151
|
Sharma A, Basu U, Malik N, Daware A, Thakro V, Narnoliya L, Bajaj D, Tripathi S, Hegde VS, Upadhyaya HD, Tyagi AK, Parida SK. Genome-wide cis-regulatory signatures for modulation of agronomic traits as exemplified by drought yield index (DYI) in chickpea. Funct Integr Genomics 2019; 19:973-992. [PMID: 31177403 DOI: 10.1007/s10142-019-00691-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022]
Abstract
Developing functional molecular tags from the cis-regulatory sequence components of genes is vital for their deployment in efficient genetic dissection of complex quantitative traits in crop plants including chickpea. The current study identified 431,194 conserved non-coding SNP (CNSNP) from the cis-regulatory element regions of genes which were annotated on a chickpea genome. These genome-wide CNSNP marker resources are made publicly accessible through a user-friendly web-database ( http://www.cnsnpcicarbase.com ). The CNSNP-based quantitative trait loci (QTL) and expression QTL (eQTL) mapping and genome-wide association study (GWAS) were further integrated with global gene expression landscapes, molecular haplotyping, and DNA-protein interaction study in the association panel and recombinant inbred lines (RIL) mapping population to decode complex genetic architecture of one of the vital seed yield trait under drought stress, drought yield index (DYI), in chickpea. This delineated two constituted natural haplotypes and alleles from a histone H3 protein-coding gene and its transcriptional regulator NAC transcription factor (TF) harboring the major QTLs and trans-acting eQTL governing DYI in chickpea. The effect of CNSNPs in TF-binding cis-element of a histone H3 gene in altering the binding affinity and transcriptional activity of NAC TF based on chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay was evident. The CNSNP-led promising molecular tags scanned will essentially have functional significance to decode transcriptional gene regulatory function and thus can drive translational genomic analysis in chickpea.
Collapse
Affiliation(s)
- Akash Sharma
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Udita Basu
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Malik
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Daware
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virevol Thakro
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Laxmi Narnoliya
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Deepak Bajaj
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - V S Hegde
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Akhilesh K Tyagi
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
152
|
Shi L, Song J, Guo C, Wang B, Guan Z, Yang P, Chen X, Zhang Q, King GJ, Wang J, Liu K. A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:524-539. [PMID: 30664290 DOI: 10.1111/tpj.14236] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/13/2019] [Accepted: 01/18/2019] [Indexed: 05/26/2023]
Abstract
Rapeseed (Brassica napus L.) is a model plant for polyploid crop research and the second-leading source of vegetable oil worldwide. Silique length (SL) and seed weight are two important yield-influencing traits in rapeseed. Using map-based cloning, we isolated qSLWA9, which encodes a P450 monooxygenase (BnaA9.CYP78A9) and functions as a positive regulator of SL. The expression level of BnaA9.CYP78A9 in silique valves of the long-silique variety is much higher than that in the regular-silique variety, which results in elongated cells and a prolonged phase of silique elongation. Plants of the long-silique variety and transgenic plants with high expression of BnaA9.CYP78A9 had a higher concentration of auxin in the developing silique; this induced a number of auxin-related genes but no genes in well-known auxin biosynthesis pathways, suggesting that BnaA9.CYP78A9 may influence auxin concentration by affecting auxin metabolism or an unknown auxin biosynthesis pathway. A 3.7-kb CACTA-like transposable element (TE) inserted in the 3.9-kb upstream regulatory sequence of BnaA9.CYP78A9 elevates the expression level, suggesting that the CACTA-like TE acts as an enhancer to stimulate high gene expression and silique elongation. Marker and sequence analysis revealed that the TE in B. napus had recently been introgressed from Brassica rapa by interspecific hybridization. The insertion of the TE is consistently associated with long siliques and large seeds in both B. napus and B. rapa collections. However, the frequency of the CACTA-like TE in rapeseed varieties is still very low, suggesting that this allele has not been widely used in rapeseed breeding programs and would be invaluable for yield improvement in rapeseed breeding.
