151
|
Zhang D, Kong W, Robertson J, Goff VH, Epps E, Kerr A, Mills G, Cromwell J, Lugin Y, Phillips C, Paterson AH. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae). BMC PLANT BIOLOGY 2015; 15:107. [PMID: 25896918 PMCID: PMC4404672 DOI: 10.1186/s12870-015-0477-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/19/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. RESULTS We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures of selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved 'hotspots' in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. CONCLUSIONS Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.
Collapse
Affiliation(s)
- Dong Zhang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Wenqian Kong
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Jon Robertson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Valorie H Goff
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Ethan Epps
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Alexandra Kerr
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Gabriel Mills
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Jay Cromwell
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Yelena Lugin
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Christine Phillips
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
152
|
Vann L, Kono T, Pyhäjärvi T, Hufford MB, Ross-Ibarra J. Natural variation in teosinte at the domestication locus teosinte branched1 (tb1). PeerJ 2015; 3:e900. [PMID: 25909039 PMCID: PMC4406365 DOI: 10.7717/peerj.900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
The teosinte branched1(tb1) gene is a major QTL controlling branching differences between maize and its wild progenitor, teosinte. The insertion of a transposable element (Hopscotch) upstream of tb1 is known to enhance the gene’s expression, causing reduced tillering in maize. Observations of the maize tb1 allele in teosinte and estimates of an insertion age of the Hopscotch that predates domestication led us to investigate its prevalence and potential role in teosinte. We assessed the prevalence of the Hopscotch element across an Americas-wide sample of 837 maize and teosinte individuals using a co-dominant PCR assay. Additionally, we calculated population genetic summaries using sequence data from a subset of individuals from four teosinte populations and collected phenotypic data using seed from a single teosinte population where Hopscotch was found segregating at high frequency. Genotyping results indicate the Hopscotch element is found in a number of teosinte populations and linkage disequilibrium near tb1 does not support recent introgression from maize. Population genetic signatures are consistent with selection on the tb1 locus, revealing a potential ecological role, but a greenhouse experiment does not detect a strong association between the Hopscotch and tillering in teosinte. Our findings suggest the role of Hopscotch differs between maize and teosinte. Future work should assess tb1 expression levels in teosinte with and without the Hopscotch and more comprehensively phenotype teosinte to assess the ecological significance of the Hopscotch insertion and, more broadly, the tb1 locus in teosinte.
Collapse
Affiliation(s)
- Laura Vann
- Department of Plant Sciences, University of California , Davis, CA , USA
| | - Thomas Kono
- Department of Plant Sciences, University of California , Davis, CA , USA ; Department of Agronomy and Plant Genetics, University of Minnesota , Twin Cities, Minneapolis, MN , USA
| | - Tanja Pyhäjärvi
- Department of Plant Sciences, University of California , Davis, CA , USA ; Department of Biology, University of Oulu , Oulu , Finland
| | - Matthew B Hufford
- Department of Plant Sciences, University of California , Davis, CA , USA ; Department of Ecology, Evolution, and Organismal Biology, Iowa State University , Ames, Iowa , USA
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California , Davis, CA , USA ; Center for Population Biology and Genome Center, University of California , Davis, CA , USA
| |
Collapse
|
153
|
Santos-del-Blanco L, Alía R, González-Martínez SC, Sampedro L, Lario F, Climent J. Correlated genetic effects on reproduction define a domestication syndrome in a forest tree. Evol Appl 2015; 8:403-10. [PMID: 25926884 PMCID: PMC4408150 DOI: 10.1111/eva.12252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/04/2015] [Indexed: 02/03/2023] Open
Abstract
Compared to natural selection, domestication implies a dramatic change in traits linked to fitness. A number of traits conferring fitness in the wild might be detrimental under domestication, and domesticated species typically differ from their ancestors in a set of traits known as the domestication syndrome. Specifically, trade-offs between growth and reproduction are well established across the tree of life. According to allocation theory, selection for growth rate is expected to indirectly alter life-history reproductive traits, diverting resources from reproduction to growth. Here we tested this hypothesis by examining the genetic change and correlated responses of reproductive traits as a result of selection for timber yield in the tree Pinus pinaster. Phenotypic selection was carried out in a natural population, and progenies from selected trees were compared with those of control trees in a common garden experiment. According to expectations, we detected a genetic change in important life-history traits due to selection. Specifically, threshold sizes for reproduction were much higher and reproductive investment relative to size significantly lower in the selected progenies just after a single artificial selection event. Our study helps to define the domestication syndrome in exploited forest trees and shows that changes affecting developmental pathways are relevant in domestication processes of long-lived plants.
Collapse
Affiliation(s)
- Luis Santos-del-Blanco
- Department of Forest Ecology and Genetics, INIA-CIFORMadrid, Spain
- Sustainable Forest Management Research InstitutePalencia, Spain
- Department of Ecology and Evolution, University of LausanneLausanne, Switzerland
| | - Ricardo Alía
- Department of Forest Ecology and Genetics, INIA-CIFORMadrid, Spain
- Sustainable Forest Management Research InstitutePalencia, Spain
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics, INIA-CIFORMadrid, Spain
- Sustainable Forest Management Research InstitutePalencia, Spain
| | | | - Francisco Lario
- Vivero de Maceda, Dirección Técnica, TRAGSAMaceda, Ourense, Spain
| | - José Climent
- Department of Forest Ecology and Genetics, INIA-CIFORMadrid, Spain
- Sustainable Forest Management Research InstitutePalencia, Spain
| |
Collapse
|
154
|
Shi J, Lai J. Patterns of genomic changes with crop domestication and breeding. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:47-53. [PMID: 25656221 DOI: 10.1016/j.pbi.2015.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 05/20/2023]
Abstract
Crop domestication and further breeding improvement have long been important areas of genetics and genomics studies. With the rapid advancing of next-generation sequencing (NGS) technologies, the amount of population genomics data has surged rapidly. Analyses of the mega genomics data have started to uncover a previously unknown pattern of genome-wide changes with crop domestication and breeding. Selection during domestication and breeding drastically reshaped crop genomes, which have ended up with regions of greatly reduced genetic diversity and apparent enrichment of potentially beneficial alleles located in both genic and non-genic regions. Increasing evidences suggest that epigenetic modifications also played an important role during domestication and breeding.
Collapse
Affiliation(s)
- Junpeng Shi
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
155
|
Comparative Genetics of Seed Size Traits in Divergent Cereal Lineages Represented by Sorghum (Panicoidae) and Rice (Oryzoidae). G3-GENES GENOMES GENETICS 2015; 5:1117-28. [PMID: 25834216 PMCID: PMC4478542 DOI: 10.1534/g3.115.017590] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Seed size is closely related to fitness of wild plants, and its modification has been a key recurring element in domestication of seed/grain crops. In sorghum, a genomic and morphological model for panicoid cereals, a rich history of research into the genetics of seed size is reflected by a total of 13 likelihood intervals determined by conventional QTL (linkage) mapping in 11 nonoverlapping regions of the genome. To complement QTL data and investigate whether the discovery of seed size QTL is approaching “saturation,” we compared QTL data to GWAS for seed mass, seed length, and seed width studied in 354 accessions from a sorghum association panel (SAP) that have been genotyped at 265,487 SNPs. We identified nine independent GWAS-based “hotspots” for seed size associations. Targeted resequencing near four association peaks with the most notable linkage disequilibrium provides further support of the role(s) of these regions in the genetic control of sorghum seed size and identifies two candidate causal variants with nonsynonymous mutations. Of nine GWAS hotspots in sorghum, seven have significant correspondence with rice QTL intervals and known genes for components of seed size on orthologous chromosomes. Identifying intersections between positional and association genetic data are a potentially powerful means to mitigate constraints associated with each approach, and nonrandom correspondence of sorghum (panicoid) GWAS signals to rice (oryzoid) QTL adds a new dimension to the ability to leverage genetic data about this important trait across divergent plants.
Collapse
|
156
|
López ME, Neira R, Yáñez JM. Applications in the search for genomic selection signatures in fish. Front Genet 2015; 5:458. [PMID: 25642239 PMCID: PMC4294200 DOI: 10.3389/fgene.2014.00458] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022] Open
Abstract
Selection signatures are genomic regions harboring DNA sequences functionally involved in the genetic variation of traits subject to selection. Selection signatures have been intensively studied in recent years because of their relevance to evolutionary biology and their potential association with genes that control phenotypes of interest in wild and domestic populations. Selection signature research in fish has been confined to a smaller scale, due in part to the relatively recent domestication of fish species and limited genomic resources such as molecular markers, genetic mapping, DNA sequences, and reference genomes. However, recent genomic technology advances are paving the way for more studies that may contribute to the knowledge of genomic regions underlying phenotypes of biological and productive interest in fish.
