa Hospital; Ottawa ON Canada
| | - Hans K. Uhthoff
- Bone and Joint Research Laboratory, Department of Medicine, Division of Psychiatry; University of Ottawa; Ottawa ON Canada
| | - Odette Laneuville
- Bone and Joint Research Laboratory, Department of Medicine, Division of Psychiatry; University of Ottawa; Ottawa ON Canada
- Department of Biology; University of Ottawa; Ottawa ON Canada
| |
Collapse
|
193
|
Influence of Knee Immobilization on Chondrocyte Apoptosis and Histological Features of the Anterior Cruciate Ligament Insertion and Articular Cartilage in Rabbits. Int J Mol Sci 2017; 18:ijms18020253. [PMID: 28134763 PMCID: PMC5343789 DOI: 10.3390/ijms18020253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 11/30/2022] Open
Abstract
This study examined the influence of immobilization on chondrocyte apoptosis and histological features of the anterior cruciate ligament (ACL) insertion and knee articular cartilage in rabbits. Forty-eight male Japanese white rabbits were assigned to an immobilization (n = 24) or sham (n = 24) group. Rabbits in the immobilization group underwent complete unilateral surgical knee immobilization and rabbits in the sham group underwent a sham surgery. The average thickness of the glycosaminoglycan (GAG) stained red area by safranin O staining, the chondrocyte apoptosis rate and the chondrocyte proliferation rate in the cartilage layer in the ACL insertion and the articular cartilage of the medial tibial condyle were measured at one, two, four and eight weeks in six animals from each group. In the ACL insertion, the chondrocyte apoptosis rate was higher in the immobilization group than in the sham group at two and eight weeks after surgery (p < 0.05). The chondrocyte proliferation rate gradually decreased from two weeks to eight weeks in the immobilization group. The GAG layer was thinner in the immobilization group than in the sham group at two, four and eight weeks after surgery (p < 0.05). In the articular cartilage, the chondrocyte apoptosis rate in the immobilization group was higher than in the sham group at four and eight weeks after surgery (p < 0.05). The GAG layer was significantly thinner in the immobilization group than that in the sham group at four and eight weeks after surgery (p < 0.05). Knee immobilization significantly increased chondrocyte apoptosis at two and eight weeks after surgery in the ACL insertion and at four and eight weeks after surgery in the articular cartilage of the medial tibial condyle, and decreased GAG layer thickness from two to eight weeks after surgery in the ACL insertion and from four to eight weeks after surgery in the articular cartilage.
Collapse
|
194
|
Qu D, Chuang PJ, Prateepchinda S, Balasubramanian PS, Yao X, Doty SB, Hendon CP, Lu HH. Micro- and Ultrastructural Characterization of Age-Related Changes at the Anterior Cruciate Ligament-to-Bone Insertion. ACS Biomater Sci Eng 2016; 3:2806-2814. [PMID: 33418704 DOI: 10.1021/acsbiomaterials.6b00602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There remains a lack of understanding of the structural changes that occur across the complex, multitissue anterior cruciate ligament (ACL)-to-bone insertion as a function of aging. The objective of this study is to provide a multiscale comparison of matrix properties across the skeletally immature and mature ACL-to-bone insertion. Using complementary imaging methods, micro- and ultrastructural analysis of the insertion revealed that collagen fiber orientation at the interface changes with age, though the degree of collagen organization is maintained over time. These changes are accompanied by a decrease in collagen fibril density and are likely driven by physiological loading. Mineral crystal structure and crystallinity are conserved over time, despite regional differences in crystallinity between the interface and bone. This suggests that mineral chemistry is established early in development and underscores its important functional role. Collectively, these findings provide new insights into interface development and set critical design benchmarks for integrative soft tissue repair.
