151
|
Robinson CJ, Harmer NJ, Goodger SJ, Blundell TL, Gallagher JT. Cooperative Dimerization of Fibroblast Growth Factor 1 (FGF1) upon a Single Heparin Saccharide May Drive the Formation of 2:2:1 FGF1·FGFR2c·Heparin Ternary Complexes. J Biol Chem 2005; 280:42274-82. [PMID: 16219767 DOI: 10.1074/jbc.m505720200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The related glycosaminoglycans heparin and heparan sulfate are essential for the activity of the fibroblast growth factor (FGF) family as they form an integral part of the signaling complex at the cell surface. Using size-exclusion chromatography we have studied the capacities of a variety of heparin oligosaccharides to bind FGF1 and FGFR2c both separately and together in ternary complexes. In the absence of heparin, FGF1 had no detectable affinity for FGFR2c. However, 2:2:1 complexes formed spontaneously in solution between FGF1, FGFR2c, and heparin octasaccharide (dp8). The dp8 sample was the shortest chain length that bound FGFR2c, that dimerized FGF1, and that promoted a strong mitogenic response to FGF1 through FGFR2c. Heparin hexasaccharide and various selectively desulfated heparin dp12s failed to bind FGFR2c and could only interact with FGF1 monomerically. These saccharides formed 1:1:1 complexes with FGF1 and FGFR2c, which had no tendency to self-associate, suggesting that binding of two FGF1 molecules to the same saccharide chain is a prerequisite for subsequent FGFR2c dimerization. We found that FGF1 dimerization upon heparin was favored over monomeric interactions even when a large excess of saccharide was present. A cooperative mechanism of FGF1 dimerization could explain how 2:2:1 signaling complexes form at the cell surface, an environment rich in heparan sulfate.
Collapse
Affiliation(s)
- Christopher J Robinson
- Cancer Research UK and Department of Medical Oncology, University of Manchester, Christie Hospital National Health Service Trust, Wilmslow Road, Manchester M20 4BX.
| | | | | | | | | |
Collapse
|
152
|
Muñoz EM, Yu H, Hallock J, Edens RE, Linhardt¤ RJ. Poly(ethylene glycol)-based biosensor chip to study heparin-protein interactions. Anal Biochem 2005; 343:176-8. [PMID: 16018871 PMCID: PMC4136542 DOI: 10.1016/j.ab.2005.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/15/2005] [Accepted: 04/20/2005] [Indexed: 11/23/2022]
Affiliation(s)
- Eva M. Muñoz
- Departments of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Haining Yu
- Divisions of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52212, USA
| | - Jeannette Hallock
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - R. Erik Edens
- Divisions of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52212, USA
- Department of Pediatrics, College of Medicine, University of Arkansas, Little Rock, AR 72202, USA
| | - Robert J. Linhardt¤
- Departments of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Divisions of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52212, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Corresponding author. Fax: +1 518 276 3405., (R.J. Linhardt)
| |
Collapse
|
153
|
Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005; 16:107-37. [PMID: 15863029 DOI: 10.1016/j.cytogfr.2005.01.008] [Citation(s) in RCA: 545] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
FGF signaling plays a ubiquitous role in human biology as a regulator of embryonic development, homeostasis and regenerative processes. In addition, aberrant FGF signaling leads to diverse human pathologies including skeletal, olfactory, and metabolic disorders as well as cancer. FGFs execute their pleiotropic biological actions by binding, dimerizing and activating cell surface FGF receptors (FGFRs). Proper regulation of FGF-FGFR binding specificity is essential for the regulation of FGF signaling and is achieved through primary sequence variations among the 18 FGFs and seven FGFRs. The severity of human skeletal syndromes arising from mutations that violate FGF-FGFR specificity is a testament to the importance of maintaining precision in FGF-FGFR specificity. The discovery that heparin/heparan sulfate (HS) proteoglycans are required for FGF signaling led to numerous models for FGFR dimerization and heralded one of the most controversial issues in FGF signaling. Recent crystallographic analyses have led to two fundamentally different models for FGFR dimerization. These models differ in both the stoichiometry and minimal length of heparin required for dimerization, the quaternary arrangement of FGF, FGFR and heparin in the dimer, and in the mechanism of 1:1 FGF-FGFR recognition and specificity. In this review, we provide an overview of recent structural and biochemical studies used to differentiate between the two crystallographic models. Interestingly, the structural and biophysical analyses of naturally occurring pathogenic FGFR mutations have provided the most compelling and unbiased evidences for the correct mechanisms for FGF-FGFR dimerization and binding specificity. The structural analyses of different FGF-FGFR complexes have also shed light on the intricate mechanisms determining FGF-FGFR binding specificity and promiscuity and also provide a plausible explanation for the molecular basis of a large number craniosynostosis mutations.