Collapse
Affiliation(s)
- María E López
- Faculty of Agricultural Sciences, University of Chile Santiago, Chile ; Aquainnovo, Puerto Montt Chile
| | - Roberto Neira
- Faculty of Agricultural Sciences, University of Chile Santiago, Chile
| | - José M Yáñez
- Aquainnovo, Puerto Montt Chile ; Faculty of Veterinary and Animal Sciences, University of Chile Santiago, Chile
| |
Collapse
|
157
|
Goldschmidt EE. Plant grafting: new mechanisms, evolutionary implications. FRONTIERS IN PLANT SCIENCE 2014; 5:727. [PMID: 25566298 PMCID: PMC4269114 DOI: 10.3389/fpls.2014.00727] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/01/2014] [Indexed: 05/18/2023]
Abstract
Grafting, an old plant propagation practice, is still widely used with fruit trees and in recent decades also with vegetables. Taxonomic proximity is a general prerequisite for successful graft-take and long-term survival of the grafted, composite plant. However, the mechanisms underlying interspecific graft incompatibility are as yet insufficiently understood. Hormonal signals, auxin in particular, are believed to play an important role in the wound healing and vascular regeneration within the graft union zone. Incomplete and convoluted vascular connections impede the vital upward and downward whole plant transfer routes. Long-distance protein, mRNA and small RNA graft-transmissible signals currently emerge as novel mechanisms which regulate nutritional and developmental root/top relations and may play a pivotal role in grafting physiology. Grafting also has significant pathogenic projections. On one hand, stock to scion mechanical contact enables the spread of diseases, even without a complete graft union. But, on the other hand, grafting onto resistant rootstocks serves as a principal tool in the management of fruit tree plagues and vegetable soil-borne diseases. The 'graft hybrid' historic controversy has not yet been resolved. Recent evidence suggests that epigenetic modification of DNA-methylation patterns may account for certain graft-transformation phenomena. Root grafting is a wide spread natural phenomenon; both intraspecific and interspecific root grafts have been recorded. Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases. A more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system. This has led to the formation of alloploid cells that, under laboratory conditions, gave rise to a novel, alloploid Nicotiana species, indicating that natural grafts may play a role in plant speciation, under certain circumstances.
Collapse
Affiliation(s)
- Eliezer E. Goldschmidt
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
158
|
Ramos-Onsins SE, Burgos-Paz W, Manunza A, Amills M. Mining the pig genome to investigate the domestication process. Heredity (Edinb) 2014; 113:471-84. [PMID: 25074569 PMCID: PMC4815588 DOI: 10.1038/hdy.2014.68] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/22/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022] Open
Abstract
Pig domestication began around 9000 YBP in the Fertile Crescent and Far East, involving marked morphological and genetic changes that occurred in a relatively short window of time. Identifying the alleles that drove the behavioural and physiological transformation of wild boars into pigs through artificial selection constitutes a formidable challenge that can only be faced from an interdisciplinary perspective. Indeed, although basic facts regarding the demography of pig domestication and dispersal have been uncovered, the biological substrate of these processes remains enigmatic. Considerable hope has been placed on new approaches, based on next-generation sequencing, which allow whole-genome variation to be analyzed at the population level. In this review, we provide an outline of the current knowledge on pig domestication by considering both archaeological and genetic data. Moreover, we discuss several potential scenarios of genome evolution under the complex mixture of demography and selection forces at play during domestication. Finally, we highlight several technical and methodological approaches that may represent significant advances in resolving the conundrum of livestock domestication.
Collapse
Affiliation(s)
- S E Ramos-Onsins
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus Universitat Autònoma Barcelona, Bellaterra, Spain
| | - W Burgos-Paz
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus Universitat Autònoma Barcelona, Bellaterra, Spain
| | - A Manunza
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus Universitat Autònoma Barcelona, Bellaterra, Spain
| | - M Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus Universitat Autònoma Barcelona, Bellaterra, Spain
| |
Collapse
|
159
|
Tiffin P, Ross-Ibarra J. Advances and limits of using population genetics to understand local adaptation. Trends Ecol Evol 2014; 29:673-80. [DOI: 10.1016/j.tree.2014.10.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 01/09/2023]
|
160
|
Sun Y, Fan Z, Li X, Liu Z, Li J, Yin H. Distinct double flower varieties in Camellia japonica exhibit both expansion and contraction of C-class gene expression. BMC PLANT BIOLOGY 2014; 14:288. [PMID: 25344122 PMCID: PMC4219040 DOI: 10.1186/s12870-014-0288-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/15/2014] [Indexed: 05/27/2023]
Abstract
BACKGROUND Double flower domestication is of great value in ornamental plants and presents an excellent system to study the mechanism of morphological alterations by human selection. The classic ABC model provides a genetic framework underlying the control of floral organ identity and organogenesis from which key regulators have been identified and evaluated in many plant species. Recent molecular studies have underscored the importance of C-class homeotic genes, whose functional attenuation contributed to the floral diversity in various species. Cultivated Camellia japonica L. possesses several types of double flowers, however the molecular mechanism underlying their floral morphological diversification remains unclear. RESULTS In this study, we cloned the C-class orthologous gene CjAG in C. japonica. We analyzed the expression patterns of CjAG in wild C. japonica, and performed ectopic expression in Arabidopsis. These results revealed that CjAG shared conserved C-class function that controls stamen and carpel development. Further we analyzed the expression pattern of CjAG in two different C. japonica double-flower varieties, 'Shibaxueshi' and 'Jinpanlizhi', and showed that expression of CjAG was highly contracted in 'Shibaxueshi' but expanded in inner petals of 'Jinpanlizhi'. Moreover, detailed expression analyses of B- and C-class genes have uncovered differential patterns of B-class genes in the inner organs of 'Jinpanlizhi'. CONCLUSIONS These results demonstrated that the contraction and expansion of CjAG expression were associated with the formation of different types of double flowers. Our studies have manifested two different trajectories of double flower domestication regarding the C-class gene expression in C. japonica.
Collapse
Affiliation(s)
- Yingkun Sun
- />Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400 Zhejiang China
- />College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109 Shandong China
| | - Zhengqi Fan
- />Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400 Zhejiang China
| | - Xinlei Li
- />Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400 Zhejiang China
| | - Zhongchi Liu
- />Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, ᅟᅟ Maryland USA
| | - Jiyuan Li
- />Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400 Zhejiang China
- />ᅟᅟ, Zhejiang Provincial Key Laboratory of Forest genetics and breeding, ᅟᅟ, ᅟᅟ Zhejiang China
| | - Hengfu Yin
- />Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400 Zhejiang China
- />ᅟᅟ, Zhejiang Provincial Key Laboratory of Forest genetics and breeding, ᅟᅟ, ᅟᅟ Zhejiang China
| |
Collapse
|
161
|
Jalůvka L, Dostál V, Meyer V, Bayle B, Lapage F, Chloupek O. Comparison of breeding methods for forage yield in red clover. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun200957020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
162
|
Xia H, Zheng X, Chen L, Gao H, Yang H, Long P, Rong J, Lu B, Li J, Luo L. Genetic differentiation revealed by selective loci of drought-responding EST-SSRs between upland and lowland rice in China. PLoS One 2014; 9:e106352. [PMID: 25286109 PMCID: PMC4186790 DOI: 10.1371/journal.pone.0106352] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/05/2014] [Indexed: 12/02/2022] Open
Abstract
Upland and lowland rice (Oryza sativa L.) represent two of the most important rice ecotypes adapted to ago-ecosystems with contrasting soil-water conditions. Upland rice, domesticated in the water-limited environment, contains valuable drought-resistant characters that can be used in water-saving breeding. Knowledge about the divergence between upland and lowland rice will provide valuable cues for the evolution of drought-resistance in rice. Genetic differentiation between upland and lowland rice was explored by 47 Simple Sequence Repeats (SSRs) located in drought responding expressed sequence tags (ESTs) among 377 rice landraces. The morphological traits of drought-resistance were evaluated in the field experiments. Different outlier loci were detected in the japonica and indica subspecies, respectively. Considerable genetic differentiation between upland and lowland rice on these outlier loci was estimated in japonica (Fst = 0.258) and indica (Fst = 0.127). Furthermore, populations of the upland and lowland ecotypes were clustered separately on these outlier loci. A significant correlation between genetic distance matrices and the dissimilarity matrices of drought-resistant traits was determined, indicating a certain relationship between the upland-lowland rice differentiation and the drought-resistance. Divergent selections occur between upland and lowland rice on the drought-resistance as the Qsts of some drought-resistant traits are significantly higher than the neutral Fst. In addition, the upland- and lowland-preferable alleles responded differently among ecotypes or allelic types under osmotic stress. This shows the evolutionary signature of drought resistance at the gene expression level. The findings of this study can strengthen our understanding of the evolution of drought-resistance in rice with significant implications in the improvement of rice drought-resistance.
