151
|
Qiu X, Zhang L, Lu S, Song Y, Lao Y, Hu J, Fan H. Upregulation of DNMT1 mediated by HBx suppresses RASSF1A expression independent of DNA methylation. Oncol Rep 2014; 31:202-8. [PMID: 24247422 DOI: 10.3892/or.2013.2848] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
Abstract
The hepatitis B virus (HBV) X protein (HBx) plays a key role in the molecular pathogenesis of HBV-related hepatocellular carcinoma (HCC). However, its critical gene targets remain largely unknown. RASSF1A gene (Ras-association domain family 1A, RASSF1A), a tumor-suppressor gene, is frequently found to be hypermethylated and downregulated in HCC. In the present study, we investigated whether HBx is involved in the hypermethylation and downregulation of RASSF1A and we examined the potential regulation mechanisms. RT-PCR analysis was used to determine RASSF1A and HBx expression in 9 liver cell lines and the results showed that RASSF1A expression was relatively low in HBx-positive cells. Notably, RASSF1A was downregulated in HepG2.2.15 cells, as compared to HepG2 cells. Further analysis revealed that HBx transfection suppressed RASSF1A expression and HBx knockdown induced its expression. Enforced HBx suppressed RASSF1A and meanwhile induced DNMT1 and DNMT3B expression. In addition, RASSF1A is negatively regulated by DNMT1. ChIP analysis using an antibody against DNMT1 revealed that HBx enhanced the binding of DNMT1 to the RASSF1A promoter but the inhibition of RASSF1A by HBx is DNA methylation-independent as detected by methylation-specific PCR (MSP). Further studies using MSP and bisulfite genomic sequencing (BGS) revealed that no significant methylation changes were observed for regional methylation levels of RASSF1A in DNMT1 knockdown cells, although methylation levels of specific CpG sites at the predicted binding sites for the Sp1 and USF transcription factors were reduced. Additionally, RASSF1A was downregulated in HBV-associated HCC (HBV-HCC) as detected by RT-PCR and immunohistochemistry suggesting RASSF1A expression may be related to HBx in HCC and the clinical relevance of our observations. Collectively, our data showed that HBx suppressed RASSF1A expression via DNMT1 and offered a new mechanism of RASSF1A inactive in HCC in addition to the widely known DNA methylation, enriching the epigenetic mechanism by which HBx contributes to the pathogenesis of HBV-HCC.
Collapse
Affiliation(s)
- Xuemei Qiu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University and the Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu, P.R. China
| | | | | | | | | | | | | |
Collapse
|
152
|
Wu YL, Wang D, Peng XE, Chen YL, Zheng DL, Chen WN, Lin X. Epigenetic silencing of NAD(P)H:quinone oxidoreductase 1 by hepatitis B virus X protein increases mitochondrial injury and cellular susceptibility to oxidative stress in hepatoma cells. Free Radic Biol Med 2013; 65:632-644. [PMID: 23920313 DOI: 10.1016/j.freeradbiomed.2013.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 12/31/2022]
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a phase II enzyme that participates in the detoxification of dopamine-derived quinone molecules and reactive oxygen species. Our prior work using a proteomic approach found that NQO1 protein levels were significantly decreased in stable hepatitis B virus (HBV)-producing hepatoma cells relative to the empty-vector-transfected controls. However, the mechanism and biological significance of the NQO1 suppression remain elusive. In this study we demonstrate that HBV X protein (HBx) induces epigenetic silencing of NQO1 in hepatoma cells through promoter hypermethylation via recruitment of DNA methyltransferase DNMT3A to the promoter region of the NQO1 gene. In HBV-related hepatocellular carcinoma (HCC) specimens, HBx expression was correlated negatively to NQO1 transcripts but positively to NQO1 promoter hypermethylation. Downregulation of NQO1 by HBx reduced intracellular glutathione levels, impaired mitochondrial function, and increased susceptibility of hepatoma cells to oxidative stress-induced cell injury. These results suggest a novel mechanism for HBV-mediated pathogenesis of chronic liver diseases, including HCC.
Collapse
Affiliation(s)
- Yun-Li Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Dong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Xian-E Peng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Yan-Ling Chen
- Department of Hepatobiliary and Pancreatic Surgery, Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Da-Li Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wan-Nan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China.
| |
Collapse
|
153
|
Niller HH, Banati F, Nagy K, Buzas K, Minarovits J. Update on microbe-induced epigenetic changes: bacterial effectors and viral oncoproteins as epigenetic dysregulators. Future Virol 2013. [DOI: 10.2217/fvl.13.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pathoepigenetics is a new discipline describing how disturbances in epigenetic regulation alter the epigenotype and gene-expression pattern of human, animal or plant cells. Such ‘epigenetic reprogramming’ may play an important role in the initiation and progression of a wide variety of diseases. Infectious diseases also belong to this category: recent data demonstrated that microbial pathogens, including bacteria and viruses, are capable of dysregulating the epigenetic machinery of their host cell. The resulting heritable changes in host cell gene expression may favor the colonization, growth or spread of infectious pathogens. It may also facilitate the establishment of latency and malignant cell transformation. In this article, we review how bacterial epigenetic effectors and inflammatory processes elicited by bacteria alter the host cell epigenotype, and describe how oncoproteins encoded by human tumor viruses act as epigenetic dysregulators to alter the phenotype and behavior of host cells.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology & Hygiene, University of Regensburg, Franz-Josef-Strauss Allee 11, Regensburg D93053, Germany
| | - Ferenc Banati
- RT-Europe Nonprofit Research Center, H-9200 Mosonmagyarovar, Pozsonyi út 88, Hungary
| | - Katalin Nagy
- University of Szeged, Faculty of Dentistry, Department of Oral Surgery, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| | - Krisztina Buzas
- University of Szeged, Faculty of Dentistry, Department of Oral Biology & Experimental Dental Research, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| | - Janos Minarovits
- University of Szeged, Faculty of Dentistry, Department of Oral Biology & Experimental Dental Research, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| |
Collapse
|
154
|
Park ES, Park YK, Shin CY, Park SH, Ahn SH, Kim DH, Lim KH, Kwon SY, Kim KP, Yang SI, Seong BL, Kim KH. Hepatitis B virus inhibits liver regeneration via epigenetic regulation of urokinase-type plasminogen activator. Hepatology 2013; 58:762-76. [PMID: 23483589 DOI: 10.1002/hep.26379] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED Liver regeneration after liver damage caused by toxins and pathogens is critical for liver homeostasis. Retardation of liver proliferation was reported in hepatitis B virus (HBV) X protein (HBx)-transgenic mice. However, the underlying mechanism of the HBx-mediated disturbance of liver regeneration is unknown. We investigated the molecular mechanism of the inhibition of liver regeneration using liver cell lines and a mouse model. The mouse model of acute HBV infection was established by hydrodynamic injection of viral DNA. Liver regeneration after partial hepatectomy was significantly inhibited in the HBV DNA-treated mice. Mechanism studies have revealed that the expression of urokinase-type plasminogen activator (uPA), which regulates the activation of hepatocyte growth factor (HGF), was significantly decreased in the liver tissues of HBV or HBx-expressing mice. The down-regulation of uPA was further confirmed using liver cell lines transiently or stably transfected with HBx and the HBV genome. HBx suppressed uPA expression through the epigenetic regulation of the uPA promoter in mouse liver tissues and human liver cell lines. Expression of HBx strongly induced hypermethylation of the uPA promoter by recruiting DNA methyltransferase (DNMT) 3A2. CONCLUSION Taken together, these results suggest that infection of HBV impairs liver regeneration through the epigenetic dysregulation of liver regeneration signals by HBx.
Collapse
Affiliation(s)
- Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Lee H, Sohn JB, Kim SS, Jang KL. DNA methyltransferase inhibitor assay system based on the HBx-induced DNA methylation of E-cadherin. Biochem Biophys Res Commun 2013; 438:540-5. [PMID: 23906757 DOI: 10.1016/j.bbrc.2013.07.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 01/01/2023]
Abstract
We here report a simple assay system for DNA methyltransferase (DNMT) inhibitors based on the HBx-induced DNA methylation of E-cadherin. A stable cell line named G1 was generated by co-transfecting E-cadherin luciferase reporter and HBx-expression plasmid into HepG2 cells. Treatment of G1 cells with DNMT inhibitors, 5-azacytidine, 5-aza-2'-deoxycytidine, and procainamaid, dose-dependently inhibited DNA methylation of E-cadherin promoter in the reporter, resulting in up-regulation of luciferase levels and its enzyme activity. Treatment with all-trans retinoic acid that is known to inhibit DNMT expression, also induced similar effects. Our system can be useful for development of epi-drugs targeting DNA methylation in malignancies.
Collapse
Affiliation(s)
- Hyehyeon Lee
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | |
Collapse
|
156
|
Pollicino T, Bellinghieri L, Restuccia A, Raffa G, Musolino C, Alibrandi A, Teti D, Raimondo G. Hepatitis B virus (HBV) induces the expression of interleukin-8 that in turn reduces HBV sensitivity to interferon-alpha. Virology 2013; 444:317-28. [PMID: 23890815 DOI: 10.1016/j.virol.2013.06.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/02/2013] [Accepted: 06/25/2013] [Indexed: 12/15/2022]
Abstract
High levels of serum interleukin-8 (IL-8) have been detected in chronic hepatitis B (CHB) patients during episodes of hepatitis flares. We investigated whether hepatitis B virus (HBV) may directly induce IL-8 production and whether IL-8 may antagonize interferon-alpha (IFN-α) antiviral activity against HBV. We showed that CHB patients had significantly higher IL-8 levels both in serum and in liver tissue than controls. In HBV-replicating HepG2 cells, IL-8 transcription was significantly activated. AP-1, C/EBP and NF-kB transcription factors were concurrently necessary for maximum IL-8 induction. Moreover, HBx viral protein was recruited onto the IL-8 promoter and this was paralleled by IL8-bound histone hyperacetylation and by active recruitment of transcriptional coactivators. Inhibition of IL-8 increases the antiviral activity of IFN-α against HBV. Our results indicate that HBV activates IL-8 gene expression by targeting the epigenetic regulation of the IL-8 promoter and that IL-8 may contribute to reduce HBV sensitivity to IFN-α.