Collapse
Affiliation(s)
- Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 425, New York, NY 10016, USA.
| | | | | |
Collapse
|
154
|
Ibrahimi OA, Yeh BK, Eliseenkova AV, Zhang F, Olsen SK, Igarashi M, Aaronson SA, Linhardt RJ, Mohammadi M. Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization. Mol Cell Biol 2005; 25:671-84. [PMID: 15632068 PMCID: PMC543411 DOI: 10.1128/mcb.25.2.671-684.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two competing models for fibroblast growth factor (FGF) receptor (FGFR) dimerization have recently emerged based on ternary FGF-FGFR-heparin crystal structures. In the symmetric two-end model, heparin promotes dimerization of two FGF-FGFR complexes by stabilizing bivalent interactions of the ligand and receptor through primary and secondary sites and by stabilizing direct receptor-receptor contacts. In the asymmetric model, there are no protein-protein contacts between the two FGF-FGFR complexes, which are bridged solely by heparin. To identify the correct mode of FGFR dimerization, we abolished interactions at the secondary ligand-receptor interaction site, which are observed only in the symmetric two-end model, using site-directed mutagenesis. Cellular studies and real-time binding assays, as well as matrix-assisted laser desorption ionization-time of flight analysis, demonstrate that loss of secondary ligand-receptor interactions results in diminished FGFR activation due to decreased dimerization without affecting FGF-FGFR binding. Additionally, structural and biochemical analysis of an activating FGFR2 mutation resulting in Pfeiffer syndrome confirms the physiological significance of receptor-receptor contacts in the symmetric two-end model and provides a novel mechanism for FGFR gain of function in human skeletal disorders. Taken together, the data validate the symmetric two-end model of FGFR dimerization and argue against the asymmetric model of FGFR dimerization.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dimerization
- Fibroblast Growth Factor 10
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Heparin/chemistry
- Heparin/genetics
- Heparin/metabolism
- Humans
- Models, Molecular
- Mutation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/chemistry
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction/physiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- Omar A Ibrahimi
- Department of Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 2005; 16:233-47. [PMID: 15863038 DOI: 10.1016/j.cytogfr.2005.01.007] [Citation(s) in RCA: 496] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factors (FGFs) are key regulators of several developmental processes in which cell fate and differentiation to various tissue lineages are determined. The importance of the proper spatial and temporal regulation of FGF signals is evident from human and mouse genetic studies which show that mutations leading to the dysregulation of FGF signals cause a variety of developmental disorders including dominant skeletal diseases and cancer. The FGF ligands signal via a family of receptor tyrosine kinases and, depending on the cell type or stage of maturation, produce diverse biological responses that include proliferation, growth arrest, differentiation or apoptosis. A central issue in FGF biology is to understand how these diverse cellular responses are determined and how similar signaling inputs can generate distinct patterns of gene expression that govern the specificity of the cellular response. In this review we draw upon studies from the past fifteen years and attempt to construct a molecular picture of the different levels of regulation by which such specific cellular responses could be achieved by FGF signals. We discuss whether specificity could lie in the nature of the ligand, the particular receptor, the signal transduction pathways utilized, or the transcriptional regulation of specific genes. Finally, we also discuss how the interplay of FGF signals with other signaling systems could contribute to the cellular response. In particular we focus on the interaction with the Wnt pathway since FGF/Wnt cross-talk is emerging as an important nexus in regulating a variety of biological processes.
Collapse
Affiliation(s)
- Lisa Dailey
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
156
|
Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16:139-49. [PMID: 15863030 DOI: 10.1016/j.cytogfr.2005.01.001] [Citation(s) in RCA: 1441] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.
Collapse
Affiliation(s)
- V P Eswarakumar
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, P.O. Box 208066, SHM B-295, New Haven, CT 06520, USA
| | | | | |
Collapse
|
157
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
158
|
L'Hôte CGM, Knowles MA. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis. Exp Cell Res 2004; 304:417-31. [PMID: 15748888 DOI: 10.1016/j.yexcr.2004.11.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 11/06/2004] [Accepted: 11/09/2004] [Indexed: 02/03/2023]
Abstract
FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer.