Collapse
Affiliation(s)
- Dovina Qu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, 351 Engineering Terrace, MC 8904, New York, New York 10027, United States
| | - Philip J Chuang
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, 351 Engineering Terrace, MC 8904, New York, New York 10027, United States
| | - Sagaw Prateepchinda
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, 351 Engineering Terrace, MC 8904, New York, New York 10027, United States
| | - Priya S Balasubramanian
- Structure-Function Imaging Laboratory, Department of Electrical Engineering, Columbia University, 500 W. 120th Street, 1300 S. W. Mudd Building, MC 4712, New York, New York 10027, United States
| | - Xinwen Yao
- Structure-Function Imaging Laboratory, Department of Electrical Engineering, Columbia University, 500 W. 120th Street, 1300 S. W. Mudd Building, MC 4712, New York, New York 10027, United States
| | - Stephen B Doty
- Analytical Microscopy Laboratory, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, United States
| | - Christine P Hendon
- Structure-Function Imaging Laboratory, Department of Electrical Engineering, Columbia University, 500 W. 120th Street, 1300 S. W. Mudd Building, MC 4712, New York, New York 10027, United States
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, 351 Engineering Terrace, MC 8904, New York, New York 10027, United States
| |
Collapse
|
195
|
Locke RC, Abraham AC, Killian ML. Orthopedic Interface Repair Strategies Based on Native Structural and Mechanical Features of the Multiscale Enthesis. ACS Biomater Sci Eng 2016; 3:2633-2643. [PMID: 32832593 DOI: 10.1021/acsbiomaterials.6b00599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enthesis is an organ that connects a soft, aligned tissue (tendon/ligament) to a hard, amorphous tissue (bone) via a fibrocartilage interface. Mechanically, the enthesis sustains a dynamic loading environment that includes tensile, compressive, and shear forces. The structural components of the enthesis act to minimize stress concentrations and control stretch at the interface. Current surgical repair of the enthesis, such as in rotator cuff repair and anterior cruciate ligament reconstruction, aim to bridge the gap between the injured ends via reattachment of soft-to-hard tissues or graft replacement. In this review, we discuss the multiscale, morphological, and mechanical characteristics of the fibrocartilage attachment. Additionally, we review historical and recent clinical approaches to treating enthesis injury. Lastly, we explore new technological advancements in tissue-engineered biomaterials that have shown promise in preclinical studies.
Collapse
Affiliation(s)
- Ryan C Locke
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Adam C Abraham
- Department of Orthopedic Surgery, Columbia University Medical Center, New York, New York 10032, United States
| | - Megan L Killian
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
196
|
Quental C, Folgado J, Monteiro J, Sarmento M. Full-thickness tears of the supraspinatus tendon: A three-dimensional finite element analysis. J Biomech 2016; 49:3962-3970. [DOI: 10.1016/j.jbiomech.2016.11.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/30/2022]
|
197
|
Allison K, Vicenzino B, Bennell KL, Wrigley TV, Grimaldi A, Hodges PW. Kinematics and kinetics during stair ascent in individuals with Gluteal Tendinopathy. Clin Biomech (Bristol, Avon) 2016; 40:37-44. [PMID: 27816023 DOI: 10.1016/j.clinbiomech.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Individuals with gluteal tendinopathy commonly report lateral hip pain and disability during stair ascent. This study aimed to compare kinematics and kinetics between individuals with and without gluteal tendinopathy during a step up task. METHODS 35 individuals with unilateral gluteal tendinopathy and 35 pain-free controls underwent three-dimensional motion analysis of stance phase during stair ascent. An analysis of covariance was performed to compare hip, pelvis and trunk kinematic and kinetic variables between groups. A K-means cluster analysis was performed to identify subgroups from the entire group (n=70) based on the characteristics of the external hip adduction moment. Finally, a Newcombe-Wilson test was performed to evaluate the relationship between group and cluster codes and a 3×2 ANOVA to investigate the differences in kinematics between groups and cluster codes. FINDINGS Individuals with gluteal tendinopathy exhibited a greater hip adduction moment impulse during stair ascent (ES=0.83), greater internal rotation impulse during the first 50% stance phase (ES=0.63) and greater contralateral trunk lean throughout stance than controls (ranging from ES=0.67-0.93). Three subgroups based on hip adduction moment characteristics were identified. Individuals with GT were 4.5 times more likely to have a hip adduction moment characteristic of a large impulse and greater lateral pelvic translation at heel strike than the subgroup most likely to contain controls. INTERPRETATION Individuals with GT exhibit greater hip adduction moment impulse and alterations in trunk and pelvic kinematics during stair ascent. Findings provide a basis to consider frontal plane trunk and pelvic control in the management of gluteal tendinopathy.
Collapse
Affiliation(s)
- Kim Allison
- The University of Melbourne, Department of Physiotherapy, 161 Barry St, Parkville, VIC 3010, Australia.
| | - Bill Vicenzino
- The University of Queensland, School of Health & Rehabilitation Sciences, Brisbane, QLD, 4072, Australia.
| | - Kim L Bennell
- The University of Melbourne, Department of Physiotherapy, 161 Barry St, Parkville, VIC 3010, Australia.
| | - Tim V Wrigley
- The University of Melbourne, Department of Physiotherapy, 161 Barry St, Parkville, VIC 3010, Australia.
| | - Alison Grimaldi
- Physiotec Physiotherapy, 23 Weller Rd, Tarragindi, QLD, 4121, Australia.