Collapse
Affiliation(s)
- Teresa Pollicino
- Department of Pediatric, Gynecologic, Microbiological, and Biomedical Sciences, University of Messina, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Herceg Z, Lambert MP, van Veldhoven K, Demetriou C, Vineis P, Smith MT, Straif K, Wild CP. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis 2013; 34:1955-67. [PMID: 23749751 DOI: 10.1093/carcin/bgt212] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress in the field of epigenetics has turned academic, medical and public attention to the potential applications of these new advances in medicine and various fields of biomedical research. The result is a broader appreciation of epigenetic phenomena in the a etiology of common human diseases, most notably cancer. These advances also represent an exciting opportunity to incorporate epigenetics and epigenomics into carcinogen identification and safety assessment. Current epigenetic studies, including major international sequencing projects, are expected to generate information for establishing the 'normal' epigenome of tissues and cell types as well as the physiological variability of the epigenome against which carcinogen exposure can be assessed. Recently, epigenetic events have emerged as key mechanisms in cancer development, and while our search of the Monograph Volume 100 revealed that epigenetics have played a modest role in evaluating human carcinogens by the International Agency for Research on Cancer (IARC) Monographs so far, epigenetic data might play a pivotal role in the future. Here, we review (i) the current status of incorporation of epigenetics in carcinogen evaluation in the IARC Monographs Programme, (ii) potential modes of action for epigenetic carcinogens, (iii) current in vivo and in vitro technologies to detect epigenetic carcinogens, (iv) genomic regions and epigenetic modifications and their biological consequences and (v) critical technological and biological issues in assessment of epigenetic carcinogens. We also discuss the issues related to opportunities and challenges in the application of epigenetic testing in carcinogen identification and evaluation. Although the application of epigenetic assays in carcinogen evaluation is still in its infancy, important data are being generated and valuable scientific resources are being established that should catalyse future applications of epigenetic testing.
Collapse
Affiliation(s)
- Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, F-69008 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Hepatitis B virus X protein-induced aberrant epigenetic modifications contributing to human hepatocellular carcinoma pathogenesis. Mol Cell Biol 2013; 33:2810-6. [PMID: 23716588 DOI: 10.1128/mcb.00205-13] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent malignant diseases worldwide, and the majority of cases are related to hepatitis B virus (HBV) infection. Interactions between the HBV-encoded X (HBx) protein and host factors are known to play major roles in the onset and progression of HBV-related HCC. These dynamic molecular mechanisms are extremely complex and lead to prominent changes in the host genetic and epigenetic architecture. This review summarizes the current knowledge about HBx-induced epigenetic changes, including aberrations in DNA methylation, histone modifications, and microRNA expression, and their roles in HBV-infected liver cells and HBV-related HCC. Moreover, the HBx-mediated epigenetic control of HBV covalently closed circular DNA (cccDNA) is also discussed. Although this field of study is relatively new, the accumulated evidence has indicated that the epigenetic events induced by HBx play important roles in the development of HBV-related HCC. Ongoing research will help to identify practical applications of the HBV-related epigenetic signatures as biomarkers for early HCC detection or as potential targets to prevent and treat HBV-related HCC.
Collapse
|
159
|
Avanzi S, Alvisi G, Ripalti A. How virus persistence can initiate the tumorigenesis process. World J Virol 2013; 2:102-9. [PMID: 24175234 PMCID: PMC3785046 DOI: 10.5501/wjv.v2.i2.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/04/2013] [Accepted: 04/10/2013] [Indexed: 02/05/2023] Open
Abstract
Human oncogenic viruses are defined as necessary but not sufficient to initiate cancer. Experimental evidence suggests that the oncogenic potential of a virus is effective in cells that have already accumulated a number of genetic mutations leading to cell cycle deregulation. Current models for viral driven oncogenesis cannot explain why tumor development in carriers of tumorigenic viruses is a very rare event, occurring decades after virus infection. Considering that viruses are mutagenic agents per se and human oncogenic viruses additionally establish latent and persistent infections, we attempt here to provide a general mechanism of tumor initiation both for RNA and DNA viruses, suggesting viruses could be both necessary and sufficient in triggering human tumorigenesis initiation. Upon reviewing emerging evidence on the ability of viruses to induce DNA damage while subverting the DNA damage response and inducing epigenetic disturbance in the infected cell, we hypothesize a general, albeit inefficient hit and rest mechanism by which viruses may produce a limited reservoir of cells harboring permanent damage that would be initiated when the virus first hits the cell, before latency is established. Cells surviving virus generated damage would consequently become more sensitive to further damage mediated by the otherwise insufficient transforming activity of virus products expressed in latency, or upon episodic reactivations (viral persistence). Cells with a combination of genetic and epigenetic damage leading to a cancerous phenotype would emerge very rarely, as the probability of such an occurrence would be dependent on severity and frequency of consecutive hit and rest cycles due to viral reinfections and reactivations.
Collapse
|
160
|
Huang JF, Guo YJ, Zhao CX, Yuan SX, Wang Y, Tang GN, Zhou WP, Sun SH. Hepatitis B virus X protein (HBx)-related long noncoding RNA (lncRNA) down-regulated expression by HBx (Dreh) inhibits hepatocellular carcinoma metastasis by targeting the intermediate filament protein vimentin. Hepatology 2013; 57:1882-92. [PMID: 23239537 DOI: 10.1002/hep.26195] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/01/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED The hepatitis B virus X protein (HBx) has been implicated as an oncogene in both epigenetic modifications and genetic regulation during hepatocarcinogenesis, but the underlying mechanisms are not entirely clear. Long noncoding RNAs (lncRNAs), which regulate gene expression with little or no protein-coding capacity, are involved in diverse biological processes and in carcinogenesis. We asked whether HBx could promote hepatocellular carcinoma (HCC) by regulating the expression of lncRNAs. In this study we investigated the alteration in expression of lncRNAs induced by HBx using microarrays and real-time quantitative polymerase chain reaction (PCR). Our results indicate that HBx transgenic mice have a specific profile of liver lncRNAs compared with wildtype mice. We identified an lncRNA, down-regulated expression by HBx (termed lncRNA-Dreh), which can inhibit HCC growth and metastasis in vitro and in vivo, act as a tumor suppressor in the development of hepatitis B virus (HBV)-HCC. LncRNA-Dreh could combine with the intermediate filament protein vimentin and repress its expression, and thus further change the normal cytoskeleton structure to inhibit tumor metastasis. We also identified a human ortholog RNA of Dreh (hDREH) and found that its expression level was frequently down-regulated in HBV-related HCC tissues in comparison with the adjacent noncancerous hepatic tissues, and its decrement significantly correlated with poor survival of HCC patients. CONCLUSION These findings support a role of lncRNA-Dreh in tumor suppression and survival prediction in HCC patients. This discovery contributes to a better understanding of the importance of the deregulated lncRNAs by HBx in HCC and provides a rationale for the potential development of lncRNA-based targeted approaches for the treatment of HBV-related HCC.
Collapse
Affiliation(s)
- Jin-feng Huang
- The Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
161
|
HBx-mediated miR-21 upregulation represses tumor-suppressor function of PDCD4 in hepatocellular carcinoma. Oncogene 2013; 32:3296-305. [PMID: 23604124 DOI: 10.1038/onc.2013.150] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/12/2022]
Abstract
The hepatitis B virus (HBV) X protein (HBx) has a key role in the molecular pathogenesis of HBV-related hepatocellular carcinoma (HCC). However, the mechanism of HBx-mediated hepatocarcinogenesis remains to be elucidated. In this study, we aimed to better understand the effects of HBx on gene-expression profiles that participate in hepatocarcinogenesis and the mechanism by which HBx regulates these genes. Differentially expressed genes between L02-HBx and L02-Vector control cells were identified by microarray and validated using quantitative real-time PCR. HBx upregulates 456 genes and downregulates 843 genes, including programmed cell death 4 (PDCD4). PDCD4 was downregulated in clinical HCC specimens and the downregulation of PDCD4 in HCC is correlated with HBx. Furthermore, overexpression experiments in HCC cells proved that PDCD4 has strong tumor-suppressive effects both in vitro and in vivo, and may induce cell apoptosis to suppress the development of HCC. HBx induces expression of DNA methyltransferases (DNMTs), but failed to change the methylation status of the PDCD4 promoter. HBx downregulates PDCD4 expression at least partially through miR-21. Taken together, this study reported for the first time that HBx downregulates PDCD4 and upregulates miR-21 expression. The overexpression of PDCD4 could suppress tumorigenicity. The deregulation of PDCD4 by HBx through miR-21 represents a potential novel mechanism of the downregulation of PDCD4 in HBV-related HCC and provides new insights into HCC development.
Collapse
|
162
|
Deregulation of epigenetic mechanisms by the hepatitis B virus X protein in hepatocarcinogenesis. Viruses 2013; 5:858-72. [PMID: 23507839 PMCID: PMC3705300 DOI: 10.3390/v5030858] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022] Open
Abstract
This review focuses on the significance of deregulation of epigenetic mechanisms by the hepatitis B virus (HBV) X protein in hepatocarcinogenesis and HBV replication. Epigenetic mechanisms, DNA methylation, and specific histone modifications, e.g., trimethylation of H3 on lysine-27 or lysine-4, maintain ‘cellular memory’ by silencing expression of lineage-inducing factors in stem cells and conversely, of pluripotency factors in differentiated cells. The X protein has been reported to induce expression of DNA methyltransferases (DNMTs), likely promoting epigenetic changes during hepatocarcinogenesis. Furthermore, in cellular and animal models of X-mediated oncogenic transformation, protein levels of chromatin modifying proteins Suz12 and Znf198 are down-regulated. Suz12 is essential for the Polycomb Repressive Complex 2 (PRC2) mediating the repressive trimethylation of H3 on lysine-27 (H3K27me3). Znf198, stabilizes the LSD1-CoREST-HDAC complex that removes, via lysine demethylase1 (LSD1), the activating trimethylation of H3 on lysine-4 (H3K4me3). Down-regulation of Suz12 also occurs in liver tumors of woodchucks chronically infected by woodchuck hepatitis virus, an animal model recapitulating HBV-mediated hepatocarcinogenesis in humans. Significantly, subgroups of HBV-induced liver cancer re-express hepatoblast and fetal markers, and imprinted genes, suggesting hepatocyte reprogramming during oncogenic transformation. Lastly, down-regulation of Suz12 and Znf198 enhances HBV replication. Collectively, these observations suggest deregulation of epigenetic mechanisms by HBV X protein influences both the viral cycle and the host cell.
Collapse
|
163
|
Ling Y, Zhu J, Gao L, Liu Y, Zhu C, Li R, Wei L, Zhang C. The silence of MUC2 mRNA induced by promoter hypermethylation associated with HBV in Hepatocellular Carcinoma. BMC MEDICAL GENETICS 2013; 14:14. [PMID: 23347460 PMCID: PMC3583682 DOI: 10.1186/1471-2350-14-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 01/23/2013] [Indexed: 12/22/2022]
Abstract
Background To evaluate the promoter methylation status of MUC2 gene and mRNA expression in patients with hepatocellular carcinoma. Methods We analyzed MUC2 methylation by MSP, and MUC2 mRNA by real-time PCR in 74 HCC. Results MUC2 mRNA were lower in HCC tissues (Mean -ΔCt = −4.70) than that in Non-HCC tissues (Mean -ΔCt = −2.98). Expression of MUC2 was elevated in only 23 (31.08%) of the 74 HCC patients. MUC2 promoter was hypermethylated in 62.2% (46/74) of HCCs, and in only 18.9% (14/74) of non-tumor samples. MUC2 mRNA were lower in HCC patients with hypermethylation (Mean -ΔΔCt = −2.25) than those with demethylation (Mean -ΔΔCt = −0.22), and there is a decreased tendency for MUC2 mRNA in HCC patients with promoter hypermethylation (p = 0.011). There was a significantly correlation found between MUC2 mRNA and HBV and AFP in HCC. The loss of MUC2 mRNA and hypermethylation could be poor prognostic factors. After treated by 5-Aza-CdR and TSA, we found that MUC2 mRNA induced significantly in 7721, Huh7 and HepG2 cells. Conclusion The results suggested that MUC2 mRNA silenced by promoter hypermethylation is associated with high levels HBV in HCC.