Collapse
Affiliation(s)
- Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Xiaoguo Zheng
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Huan Gao
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hua Yang
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Ping Long
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Jun Rong
- Center for Watershed Ecology, Institute of Life Science and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Baorong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Fudan University, Shanghai, China
| | - Jiajia Li
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China
- * E-mail:
| |
Collapse
|
163
|
Li YH, Reif JC, Jackson SA, Ma YS, Chang RZ, Qiu LJ. Detecting SNPs underlying domestication-related traits in soybean. BMC PLANT BIOLOGY 2014; 14:251. [PMID: 25258093 PMCID: PMC4180965 DOI: 10.1186/s12870-014-0251-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 09/18/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cultivated soybean (Glycine max) experienced a severe genetic bottleneck during its domestication and a further loss in diversity during its subsequent selection. Here, a panel of 65 wild (G. soja) and 353 cultivated accessions was genotyped at 552 single-nucleotide polymorphism loci to search for signals of selection during and after domestication. RESULTS The wild and cultivated populations were well differentiated from one another. Application of the Fst outlier test revealed 64 loci showing evidence for selection. Of these, 35 related to selection during domestication, while the other 29 likely gradually became monomorphic as a result of prolonged selection during post domestication. Two of the SNP locus outliers were associated with testa color. CONCLUSIONS Identifying genes controlling domestication-related traits is important for maintaining the diversity of crops. SNP locus outliers detected by a combined forward genetics and population genetics approach can provide markers with utility for the conservation of wild accessions and for trait improvement in the cultivated genepool.
Collapse
Affiliation(s)
- Ying-Hui Li
- />The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
| | - Jochen C Reif
- />Department of Cytogenetics and Genome Analysis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Scott A Jackson
- />Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - Yan-Song Ma
- />The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
- />Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, 150086 Harbin, China
| | - Ru-Zhen Chang
- />The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
| | - Li-Juan Qiu
- />The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
| |
Collapse
|
164
|
Nimmakayala P, Levi A, Abburi L, Abburi VL, Tomason YR, Saminathan T, Vajja VG, Malkaram S, Reddy R, Wehner TC, Mitchell SE, Reddy UK. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics 2014; 15:767. [PMID: 25196513 PMCID: PMC4246513 DOI: 10.1186/1471-2164-15-767] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/29/2014] [Indexed: 02/08/2023] Open
Abstract
Background A large single nucleotide polymorphism (SNP) dataset was used to analyze genome-wide diversity in a diverse collection of watermelon cultivars representing globally cultivated, watermelon genetic diversity. The marker density required for conducting successful association mapping depends on the extent of linkage disequilibrium (LD) within a population. Use of genotyping by sequencing reveals large numbers of SNPs that in turn generate opportunities in genome-wide association mapping and marker-assisted selection, even in crops such as watermelon for which few genomic resources are available. In this paper, we used genome-wide genetic diversity to study LD, selective sweeps, and pairwise FST distributions among worldwide cultivated watermelons to track signals of domestication. Results We examined 183 Citrullus lanatus var. lanatus accessions representing domesticated watermelon and generated a set of 11,485 SNP markers using genotyping by sequencing. With a diverse panel of worldwide cultivated watermelons, we identified a set of 5,254 SNPs with a minor allele frequency of ≥ 0.05, distributed across the genome. All ancestries were traced to Africa and an admixture of various ancestries constituted secondary gene pools across various continents. A sliding window analysis using pairwise FST values was used to resolve selective sweeps. We identified strong selection on chromosomes 3 and 9 that might have contributed to the domestication process. Pairwise analysis of adjacent SNPs within a chromosome as well as within a haplotype allowed us to estimate genome-wide LD decay. LD was also detected within individual genes on various chromosomes. Principal component and ancestry analyses were used to account for population structure in a genome-wide association study. We further mapped important genes for soluble solid content using a mixed linear model. Conclusions Information concerning the SNP resources, population structure, and LD developed in this study will help in identifying agronomically important candidate genes from the genomic regions underlying selection and for mapping quantitative trait loci using a genome-wide association study in sweet watermelon. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-767) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Umesh K Reddy
- Gus R, Douglass Institute, Department of Biology, West Virginia State University, Dunbar, WV 25112-1000, USA.
| |
Collapse
|
165
|
Abstract
A new study reports the genome of common bean (Phaseolus vulgaris) and genome-wide resequencing data from both wild and domesticated accessions. These data confirm that common bean was domesticated at least twice, in Mesoamerica and South America, and also provide a framework to identify genes that contributed to the phenotypic changes associated with domestication.
Collapse
Affiliation(s)
- Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
166
|
Abstract
Stay-green (sometimes staygreen) refers to the heritable delayed foliar senescence character in model and crop plant species. In a cosmetic stay-green, a lesion interferes with an early step in chlorophyll catabolism. The possible contribution of synthesis to chlorophyll turnover in cosmetic stay-greens is considered. In functional stay-greens, the transition from the carbon capture period to the nitrogen mobilization (senescence) phase of canopy development is delayed, and/or the senescence syndrome proceeds slowly. Yield and composition in high-carbon (C) crops such as cereals, and in high-nitrogen (N) species such as legumes, reflect the source-sink relationship with canopy C capture and N remobilization. Quantitative trait loci studies show that functional stay-green is a valuable trait for improving crop stress tolerance, and is associated with the domestication syndrome in cereals. Stay-green variants reveal how autumnal senescence and dormancy are coordinated in trees. The stay-green phenotype can be the result of alterations in hormone metabolism and signalling, particularly affecting networks involving cytokinins and ethylene. Members of the WRKY and NAC families, and an ever-expanding cast of additional senescence-associated transcription factors, are identifiable by mutations that result in stay-green. Empirical selection for functional stay-green has contributed to increasing crop yields, particularly where it is part of a strategy that also targets other traits such as sink capacity and environmental sensitivity and is associated with appropriate crop management methodology. The onset and progress of senescence are phenological metrics that show climate change sensitivity, indicating that understanding stay-green can contribute to the design of appropriate crop types for future environments.
Collapse
Affiliation(s)
- Howard Thomas
- IBERS, Edward Llwyd Building, Aberystwyth University, Ceredigion SY23 3FG, UK
| | - Helen Ougham
- IBERS, Edward Llwyd Building, Aberystwyth University, Ceredigion SY23 3FG, UK
| |
Collapse
|
167
|
Mandel JR, McAssey EV, Nambeesan S, Garcia-Navarro E, Burke JM. Molecular evolution of candidate genes for crop-related traits in sunflower (Helianthus annuus L.). PLoS One 2014; 9:e99620. [PMID: 24914686 PMCID: PMC4051887 DOI: 10.1371/journal.pone.0099620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 05/17/2014] [Indexed: 01/03/2023] Open
Abstract
Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes that exhibited a paucity of sequence diversity, consistent with the possible effects of selection during the evolution of cultivated sunflower, were then sequenced from a panel of wild sunflower accessions an outgroup. These data enabled formal tests for the effects of selection in shaping sequence diversity at these loci. When selection was detected, we further sequenced these genes from a panel of primitive landraces, thereby allowing us to investigate the likely timing of selection (i.e., domestication vs. improvement). We ultimately identified seven genes that exhibited the signature of positive selection during either domestication or improvement. Genetic mapping of a subset of these genes revealed co-localization between candidates for genes involved in the determination of flowering time, seed germination, plant growth/development, and branching and QTL that were previously identified for these traits in cultivated × wild sunflower mapping populations.
Collapse
Affiliation(s)
- Jennifer R. Mandel
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Edward V. McAssey
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Savithri Nambeesan
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Elena Garcia-Navarro
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
168
|
Roorkiwal M, Nayak SN, Thudi M, Upadhyaya HD, Brunel D, Mournet P, This D, Sharma PC, Varshney RK. Allele diversity for abiotic stress responsive candidate genes in chickpea reference set using gene based SNP markers. FRONTIERS IN PLANT SCIENCE 2014; 5:248. [PMID: 24926299 PMCID: PMC4046317 DOI: 10.3389/fpls.2014.00248] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/15/2014] [Indexed: 05/20/2023]
Abstract
Chickpea is an important food legume crop for the semi-arid regions, however, its productivity is adversely affected by various biotic and abiotic stresses. Identification of candidate genes associated with abiotic stress response will help breeding efforts aiming to enhance its productivity. With this objective, 10 abiotic stress responsive candidate genes were selected on the basis of prior knowledge of this complex trait. These 10 genes were subjected to allele specific sequencing across a chickpea reference set comprising 300 genotypes including 211 genotypes of chickpea mini core collection. A total of 1.3 Mbp sequence data were generated. Multiple sequence alignment (MSA) revealed 79 SNPs and 41 indels in nine genes while the CAP2 gene was found to be conserved across all the genotypes. Among 10 candidate genes, the maximum number of SNPs (34) was observed in abscisic acid stress and ripening (ASR) gene including 22 transitions, 11 transversions and one tri-allelic SNP. Nucleotide diversity varied from 0.0004 to 0.0029 while polymorphism information content (PIC) values ranged from 0.01 (AKIN gene) to 0.43 (CAP2 promoter). Haplotype analysis revealed that alleles were represented by more than two haplotype blocks, except alleles of the CAP2 and sucrose synthase (SuSy) gene, where only one haplotype was identified. These genes can be used for association analysis and if validated, may be useful for enhancing abiotic stress, including drought tolerance, through molecular breeding.