Collapse
Affiliation(s)
- Liuliu Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jurong Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chaocheng Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
153
|
Aseel DG, Mostafa Y, Riad SA, Hafez EE. Improvement of nitrogen use efficiency in maize using molecular and physiological approaches. Symbiosis 2019. [DOI: 10.1007/s13199-019-00616-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
154
|
Liang Y, Liu Q, Wang X, Huang C, Xu G, Hey S, Lin HY, Li C, Xu D, Wu L, Wang C, Wu W, Xia J, Han X, Lu S, Lai J, Song W, Schnable PS, Tian F. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. THE NEW PHYTOLOGIST 2019; 221:2335-2347. [PMID: 30288760 DOI: 10.1111/nph.15512] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/14/2018] [Indexed: 05/26/2023]
Abstract
Flowering time is a major determinant of the local adaptation of plants. Although numerous loci affecting flowering time have been mapped in maize, their underlying molecular mechanisms and roles in adaptation remain largely unknown. Here, we report the identification and characterization of MADS-box transcription factor ZmMADS69 that functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to adaptation. We show that ZmMADS69 underlies a quantitative trait locus controlling the difference in flowering time between maize and its wild ancestor, teosinte. Maize ZmMADS69 allele is expressed at a higher level at floral transition and confers earlier flowering than the teosinte allele under long days and short days. Overexpression of ZmMADS69 causes early flowering, while a transposon insertion mutant of ZmMADS69 exhibits delayed flowering. ZmMADS69 shows pleiotropic effects for multiple traits of agronomic importance. ZmMADS69 functions upstream of the flowering repressor ZmRap2.7 to downregulate its expression, thereby relieving the repression of the florigen gene ZCN8 and causing early flowering. Population genetic analyses showed that ZmMADS69 was a target of selection and may have played an important role as maize spread from the tropics to temperate zones. Our findings provide important insights into the regulation and adaptation of flowering time.
Collapse
Affiliation(s)
- Yameng Liang
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qiang Liu
- Department of Agronomy, Iowa State University, Ames, IA, 50010-3650, USA
| | - Xufeng Wang
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Cheng Huang
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Guanghui Xu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Stefan Hey
- Department of Agronomy, Iowa State University, Ames, IA, 50010-3650, USA
| | - Hung-Ying Lin
- Department of Agronomy, Iowa State University, Ames, IA, 50010-3650, USA
| | - Cong Li
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Dingyi Xu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lishuan Wu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chenglong Wang
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weihao Wu
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinliang Xia
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xu Han
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Sijia Lu
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinsheng Lai
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weibin Song
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA, 50010-3650, USA
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing, 100193, China
| | - Feng Tian
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
155
|
A Very Oil Yellow1 Modifier of the Oil Yellow1-N1989 Allele Uncovers a Cryptic Phenotypic Impact of Cis-regulatory Variation in Maize. G3-GENES GENOMES GENETICS 2019; 9:375-390. [PMID: 30518539 PMCID: PMC6385977 DOI: 10.1534/g3.118.200798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Forward genetics determines the function of genes underlying trait variation by identifying the change in DNA responsible for changes in phenotype. Detecting phenotypically-relevant variation outside protein coding sequences and distinguishing this from neutral variants is not trivial; partly because the mechanisms by which DNA polymorphisms in the intergenic regions affect gene regulation are poorly understood. Here we utilized a dominant genetic reporter to investigate the effect of cis and trans-acting regulatory variation. We performed a forward genetic screen for natural variation that suppressed or enhanced the semi-dominant mutant allele Oy1-N1989, encoding the magnesium chelatase subunit I of maize. This mutant permits rapid phenotyping of leaf color as a reporter for chlorophyll accumulation, and mapping of natural variation in maize affecting chlorophyll metabolism. We identified a single modifier locus segregating between B73 and Mo17 that was linked to the reporter gene itself, which we call very oil yellow1 (vey1). Based on the variation in OY1 transcript abundance and genome-wide association data, vey1 is predicted to consist of multiple cis-acting regulatory sequence polymorphisms encoded at the wild-type oy1 alleles. The vey1 locus appears to be a common polymorphism in the maize germplasm that alters the expression level of a key gene in chlorophyll biosynthesis. These vey1 alleles have no discernable impact on leaf chlorophyll in the absence of the Oy1-N1989 reporter. Thus, the use of a mutant as a reporter for magnesium chelatase activity resulted in the detection of expression-level polymorphisms not readily visible in the laboratory.