Collapse
Affiliation(s)
- Yang Ling
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Soochow University, Changzhou, No,1 North Huaide Road, Changzhou, 213001, China
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Tahara T, Arisawa T. Potential usefulness of DNA methylation as a risk marker for digestive cancer associated with inflammation. Expert Rev Mol Diagn 2012; 12:489-97. [PMID: 22702365 DOI: 10.1586/erm.12.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation has been deeply involved in the development and progression of digestive cancer, while aberrant DNA methylation has also often been observed in aged and inflammatory digestive tissues. Helicobacter pylori-related chronic gastritis, ulcerative colitis, and hepatitis B virus- and hepatitis C virus-related chronic hepatitis, are significant risk factors for developing cancer. A number of studies have revealed the specific methylation patterns for specific tissue types. DNA methylation status is stably transmitted to daughter cells. Also, unlike genetic mutations, it is possible to detect very tiny amounts of methylated DNA among tissues. Therefore, the use of aberrant methylation as a marker could be applicable to risk estimation of cancer development. We discuss the potential usefulness of DNA methylation as a risk marker for inflammation-associated digestive cancer, especially with attempts on gastric cancer, ulcerative colitis-associated cancer, and hepatitis B virus- and hepatitis C virus-related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tomomitsu Tahara
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, 1-98 Dengakugakubo Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | | |
Collapse
|
165
|
Liu W, Chen JR, Hsu CH, Li YH, Chen YM, Lin CY, Huang SJ, Chang ZK, Chen YC, Lin CH, Gong HY, Lin CC, Kawakami K, Wu JL. A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 2012; 56:2268-76. [PMID: 22729936 DOI: 10.1002/hep.25914] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 06/09/2012] [Indexed: 12/25/2022]
Abstract
UNLABELLED The mechanisms that mediate the initiation and development of intrahepatic cholangiocarcinoma (ICC) associated with hepatitis B and C virus (HBV and HCV, respectively) infection remain largely unclear. In this study we conditionally coexpressed hepatitis B virus X (HBx) and hepatitis C virus core (HCP) proteins in zebrafish livers, which caused fibrosis and consequently contributed to ICC formation at the age of 3 months. Suppressing the transgene expression by doxycycline (Dox) treatment resulted in the loss of ICC formation. The biomarker networks of zebrafish ICC identified by transcriptome sequencing and analysis were also frequently involved in the development of human neoplasms. The profiles of potential biomarker genes of zebrafish ICC were similar to those of human cholangiocarcinoma. Our data also showed that the pSmad3L oncogenic pathway was activated in HBx and HCP-induced ICC and included phosphorylation of p38 mitogen-activated proteinbase (MAPK) and p44/42 mitogen-activated protein kinase (ERK1/2), indicating the association with transforming growth factor beta 1 (TGF-β1) signaling pathway in ICC. Bile duct proliferation, fibrosis, and ICC were markedly reduced by knockdown of TGF-β1 by in vivo morpholinos injections. CONCLUSION These results reveal that TGF-β1 plays an important role in HBx- and HCP-induced ICC development. This in vivo model is a potential approach to study the molecular events of fibrosis and ICC occurring in HBV and HCV infection.
Collapse
Affiliation(s)
- Wangta Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Wei X, Xiang T, Ren G, Tan C, Liu R, Xu X, Wu Z. miR-101 is down-regulated by the hepatitis B virus x protein and induces aberrant DNA methylation by targeting DNA methyltransferase 3A. Cell Signal 2012; 25:439-46. [PMID: 23124077 DOI: 10.1016/j.cellsig.2012.10.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 10/26/2012] [Indexed: 12/17/2022]
Abstract
The hepatitis B virus x (HBx) protein has been implicated in HBV-related hepatocellular carcinoma (HCC) pathogenesis. However, whether HBx regulates miRNA expression that plays important roles in gene regulation during hepatocarcinogenesis remains unknown. The expression of microRNA-101 (miR-101) in HBV-related HCC tissues and HCC cells was evaluated by real-time PCR. The direct target of miR-101, DNA methyltransferase 3A (DNMT3A), was identified in silico and validated using a 3'-UTR reporter assay. miR-101 was functionally characterized in cells with transiently altered miR-101 expression. HBx expression was found to have a significant inverse correlation with miR-101 expression in HBx-expressing HepG2 compared to control HepG2 cells. miR-101 expression was frequently down-regulated in HBV-related HCC tissues compared to adjacent noncancerous hepatic tissues and had a significant inverse correlation with DNMT3A expression in HBV-related HCCs. Further characterization of miR-101 revealed that it negatively regulated DNA methylation partly through targeting DNMT3A. HBx-mediated miR-101 down-regulation and DNMT3A up-regulation supported the enhanced DNA methylation of several tumor-suppressor genes in HBx-expressing cells. Our studies demonstrating the deregulation of miR-101 expression by HBx may provide novel mechanistic insights into HBV-mediated hepatocarcinogenesis and identify a potential miRNA-based targeted approach for treating HBV-related HCC.
Collapse
Affiliation(s)
- Xufu Wei
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
167
|
Luo L, Chen S, Gong Q, Luo N, Lei Y, Guo J, He S. Hepatitis B virus X protein modulates remodelling of minichromosomes related to hepatitis B virus replication in HepG2 cells. Int J Mol Med 2012; 31:197-204. [PMID: 23128981 DOI: 10.3892/ijmm.2012.1165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/14/2012] [Indexed: 11/05/2022] Open
Abstract
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is organised into minichromosomes by histone and non-histone proteins. Remodelling of minichromosomes is crucial for the regulation of HBV replication, which is dependent on the presence of the hepatitis B virus X protein (HBx). However, the mechanisms of HBx-dependent HBV replication remain obscure. The objective of this study was to investigate the mechanism of HBx-dependent HBV replication through the pathway of chromatin remodelling. The role of HBx was investigated by transfecting human HepG2 cells with the linear full-length HBV genome (wild-type) or HBx-deficient mutant HBV DNA (HBx mutant). Our results showed that although the formation of cccDNA was not affected by HBx, HBV replication, transcription and antigen secretion were all significantly reduced, resulting from the absence of HBx. The acetylation, mono-methylation and phosphorylation of cccDNA-bound histone H3 were associated with HBV replication. In addition, the levels of cccDNA-bound methylated, phosphorylated and acetylated histone H3 decreased sharply in HBx mutant HBV DNA. HBx modulated not only the status of acetylation but also the methylation and phosphorylation of histone H3 bound to the cccDNA during HBV replication in HepG2 cells. These findings suggest that HBx plays an important role in modulating the remodelling of minichromosomes related to HBV replication and it may regulate viral replication through the pathway of chromatin remodelling.
Collapse
Affiliation(s)
- Li Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
AIM To determine global DNA methylation in paired hepatocellular carcinoma (HCC) samples using several different assays and explore the correlations between hypomethylation and clinical parameters and biomarkers, including that of aflatoxin B(1) exposure. METHODS Using the radio labeled methyl acceptance assay as a measure of global hypomethylation, as well as two repetitive elements, including satellite 2 (Sat2) by MethyLight and long interspersed nucleotide elements (LINE1), by pyrosequencing. RESULTS By all three assays, mean methylation levels in tumor tissues were significantly lower than that in adjacent tissues. Methyl acceptance assay log (mean ± SD) disintegrations/min/ng DNA are 70.0 ± 54.8 and 32.4 ± 15.6, respectively, P = 0.040; percent methylation of Sat2 42.2 ± 55.1 and 117.9 ± 88.8, respectively, P < 0.0001 and percent methylation LINE1 48.6 ± 14.8 and 71.7 ± 1.4, respectively, P < 0.0001. Aflatoxin B(1)-albumin (AFB(1)-Alb) adducts, a measure of exposure to this dietary carcinogen, were inversely correlated with LINE1 methylation (r = -0.36, P = 0.034). CONCLUSION Consistent hypomethylation in tumor compared to adjacent tissue was found by the three different methods. AFB(1) exposure is associated with DNA global hypomethylation, suggesting that chemical carcinogens may influence epigenetic changes in humans.
Collapse
|
169
|
Fiorino S, Lorenzini S, Masetti M, Deleonardi G, Grondona AG, Silvestri T, Chili E, Del Prete P, Bacchi-Reggiani L, Cuppini A, Jovine E. Hepatitis B and C virus infections as possible risk factor for pancreatic adenocarcinoma. Med Hypotheses 2012; 79:678-97. [PMID: 22959312 DOI: 10.1016/j.mehy.2012.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 12/14/2022]
Abstract
Pancreatic adenocarcinoma (PAC) is a very aggressive and lethal cancer, with a very poor prognosis, because of absence of early symptoms, advanced stage at presentation, early metastatic dissemination and lack of both specific tests to detect its growth in the initial phases and effective systemic therapies. To date, the causes of PAC still remain largely unknown, but multiple lines of evidence from epidemiological and laboratory researches suggest that about 15-20% of all cancers are linked in some way to chronic infection, in particular it has been shown that several viruses have a role in human carcinogenesis. The purpose of this report is to discuss the hypothesis that two well-known oncogenic viruses, Human B hepatitis (HBV) and Human C hepatitis (HCV) are a possible risk factor for this cancer. Therefore, with the aim to examine the potential link between these viruses and PAC, we performed a selection of observational studies evaluating this association and we hypothesized that some pathogenetic mechanisms involved in liver carcinogenesis might be in common with pancreatic cancer development in patients with serum markers of present or past HBV and HCV infections. To date the available observational studies performed are few, heterogeneous in design as well as in end-points and with not univocal results, nevertheless they might represent the starting-point for future larger and better designed clinical trials to define this hypothesized relationship. Should these further studies confirm an association between HBV/HCV infection and PAC, screening programs might be justified in patients with active or previous hepatitis B and C viral infection.