Collapse
Affiliation(s)
- Corine G M L'Hôte
- Cancer Research UK Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK.
| | | |
Collapse
|
159
|
Dodé C, Hardelin JP. Kallmann syndrome: fibroblast growth factor signaling insufficiency? J Mol Med (Berl) 2004; 82:725-34. [PMID: 15365636 DOI: 10.1007/s00109-004-0571-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Kallmann syndrome (KAL) is a developmental disease that combines hypogonadotropic hypogonadism and anosmia. Anosmia is related to the absence or hypoplasia of the olfactory bulbs. Hypogonadism is due to GnRH deficiency and is likely to result from the failed embryonic migration of GnRH-synthesizing neurons. These cells normally migrate from the olfactory epithelium to the forebrain along the olfactory nerve pathway. KAL is phenotypically and genetically heterogeneous. The gene responsible for the X-chromosome linked form of the disease (KAL1) has been identified in 1991. KAL1 encodes anosmin-1, an approximately 95-kDa glycoprotein of unknown function which is present locally in various extracellular matrices during the period of organogenesis. The recent finding that FGFR1 mutations are involved in an autosomal dominant form of Kallmann syndrome (KAL2), combined with the analysis of mutant mouse embryos that no longer express Fgfr1 in the telencephalon, suggests that the disease results from a deficiency in FGF signaling at the earliest stage of olfactory bulb morphogenesis. We propose that the role of anosmin-1 is to enhance FGF signaling and suggest that the gender difference in anosmin-1 dose (because KAL1 partially escapes X-inactivation) explains the higher prevalence of the disease in males.
Collapse
Affiliation(s)
- Catherine Dodé
- Institut Cochin et Laboratoire de Biochimie et Génétique Moléculaire, Hôpital Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| | | |
Collapse
|
160
|
Ibrahimi OA, Zhang F, Eliseenkova AV, Itoh N, Linhardt RJ, Mohammadi M. Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum Mol Genet 2004; 13:2313-24. [PMID: 15282208 PMCID: PMC4140565 DOI: 10.1093/hmg/ddh235] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gain-of-function missense mutations in FGF receptor 2 (FGFR2) are responsible for a variety of craniosynostosis syndromes including Apert syndrome (AS), Pfeiffer syndrome (PS) and Crouzon syndrome (CS). Unlike the majority of FGFR2 mutations, S252W and P253R AS mutations and a D321A PS mutation retain ligand-dependency and are also associated with severe limb pathology. In addition, a recently identified ligand-dependent S252L/A315S double mutation in FGFR2 was shown to cause syndactyly in the absence of craniosynostosis. Here, we analyze the effect of the canonical AS mutations, the D321A PS mutation and the S252L/A315S double mutation on FGFR2 ligand binding affinity and specificity using surface plasmon resonance. Both AS mutations and the D321A PS mutation, but not the S252L/A315S double mutation, increase the binding affinity of FGFR2c to multiple FGFs expressed in the cranial suture. Additionally, all four pathogenic mutations also violate FGFR2c ligand binding specificity and enable this receptor to bind FGF10. Based on our data, we propose that an increase in mutant FGFR2c binding to multiple FGFs results in craniosynostosis, whereas binding of mutant FGFR2c to FGF10 results in severe limb pathology. Structural and biophysical analysis shows that AS mutations in FGFR2b also enhance and violate FGFR2b ligand binding affinity and specificity, respectively. We suggest that elevated AS mutant FGFR2b signaling may account for the dermatological manifestations of AS.
Collapse
Affiliation(s)
- Omar A. Ibrahimi
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Fuming Zhang
- Departments of Chemistry, Chemical Biology and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Anna V. Eliseenkova
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Yoshida-Shimoadachi, Kyoto 606-8501, Japan
| | - Robert J. Linhardt
- Departments of Chemistry, Chemical Biology and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- To whom correspondence should be addressed at: Moosa Mohammadi, NYU School of Medicine, 550 First Avenue, MSB 425, Department of Pharmacology, New York, NY 10016, USA. Tel: +1 2122632907; Fax: +1 2122637133;
| |
Collapse
|