Collapse
|
156
|
Stephenson E, Estrada S, Meng X, Ourada J, Muszynski MG, Habben JE, Danilevskaya ON. Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize. PLoS One 2019; 14:e0203728. [PMID: 30726207 PMCID: PMC6364868 DOI: 10.1371/journal.pone.0203728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/11/2019] [Indexed: 11/19/2022] Open
Abstract
Maize originated as a tropical plant that required short days to transition from vegetative to reproductive development. ZmCCT10 [CO, CONSTANS, CO-LIKE and TIMING OF CAB1 (CCT) transcription factor family] is a regulator of photoperiod response and was identified as a major QTL controlling photoperiod sensitivity in maize. We modulated expression of ZmCCT10 in transgenic maize using two constitutive promoters with different expression levels. Transgenic plants over expressing ZmCCT10 with either promoter were delayed in their transition from vegetative to reproductive development but were not affected in their switch from juvenile-to-adult vegetative growth. Strikingly, transgenic plants containing the stronger expressing construct had a prolonged period of vegetative growth accompanied with dramatic modifications to plant architecture that impacted both vegetative and reproductive traits. These plants did not produce ears, but tassels were heavily branched. In more than half of the transgenic plants, tassels were converted into a branched leafy structure resembling phyllody, often composed of vegetative plantlets. Analysis of expression modules controlling the floral transition and meristem identity linked these networks to photoperiod dependent regulation, whereas phase change modules appeared to be photoperiod independent. Results from this study clarified the influence of the photoperiod pathway on vegetative and reproductive development and allowed for the fine-tuning of the maize flowering time model.
Collapse
Affiliation(s)
- Elizabeth Stephenson
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Stacey Estrada
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Xin Meng
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Jesse Ourada
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Michael G. Muszynski
- University of Hawaii at Manoa, Tropical Plant and Soil Sciences, Honolulu, Hawaii; United States of America
| | - Jeffrey E. Habben
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Olga N. Danilevskaya
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
- * E-mail:
| |
Collapse
|
157
|
Tao Y, Zhao X, Mace E, Henry R, Jordan D. Exploring and Exploiting Pan-genomics for Crop Improvement. MOLECULAR PLANT 2019; 12:156-169. [PMID: 30594655 DOI: 10.1016/j.molp.2018.12.016] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 05/19/2023]
Abstract
Genetic variation ranging from single-nucleotide polymorphisms to large structural variants (SVs) can cause variation of gene content among individuals within the same species. There is an increasing appreciation that a single reference genome is insufficient to capture the full landscape of genetic diversity of a species. Pan-genome analysis offers a platform to evaluate the genetic diversity of a species via investigation of its entire genome repertoire. Although a recent wave of pan-genomic studies has shed new light on crop diversity and improvement using advanced sequencing technology, the potential applications of crop pan-genomics in crop improvement are yet to be fully exploited. In this review, we highlight the progress achieved in understanding crop pan-genomics, discuss biological activities that cause SVs, review important agronomical traits affected by SVs, and present our perspective on the application of pan-genomics in crop improvement.
Collapse
Affiliation(s)
- Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD 4370, Australia
| | - Xianrong Zhao
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD 4370, Australia
| | - Emma Mace
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD 4370, Australia; Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD 4370, Australia
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - David Jordan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD 4370, Australia.