Collapse
Affiliation(s)
- S Fiorino
- Unità Operativa di Medicina Interna, Ospedale di Budrio, Budrio, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Zopf S, Ocker M, Neureiter D, Alinger B, Gahr S, Neurath MF, Di Fazio P. Inhibition of DNA methyltransferase activity and expression by treatment with the pan-deacetylase inhibitor panobinostat in hepatocellular carcinoma cell lines. BMC Cancer 2012; 12:386. [PMID: 22943463 PMCID: PMC3487800 DOI: 10.1186/1471-2407-12-386] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/31/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) still represents an unmet medical need. Epigenetic inactivation of tumor suppressor genes like RASSF1A or APC by overexpression of DNA methyltransferases (DNMTs) has been shown to be common in HCC and to be linked to the overall prognosis of patients. Inhibitors of protein and histone deacetylases (DACi) have been demonstrated to possess strong anti-tumor effects in HCC models. METHODS We therefore investigated whether DACi also has any influence on the expression and activity of DNMTs and methylated target genes in HepG2 and Hep3B cell culture systems and in a xenograft model by immunohistochemistry, westernblotting, RT-qPCR and methylation-specific PCR. RESULTS Our findings demonstrate a rapid inhibition of DNMT activity 6 h after treatment with 0.1 μM of the pan-DACi panobinostat. A downregulation of DNMT mRNAs and protein were also observed at later points in time. This loss of DNMT activity and expression was paralleled by a diminished methylation of the target genes RASSF1A and APC and a concomitant re-expression of APC mRNA and protein. Analysis of HepG2 xenograft specimens confirmed these results in vivo. CONCLUSION We suggest a dual mode of action of DACi on DNA methylation status: a rapid inhibition of enzyme activity due to interference with posttranslational acetylation and a delayed effect on transcriptional control of DNMT genes by HDAC or miRNA mechanisms.
Collapse
Affiliation(s)
- Steffen Zopf
- Department of Medicine 1, University Hospital Erlangen, Ulmenweg 18, Erlangen, 91054, Germany
| | - Matthias Ocker
- Institute for Surgical Research, Philipps University Marburg, Marburg, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Beate Alinger
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Susanne Gahr
- Department of Medicine 1, University Hospital Erlangen, Ulmenweg 18, Erlangen, 91054, Germany
- Department of Pneumology, Klinikum Nuremberg Nord, Nuremberg, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Ulmenweg 18, Erlangen, 91054, Germany
| | - Pietro Di Fazio
- Institute for Surgical Research, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
171
|
Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis B virus X protein during hepatocarcinogenesis. Oncogenesis 2012; 1:e25. [PMID: 23552838 PMCID: PMC3503295 DOI: 10.1038/oncsis.2012.26] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expression of metastasis-associated protein 1 (MTA1) gene correlates with the degree of invasion and metastasis in hepatocellular carcinoma (HCC). Expression of MTA1 is induced by hepatitis B virus X protein (HBx); however, little is known about the transcriptional regulation of MTA1 gene expression. Here, we report that the 5′-flanking region of the human MTA1 promoter contains two CpG islands. Transient expression of HBx in Chang liver cells increased the methylation of the CpG island1 from 18 to 49% when measured by bisulfite-modified direct sequencing. Chromatin immunoprecipitation showed that HBx recruited DNA methyltransferase 3a (DNMT3a) and DNMT3b to the CpG island1. In silico analysis of CpG island1 predicted the existence of putative p53-binding sequences. p53 was pulled down by a DNA probe encoding the p53-binding sequences but not by the methylated DNA probe. The mouse MTA1 promoter also contains a CpG island encoding a p53-binding sequence of which p53 binding was decreased in the presence of HBx, and the expression of MTA1 and DNMT3 was increased in the liver of HBx-transgenic mice. Comparison of MTA1 and DNMT3a expression in the human normal liver and HCC specimens produced a significant correlation coefficient >0.5 (r=0.5686, P=0.0001) for DNMT3a, and a marginally significant coefficient (r=0.3162, P=0.0103) for DNMT3b. These data show that HBx induces methylation of CpG island in the MTA1 promoter, which interferes with DNA binding of p53 in the specific DNA region. This result may explain the molecular mechanism responsible for the induction of MTA1 gene expression by HBx.
Collapse
|
172
|
Han ZG. Functional genomic studies: insights into the pathogenesis of liver cancer. Annu Rev Genomics Hum Genet 2012; 13:171-205. [PMID: 22703171 DOI: 10.1146/annurev-genom-090711-163752] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver cancer is the sixth-most-common cancer overall but the third-most-frequent cause of cancer death. Among primary liver cancers, hepatocellular carcinoma (HCC), the major histological subtype, is associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Although previous studies have revealed that certain genetic and epigenetic changes, such as TP53 and β-catenin mutations, occur in HCC cells, the pathogenesis of this cancer remains obscure. Functional genomic approaches-including genome-wide association studies, whole-genome and whole-exome sequencing, array-based comparative genomic hybridization, global DNA methylome mapping, and gene or noncoding RNA expression profiling-have recently been applied to HCC patients with different clinical features to uncover the genetic risk factors and underlying molecular mechanisms involved in this cancer's initiation and progression. The genome-wide analysis of germline and somatic genetic and epigenetic events facilitates understanding of the pathogenesis and molecular classification of liver cancer as well as the identification of novel diagnostic biomarkers and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Ze-Guang Han
- National Human Genome Center of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
173
|
Zhang YJ, Wu HC, Yazici H, Yu MW, Lee PH, Santella RM. Global hypomethylation in hepatocellular carcinoma and its relationship to aflatoxin B(1) exposure. World J Hepatol 2012; 4:169-75. [PMID: 22666524 PMCID: PMC3365436 DOI: 10.4254/wjh.v4.i5.169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/02/2012] [Accepted: 04/27/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To determine global DNA methylation in paired hepatocellular carcinoma (HCC) samples using several different assays and explore the correlations between hypomethylation and clinical parameters and biomarkers, including that of aflatoxin B(1) exposure. METHODS Using the radio labeled methyl acceptance assay as a measure of global hypomethylation, as well as two repetitive elements, including satellite 2 (Sat2) by MethyLight and long interspersed nucleotide elements (LINE1), by pyrosequencing. RESULTS By all three assays, mean methylation levels in tumor tissues were significantly lower than that in adjacent tissues. Methyl acceptance assay log (mean ± SD) disintegrations/min/ng DNA are 70.0 ± 54.8 and 32.4 ± 15.6, respectively, P = 0.040; percent methylation of Sat2 42.2 ± 55.1 and 117.9 ± 88.8, respectively, P < 0.0001 and percent methylation LINE1 48.6 ± 14.8 and 71.7 ± 1.4, respectively, P < 0.0001. Aflatoxin B(1)-albumin (AFB(1)-Alb) adducts, a measure of exposure to this dietary carcinogen, were inversely correlated with LINE1 methylation (r = -0.36, P = 0.034). CONCLUSION Consistent hypomethylation in tumor compared to adjacent tissue was found by the three different methods. AFB(1) exposure is associated with DNA global hypomethylation, suggesting that chemical carcinogens may influence epigenetic changes in humans.
Collapse
Affiliation(s)
- Yu-Jing Zhang
- Yu-Jing Zhang, Hui-Chen Wu, Regina M Santella, Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, 630 W 168 St., New York, NY 10032, United States
| | | | | | | | | | | |
Collapse
|
174
|
Wu HC, Wang Q, Yang HI, Tsai WY, Chen CJ, Santella RM. Global DNA methylation levels in white blood cells as a biomarker for hepatocellular carcinoma risk: a nested case-control study. Carcinogenesis 2012; 33:1340-5. [PMID: 22581841 DOI: 10.1093/carcin/bgs160] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Global DNA hypomethylation is associated with genomic instability and human cancer and blood DNAs collected at the time of cancer diagnosis have been used to examine the relationship between global methylation and cancer risk. To test the hypothesis that global hypomethylation is associated with increased risk of hepatocellular carcinoma (HCC), we conducted a prospective case-control study nested within a community-based cohort with 16 years of follow-up. We measured methylation levels in Satellite 2 (Sat2) by MethyLight and LINE-1 by pyrosequencing using baseline white blood cell DNA from 305 HCC cases and 1254 matched controls. We found that Sat2 hypomethylation was associated with HCC risk [odds ratio (OR) per unit decrease in natural log Sat2 methylation = 1.77, 95% confidence interval (CI) = 1.06-2.95]. The association was significant among individuals diagnosed with HCC before age 62 (OR per unit decrease in natural log Sat2 methylation = 2.47, 95% CI = 1.06-5.73) but not after (OR = 1.67, 95% CI = 0.84-3.32). We did not observe an association of LINE-1 with HCC overall risk by age at diagnosis. Among carriers of hepatitis B virus surface antigen (HBsAg), with each 1U decrease in natural log Sat2 methylation level, the OR for HCC increased by 2.19 (95% CI = 1.00-4.89). LINE-1 hypomethylation was associated with about a 2-fold increased risk of HCC, with ORs (95% CI) of 2.39 (1.06-5.39), 2.09 (0.91-4.77) and 2.28 (0.95-5.51, P(trend) = 0.14) for HBsAg carriers in the third, second and lowest quartile of LINE-1 methylation, respectively compared with carriers in the fourth. These results suggest that global hypomethylation may be a useful biomarker of HCC susceptibility.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
175
|
Abstract
Chronic hepatitis B virus (HBV) infection is a complex clinical entity frequently associated with cirrhosis and hepatocellular carcinoma (HCC). The persistence of HBV genomes in the absence of detectable surface antigenemia is termed occult HBV infection. Mutations in the surface gene rendering HBsAg undetectable by commercial assays and inhibition of HBV by suppression of viral replication and viral proteins represent two fundamentally different mechanisms that lead to occult HBV infections. The molecular mechanisms underlying occult HBV infections, including recently identified mechanisms associated with the suppression of HBV replication and inhibition of HBV proteins, are reviewed in detail. The availability of highly sensitive molecular methods has led to increased detection of occult HBV infections in various clinical settings. The clinical relevance of occult HBV infection and the utility of appropriate diagnostic methods to detect occult HBV infection are discussed. The need for specific guidelines on the diagnosis and management of occult HBV infection is being increasingly recognized; the aspects of mechanistic studies that warrant further investigation are discussed in the final section.
Collapse
|
176
|
Abstract
Chronic hepatitis B virus (HBV) infection is a complex clinical entity frequently associated with cirrhosis and hepatocellular carcinoma (HCC). The persistence of HBV genomes in the absence of detectable surface antigenemia is termed occult HBV infection. Mutations in the surface gene rendering HBsAg undetectable by commercial assays and inhibition of HBV by suppression of viral replication and viral proteins represent two fundamentally different mechanisms that lead to occult HBV infections. The molecular mechanisms underlying occult HBV infections, including recently identified mechanisms associated with the suppression of HBV replication and inhibition of HBV proteins, are reviewed in detail. The availability of highly sensitive molecular methods has led to increased detection of occult HBV infections in various clinical settings. The clinical relevance of occult HBV infection and the utility of appropriate diagnostic methods to detect occult HBV infection are discussed. The need for specific guidelines on the diagnosis and management of occult HBV infection is being increasingly recognized; the aspects of mechanistic studies that warrant further investigation are discussed in the final section.