| | - Paul W Hodges
- The University of Queensland, School of Health & Rehabilitation Sciences, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
198
|
Dyson S, Blunden A, Murray R. MAGNETIC RESONANCE IMAGING, GROSS POSTMORTEM, AND HISTOLOGICAL FINDINGS FOR SOFT TISSUES OF THE PLANTAR ASPECT OF THE TARSUS AND PROXIMAL METATARSAL REGION IN NON-LAME HORSES. Vet Radiol Ultrasound 2016; 58:216-227. [DOI: 10.1111/vru.12444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 11/27/2022] Open
Affiliation(s)
- Sue Dyson
- Centre for Equine Studies; Animal Health Trust, Lanwades Park; Kentford, Newmarket Suffolk CB8 7UU UK
| | - Anthony Blunden
- Centre for Preventative Medicine; Animal Health Trust, Lanwades Park; Kentford, Newmarket Suffolk CB8 7UU UK
| | - Rachel Murray
- Centre for Equine Studies; Animal Health Trust, Lanwades Park; Kentford, Newmarket Suffolk CB8 7UU UK
| |
Collapse
|
199
|
Barratt PA, Brookes N, Newson A. Conservative treatments for greater trochanteric pain syndrome: a systematic review. Br J Sports Med 2016; 51:97-104. [DOI: 10.1136/bjsports-2015-095858] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 01/15/2023]
|
200
|
Shen H, Kormpakis I, Havlioglu N, Linderman SW, Sakiyama-Elbert SE, Erickson IE, Zarembinski T, Silva MJ, Gelberman RH, Thomopoulos S. The effect of mesenchymal stromal cell sheets on the inflammatory stage of flexor tendon healing. Stem Cell Res Ther 2016; 7:144. [PMID: 27677963 PMCID: PMC5039894 DOI: 10.1186/s13287-016-0406-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/14/2016] [Accepted: 09/06/2016] [Indexed: 01/27/2023] Open
Abstract
Background The clinical outcomes following intrasynovial flexor tendon repair are highly variable. Excessive inflammation is a principal factor underlying the formation of adhesions at the repair surface and affecting matrix regeneration at the repair center that limit tendon excursion and impair tendon healing. A previous in-vitro study revealed that adipose-derived mesenchymal stromal cells (ASCs) modulate tendon fibroblast response to macrophage-induced inflammation. The goal of the current study was therefore to explore the effectiveness of autologous ASCs on the inflammatory stage of intrasynovial tendon healing in vivo using a clinically relevant animal model. Methods Zone II flexor tendon transections and suture repairs were performed in a canine model. Autologous ASC sheets were delivered to the surface of repaired tendons. Seven days after repair, the effects of ASCs on tendon healing, with a focus on the inflammatory response, were evaluated using gene expression assays, immunostaining, and histological assessments. Results ASCs delivered via the cell sheet infiltrated the host tendon, including the repair surface and the space between the tendon ends, as viewed histologically by tracking GFP-expressing ASCs. Gene expression results demonstrated that ASCs promoted a regenerative/anti-inflammatory M2 macrophage phenotype and regulated tendon matrix remodeling. Specifically, there were significant increases in M2-stimulator (IL-4), marker (CD163 and MRC1), and effector (VEGF) gene expression in ASC-sheet treated tendons compared with nontreated tendons. When examining changes in extracellular matrix expression, tendon injury caused a significant increase in scar-associated COL3A1 expression and reductions in COL2A1 and ACAN expression. The ASC treatment effectively counteracted these changes, returning the expression levels of these genes closer to normal. Immunostaining further confirmed that ASC treatment increased CD163+ M2 cells in the repaired tendons and suppressed cell apoptosis at the repair site. Conclusions This study provides a novel approach for delivering ASCs with outcomes indicating potential for substantial modulation of the inflammatory environment and enhancement of tendon healing after flexor tendon repair.
Collapse
Affiliation(s)
- Hua Shen
- Department of Orthopaedic Surgery, Washington University, 660 South Euclid, Campus, Box 8233, St. Louis, MO, 63110, USA
| | - Ioannis Kormpakis
- Department of Orthopaedic Surgery, Washington University, 660 South Euclid, Campus, Box 8233, St. Louis, MO, 63110, USA
| | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St. Louis, MO, USA
| | - Stephen W Linderman
- Department of Orthopaedic Surgery, Washington University, 660 South Euclid, Campus, Box 8233, St. Louis, MO, 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University, 660 South Euclid, Campus, Box 8233, St. Louis, MO, 63110, USA
| | - Richard H Gelberman
- Department of Orthopaedic Surgery, Washington University, 660 South Euclid, Campus, Box 8233, St. Louis, MO, 63110, USA.
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, Black Building 1408, 650 W 168 ST, New York, NY, 10032, USA. .,Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|