| |
Collapse
|
158
|
Mazaheri M, Heckwolf M, Vaillancourt B, Gage JL, Burdo B, Heckwolf S, Barry K, Lipzen A, Ribeiro CB, Kono TJY, Kaeppler HF, Spalding EP, Hirsch CN, Robin Buell C, de Leon N, Kaeppler SM. Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC PLANT BIOLOGY 2019; 19:45. [PMID: 30704393 PMCID: PMC6357476 DOI: 10.1186/s12870-019-1653-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 01/14/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Maize stover is an important source of crop residues and a promising sustainable energy source in the United States. Stalk is the main component of stover, representing about half of stover dry weight. Characterization of genetic determinants of stalk traits provide a foundation to optimize maize stover as a biofuel feedstock. We investigated maize natural genetic variation in genome-wide association studies (GWAS) to detect candidate genes associated with traits related to stalk biomass (stalk diameter and plant height) and stalk anatomy (rind thickness, vascular bundle density and area). RESULTS Using a panel of 942 diverse inbred lines, 899,784 RNA-Seq derived single nucleotide polymorphism (SNP) markers were identified. Stalk traits were measured on 800 members of the panel in replicated field trials across years. GWAS revealed 16 candidate genes associated with four stalk traits. Most of the detected candidate genes were involved in fundamental cellular functions, such as regulation of gene expression and cell cycle progression. Two of the regulatory genes (Zmm22 and an ortholog of Fpa) that were associated with plant height were previously shown to be involved in regulating the vegetative to floral transition. The association of Zmm22 with plant height was confirmed using a transgenic approach. Transgenic lines with increased expression of Zmm22 showed a significant decrease in plant height as well as tassel branch number, indicating a pleiotropic effect of Zmm22. CONCLUSION Substantial heritable variation was observed in the association panel for stalk traits, indicating a large potential for improving useful stalk traits in breeding programs. Genome-wide association analyses detected several candidate genes associated with multiple traits, suggesting common regulatory elements underlie various stalk traits. Results of this study provide insights into the genetic control of maize stalk anatomy and biomass.
Collapse
Affiliation(s)
- Mona Mazaheri
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
- Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706 USA
| | - Marlies Heckwolf
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
- Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706 USA
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy, Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 USA
| | - Joseph L. Gage
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
| | - Brett Burdo
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
| | - Sven Heckwolf
- Department of Botany, University of Wisconsin, Madison, WI 53706 USA
| | - Kerrie Barry
- Department of Energy, Joint Genome Institute, Walnut Creek, California, 94598 USA
| | - Anna Lipzen
- Department of Energy, Joint Genome Institute, Walnut Creek, California, 94598 USA
| | - Camila Bastos Ribeiro
- Genótika Super Sementes. Colonizador Ênio Pipino - St. Industrial Sul, Sinop, MT 78550-098 Brazil
| | - Thomas J. Y. Kono
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN 55108 USA
- Present address: Minnesota Supercomputing Institute, 117 Pleasant Street SE, Minneapolis, MN 55455 USA
| | - Heidi F. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
- Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706 USA
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin, Madison, WI 53706 USA
| | - Candice N. Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN 55108 USA
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy, Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824 USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
- Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706 USA
| | - Shawn M. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
- Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706 USA
| |
Collapse
|
159
|
Yuan Y, Cairns JE, Babu R, Gowda M, Makumbi D, Magorokosho C, Zhang A, Liu Y, Wang N, Hao Z, San Vicente F, Olsen MS, Prasanna BM, Lu Y, Zhang X. Genome-Wide Association Mapping and Genomic Prediction Analyses Reveal the Genetic Architecture of Grain Yield and Flowering Time Under Drought and Heat Stress Conditions in Maize. FRONTIERS IN PLANT SCIENCE 2019; 9:1919. [PMID: 30761177 PMCID: PMC6363715 DOI: 10.3389/fpls.2018.01919] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 05/20/2023]
Abstract
Drought stress (DS) is a major constraint to maize yield production. Heat stress (HS) alone and in combination with DS are likely to become the increasing constraints. Association mapping and genomic prediction (GP) analyses were conducted in a collection of 300 tropical and subtropical maize inbred lines to reveal the genetic architecture of grain yield and flowering time under well-watered (WW), DS, HS, and combined DS and HS conditions. Out of the 381,165 genotyping-by-sequencing SNPs, 1549 SNPs were significantly associated with all the 12 trait-environment combinations, the average PVE (phenotypic variation explained) by these SNPs was 4.33%, and 541 of them had a PVE value greater than 5%. These significant associations were clustered into 446 genomic regions with a window size of 20 Mb per region, and 673 candidate genes containing the significantly associated SNPs were identified. In addition, 33 hotspots were identified for 12 trait-environment combinations and most were located on chromosomes 1 and 8. Compared with single SNP-based association mapping, the haplotype-based associated mapping detected fewer number of significant associations and candidate genes with higher PVE values. All the 688 candidate genes were enriched into 15 gene ontology terms, and 46 candidate genes showed significant differential expression under the WW and DS conditions. Association mapping results identified few overlapped significant markers and candidate genes for the same traits evaluated under different managements, indicating the genetic divergence between the individual stress tolerance and the combined drought and HS tolerance. The GP accuracies obtained from the marker-trait associated SNPs were relatively higher than those obtained from the genome-wide SNPs for most of the target traits. The genetic architecture information of the grain yield and flowering time revealed in this study, and the genomic regions identified for the different trait-environment combinations are useful in accelerating the efforts on rapid development of the stress-tolerant maize germplasm through marker-assisted selection and/or genomic selection.