Collapse
|
177
|
Silencing of PCDH10 in hepatocellular carcinoma via de novo DNA methylation independent of HBV infection or HBX expression. Clin Exp Med 2012; 13:127-34. [PMID: 22543497 DOI: 10.1007/s10238-012-0182-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/03/2012] [Indexed: 12/12/2022]
Abstract
PCDH10 is a key tumor suppressive gene for nasopharyngeal, esophageal, and other carcinomas with frequent methylation. In this study, we investigated the potential epigenetic modification of the PCDH10 gene by hepatitis B virus × protein (HBx), a pivotal factor in the progression of HBV replication and potential carcinogenesis. PCDH10 expression was found to be down-regulated in 9/13 (69.2 %) of hepatocellular carcinoma (HCC) cell lines. Decreased PCDH10 expression was correlated with the methylation status of the PCDH10 promoter. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (Aza) was sufficient to restore PCDH10 mRNA expression by suppressing PCDH10 promoter methylation in HepG2 cells. Treatment with Trichostatin A alone had no significant effect on PCDH10 expression but enhanced the effect of Aza. PCDH10 methylation was further detected in 76 % (38 of 50) of HCC tissues compared with 40 % (20 of 50) of paired adjacent tissues, with no methylation detected in normal human liver tissues. There were significant correlations between methylation status of PCDH10 and tumor size, serum AFP levels, metastasis or TNM staging (P < 0.05). Moreover, PCDH10 promoter methylation status was not associated with HBV infection in our panel of 50 primary HCC tumors, and transfection with HBX could not alter the status of PCDH10 promoter methylation. Collectively, these observations suggested that the expression of PCDH10 was silenced in HCC via de novo DNA methylation independent of HBV infection or HBX expression, and PCDH10 might form a potentially useful therapeutic target for HCC.
Collapse
|
178
|
Impact of the location of CpG methylation within the GSTP1 gene on its specificity as a DNA marker for hepatocellular carcinoma. PLoS One 2012; 7:e35789. [PMID: 22536438 PMCID: PMC3335004 DOI: 10.1371/journal.pone.0035789] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/22/2012] [Indexed: 01/25/2023] Open
Abstract
Hypermethylation of the glutathione S-transferase π 1 (GSTP1) gene promoter region has been reported to be a potential biomarker to distinguish hepatocellular carcinoma (HCC) from other liver diseases. However, reports regarding how specific a marker it is have ranged from 100% to 0%. We hypothesized that, to a large extent, the variation of specificity depends on the location of the CpG sites analyzed. To test this hypothesis, we compared the methylation status of the GSTP1 promoter region of the DNA isolated from HCC, cirrhosis, hepatitis, and normal liver tissues by bisulfite-PCR sequencing. We found that the 5' region of the position -48 nt from the transcription start site of the GSTP1 gene is selectively methylated in HCC, whereas the 3' region is methylated in all liver tissues examined, including normal liver and the HCC tissue. Interestingly, when DNA derived from fetal liver and 11 nonhepatic normal tissue was also examined by bisulfite-PCR sequencing, we found that methylation of the 3' region of the promoter appeared to be liver-specific. A methylation-specific PCR assay targeting the 5' region of the promoter was developed and used to quantify the methylated GSTP1 gene in various diseased liver tissues including HCC. When we used an assay targeting the 3' region, we found that the methylation of the 5'-end of the GSTP1 promoter was significantly more specific than that of the 3'-end (97.1% vs. 60%, p<0.0001 by Fisher's exact test) for distinguishing HCC (n = 120) from hepatitis (n = 35) and cirrhosis (n = 35). Encouragingly, 33.8% of the AFP-negative HCC contained the methylated GSTP1 gene. This study clearly demonstrates the importance of the location of CpG site methylation for HCC specificity and how liver-specific DNA methylation should be considered when an epigenetic DNA marker is studied for detection of HCC.
Collapse
|
179
|
Ross JP, Rand KN, Molloy PL. Hypomethylation of repeated DNA sequences in cancer. Epigenomics 2012; 2:245-69. [PMID: 22121873 DOI: 10.2217/epi.10.2] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An important feature of cancer development and progression is the change in DNA methylation patterns, characterized by the hypermethylation of specific genes concurrently with an overall decrease in the level of 5-methylcytosine. Hypomethylation of the genome can affect both single-copy genes, repeat DNA sequences and transposable elements, and is highly variable among and within cancer types. Here, we review our current understanding of genome hypomethylation in cancer, with a particular focus on hypomethylation of the different classes and families of repeat sequences. The emerging data provide insights into the importance of methylation of different repeat families in the maintenance of chromosome structural integrity and the fidelity of normal transcriptional regulation. We also consider the events underlying cancer-associated hypomethylation and the potential for the clinical use of characteristic DNA methylation changes in diagnosis, prognosis or classification of tumors.
Collapse
Affiliation(s)
- Jason P Ross
- Commonwealth Scientific & Industrial Research Organisation, Food & Nutritional Science, Preventative Health National Research Flagship, North Ryde, NSW 1670, Australia
| | | | | |
Collapse
|
180
|
Shitani M, Sasaki S, Akutsu N, Takagi H, Suzuki H, Nojima M, Yamamoto H, Tokino T, Hirata K, Imai K, Toyota M, Shinomura Y. Genome-wide analysis of DNA methylation identifies novel cancer-related genes in hepatocellular carcinoma. Tumour Biol 2012; 33:1307-17. [PMID: 22457049 DOI: 10.1007/s13277-012-0378-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/11/2012] [Indexed: 12/23/2022] Open
Abstract
Aberrant DNA methylation has been implicated in the development of hepatocellular carcinoma (HCC). Our aim was to clarify its molecular mechanism and to identify useful biomarkers by screening for DNA methylation in HCC. Methylated CpG island amplification coupled with CpG island microarray (MCAM) analysis was carried out to screen for methylated genes in primary HCC specimens [hepatitis B virus (HBV)-positive, n = 4; hepatitis C virus (HCV)-positive, n = 5; HBV/HCV-negative, n = 7]. Bisulfite pyrosequencing was used to analyze the methylation of selected genes and long interspersed nuclear element (LINE)-1 in HCC tissue (n = 57) and noncancerous liver tissue (n = 50) from HCC patients and in HCC cell lines (n = 10). MCAM analysis identified 332, 342, and 259 genes that were methylated in HBV-positive, HCV-positive, and HBV/HCV-negative HCC tissues, respectively. Among these genes, methylation of KLHL35, PAX5, PENK, and SPDYA was significantly higher in HCC tissue than in noncancerous liver tissue, irrespective of the hepatitis virus status. LINE-1 hypomethylation was also prevalent in HCC and correlated positively with KLHL35 and SPDYA methylation. Receiver operating characteristic curve analysis revealed that methylation of the four genes and LINE-1 strongly discriminated between HCC tissue and noncancerous liver tissue. Our data suggest that aberrant hyper- and hypomethylation may contribute to a common pathogenesis mechanism in HCC. Hypermethylation of KLHL35, PAX, PENK, and SDPYA and hypomethylation of LINE-1 could be useful biomarkers for the detection of HCC.
Collapse
Affiliation(s)
- Masahiro Shitani
- First Department of Internal Medicine, Sapporo Medical University, S1, W16, Chuo-Ku, Sapporo, 060-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Arzumanyan A, Friedman T, Kotei E, Ng IOL, Lian Z, Feitelson MA. Epigenetic repression of E-cadherin expression by hepatitis B virus x antigen in liver cancer. Oncogene 2012; 31:563-72. [PMID: 21706058 PMCID: PMC3183380 DOI: 10.1038/onc.2011.255] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 12/12/2022]
Abstract
Loss of E-cadherin is associated with acquisition of metastatic capacity. Numerous studies suggest that histone deacetylation and/or hypermethylation of CpG islands in E-cadherin gene (CDH1) are major mechanisms responsible for E-cadherin silencing in different tumors and cancer cell lines. The hepatitis B virus (HBV)-encoded X antigen, HBx, contributes importantly to the development of hepatocellular carcinoma using multiple mechanisms. Experiments were designed to test if in addition to CDH1 hypermethylation HBx promotes epigenetic modulation of E-cadherin transcriptional activity through histone deacetylation and miR-373. The relationships between HBx, E-cadherin, mSin3A, Snail-1 and miR-373 were evaluated in HBx expressing (HepG2X) and control (HepG2CAT) cells by western blotting, immunoprecipitation (IP), chromatin IP as well as by immunohistochemical staining of liver and tumor tissue sections from HBV-infected patients. In HepG2X cells, decreased levels of E-cadherin and elevated levels of mSin3A and Snail-1 were detected. Reciprocal IP with anti-HBx and anti-mSin3A demonstrated mutual binding. Furthermore, HBx-mSin3A colocalization was detected by immunofluorescent staining. HBx downregulated E-cadherin expression by the recruitment of the mSin3A/histone deacetylase complex to the Snail-binding sites in human CDH1. Histone deacetylation inhibition by Trichostatin-A treatment restored E-cadherin expression. Mir-373, a positive regulator of E-cadherin expression, was downregulated by HBx in HepG2X cells and tissue sections from HBV-infected patients. Thus, histone deacetylation of CDH1 and downregulation of miR-373, together with the previously demonstrated hypermethylation of CDH1 by HBx, may be important for the understanding of HBV-related carcinogenesis.
Collapse
Affiliation(s)
- A Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| | | | | | | | | | | |
Collapse
|
182
|
Martin M, Herceg Z. From hepatitis to hepatocellular carcinoma: a proposed model for cross-talk between inflammation and epigenetic mechanisms. Genome Med 2012; 4:8. [PMID: 22293089 PMCID: PMC3334556 DOI: 10.1186/gm307] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammation represents the body's natural response to tissue damage; however, chronic inflammation may activate cell proliferation and induce deregulation of cell death in affected tissues. Chronic inflammation is an important factor in the development of hepatocellular carcinoma (HCC), although the precise underlying mechanism remains unknown. Epigenetic events, which are considered key mechanisms in the regulation of gene activity states, are also commonly deregulated in HCC. Here, we review the evidence that chronic inflammation might deregulate epigenetic processes, thus promoting oncogenic transformation, and we propose a working hypothesis that epigenetic deregulation is an underlying mechanism by which inflammation might promote HCC development. In this scenario, different components of the inflammatory response might directly and indirectly induce changes in epigenetic machineries ('epigenetic switch'), including those involved in setting and propagating normal patterns of DNA methylation, histone modifications and non-coding RNAs in hepatocytes. We discuss the possibility that self-reinforcing cross-talk between inflammation and epigenetic mechanisms might amplify inflammatory signals and maintain a chronic state of inflammation culminating in cancer development. The potential role of inflammation-epigenome interactions in the emergence and maintenance of cancer stem cells is also discussed.