Collapse
Affiliation(s)
- Manish Roorkiwal
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- University School of Biotechnology, Guru Gobind Singh Indraprastha UniversityDelhi, India
| | - Spurthi N. Nayak
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- Agronomy Department, University of FloridaGainesville, FL, USA
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | | | | | | | - Prakash C. Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha UniversityDelhi, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| |
Collapse
|
169
|
Bloomfield JA, Rose TJ, King GJ. Sustainable harvest: managing plasticity for resilient crops. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:517-33. [PMID: 24891039 PMCID: PMC4207195 DOI: 10.1111/pbi.12198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/14/2014] [Indexed: 05/18/2023]
Abstract
Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information-led agronomy and in recognizing the role of epigenetic variation in crop breeding.
Collapse
Affiliation(s)
- Justin A Bloomfield
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Terry J Rose
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| |
Collapse
|
170
|
Fang Z, Gonzales AM, Clegg MT, Smith KP, Muehlbauer GJ, Steffenson BJ, Morrell PL. Two genomic regions contribute disproportionately to geographic differentiation in wild barley. G3 (BETHESDA, MD.) 2014; 4:1193-203. [PMID: 24760390 PMCID: PMC4455769 DOI: 10.1534/g3.114.010561] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022]
Abstract
Genetic differentiation in natural populations is driven by geographic distance and by ecological or physical features within and between natural habitats that reduce migration. The primary population structure in wild barley differentiates populations east and west of the Zagros Mountains. Genetic differentiation between eastern and western populations is uneven across the genome and is greatest on linkage groups 2H and 5H. Genetic markers in these two regions demonstrate the largest difference in frequency between the primary populations and have the highest informativeness for assignment to each population. Previous cytological and genetic studies suggest there are chromosomal structural rearrangements (inversions or translocations) in these genomic regions. Environmental association analyses identified an association with both temperature and precipitation variables on 2H and with precipitation variables on 5H.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Ana M Gonzales
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Michael T Clegg
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
171
|
Fang Z, Gonzales AM, Clegg MT, Smith KP, Muehlbauer GJ, Steffenson BJ, Morrell PL. Two genomic regions contribute disproportionately to geographic differentiation in wild barley. G3 (BETHESDA, MD.) 2014. [PMID: 24760390 DOI: 10.1534/g3.114.010561/-/dc1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Genetic differentiation in natural populations is driven by geographic distance and by ecological or physical features within and between natural habitats that reduce migration. The primary population structure in wild barley differentiates populations east and west of the Zagros Mountains. Genetic differentiation between eastern and western populations is uneven across the genome and is greatest on linkage groups 2H and 5H. Genetic markers in these two regions demonstrate the largest difference in frequency between the primary populations and have the highest informativeness for assignment to each population. Previous cytological and genetic studies suggest there are chromosomal structural rearrangements (inversions or translocations) in these genomic regions. Environmental association analyses identified an association with both temperature and precipitation variables on 2H and with precipitation variables on 5H.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Ana M Gonzales
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Michael T Clegg
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
172
|
Nabholz B, Sarah G, Sabot F, Ruiz M, Adam H, Nidelet S, Ghesquière A, Santoni S, David J, Glémin S. Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima). Mol Ecol 2014; 23:2210-27. [PMID: 24684265 DOI: 10.1111/mec.12738] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/19/2014] [Indexed: 12/17/2022]
Abstract
The African cultivated rice (Oryza glaberrima) was domesticated in West Africa 3000 years ago. Although less cultivated than the Asian rice (O. sativa), O. glaberrima landraces often display interesting adaptation to rustic environment (e.g. drought). Here, using RNA-seq technology, we were able to compare more than 12,000 transcripts between 9 O. glaberrima, 10 wild O. barthii and one O. meridionalis individuals. With a synonymous nucleotide diversity πs = 0.0006 per site, O. glaberrima appears as the least genetically diverse crop grass ever documented. Using approximate Bayesian computation, we estimated that O. glaberrima experienced a severe bottleneck during domestication. This demographic scenario almost fully accounts for the pattern of genetic diversity across O. glaberrima genome as we detected very few outliers regions where positive selection may have further impacted genetic diversity. Moreover, the large excess of derived nonsynonymous substitution that we detected suggests that the O. glaberrima population suffered from the 'cost of domestication'. In addition, we used this genome-scale data set to demonstrate that (i) O. barthii genetic diversity is positively correlated with recombination rate and negatively with gene density, (ii) expression level is negatively correlated with evolutionary constraint, and (iii) one region on chromosome 5 (position 4-6 Mb) exhibits a clear signature of introgression with a yet unidentified Oryza species. This work represents the first genome-wide survey of the African rice genetic diversity and paves the way for further comparison between the African and the Asian rice, notably regarding the genetics underlying domestication traits.
Collapse
Affiliation(s)
- Benoit Nabholz
- Institut des Sciences de l'Evolution-Montpellier, UMR CNRS-UM2 5554, University Montpellier II, Montpellier, France; UMR AGAP 1334, Montpellier SupAgro, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Gepts P. The contribution of genetic and genomic approaches to plant domestication studies. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:51-9. [PMID: 24631844 DOI: 10.1016/j.pbi.2014.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/04/2014] [Accepted: 02/09/2014] [Indexed: 05/25/2023]
Abstract
The application of genomic approaches to the phenomenon of plant domestication promises a better understanding of the origins of agriculture, but also of the way plant genomes in general are organized and expressed. Building on earlier genetic research, more detailed information has become available on the organization of genetic diversity at the genome level and the effects of gene flow on diversity in different regions of the genome. In addition, putative domestication genes have been identified through population genomics approaches (selective sweeps or divergence scanning). Further information has been obtained on the origin of domestication syndrome mutations and the dispersal and adaptation of crops after domestication. For the future, increasingly multidisciplinary approaches using combinations of genomics and other approaches will prevail.
Collapse
Affiliation(s)
- Paul Gepts
- University of California, Department of Plant Sciences/MS 1, Section of Crop and Ecosystem Sciences, 1 Shields Avenue, Davis, CA 95616, United States of America.
| |
Collapse
|
174
|
Pearl SA, Bowers JE, Reyes-Chin-Wo S, Michelmore RW, Burke JM. Genetic analysis of safflower domestication. BMC PLANT BIOLOGY 2014; 14:43. [PMID: 24502326 PMCID: PMC3925122 DOI: 10.1186/1471-2229-14-43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/28/2014] [Indexed: 05/31/2023]
Abstract
BACKGROUND Safflower (Carthamus tinctorius L.) is an oilseed crop in the Compositae (a.k.a. Asteraceae) that is valued for its oils rich in unsaturated fatty acids. Here, we present an analysis of the genetic architecture of safflower domestication and compare our findings to those from sunflower (Helianthus annuus L.), an independently domesticated oilseed crop within the same family.We mapped quantitative trait loci (QTL) underlying 24 domestication-related traits in progeny from a cross between safflower and its wild progenitor, Carthamus palaestinus Eig. Also, we compared QTL positions in safflower against those that have been previously identified in cultivated x wild sunflower crosses to identify instances of colocalization. RESULTS We mapped 61 QTL, the vast majority of which (59) exhibited minor or moderate phenotypic effects. The two large-effect QTL corresponded to one each for flower color and leaf spininess. A total of 14 safflower QTL colocalized with previously reported sunflower QTL for the same traits. Of these, QTL for three traits (days to flower, achene length, and number of selfed seed) had cultivar alleles that conferred effects in the same direction in both species. CONCLUSIONS As has been observed in sunflower, and unlike many other crops, our results suggest that the genetics of safflower domestication is quite complex. Moreover, our comparative mapping results indicate that safflower and sunflower exhibit numerous instances of QTL colocalization, suggesting that parallel trait transitions during domestication may have been driven, at least in part, by parallel genotypic evolution at some of the same underlying genes.