Collapse
Affiliation(s)
- Yibing Yuan
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, China
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Jill E. Cairns
- International Maize and Wheat Improvement Center, Harare, Zimbabwe
| | - Raman Babu
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Manje Gowda
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | | | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yubo Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Nan Wang
- International Maize and Wheat Improvement Center, Texcoco, Mexico
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhuanfang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Michael S. Olsen
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | | | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| |
Collapse
|
160
|
Li J, Chen F, Li Y, Li P, Wang Y, Mi G, Yuan L. ZmRAP2.7, an AP2 Transcription Factor, Is Involved in Maize Brace Roots Development. FRONTIERS IN PLANT SCIENCE 2019; 10:820. [PMID: 31333689 PMCID: PMC6621205 DOI: 10.3389/fpls.2019.00820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/06/2019] [Indexed: 05/12/2023]
Abstract
In maize, shoot-borne roots dominate the whole root system and play essential roles in water and nutrient acquisition and lodging tolerance. Shoot-borne roots initiate at shoot nodes, including crown roots from the belowground nodes and brace roots from aboveground nodes. In contrast to crown roots, few genes for brace roots development have been identified. Here, we characterized a maize AP2/ERF transcription factor, ZmRAP2.7, to be involved in brace roots development. ZmRAP2.7 expressed in all types of roots, and the encoded protein localized in the nucleus with transcriptional activation activity. A maize transposon insert mutant RAP2.7-Mu defective in ZmRAP2.7 expression revealed a decreased number of brace roots but not crown roots. Maize Corngrass1 mutant, which showed an elevated expression of ZmRAP2.7, however, revealed an increased number of brace roots. The ZmRAP2.7-based association analysis in a maize panel further identified a SNP marker at the fifth exon of gene to be associated with number of brace roots. These results uncovered a function of ZmRAP2.7 in brace roots development and provided the valuable gene and allele for genetic improvement of maize root systems.
Collapse
Affiliation(s)
- Jieping Li
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Plant Science, School of Life Sciences, Henan University, Kaifeng, China
| | - Fanjun Chen
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yanqing Li
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Pengcheng Li
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics, Co-Innovation Center for Modern Production Technology of Grain Crops, MOE, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yuanqing Wang
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guohua Mi
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
- *Correspondence: Lixing Yuan,
| |
Collapse
|
161
|
Wallace JG, Rodgers-Melnick E, Buckler ES. On the Road to Breeding 4.0: Unraveling the Good, the Bad, and the Boring of Crop Quantitative Genomics. Annu Rev Genet 2018; 52:421-444. [DOI: 10.1146/annurev-genet-120116-024846] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the quantitative genetics of crops has been and will continue to be central to maintaining and improving global food security. We outline four stages that plant breeding either has already achieved or will probably soon achieve. Top-of-the-line breeding programs are currently in Breeding 3.0, where inexpensive, genome-wide data coupled with powerful algorithms allow us to start breeding on predicted instead of measured phenotypes. We focus on three major questions that must be answered to move from current Breeding 3.0 practices to Breeding 4.0: ( a) How do we adapt crops to better fit agricultural environments? ( b) What is the nature of the diversity upon which breeding can act? ( c) How do we deal with deleterious variants? Answering these questions and then translating them to actual gains for farmers will be a significant part of achieving global food security in the twenty-first century.