Collapse
Affiliation(s)
- Marion Martin
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France
| |
Collapse
|
183
|
Fang J, Hao Q, Liu L, Li Y, Wu J, Huo X, Zhu Y. Epigenetic changes mediated by microRNA miR29 activate cyclooxygenase 2 and lambda-1 interferon production during viral infection. J Virol 2012; 86:1010-20. [PMID: 22072783 PMCID: PMC3255816 DOI: 10.1128/jvi.06169-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/31/2011] [Indexed: 12/24/2022] Open
Abstract
Lambda-1 interferon (IFN-λ1) and cyclooxygenase-2 (COX-2) were reported to play an important role in host antiviral defense. However, the mechanism by which IFN-λ1 and COX2 are activated and modulated during viral infection remains unclear. In this study, we found that expression of both circulating IFN-λ1 and COX2-derived prostaglandin E2 (PGE2) was coordinately elevated in a cohort of influenza patients compared to healthy individuals. Expression of IFN-λ1 was blocked by a selective COX2 inhibitor during influenza A virus infection in A549 human lung epithelial cells but enhanced by overexpression of COX2, indicating that the production of IFN-λ1 is COX2 dependent. COX2 was able to increase IFN-λ1 expression by promoting NF-κB binding to the enhancer in the IFN-λ1 promoter. We found that epigenetic changes activate COX2 expression and PGE2 accumulation during viral infection. The expression of DNA methyltransferase 3a (DNMT3a) and DNMT3b, but not that of DNMT1, was downregulated following influenza A virus infection in both A549 cells and peripheral blood mononuclear cells (PBMCs). We showed that microRNA miR29 suppresses DNMT activity and thus induces expression of COX2 and PGE2. Furthermore, miR29 expression was elevated 50-fold in virally infected A549 cells and 10-fold in PBMCs from influenza patients, compared to expression after mock infection of A549 cells or in healthy individuals, respectively. Activation of the protein kinase A signaling pathway and phosphorylation of CREB1 also contributed to COX2 expression. Collectively, our work defines a novel proinflammatory cascade in the control of influenza A virus infection.
Collapse
Affiliation(s)
- Jiali Fang
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Qian Hao
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Liu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongkui Li
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianguo Wu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xixiang Huo
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Ying Zhu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
184
|
Niller HH, Banati F, Ay E, Minarovits J. Epigenetic Changes in Virus-Associated Neoplasms. PATHO-EPIGENETICS OF DISEASE 2012:179-225. [DOI: 10.1007/978-1-4614-3345-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
185
|
Aleem E, Elshayeb A, Elhabachi N, Mansour AR, Gowily A, Hela A. Serum IGFBP-3 is a more effective predictor than IGF-1 and IGF-2 for the development of hepatocellular carcinoma in patients with chronic HCV infection. Oncol Lett 2011; 3:704-712. [PMID: 22740980 DOI: 10.3892/ol.2011.546] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/19/2011] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) contributes to 14.8% of all cancer mortality in Egypt, which has a high prevalence of hepatitis C virus (HCV). We have previously shown alterations in the insulin-like growth factor-1 (IGF-1) receptor signalling pathway during experimental hepatocarcinogenesis. The aim of this study was to determine whether serum levels of IGF-1, IGF-2 and IGFBP-3 can be used to discriminate between HCC and the stages of hepatic dysfunction in patients with liver cirrhosis assessed by the Child-Pugh (CP) score, and to correlate these levels with HCC stages. We recruited 241 subjects to the present study; 79 with liver cirrhosis, 62 with HCV-induced HCC and 100 age-matched controls. Results showed that serum levels of IGF-1, IGF-2 and IGFBP-3 were reduced significantly in cirrhosis and HCC patients in comparison to the controls, and that this reduction negatively correlated with the CP scores. However, only IGFBP-3 levels showed significant negative correlation with α-fetoprotein levels. The reduction in IGF-1 and IGFBP-3 but not IGF-2 levels was significant in HCC in comparison to patients with cirrhosis. None of the parameters significantly correlated with the HCC stage. IGFBP-3 levels discriminated between cirrhosis and HCC at a sensitivity of 87%, a specificity of 80% and a cut-off value of <682.6 ng/ml. In conclusion, although our results showed that serum IGF-1, IGF-2 and IGFBP-3 are reduced with the progression of hepatic dysfunction, only IGFBP-3 may be considered as the most promising serological marker for the prediction of the development of HCC in the chronic HCV patients with liver cirrhosis.
Collapse
Affiliation(s)
- Eiman Aleem
- Molecular Biology Division, Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | | | | | | | | |
Collapse
|
186
|
Tan YJ. Hepatitis B virus infection and the risk of hepatocellular carcinoma. World J Gastroenterol 2011; 17:4853-7. [PMID: 22171125 PMCID: PMC3235627 DOI: 10.3748/wjg.v17.i44.4853] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 07/06/2011] [Accepted: 07/13/2011] [Indexed: 02/06/2023] Open
Abstract
Epidemiological studies have provided overwhelming evidence for a causal role of chronic hepatitis B virus (HBV) infection in the development of hepatocellular carcinoma (HCC). However, the pathogenesis of HBV infection and carcinogenesis of HBV-associated HCC are still elusive. This review will summarize the current knowledge on the mechanisms involved in HBV-related liver carcinogenesis. The role of HBV in tumor formation appears to be complex, and may involve both direct and indirect mechanisms. Integration of HBV DNA into the host genome occurs at early steps of clonal tumor expansion, and it has been shown to enhance the host chromosomal instability, leading to large inverted duplications, deletions and chromosomal translocations. It has been shown that the rate of chromosomal alterations is increased significantly in HBV-related tumors. Prolonged expression of the viral regulatory HBV x protein may contribute to regulating cellular transcription, protein degradation, proliferation, and apoptotic signaling pathways, and it plays a critical role in the development of hepatocellular carcinoma.
Collapse
|
187
|
Nishida N, Goel A. Genetic and epigenetic signatures in human hepatocellular carcinoma: a systematic review. Curr Genomics 2011; 12:130-7. [PMID: 21966251 PMCID: PMC3129047 DOI: 10.2174/138920211795564359] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/04/2011] [Accepted: 01/18/2011] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer deaths worldwide, and the incidence of this fatal disease is still on rise. The majority of HCCs emerge in the background of a chronic liver disease, such as chronic hepatitis and liver cirrhosis. The current understanding is that majority of HCCs evolve as a consequence of chronic inflammation and due to the presence of infection with hepatitis viruses. These underlying pathogenic stimuli subsequently induce a spectrum of genetic and epigenetic alterations in several cancer-related genes, which are involved in cell-cycle regulation, cell growth and adhesion. Such widespread genomic alterations cause disruption of normal cellular signaling and finally lead to the acquisition of a malignant phenotype in HCC. In general, the type of gene alterations, such as point mutations, deletion of chromosomal regions and abnormal methylation of gene promoters differ according to the individual targeted gene. In HCC, incidence of genetic alterations is relatively rare and is limited to a subset of few cancer-specific genes, such as the tumor suppressor p53, RB genes and oncogenes such as the CTNNB1. In contrast, epigenetic changes that involve aberrant methylation of genes and other post-transcriptional histone modifications occur far more frequently, and some of these epigenetic alterations are now being exploited for the development of molecular diagnostic signatures for HCC. In addition, recent findings of unique microRNA expression profiles also provide an evidence for the existence of novel mechanisms for gene expression regulation in HCC. In this review article, we will review the current state of knowledge on the activation of various oncogenic pathways and the inactivation of tumor suppressor pathways in HCC that result in the disruption of cancer-related gene function. In addition, we will specifically emphasize the clinical implication of some of these genetic and epigenetic alterations in the management of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
188
|
Jain S, Chang TT, Hamilton JP, Lin SY, Lin YJ, Evans AA, Selaru FM, Lin PW, Chen SH, Block TM, Hu CT, Song W, Meltzer SJ, Su YH. Methylation of the CpG sites only on the sense strand of the APC gene is specific for hepatocellular carcinoma. PLoS One 2011; 6:e26799. [PMID: 22073196 PMCID: PMC3206845 DOI: 10.1371/journal.pone.0026799] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/03/2011] [Indexed: 12/12/2022] Open
Abstract
Hypermethylation of the promoter of the tumor suppressor gene, adenomatous polyposis coli (APC), occurs in various malignancies, including hepatocellular carcinoma (HCC). However, reports on the specificity of the methylation of the APC gene for HCC have varied. To gain insight into how these variations occur, bisulfite PCR sequencing was performed to analyze the methylation status of both sense and antisense strands of the APC gene in samples of HCC tissue, matched adjacent non-HCC liver tissue, hepatitis, cirrhosis, and normal liver tissues. DNA derived from fetal liver and 12 nonhepatic normal tissue was also examined. These experiments revealed liver-specific, antisense strand-biased CpG methylation of the APC gene and suggested that, although methylation of the antisense strand of the APC gene exists in normal liver and other non-HCC disease liver tissue, methylation of the sense strand of the APC gene occurs predominantly in HCC. To determine the effect of the DNA strand on the specificity of the methylated APC gene as a biomarker for HCC detection, quantitative methylation-specific PCR assays for sense and antisense strand DNA were developed and performed on DNA isolated from HCC (n = 58), matched adjacent non-HCC (n = 58), cirrhosis (n = 41), and hepatitis (n = 39). Receiver operating characteristic curves were constructed. With the cutoff value set at the limit of detection, the specificity of sense and antisense strand methylation was 84% and 43%, respectively, and sensitivity was 67.2% and 72.4%, respectively. This result demonstrated that the identity of the methylated DNA strand impacted the specificity of APC for HCC detection. Interestingly, methylation of the sense strand of APC occurred in 40% of HCCs from patients with serum AFP levels less than 20 ng/mL, suggesting a potential role for APC as a biomarker to complement AFP in HCC screening.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ting-Tsung Chang
- Department of Medicine, Infectious Diseases and Signaling Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - James P. Hamilton
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Selena Y. Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China
| | - Alison A. Evans
- School of Public Health, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Florin M. Selaru
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Pin- Wen Lin
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China
| | - Shun-Hua Chen
- Department of Microbiology, Medical College, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Timothy M. Block
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chi-Tan Hu
- Department of General Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, Republic of China
| | - Wei Song
- JBS Science Inc., Philadelphia, Pennsylvania, United States of America
| | - Stephen J. Meltzer
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, United States of America
| | - Ying-Hsiu Su
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
189
|
Leonard S, Wei W, Anderton J, Vockerodt M, Rowe M, Murray PG, Woodman CB. Epigenetic and transcriptional changes which follow Epstein-Barr virus infection of germinal center B cells and their relevance to the pathogenesis of Hodgkin's lymphoma. J Virol 2011; 85:9568-77. [PMID: 21752916 PMCID: PMC3165764 DOI: 10.1128/jvi.00468-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/22/2011] [Indexed: 12/29/2022] Open
Abstract
Although Epstein-Barr virus (EBV) usually establishes an asymptomatic lifelong infection, it is also implicated in the development of germinal center (GC) B-cell-derived malignancies, including Hodgkin's lymphoma (HL). Following primary infection, EBV remains latent in the memory B-cell population, where host-driven methylation of viral DNA contributes to the repression of viral gene expression. However, it is still unclear how EBV harnesses the cell's methylation machinery in B cells, how this contributes to viral persistence, and what impact this has on the methylation of cellular genes. We show that EBV infection of GC B cells is followed by upregulation of the DNA methyltransferase DNMT3A and downregulation of DNMT3B and DNMT1. We show that the EBV latent membrane protein 1 (LMP1) oncogene downregulates DNMT1 and that DNMT3A binds to the viral promoter Wp. Genome-wide promoter arrays performed with these cells showed that EBV-associated methylation changes in cellular genes were not randomly distributed across the genome but clustered at chromosomal locations, consistent with an instructive pattern of methylation, and were in part determined by promoter CpG content. Both DNMT3B and DNMT1 were downregulated and DNMT3A was upregulated in HL cell lines, recapitulating the pattern of expression observed following EBV infection of GC B cells. We also found, by using gene expression profiling, that genes differentially expressed following EBV infection of GC B cells were significantly enriched for those reported to be differentially expressed in HL. These observations suggest that EBV-infected GC B cells are a useful model for studying virus-associated changes contributing to the pathogenesis of HL.