Collapse
Affiliation(s)
- Stephanie A Pearl
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, GA 30602, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - John E Bowers
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, GA 30602, USA
| | | | | | - John M Burke
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
175
|
Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 2014; 14:840-52. [PMID: 24240513 DOI: 10.1038/nrg3605] [Citation(s) in RCA: 640] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Domestication is a good model for the study of evolutionary processes because of the recent evolution of crop species (<12,000 years ago), the key role of selection in their origins, and good archaeological and historical data on their spread and diversification. Recent studies, such as quantitative trait locus mapping, genome-wide association studies and whole-genome resequencing studies, have identified genes that are associated with the initial domestication and subsequent diversification of crops. Together, these studies reveal the functions of genes that are involved in the evolution of crops that are under domestication, the types of mutations that occur during this process and the parallelism of mutations that occur in the same pathways and proteins, as well as the selective forces that are acting on these mutations and that are associated with geographical adaptation of crop species.
Collapse
Affiliation(s)
- Rachel S Meyer
- Center for Genomics and Systems Biology, Department of Biology, 12 Waverly Place, New York University, New York 10003, USA
| | | |
Collapse
|
176
|
Dong Y, Yang X, Liu J, Wang BH, Liu BL, Wang YZ. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat Commun 2014; 5:3352. [PMID: 24549030 DOI: 10.1038/ncomms4352] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/30/2014] [Indexed: 01/20/2023] Open
Abstract
Loss of seed dispersal is a key agronomical trait targeted by ancient human selection and has been regarded as a milestone of crop domestication. In this study, in the legume crop soybean Glycine max (L.) Merr. which provides vegetable oils and proteins for humans, we show that the key cellular feature of the shattering-resistant trait lies in the excessively lignified fibre cap cells (FCC) with the abscission layer unchanged in the pod ventral suture. We demonstrate that a NAC (NAM, ATAF1/2 and CUC2) gene shattering1-5 (SHAT1-5) functionally activates secondary wall biosynthesis and promotes the significant thickening of FCC secondary walls by expression at 15-fold the level of the wild allele, which is attributed to functional disruption of the upstream repressor. We show that strong artificial selection of SHAT1-5 has caused a severe selective sweep across ~ 116 kb on chromosome 16. This locus and regulation mechanism could be applicable to legume crop improvement.
Collapse
Affiliation(s)
- Yang Dong
- 1] State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jing Liu
- 1] State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo-Han Wang
- 1] State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo-Ling Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yin-Zheng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
177
|
Fawcett JA, Kado T, Sasaki E, Takuno S, Yoshida K, Sugino RP, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Takagi H, Abe A, Ishii T, Terauchi R, Innan H. QTL map meets population genomics: an application to rice. PLoS One 2013; 8:e83720. [PMID: 24376738 PMCID: PMC3871663 DOI: 10.1371/journal.pone.0083720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 11/14/2013] [Indexed: 12/14/2022] Open
Abstract
Genes involved in the transition from wild to cultivated crop species should be of great agronomic importance. Population genomic approaches utilizing genome resequencing data have been recently applied for this purpose, although it only reports a large list of candidate genes with no biological information. Here, by resequencing more than 30 genomes altogether of wild rice Oryza rufipogon and cultivated rice O. sativa, we identified a number of regions with clear footprints of selection during the domestication process. We then focused on identifying candidate domestication genes in these regions by utilizing the wealth of QTL information in rice. We were able to identify a number of interesting candidates such as transcription factors that should control key domestication traits such as shattering, awn length, and seed dormancy. Other candidates include those that might have been related to the improvement of grain quality and those that might have been involved in the local adaptation to dry conditions and colder environments. Our study shows that population genomic approaches and QTL mapping information can be used together to identify genes that might be of agronomic importance.
Collapse
Affiliation(s)
| | - Tomoyuki Kado
- Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | - Eriko Sasaki
- Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | - Shohei Takuno
- Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | | | | | | | | | | | - Aiko Uemura
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Akira Abe
- Iwate Agricultural Research Center, Kitakami, Iwate, Japan
| | | | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- * E-mail: (HI); (RT)
| | - Hideki Innan
- Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
- * E-mail: (HI); (RT)
| |
Collapse
|
178
|
Shapter FM, Cross M, Ablett G, Malory S, Chivers IH, King GJ, Henry RJ. High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop. PLoS One 2013; 8:e82641. [PMID: 24367532 PMCID: PMC3867367 DOI: 10.1371/journal.pone.0082641] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022] Open
Abstract
Global food demand, climatic variability and reduced land availability are driving the need for domestication of new crop species. The accelerated domestication of a rice-like Australian dryland polyploid grass, Microlaena stipoides (Poaceae), was targeted using chemical mutagenesis in conjunction with high throughput sequencing of genes for key domestication traits. While M. stipoides has previously been identified as having potential as a new grain crop for human consumption, only a limited understanding of its genetic diversity and breeding system was available to aid the domestication process. Next generation sequencing of deeply-pooled target amplicons estimated allelic diversity of a selected base population at 14.3 SNP/Mb and identified novel, putatively mutation-induced polymorphisms at about 2.4 mutations/Mb. A 97% lethal dose (LD₉₇) of ethyl methanesulfonate treatment was applied without inducing sterility in this polyploid species. Forward and reverse genetic screens identified beneficial alleles for the domestication trait, seed-shattering. Unique phenotypes observed in the M2 population suggest the potential for rapid accumulation of beneficial traits without recourse to a traditional cross-breeding strategy. This approach may be applicable to other wild species, unlocking their potential as new food, fibre and fuel crops.
Collapse
Affiliation(s)
- Frances M. Shapter
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
- * E-mail:
| | - Michael Cross
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Gary Ablett
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Sylvia Malory
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Ian H. Chivers
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
- Native Seeds Pty Ltd, Sandringham, Victoria, Australia
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
179
|
Morrell PL, Gonzales AM, Meyer KKT, Clegg MT. Resequencing data indicate a modest effect of domestication on diversity in barley: a cultigen with multiple origins. J Hered 2013; 105:253-64. [PMID: 24336926 DOI: 10.1093/jhered/est083] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The levels of diversity and extent of linkage disequilibrium in cultivated species are largely determined by diversity in their wild progenitors. We report a comparison of nucleotide sequence diversity in wild and cultivated barley (Hordeum vulgare ssp. spontaneum and ssp. vulgare) at 7 nuclear loci totaling 9296bp, using sequence from Hordeum bulbosum to infer the ancestral state of mutations. The sample includes 36 accessions of cultivated barley, including 23 landraces (cultivated forms not subject to modern breeding) and 13 cultivated lines and genetic stocks compared to either 25 or 45 accessions of wild barley for the same loci. Estimates of nucleotide sequence diversity indicate that landraces retain >80% of the diversity in wild barley. The primary population structure in wild barley, which divides the species into eastern and western populations, is reflected in significant differentiation at all loci in wild accessions and at 3 of 7 loci in landraces. "Oriental" landraces have slightly higher diversity than "Occidental" landraces. Genetic assignment suggests more admixture from Occidental landraces into Oriental landraces than the converse, which may explain this difference. Based on θπ for silent sites, modern western cultivars have ~73% of the diversity found in landraces and ~71% of the diversity in wild barley.
Collapse
Affiliation(s)
- Peter L Morrell
- the Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | | | | | | |
Collapse
|
180
|
The domestication and evolutionary ecology of apples. Trends Genet 2013; 30:57-65. [PMID: 24290193 DOI: 10.1016/j.tig.2013.10.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/20/2022]
Abstract
The cultivated apple is a major fruit crop in temperate zones. Its wild relatives, distributed across temperate Eurasia and growing in diverse habitats, represent potentially useful sources of diversity for apple breeding. We review here the most recent findings on the genetics and ecology of apple domestication and its impact on wild apples. Genetic analyses have revealed a Central Asian origin for cultivated apple, together with an unexpectedly large secondary contribution from the European crabapple. Wild apple species display strong population structures and high levels of introgression from domesticated apple, and this may threaten their genetic integrity. Recent research has revealed a major role of hybridization in the domestication of the cultivated apple and has highlighted the value of apple as an ideal model for unraveling adaptive diversification processes in perennial fruit crops. We discuss the implications of this knowledge for apple breeding and for the conservation of wild apples.