Collapse
Affiliation(s)
- Jason G. Wallace
- Department of Crop and Soil Sciences, The University of Georgia, Athens, Georgia 30602, USA
| | | | - Edward S. Buckler
- United States Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
162
|
Ricken Schuelter A, Friske E, Albino Corazza Kaefer K, Marcolin J, Fabiana da Silva M, Gruska Vendruscolo E, Schuster I. Association Mapping for Flowering Time and Moisture Loss of Grains in Maize Tropical Germplasm. Pak J Biol Sci 2018; 21:245-252. [PMID: 30311488 DOI: 10.3923/pjbs.2018.245.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE With the advent of high-scale genotyping platforms, association studies have become important tools for finding genomic regions of interest in breeding programs, due to the fact that their improved more accuracy than the other tools. The aim of this work was to map genomic regions associated with grain maturation in common maize strains. MATERIALS AND METHODS For linkage disequilibrium mapping, 72 strains were previously genotyped for SNP markers on the 650K platform and their respective genotypic values were predicted for male and female flowering and area below the moisture curve. The analysis of association between the SNPs markers and the characters was performed using mixed linear model and stepwise multiple regression. RESULTS The significant associations detected for male and female flowering were found to be distributed in all chromosomes, with a higher concentration in genomic regions of chromosomes 1, 2, 3, 5, 9 and 10. For the area below the moisture curve, it was found a smaller number of significant associations, being concentrated in the chromosomes 1, 2, 3, 6, 9 and 10 and absent in chromosomes 4 and 8. By stepwise analysis, it obtained complete models that account for 79, 93 and 56% of the variation for the genotypic values, respectively, with the identification of genomic regions pre-dominantly on chromosomes 1 and 3. CONCLUSION Thus, the detection of similar and distinct genomic regions for these traits, reveals the potential for the use of significant associations detected in chromosomes 1 and 3 to obtain the germplasm maturity required in breeding programs.
Collapse
|
163
|
Zhang J, Yang Y, Zheng K, Xie M, Feng K, Jawdy SS, Gunter LE, Ranjan P, Singan VR, Engle N, Lindquist E, Barry K, Schmutz J, Zhao N, Tschaplinski TJ, LeBoldus J, Tuskan GA, Chen JG, Muchero W. Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription factors in Populus. THE NEW PHYTOLOGIST 2018; 220:502-516. [PMID: 29992670 DOI: 10.1111/nph.15297] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/29/2018] [Indexed: 05/18/2023]
Abstract
3-O-caffeoylquinic acid, also known as chlorogenic acid (CGA), functions as an intermediate in lignin biosynthesis in the phenylpropanoid pathway. It is widely distributed among numerous plant species and acts as an antioxidant in both plants and animals. Using GC-MS, we discovered consistent and extreme variation in CGA content across a population of 739 4-yr-old Populus trichocarpa accessions. We performed genome-wide association studies (GWAS) from 917 P. trichocarpa accessions and expression-based quantitative trait loci (eQTL) analyses to identify key regulators. The GWAS and eQTL analyses resolved an overlapped interval encompassing a hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase 2 (PtHCT2) that was significantly associated with CGA and partially characterized metabolite abundances. PtHCT2 leaf expression was significantly correlated with CGA abundance and it was regulated by cis-eQTLs containing W-box for WRKY binding. Among all nine PtHCT homologs, PtHCT2 is the only one that responds to infection by the fungal pathogen Sphaerulina musiva (a Populus pathogen). Validation using protoplast-based transient expression system suggests that PtHCT2 is regulated by the defense-responsive WRKY. These results are consistent with reports of CGA functioning as an antioxidant in response to biotic stress. This study provides insights into data-driven and omics-based inference of gene function in woody species.