Collapse
Affiliation(s)
- Sarah Leonard
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Wenbin Wei
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jennifer Anderton
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Martina Vockerodt
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Martin Rowe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Paul G. Murray
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ciaran B. Woodman
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
190
|
WENG ZHIHONG, WANG DONGDONG, ZHAO WENYUE, SONG MENGQI, YOU FAPING, YANG LIAN, CHEN LIBO. microRNA-450a targets DNA methyltransferase 3a in hepatocellular carcinoma. Exp Ther Med 2011; 2:951-955. [PMID: 22977604 PMCID: PMC3440703 DOI: 10.3892/etm.2011.288] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/07/2011] [Indexed: 12/11/2022] Open
Abstract
microRNAs (miRNAs) have been proven to play key regulatory roles in hepatocarcinogenesis. In the present study, the possible role of microRNA-450a (miR-450a) in hepatocarcinogenesis was investigated. Our study revealed that miR-450a was significantly down-regulated in hepatocellular carcinoma (HCC) tissues compared with that in normal liver (NL) and para-tumorous (PT) tissues, and miR-450a expression in HepG2 cells was significantly lower than that in L02 cells. Both the mRNA and protein levels of the miR-450a potential target gene, DNA methyltransferase 3a (DNMT3a), were obviously higher in HCC compared with levels in the NL and PT tissues. We further identified DNMT3a as the direct target gene for miR-450a, and ectopic miR-450a expression in HepG2 cells caused the down-regulation of DNMT3a and an inhibition of cell proliferation. Taken together, these findings suggest that miR-450a plays an important regulatory role in hepatocarcinogenesis through inhibition of DNMT3a expression, and miR-450a may be a potential target for the treatment of HCC.
Collapse
Affiliation(s)
| | - DONGDONG WANG
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R.
China
| | - WENYUE ZHAO
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R.
China
| | - MENGQI SONG
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R.
China
| | - FAPING YOU
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R.
China
| | - LIAN YANG
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R.
China
| | - LIBO CHEN
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R.
China
- Correspondence to: Dr Libo Chen, Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China, E-mail:
| |
Collapse
|
191
|
Yip WK, Cheng ASL, Zhu R, Lung RWM, Tsang DPF, Lau SSK, Chen Y, Sung JG, Lai PBS, Ng EKO, Yu J, Wong N, To KF, Wong VWS, Sung JJY, Chan HLY. Carboxyl-terminal truncated HBx regulates a distinct microRNA transcription program in hepatocellular carcinoma development. PLoS One 2011; 6:e22888. [PMID: 21829663 PMCID: PMC3150371 DOI: 10.1371/journal.pone.0022888] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 07/07/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The biological pathways and functional properties by which misexpressed microRNAs (miRNAs) contribute to liver carcinogenesis have been intensively investigated. However, little is known about the upstream mechanisms that deregulate miRNA expressions in this process. In hepatocellular carcinoma (HCC), hepatitis B virus (HBV) X protein (HBx), a transcriptional trans-activator, is frequently expressed in truncated form without carboxyl-terminus but its role in miRNA expression and HCC development is unclear. METHODS Human non-tumorigenic hepatocytes were infected with lentivirus-expressing full-length and carboxyl-terminal truncated HBx (Ct-HBx) for cell growth assay and miRNA profiling. Chromatin immunoprecipitation microarray was performed to identify the miRNA promoters directly associated with HBx. Direct transcriptional control was verified by luciferase reporter assay. The differential miRNA expressions were further validated in a cohort of HBV-associated HCC tissues using real-time PCR. RESULTS Hepatocytes expressing Ct-HBx grew significantly faster than the full-length HBx counterparts. Ct-HBx decreased while full-length HBx increased the expression of a set of miRNAs with growth-suppressive functions. Interestingly, Ct-HBx bound to and inhibited the transcriptional activity of some of these miRNA promoters. Notably, some of the examined repressed-miRNAs (miR-26a, -29c, -146a and -190) were also significantly down-regulated in a subset of HCC tissues with carboxyl-terminal HBx truncation compared to their matching non-tumor tissues, highlighting the clinical relevance of our data. CONCLUSION Our results suggest that Ct-HBx directly regulates miRNA transcription and in turn promotes hepatocellular proliferation, thus revealing a viral contribution of miRNA deregulation during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Wing-Kit Yip
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alfred Sze-Lok Cheng
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ranxu Zhu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Wai-Ming Lung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Daisy Pui-Fong Tsang
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Suki Shuk-Kei Lau
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yangchao Chen
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jonathan Gabriel Sung
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul Bo-San Lai
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Enders Kai-On Ng
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nathalie Wong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Fai To
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph Jao-Yiu Sung
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Henry Lik-Yuen Chan
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
192
|
Lütgehetmann M, Bornscheuer T, Volz T, Allweiss L, Bockmann JH, Pollok JM, Lohse AW, Petersen J, Dandri M. Hepatitis B virus limits response of human hepatocytes to interferon-α in chimeric mice. Gastroenterology 2011; 140:2074-83, 2083.e1-2. [PMID: 21376046 DOI: 10.1053/j.gastro.2011.02.057] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/06/2011] [Accepted: 02/18/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Interferon (IFN)-α therapy is not effective for most patients with chronic hepatitis B virus (HBV) infection for reasons that are not clear. We investigated whether HBV infection reduced IFN-α-mediated induction of antiviral defense mechanisms in human hepatocytes. METHODS Human hepatocytes were injected into severe combined immune-deficient mice (SCID/beige) that expressed transgenic urokinase plasminogen activator under control of the albumin promoter. Some mice were infected with HBV; infected and uninfected mice were given injections of human IFN-α. Changes in viral DNA and expression of human interferon-stimulated genes (ISGs) were measured by real-time polymerase chain reaction, using human-specific primers, and by immunohistochemistry. RESULTS Median HBV viremia (0.8log) and intrahepatic loads of HBV RNA decreased 3-fold by 8 or 12 hours after each injection of IFN-α, but increased within 24 hours. IFN-α activated expression of human ISGs and nuclear translocation of signal transducers and activators of transcription-1 (STAT1) in human hepatocytes that repopulated the livers of uninfected mice. Although baseline levels of human ISGs were slightly increased in HBV-infected mice, compared with uninfected mice, IFN-α failed to increase expression of the ISGs OAS-1, MxA, MyD88, and TAP-1 (which regulates antigen presentation) in HBV-infected mice. IFN-α did not induce nuclear translocation of STAT1 in HBV-infected human hepatocytes. Administration of the nucleoside analogue entecavir (for 20 days) suppressed HBV replication but did not restore responsiveness to IFN-α. CONCLUSIONS HBV prevents induction of IFN-α signaling by inhibiting nuclear translocation of STAT1; this can interfere with transcription of ISGs in human hepatocytes. These effects of HBV might contribute to the limited effectiveness of endogenous and therapeutic IFN-α in patients and promote viral persistence.
Collapse
Affiliation(s)
- Marc Lütgehetmann
- Department of Internal Medicine, University Medical Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Analysis of DNA methylation in human BK virus. Virus Genes 2011; 43:201-7. [PMID: 21626299 DOI: 10.1007/s11262-011-0627-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022]
|
194
|
Chen JS, Su IJ, Leu YW, Young KC, Sun HS. Expression of T-cell lymphoma invasion and metastasis 2 (TIAM2) promotes proliferation and invasion of liver cancer. Int J Cancer 2011; 130:1302-13. [PMID: 21469146 DOI: 10.1002/ijc.26117] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/22/2011] [Indexed: 01/04/2023]
Abstract
The T-cell lymphoma invasion and metastasis 2 (TIAM2) gene is the homolog of human TIAM1, a Rac-specific guanine nucleotide exchange factor that plays important roles in neuron development and human malignancies. Although the role of TIAM1 is well characterized, the physiological and pathological functions of TIAM2 remain unknown. In our study, human cDNA and protein panels were evaluated for endogenous expression of TIAM2. Four hepatocellular carcinoma (HCC) cell lines and 91 HCC samples were used to demonstrate expression of TIAM2S (the short form of TIAM2) in cancer cells. In addition, HepG2 cells stably expressing TIAM2S were used for tumorigenic assays in both cellular and mouse models. We demonstrate that endogenous TIAM2S was induced in several human cancers including HCC. TIAM2S expression was undetectable in normal human liver but was induced in all HCC cell lines and in 86% (78/91) of HCC biopsies. TIAM2S expression was positively associated with TIAM1 expression, hepatitis B virus (HBV) infection and metastatic phenotype. Expression of recombinant TIAM2S in HepG2 cells promoted growth and invasiveness. In vivo study using a xenografted mouse model demonstrated that induced endogenous expression of TIAM2S converted non-invasive human HCC cells into highly aggressive vascular tumors. Further examination revealed that TIAM2S expression resulted in up-regulation of N-cadherin and vimentin, and in redistribution of E-cadherin. These findings show, for the first time, that human TIAM2S is involved in HCC pathogenesis, and that increased expression of TIAM2S promotes epithelial-to-mesenchymal transition and results in proliferation and invasion in liver cancer cells.