Collapse
|
181
|
Li LF, Wang HY, Zhang C, Wang XF, Shi FX, Chen WN, Ge XJ. Origins and domestication of cultivated banana inferred from chloroplast and nuclear genes. PLoS One 2013; 8:e80502. [PMID: 24260405 PMCID: PMC3832372 DOI: 10.1371/journal.pone.0080502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cultivated bananas are large, vegetatively-propagated members of the genus Musa. More than 1,000 cultivars are grown worldwide and they are major economic and food resources in numerous developing countries. It has been suggested that cultivated bananas originated from the islands of Southeast Asia (ISEA) and have been developed through complex geodomestication pathways. However, the maternal and parental donors of most cultivars are unknown, and the pattern of nucleotide diversity in domesticated banana has not been fully resolved. METHODOLOGY/PRINCIPAL FINDINGS We studied the genetics of 16 cultivated and 18 wild Musa accessions using two single-copy nuclear (granule-bound starch synthase I, GBSS I, also known as Waxy, and alcohol dehydrogenase 1, Adh1) and two chloroplast (maturase K, matK, and the trnL-F gene cluster) genes. The results of phylogenetic analyses showed that all A-genome haplotypes of cultivated bananas were grouped together with those of ISEA subspecies of M. acuminata (A-genome). Similarly, the B- and S-genome haplotypes of cultivated bananas clustered with the wild species M. balbisiana (B-genome) and M. schizocarpa (S-genome), respectively. Notably, it has been shown that distinct haplotypes of each cultivar (A-genome group) were nested together to different ISEA subspecies M. acuminata. Analyses of nucleotide polymorphism in the Waxy and Adh1 genes revealed that, in comparison to the wild relatives, cultivated banana exhibited slightly lower nucleotide diversity both across all sites and specifically at silent sites. However, dramatically reduced nucleotide diversity was found at nonsynonymous sites for cultivated bananas. CONCLUSIONS/SIGNIFICANCE Our study not only confirmed the origin of cultivated banana as arising from multiple intra- and inter-specific hybridization events, but also showed that cultivated banana may have not suffered a severe genetic bottleneck during the domestication process. Importantly, our findings suggested that multiple maternal origins and a reduction in nucleotide diversity at nonsynonymous sites are general attributes of cultivated bananas.
Collapse
Affiliation(s)
- Lin-Feng Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, China
| | - Hua-Ying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Cui Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Xin-Feng Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Feng-Xue Shi
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Wen-Na Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
182
|
Fang Z, Eule-Nashoba A, Powers C, Kono TY, Takuno S, Morrell PL, Smith KP. Comparative analyses identify the contributions of exotic donors to disease resistance in a barley experimental population. G3 (BETHESDA, MD.) 2013; 3:1945-53. [PMID: 24048643 PMCID: PMC3815057 DOI: 10.1534/g3.113.007294] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/03/2013] [Indexed: 11/18/2022]
Abstract
Introgression of novel genetic variation into breeding populations is frequently required to facilitate response to new abiotic or biotic pressure. This is particularly true for the introduction of host pathogen resistance in plant breeding. However, the number and genomic location of loci contributed by donor parents are often unknown, complicating efforts to recover desired agronomic phenotypes. We examined allele frequency differentiation in an experimental barley breeding population subject to introgression and subsequent selection for Fusarium head blight resistance. Allele frequency differentiation between the experimental population and the base population identified three primary genomic regions putatively subject to selection for resistance. All three genomic regions have been previously identified by quantitative trait locus (QTL) and association mapping. Based on the degree of identity-by-state relative to donor parents, putative donors of resistance alleles were also identified. The successful application of comparative population genetic approaches in this barley breeding experiment suggests that the approach could be applied to other breeding populations that have undergone defined breeding and selection histories, with the potential to provide valuable information for genetic improvement.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Amber Eule-Nashoba
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Carol Powers
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Thomas Y. Kono
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Shohei Takuno
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | - Peter L. Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Kevin P. Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
183
|
Kwon S, Simko I, Hellier B, Mou B, Hu J. Genome-wide association of 10 horticultural traits with expressed sequence tag-derived SNP markers in a collection of lettuce lines. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.cj.2013.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
184
|
de Bossoreille de Ribou S, Douam F, Hamant O, Frohlich MW, Negrutiu I. Plant science and agricultural productivity: why are we hitting the yield ceiling? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:159-76. [PMID: 23849123 DOI: 10.1016/j.plantsci.2013.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/26/2013] [Accepted: 05/16/2013] [Indexed: 05/11/2023]
Abstract
Trends in conventional plant breeding and in biotechnology research are analyzed with a focus on production and productivity of individual organisms. Our growing understanding of the productive/adaptive potential of (crop) plants is a prerequisite to increasing this potential and also its expression under environmental constraints. This review concentrates on growth rate, ribosome activity, and photosynthetic rate to link these key cellular processes to plant productivity. Examples of how they may be integrated in heterosis, organ growth control, and responses to abiotic stresses are presented. The yield components in rice are presented as a model. The ultimate goal of research programs, that concentrate on yield and productivity and integrating the panoply of systems biology tools, is to achieve "low input, high output" agriculture, i.e. shifting from a conventional "productivist" agriculture to an efficient sustainable agriculture. This is of critical, strategic importance, because the extent to which we, both locally and globally, secure and manage the long-term productive potential of plant resources will determine the future of humanity.
Collapse
|
185
|
Li YH, Zhao SC, Ma JX, Li D, Yan L, Li J, Qi XT, Guo XS, Zhang L, He WM, Chang RZ, Liang QS, Guo Y, Ye C, Wang XB, Tao Y, Guan RX, Wang JY, Liu YL, Jin LG, Zhang XQ, Liu ZX, Zhang LJ, Chen J, Wang KJ, Nielsen R, Li RQ, Chen PY, Li WB, Reif JC, Purugganan M, Wang J, Zhang MC, Wang J, Qiu LJ. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics 2013; 14:579. [PMID: 23984715 PMCID: PMC3844514 DOI: 10.1186/1471-2164-14-579] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 07/04/2013] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Artificial selection played an important role in the origin of modern Glycine max cultivars from the wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication and modern improvement of soybean, 25 new and 30 published whole-genome re-sequencing accessions, which represent wild, domesticated landrace, and Chinese elite soybean populations were analyzed. RESULTS A total of 5,102,244 single nucleotide polymorphisms (SNPs) and 707,969 insertion/deletions were identified. Among the SNPs detected, 25.5% were not described previously. We found that artificial selection during domestication led to more pronounced reduction in the genetic diversity of soybean than the switch from landraces to elite cultivars. Only a small proportion (2.99%) of the whole genomic regions appear to be affected by artificial selection for preferred agricultural traits. The selection regions were not distributed randomly or uniformly throughout the genome. Instead, clusters of selection hotspots in certain genomic regions were observed. Moreover, a set of candidate genes (4.38% of the total annotated genes) significantly affected by selection underlying soybean domestication and genetic improvement were identified. CONCLUSIONS Given the uniqueness of the soybean germplasm sequenced, this study drew a clear picture of human-mediated evolution of the soybean genomes. The genomic resources and information provided by this study would also facilitate the discovery of genes/loci underlying agronomically important traits.
Collapse
Affiliation(s)
- Ying-hui Li
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Shan-cen Zhao
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
| | - Jian-xin Ma
- Department of Agronomy, Purdue University, 47907, West Lafayette, IN, USA
| | - Dong Li
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
| | - Long Yan
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Shijiazhuang Branch Center of National Center for Soybean Improvement / the Key Laboratory of Crop Genetics and Breeding, 050031 Shijiazhuang, China
| | - Jun Li
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
| | - Xiao-tian Qi
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xiao-sen Guo
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
| | - Le Zhang
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Wei-ming He
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
| | - Ru-zhen Chang
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Qin-si Liang
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
| | - Yong Guo
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Chen Ye
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
| | - Xiao-bo Wang
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Yong Tao
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rong-xia Guan
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Jun-yi Wang
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research, Beijing, China
| | - Yu-lin Liu
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Long-guo Jin
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xiu-qing Zhang
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
| | - Zhang-xiong Liu
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Li-juan Zhang
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Jie Chen
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
| | - Ke-jing Wang
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Rasmus Nielsen
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, 94820 Berkeley, CA, USA
| | - Rui-qiang Li
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
| | - Peng-yin Chen
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 72701 Fayetteville, Arkansas, USA
| | - Wen-bin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, 150030 Harbin, China
| | - Jochen C Reif
- State Plant Breeding Institute, University of Hohenheim, Hohenheim, Germany
| | - Michael Purugganan
- Department of Biology and Centre for Genomics and Systems Biology, 12 Waverly Place, New York University, 10003 New York, USA
| | - Jian Wang
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
| | - Meng-chen Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Shijiazhuang Branch Center of National Center for Soybean Improvement / the Key Laboratory of Crop Genetics and Breeding, 050031 Shijiazhuang, China
| | - Jun Wang
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, 518083 Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Li-juan Qiu
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Key Lab of Germplasm Utilization (MOA), Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| |
Collapse
|
186
|
Chapman MA, Mandel JR, Burke JM. Sequence validation of candidates for selectively important genes in sunflower. PLoS One 2013; 8:e71941. [PMID: 23991009 PMCID: PMC3753318 DOI: 10.1371/journal.pone.0071941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022] Open
Abstract
Analyses aimed at identifying genes that have been targeted by past selection provide a powerful means for investigating the molecular basis of adaptive differentiation. In the case of crop plants, such studies have the potential to not only shed light on important evolutionary processes, but also to identify genes of agronomic interest. In this study, we test for evidence of positive selection at the DNA sequence level in a set of candidate genes previously identified in a genome-wide scan for genotypic evidence of selection during the evolution of cultivated sunflower. In the majority of cases, we were able to confirm the effects of selection in shaping diversity at these loci. Notably, the genes that were found to be under selection via our sequence-based analyses were devoid of variation in the cultivated sunflower gene pool. This result confirms a possible strategy for streamlining the search for adaptively-important loci process by pre-screening the derived population to identify the strongest candidates before sequencing them in the ancestral population.