Collapse
Affiliation(s)
- Jin Zhang
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Yongil Yang
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Kaijie Zheng
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Meng Xie
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Kai Feng
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Sara S Jawdy
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Lee E Gunter
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Priya Ranjan
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Vasanth R Singan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Nancy Engle
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Nan Zhao
- Institute of Agriculture, University of Tennessee, Knoxville, TN, 37996, USA
| | - Timothy J Tschaplinski
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Jared LeBoldus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Gerald A Tuskan
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Jin-Gui Chen
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Wellington Muchero
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| |
Collapse
|
164
|
Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Proc Natl Acad Sci U S A 2018; 115:10642-10647. [PMID: 30275304 PMCID: PMC6196545 DOI: 10.1073/pnas.1720716115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The consequences of climate change on European maize yields may become positive if farmers in 2050 use the decision rules they currently follow for adapting plant cycle duration and sowing dates to the diversity of environmental conditions. Experiments and simulations show that the current genetic variability of flowering time allows identifying a cycle duration that maximizes yield at every maize field in Europe. The assumption that farmers use this optimal cycle length in each site was supported by comparison with historical data. Simulated European production for 2050 was stable under the hypotheses of unchanged practices but was increased if farmers continued adopting the decision rules they currently use for adjusting sowing date and crop cycle duration to local environment. Projections based on invariant genotypes and agronomic practices indicate that climate change will largely decrease crop yields. The comparatively few studies considering farmers’ adaptation result in a diversity of impacts depending on their assumptions. We combined experiments and process-based modeling for analyzing the consequences of climate change on European maize yields if farmers made the best use of the current genetic variability of cycle duration, based on practices they currently use. We first showed that the genetic variability of maize flowering time is sufficient for identifying a cycle duration that maximizes yield in a range of European climatic conditions. This was observed in six field experiments with a panel of 121 accessions and extended to 59 European sites over 36 years with a crop model. The assumption that farmers use optimal cycle duration and sowing date was supported by comparison with historical data. Simulations were then carried out for 2050 with 3 million combinations of crop cycle durations, climate scenarios, management practices, and modeling hypotheses. Simulated grain production over Europe in 2050 was stable (−1 to +1%) compared with the 1975–2010 baseline period under the hypotheses of unchanged cycle duration, whereas it was increased (+4–7%) when crop cycle duration and sowing dates were optimized in each local environment. The combined effects of climate change and farmer adaptation reduced the yield gradient between south and north of Europe and increased European maize production if farmers continued to make the best use of the genetic variability of crop cycle duration.
Collapse
|
165
|
Guo L, Wang X, Zhao M, Huang C, Li C, Li D, Yang CJ, York AM, Xue W, Xu G, Liang Y, Chen Q, Doebley JF, Tian F. Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation. Curr Biol 2018; 28:3005-3015.e4. [PMID: 30220503 PMCID: PMC6537595 DOI: 10.1016/j.cub.2018.07.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/24/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022]
Abstract
Maize (Zea mays ssp. mays) was domesticated in southwestern Mexico ∼9,000 years ago from its wild ancestor, teosinte (Zea mays ssp. parviglumis) [1]. From its center of origin, maize experienced a rapid range expansion and spread over 90° of latitude in the Americas [2-4], which required a novel flowering-time adaptation. ZEA CENTRORADIALIS 8 (ZCN8) is the maize florigen gene and has a central role in mediating flowering [5, 6]. Here, we show that ZCN8 underlies a major quantitative trait locus (QTL) (qDTA8) for flowering time that was consistently detected in multiple maize-teosinte experimental populations. Through association analysis in a large diverse panel of maize inbred lines, we identified a SNP (SNP-1245) in the ZCN8 promoter that showed the strongest association with flowering time. SNP-1245 co-segregated with qDTA8 in maize-teosinte mapping populations. We demonstrate that SNP-1245 is associated with differential binding by the flowering activator ZmMADS1. SNP-1245 was a target of selection during early domestication, which drove the pre-existing early flowering allele to near fixation in maize. Interestingly, we detected an independent association block upstream of SNP-1245, wherein the early flowering allele that most likely originated from Zea mays ssp. mexicana introgressed into the early flowering haplotype of SNP-1245 and contributed to maize adaptation to northern high latitudes. Our study demonstrates how independent cis-regulatory variants at a gene can be selected at different evolutionary times for local adaptation, highlighting how complex cis-regulatory control mechanisms evolve. Finally, we propose a polygenic map for the pre-Columbian spread of maize throughout the Americas.