Collapse
Affiliation(s)
- Jia-Shing Chen
- The Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
195
|
Herceg Z, Paliwal A. Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome. Mutat Res 2011; 727:55-61. [PMID: 21514401 DOI: 10.1016/j.mrrev.2011.04.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 05/30/2023]
Abstract
Epigenetic mechanisms maintain heritable changes in gene expression and chromatin organization over many cell generations. Importantly, deregulated epigenetic mechanisms play a key role in a wide range of human malignancies, including liver cancer. Hepatocellular carcinoma (HCC), which originates from the hepatocytes, is by far the most common liver cancer, with rates and aetiology that show considerable geographic variation. Various environmental agents and lifestyles known to be risk factors for HCC (such as infection by hepatitis B virus (HBV) and hepatitis C virus (HCV), chronic alcohol intake, and aflatoxins) are suspected to promote its development by eliciting epigenetic changes, however the precise gene targets and underlying mechanisms have not been elucidated. Many recent studies have exploited conceptual and technological advances in epigenetics and epigenomics to investigate the role of epigenetic events induced by environmental factors in HCC tumors and non-tumor precancerous (cirrhotic) lesions. These studies have identified a large number of genes and pathways that are targeted by epigenetic deregulation (changes in DNA methylation, histone modifications and RNA-mediated gene silencing) during the development and progression of HCC. Frequent identification of aberrant epigenetic changes in specific genes in cirrhotic tissue is consistent with the notion that epigenetic deregulation of selected genes in pre-malignant lesions precedes and promotes the development of HCC. In addition, several lines of evidence argue that some environmental factors (such as HBV virus) may abrogate cellular defense systems, induce silencing of host genes and promote HCC development via an "epigenetic strategy". Finally, profiling studies reveal that HCC tumors and pre-cancerous lesions may exhibit epigenetic signatures associated with specific risk factors and tumor progression stage. Together, recent evidence underscores the importance of aberrant epigenetic events induced by environmental factors in liver cancer and highlights potential targets for biomarker discovery and future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Zdenko Herceg
- International Agency for Research on Cancer, Lyon, France.
| | | |
Collapse
|
196
|
Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis. J Hepatol 2011; 54:939-47. [PMID: 21145824 DOI: 10.1016/j.jhep.2010.08.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 08/02/2010] [Accepted: 08/06/2010] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The concept of multistep hepatocarcinogenesis has been well-established, and an accumulation of methylating events has recently been demonstrated; however, the methylation status of low-grade dysplastic nodules (LGDN), high-grade dysplastic nodules (HGDN), and the recently introduced early hepatocellular carcinoma (eHCC) in hepatitis B virus (HBV)-related hepatocarcinogenesis has not yet been studied. METHODS One hundred thirty-three DNA samples (45 cirrhotic nodules, 29 LGDNs, 13 HGDNs, 14 eHCCs, and 32 progressed HCCs (pHCCs)) from HBV-infected resected livers were subjected to MethyLight analysis for nine CpG island loci (APC, RASSF1A, SOCS1, P16, COX2, SPRY2, PTEN, GNMT, and ERK), and COX2, RASSF1A, and SOCS1 protein expression status was analyzed by immunohistochemistry. The methylation status of each sample was correlated with the clinicopathological features. RESULTS APC, RASSF1A, and SOCS1 were methylated in 20 (44.4%), 25 (55.6%), and 13 (28.9%) of 45 cirrhosis samples, and APC (p=0.0008) and SOCS1 (p=0.0187) methylation were more frequent in dysplastic nodules and HCCs. APC (p=0.001) and RASSF1A (p=0.019) methylation levels were significantly increased from cirrhosis to LGDN. SOCS1 methylation gradually increased along multistep hepatocarcinogenesis, peaked at eHCC and decreased significantly in pHCCs (p=0.039). By contrast, p16 and COX2 was only methylated in dysplastic nodules and HCCs, with a stepwise increase up to pHCCs. As a whole, the frequency of methylation was highest in eHCCs. A stepwise decrease in COX2, RASSF1A, and SOCS1 protein expression was demonstrated. CONCLUSIONS A general stepwise increase in methylating events is seen during HBV-related multistep hepatocarcinogenesis, and epigenetic changes may occur predominantly in the earlier stages of HCC development.
Collapse
|
197
|
Poreba E, Broniarczyk JK, Gozdzicka-Jozefiak A. Epigenetic mechanisms in virus-induced tumorigenesis. Clin Epigenetics 2011; 2:233-47. [PMID: 22704339 PMCID: PMC3365383 DOI: 10.1007/s13148-011-0026-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 02/28/2011] [Indexed: 12/14/2022] Open
Abstract
About 15–20% of human cancers worldwide have viral etiology. Emerging data clearly indicate that several human DNA and RNA viruses, such as human papillomavirus, Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, hepatitis B virus, hepatitis C virus, and human T-cell lymphotropic virus, contribute to cancer development. Human tumor-associated viruses have evolved multiple molecular mechanisms to disrupt specific cellular pathways to facilitate aberrant replication. Although oncogenic viruses belong to different families, their strategies in human cancer development show many similarities and involve viral-encoded oncoproteins targeting the key cellular proteins that regulate cell growth. Recent studies show that virus and host interactions also occur at the epigenetic level. In this review, we summarize the published information related to the interactions between viral proteins and epigenetic machinery which lead to alterations in the epigenetic landscape of the cell contributing to carcinogenesis.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Molecular Virology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | | | | |
Collapse
|
198
|
Yue X, Yang F, Yang Y, Mu Y, Sun W, Li W, Xu D, Wu J, Zhu Y. Induction of cyclooxygenase-2 expression by hepatitis B virus depends on demethylation-associated recruitment of transcription factors to the promoter. Virol J 2011; 8:118. [PMID: 21401943 PMCID: PMC3066118 DOI: 10.1186/1743-422x-8-118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/14/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The hepatitis B virus (HBV) is a major etiological factor of inflammation and damage to the liver resulting in hepatocellular carcinoma. Transcription factors play important roles in the disordered gene expression and liver injury caused by HBV. However, the molecular mechanisms behind this observation have not been defined. RESULTS In this study, we observed that circulating prostaglandin (PGE) 2 synthesis was increased in patients with chronic hepatitis B infection, and detected elevated cyclooxygenase (COX)-2 expression in HBV- and HBx-expressing liver cells. Likewise, the association of HBx with C/EBPβ contributed to the induction of COX-2. The COX-2 promoter was hypomethylated in HBV-positive cells, and specific demethylation of CpG dinucleotides within each of the two NF-AT sites in the COX-2 promoter resulted in the increased binding affinity of NF-AT to the cognate sites in the promoter, followed by increased COX-2 expression and PGE2 accumulation. The DNA methylatransferase DNMT3B played a key role in the methylation of the COX-2 promoter, and its decreased binding to the promoter was responsible for the regional demethylation of CpG sites, and for the increased binding of transcription factors in HBV-positive cells. CONCLUSION Our results indicate that upregulation of COX-2 by HBV and HBx is mediated by both demethylation events and recruitment of multiple transcription factors binding to the promoter.
Collapse
Affiliation(s)
- Xin Yue
- State Key Laboratory of Virology and College of Life Sciences, Chinese-French Liver Disease Research Institute of Wuhan University (Zhongnan Hospital), Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Park SH, Jung JK, Lim JS, Tiwari I, Jang KL. Hepatitis B virus X protein overcomes all-trans retinoic acid-induced cellular senescence by downregulating levels of p16 and p21 via DNA methylation. J Gen Virol 2011; 92:1309-1317. [PMID: 21325480 DOI: 10.1099/vir.0.029512-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Despite current molecular evidence suggesting that hepatitis B virus (HBV) X protein (HBx) plays an important role during HBV-mediated hepatocarcinogenesis, the detailed mechanism is still controversial. Here, it was shown that HBx overcomes cellular senescence provoked by all-trans retinoic acid (ATRA) in HepG2 cells, as demonstrated by the impaired induction of irreversible G(1) arrest and senescence-associated β-galactosidase activity by ATRA in the presence of HBx. The anti-senescence effect of HBx was also observed in another human hepatoma cell line, Hep3B, but not in Huh-7 cells in which the p16 and p21 proteins are absent. In addition, HBx suppressed ATRA-mediated induction of p16 and p21 in HepG2 cells via promoter hypermethylation, resulting in inactivation of retinoblastoma protein. Furthermore, the ability of HBx to overcome ATRA-induced cellular senescence almost completely disappeared when the levels of p16 and p21 in the HBx-expressing cells became similar to those in the control cells by complementation in the former by exogenous expression, knockdown of their expression in the latter using specific small interfering RNA or treatment with a DNA methylation inhibitor, 5-Aza-2'-deoxycytidine. These results suggest that HBx executes its potential by downregulating levels of p16 and p21 via DNA methylation. As cellular senescence is a tumour-suppression process, the present study provides a new strategy by which HBV promotes hepatocarcinogenesis.
Collapse
Affiliation(s)
- Sun-Hye Park
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Jin Kyu Jung
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Joo Song Lim
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Indira Tiwari
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
200
|
Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol 2011; 26 Suppl 1:144-52. [PMID: 21199526 DOI: 10.1111/j.1440-1746.2010.06546.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently available evidence supports a role for the hepatitis B virus (HBV) x gene and protein in the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). HBx gene is often included, and remains functionally active, in the HBV DNA that is frequently integrated into cellular DNA during hepatocellular carcinogenesis. HBx protein promotes cell cycle progression, inactivates negative growth regulators, and binds to and inhibits the expression of p53 tumour suppressor gene and other tumour suppressor genes and senescence-related factors. However, the molecular mechanisms responsible for HBx protein-induced HCC remain uncertain. Only some of the more fully documented or more recently recognised mechanisms are reviewed. During recent years evidence has accumulated that HBx protein modulates transcription of methyl transferases, causing regional hypermethylation of DNA that results in silencing of tumour suppressor genes, or global hypomethylation that results in chromosomal instability, thereby playing a role in hepatocarcinogenesis. HBx protein has both anti-apoptotic and pro-apoptotic actions, apparently contradictory effects that have yet to be explained. Particularly important among the anti-apoptotic properties is inhibition of p53. Recent experimental observations suggest that HBx protein may increase the expression of TERT and telomerase activity, prolonging the life-span of hepatocytes and contributing to malignant transformation. The protein also interferes with nucleotide excision repair through both p53-dependent and p53- independent mechanisms. Carboxy-terminal truncated HBx protein loses its inhibitory effects on cell proliferation and pro-apoptotic properties, and it may enhance the protein's ability to transform oncogenes. Dysregulation of IGF-II enhances proliferation and anti-apoptotic effects of oncogenes, resulting in uncontrolled cell growth.
Collapse
Affiliation(s)
- Michael C Kew
- Department of Medicine, University of Cape Town, Groote Schuur Hospital, South Africa.
| |
Collapse
|