Collapse
Affiliation(s)
- Mark A. Chapman
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Jennifer R. Mandel
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
187
|
Chen S, Gomes R, Costa V, Santos P, Charneca R, Zhang YP, Liu XH, Wang SQ, Bento P, Nunes JL, Buzgó J, Varga G, Anton I, Zsolnai A, Beja-Pereira A. How immunogenetically different are domestic pigs from wild boars: a perspective from single-nucleotide polymorphisms of 19 immunity-related candidate genes. Immunogenetics 2013; 65:737-48. [PMID: 23846851 DOI: 10.1007/s00251-013-0718-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
The coexistence of wild boars and domestic pigs across Eurasia makes it feasible to conduct comparative genetic or genomic analyses for addressing how genetically different a domestic species is from its wild ancestor. To test whether there are differences in patterns of genetic variability between wild and domestic pigs at immunity-related genes and to detect outlier loci putatively under selection that may underlie differences in immune responses, here we analyzed 54 single-nucleotide polymorphisms (SNPs) of 19 immunity-related candidate genes on 11 autosomes in three pairs of wild boar and domestic pig populations from China, Iberian Peninsula, and Hungary. Our results showed no statistically significant differences in allele frequency and heterozygosity across SNPs between three pairs of wild and domestic populations. This observation was more likely due to the widespread and long-lasting gene flow between wild boars and domestic pigs across Eurasia. In addition, we detected eight coding SNPs from six genes as outliers being under selection consistently by three outlier tests (BayeScan2.1, FDIST2, and Arlequin3.5). Among four non-synonymous outlier SNPs, one from TLR4 gene was identified as being subject to positive (diversifying) selection and three each from CD36, IFNW1, and IL1B genes were suggested as under balancing selection. All of these four non-synonymous variants were predicted as being benign by PolyPhen-2. Our results were supported by other independent lines of evidence for positive selection or balancing selection acting on these four immune genes (CD36, IFNW1, IL1B, and TLR4). Our study showed an example applying a candidate gene approach to identify functionally important mutations (i.e., outlier loci) in wild and domestic pigs for subsequent functional experiments.
Collapse
Affiliation(s)
- Shanyuan Chen
- Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto (CIBIO/UP), Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661, Vairão, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Ramey HR, Decker JE, McKay SD, Rolf MM, Schnabel RD, Taylor JF. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics 2013; 14:382. [PMID: 23758707 PMCID: PMC3681554 DOI: 10.1186/1471-2164-14-382] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/24/2013] [Indexed: 12/25/2022] Open
Abstract
Background The domestication and subsequent selection by humans to create breeds and biological types of cattle undoubtedly altered the patterning of variation within their genomes. Strong selection to fix advantageous large-effect mutations underlying domesticability, breed characteristics or productivity created selective sweeps in which variation was lost in the chromosomal region flanking the selected allele. Selective sweeps have now been identified in the genomes of many animal species including humans, dogs, horses, and chickens. Here, we attempt to identify and characterise regions of the bovine genome that have been subjected to selective sweeps. Results Two datasets were used for the discovery and validation of selective sweeps via the fixation of alleles at a series of contiguous SNP loci. BovineSNP50 data were used to identify 28 putative sweep regions among 14 diverse cattle breeds. Affymetrix BOS 1 prescreening assay data for five breeds were used to identify 85 regions and validate 5 regions identified using the BovineSNP50 data. Many genes are located within these regions and the lack of sequence data for the analysed breeds precludes the nomination of selected genes or variants and limits the prediction of the selected phenotypes. However, phenotypes that we predict to have historically been under strong selection include horned-polled, coat colour, stature, ear morphology, and behaviour. Conclusions The bias towards common SNPs in the design of the BovineSNP50 assay led to the identification of recent selective sweeps associated with breed formation and common to only a small number of breeds rather than ancient events associated with domestication which could potentially be common to all European taurines. The limited SNP density, or marker resolution, of the BovineSNP50 assay significantly impacted the rate of false discovery of selective sweeps, however, we found sweeps in common between breeds which were confirmed using an ultra-high-density assay scored in a small number of animals from a subset of the breeds. No sweep regions were shared between indicine and taurine breeds reflecting their divergent selection histories and the very different environmental habitats to which these sub-species have adapted.
Collapse
Affiliation(s)
- Holly R Ramey
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
189
|
Ren X, Nevo E, Sun D, Sun G. Tibet as a potential domestication center of cultivated barley of China. PLoS One 2013; 8:e62700. [PMID: 23658764 PMCID: PMC3643926 DOI: 10.1371/journal.pone.0062700] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/25/2013] [Indexed: 11/18/2022] Open
Abstract
The importance of wild barley from Qinghai-Tibet Plateau in the origin and domestication of cultivated barley has long been underestimated. Population-based phylogenetic analyses were performed to study the origin and genetic diversity of Chinese domesticated barley, and address the possibility that the Tibetan region in China was an independent center of barley domestication. Wild barley (Hordeum vulgare ssp. spontaneum) populations from Southwest Asia, Central Asia, and Tibet along with domesticated barley from China were analyzed using two nuclear genes. Our results showed that Tibetan wild barley distinctly diverged from Southwest Asian (Near East) wild barley, that Central Asian wild barley is related to Southwest Asian wild barley, and that Chinese domesticated barley shares the same haplotypes with Tibetan wild barley. Phylogenetic analysis showed a close relationship between Chinese domesticated barley and the Tibetan wild barley, suggesting that Tibetan wild barley was the ancestor of Chinese domesticated barley. Our results favor the polyphyletic origin for cultivated barley.
Collapse
Affiliation(s)
- Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Biology, Saint Mary’s University, Halifax, Nova Scotia, Canada
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail: (DS); (GS)
| | - Genlou Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Biology, Saint Mary’s University, Halifax, Nova Scotia, Canada
- * E-mail: (DS); (GS)
| |
Collapse
|
190
|
Sang T, Ge S. Understanding rice domestication and implications for cultivar improvement. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:139-46. [PMID: 23545218 DOI: 10.1016/j.pbi.2013.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/21/2013] [Accepted: 03/14/2013] [Indexed: 05/07/2023]
Abstract
Considerable insights were recently gained into the history and process of rice domestication. It becomes increasingly clear that artificial and natural selections coupled with extensive introgression have shaped the genomes of cultivated rice. The interplay of these evolutionary forces gave rise to the cultivated species, Oryza sativa, with divergent genomic backgrounds from two wild species, O. rufipogon and O. nivara, governed by a set of domestication alleles which had originated primarily at one location of initial cultivation. The mechanistic understanding of domestication suggests that the combination of quantitative trait locus mapping, genome-wide association study, and genome scan will be effective means for discovering potentially valuable alleles from the cultivated and wild species. The accumulation and appropriate sampling of germplasm collections for these analyses should effectively grow the useful allele pool, which combined with molecular breeding may get to a point literally triggering the re-domestication of rice varieties for sustainable food production.
Collapse
Affiliation(s)
- Tao Sang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | | |
Collapse
|
191
|
|
192
|
Goldschmidt EE. The Evolution of Fruit Tree Productivity: A Review. ECONOMIC BOTANY 2013; 67:51-62. [PMID: 23538880 PMCID: PMC3606516 DOI: 10.1007/s12231-012-9219-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 12/20/2012] [Indexed: 05/08/2023]
Abstract
The Evolution of Fruit Tree Productivity: A Review. Domestication of fruit trees has received far less attention than that of annual crop plants. In particular, very little is known about the evolution of fruit tree productivity. In the wild, most tree species reach reproductive maturity after a long period of juvenility and even then, sexual reproduction appears sporadically, often in a mode of masting. Environmental constraints limit trees' reproductive activity in their natural, wild habitats, resulting in poor, irregular productivity. Early fructification and regular, high rates of productivity have been selected by people, unconsciously and consciously. The reviewed evidence indicates an evolutionary continuum of productivity patterns among trees of wild habitats, intermediary domesticates, and the most advanced domesticates. Alternate bearing appears to represent an intermediate step in the fruit tree evolutionary pathway. The existence of a molecular, genetic mechanism that controls trees' sexual reproduction and fruiting pattern is suggested.
Collapse
Affiliation(s)
- Eliezer E. Goldschmidt
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
193
|
Kitchen JL, Allaby RG. Systems Modeling at Multiple Levels of Regulation: Linking Systems and Genetic Networks to Spatially Explicit Plant Populations. PLANTS (BASEL, SWITZERLAND) 2013; 2:16-49. [PMID: 27137364 PMCID: PMC4844292 DOI: 10.3390/plants2010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 01/16/2013] [Indexed: 11/16/2022]
Abstract
Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation.
Collapse
Affiliation(s)
- James L Kitchen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Robin G Allaby
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
194
|
Flegr J. Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution. Biol Direct 2013; 8:1. [PMID: 23324625 PMCID: PMC3564765 DOI: 10.1186/1745-6150-8-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/08/2013] [Indexed: 11/29/2022] Open
Abstract
Abstract Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ. Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III), genetic revolution model of Mayr (class IV) or the frozen plasticity theory of Flegr (class V), suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation – while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III) or elastic (class IV and V) on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation. The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories. Reviewers This article was reviewed by Claus Wilke, Pierre Pantarotti and David Penny (nominated by Anthony Poole).
Collapse
Affiliation(s)
- Jaroslav Flegr
- Jaroslav Flegr, Department of Philosophy and History of Science, Faculty of Science, Charles University in Prague, Viničná 7, CZ-12844, Praha 2, Czech Republic.
| |
Collapse
|
195
|
Liu YH, Offler CE, Ruan YL. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. FRONTIERS IN PLANT SCIENCE 2013; 4:282. [PMID: 23914195 PMCID: PMC3729977 DOI: 10.3389/fpls.2013.00282] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/10/2013] [Indexed: 05/21/2023]
Abstract
A large body of evidence shows that sugars function both as nutrients and signals to regulate fruit and seed set under normal and stress conditions including heat and drought. Inadequate sucrose import to, and its degradation within, reproductive organs cause fruit and seed abortion under heat and drought. As nutrients, sucrose-derived hexoses provide carbon skeletons and energy for growth and development of fruits and seeds. Sugar metabolism can also alleviate the impact of stress on fruit and seed through facilitating biosynthesis of heat shock proteins (Hsps) and non-enzymic antioxidants (e.g., glutathione, ascorbic acid), which collectively maintain the integrity of membranes and prevent programmed cell death (PCD) through protecting proteins and scavenging reactive oxygen species (ROS). In parallel, sugars (sucrose, glucose, and fructose), also exert signaling roles through cross-talk with hormone and ROS signaling pathways and by mediating cell division and PCD. At the same time, emerging data indicate that sugar-derived signaling systems, including trehalose-6 phosphate (T6P), sucrose non-fermenting related kinase-1 (SnRK), and the target of rapamycin (TOR) kinase complex also play important roles in regulating plant development through modulating nutrient and energy signaling and metabolic processes, especially under abiotic stresses where sugar availability is low. This review aims to evaluate recent progress of research on abiotic stress responses of reproductive organs focusing on roles of sugar metabolism and signaling and addressing the possible biochemical and molecular mechanism by which sugars regulate fruit and seed set under heat and drought.
Collapse
Affiliation(s)
- Yong-Hua Liu
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Christina E. Offler
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
| | - Yong-Ling Ruan
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
- *Correspondence: Yong-Ling Ruan, Department of Biology, School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia e-mail:
| |
Collapse
|
196
|
Ronfort J, Glemin S. MATING SYSTEM, HALDANE'S SIEVE, AND THE DOMESTICATION PROCESS. Evolution 2012; 67:1518-26. [DOI: 10.1111/evo.12025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 11/02/2012] [Indexed: 11/27/2022]
|
197
|
Dussert Y, Remigereau MS, Fontaine MC, Snirc A, Lakis G, Stoeckel S, Langin T, Sarr A, Robert T. Polymorphism pattern at a miniature inverted-repeat transposable element locus downstream of the domestication gene Teosinte-branched1 in wild and domesticated pearl millet. Mol Ecol 2012. [PMID: 23205613 DOI: 10.1111/mec.12139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Unravelling the mechanisms involved in adaptation to understand plant morphological evolution is a challenging goal. For crop species, identification of molecular causal polymorphisms involved in domestication traits is central to this issue. Pearl millet, a domesticated grass mostly found in semi-arid areas of Africa and India, is an interesting model to address this topic: the domesticated form shares common derived phenotypes with some other cereals such as a decreased ability to develop basal and axillary branches in comparison with the wild phenotype. Two recent studies have shown that the orthologue of the maize gene Teosinte-Branched1 in pearl millet (PgTb1) was probably involved in branching evolution during domestication and that a miniature inverted-repeat transposable element (MITE) of the Tuareg family was inserted in the 3' untranslated region of PgTb1. For a set of 35 wild and domesticated populations, we compared the polymorphism patterns at this MITE and at microsatellite loci. The Tuareg insertion was nearly absent in the wild populations, whereas a strong longitudinal frequency cline was observed in the domesticated populations. The geographical pattern revealed by neutral microsatellite loci clearly demonstrated that isolation by distance does not account for the existence of this cline. However, comparison of population differentiation at the microsatellite and the MITE loci and analyses of the nucleotide polymorphism pattern in the downstream region of PgTb1 did not show evidence that the cline at the MITE locus has been shaped by selection, suggesting the implication of a neutral process. Alternative hypotheses are discussed.
Collapse
Affiliation(s)
- Y Dussert
- Laboratoire Ecologie, Systématique et Evolution UMR 8079 CNRS, Université Paris-Sud, 91405, Orsay, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Teosinte as a model system for population and ecological genomics. Trends Genet 2012; 28:606-15. [DOI: 10.1016/j.tig.2012.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/25/2012] [Accepted: 08/31/2012] [Indexed: 12/25/2022]
|
199
|
Ma X, Sela H, Jiao G, Li C, Wang A, Pourkheirandish M, Weiner D, Sakuma S, Krugman T, Nevo E, Komatsuda T, Korol A, Chen G. Population-genetic analysis of HvABCG31 promoter sequence in wild barley (Hordeum vulgare ssp. spontaneum). BMC Evol Biol 2012; 12:188. [PMID: 23006777 PMCID: PMC3544613 DOI: 10.1186/1471-2148-12-188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/18/2012] [Indexed: 01/31/2023] Open
Abstract
Background The cuticle is an important adaptive structure whose origin played a crucial role in the transition of plants from aqueous to terrestrial conditions. HvABCG31/Eibi1 is an ABCG transporter gene, involved in cuticle formation that was recently identified in wild barley (Hordeum vulgare ssp. spontaneum). To study the genetic variation of HvABCG31 in different habitats, its 2 kb promoter region was sequenced from 112 wild barley accessions collected from five natural populations from southern and northern Israel. The sites included three mesic and two xeric habitats, and differed in annual rainfall, soil type, and soil water capacity. Results Phylogenetic analysis of the aligned HvABCG31 promoter sequences clustered the majority of accessions (69 out of 71) from the three northern mesic populations into one cluster, while all 21 accessions from the Dead Sea area, a xeric southern population, and two isolated accessions (one from a xeric population at Mitzpe Ramon and one from the xeric ‘African Slope’ of “Evolution Canyon”) formed the second cluster. The southern arid populations included six haplotypes, but they differed from the consensus sequence at a large number of positions, while the northern mesic populations included 15 haplotypes that were, on average, more similar to the consensus sequence. Most of the haplotypes (20 of 22) were unique to a population. Interestingly, higher genetic variation occurred within populations (54.2%) than among populations (45.8%). Analysis of the promoter region detected a large number of transcription factor binding sites: 121–128 and 121–134 sites in the two southern arid populations, and 123–128,125–128, and 123–125 sites in the three northern mesic populations. Three types of TFBSs were significantly enriched: those related to GA (gibberellin), Dof (DNA binding with one finger), and light. Conclusions Drought stress and adaptive natural selection may have been important determinants in the observed sequence variation of HvABCG31 promoter. Abiotic stresses may be involved in the HvABCG31 gene transcription regulations, generating more protective cuticles in plants under stresses.
Collapse
Affiliation(s)
- Xiaoying Ma
- Extreme Stress Resistance and Biotechnology Laboratory, Cold and Arid Regions Environmental and Engineering Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Ranjan A, Ichihashi Y, Sinha NR. The tomato genome: implications for plant breeding, genomics and evolution. Genome Biol 2012; 13:167. [PMID: 22943138 PMCID: PMC3491363 DOI: 10.1186/gb-2012-13-8-167] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The genome sequence of tomato (Solanum lycopersicum), one of the most important vegetable crops, has recently been decoded. We address implications of the tomato genome for plant breeding, genomics and evolutionary studies, and its potential to fuel future crop biology research.
Collapse
|