Collapse
Affiliation(s)
- Li Guo
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xuehan Wang
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Min Zhao
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Cheng Huang
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Cong Li
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dan Li
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chin Jian Yang
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Alessandra M York
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Wei Xue
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Guanghui Xu
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yameng Liang
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuyue Chen
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China; Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - John F Doebley
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Feng Tian
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
166
|
Abstract
Two distinct variations in the promoter of a key flowering time gene were selected during the spread of maize from its tropical origin to northern North America.
Collapse
Affiliation(s)
- James B Holland
- United States Department of Agriculture - Agriculture Research Service, Box 7620 North Carolina State University, Raleigh, NC 27695-7620, USA.
| |
Collapse
|
167
|
Ramekar RV, Sa KJ, Park KC, Roy N, Kim NS, Lee JK. Construction of genetic linkage map and identification of QTLs related to agronomic traits in maize using DNA transposon-based markers. BREEDING SCIENCE 2018; 68:465-473. [PMID: 30369821 PMCID: PMC6198908 DOI: 10.1270/jsbbs.18017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Transposable elements (TEs), are a rich source for molecular marker development as they constitute a significant fraction of the eukaryotic genome and impact the overall genome structure. Here, we utilize Mutator-based transposon display (Mu-TD), and CACTA-derived sequence-characterized amplified regions (SCAR) anchored by simple sequence repeats and single nucleotide polymorphisms to locate quantitative trait loci (QTLs) linked to agriculturally important traits on a genetic map. Specifically, we studied recombinant inbred line populations derived from a cross between dent corn and waxy corn. The resulting linkage map included 259 Mu-anchored fragments, 34 SCARs, and 614 SSR markers distributed throughout the ten maize chromosomes. Linkage analysis revealed three SNP loci associated with kernel starch synthesis genes (sh2, su1, wx1) linked to either Mu-TD loci or SSR markers, which may be useful for maize breeding programs. In addition, we used QTL analysis to determine the chromosomal location of traits related to grain yield and kernel quality. We identified 24 QTLs associated with nine traits located on nine out of ten maize chromosomes. Among these, 13 QTLs involved Mu loci and two involved SCARs. This study demonstrates the potential use of DNA transposon-based markers to construct linkage maps and identify QTLs linked to agronomic traits.
Collapse
Affiliation(s)
- Rahul Vasudeo Ramekar
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Neha Roy
- Department of Molecular Bioscience, Institute of Bioscience and Biotechnology, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Institute of Bioscience and Biotechnology, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University,
Chuncheon, 24341,
Korea
| |
Collapse
|
168
|
Jiménez-Galindo JC, Malvar RA, Butrón A, Caicedo M, Ordás B. Fine analysis of a genomic region involved in resistance to Mediterranean corn borer. BMC PLANT BIOLOGY 2018; 18:169. [PMID: 30111285 PMCID: PMC6094900 DOI: 10.1186/s12870-018-1385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Sesamia nonagrioides Lefebvere (Mediterranean corn borer, MCB) is the main pest of maize in the Mediterranean area. QTL for MCB stalk tunneling and grain yield under high MCB infestation had been located at bin 8.03-8.05 (4-21 cM and 10-30 cM respectively) in a previous analysis of the EP42 x EP39 RILs mapping population. The objective of the present work was to study with higher resolution those QTL, and validating and estimating with higher precision their locations and effects. To achieve this objective, we developed a set of 38 heterogeneous inbred families (HIFs) which were near-homozygous in the genome, except in the region under study. The HIFs were evaluated in multiple environments under artificial infestation with MCB and genotyped with SNPs. RESULTS The QTL for grain yield under high infestation was confirmed with higher precision and improved reliability at 112.6-116.9 Mb. On the contrary, the location of the QTL for stalk tunneling was not validated probably due to the fixation of some genomic regions during the development of the HIFs. Our study confirmed that the co-localization of the QTL for stalk tunneling and grain yield in the previous study was due to linked genes, not to pleiotropic effects. So, the QTL for grain yield can be used for improving grain yield without undesirable effect on stalk tunneling. CONCLUSIONS The HIF analysis is useful for validating QTL and for conducting deeper studies in traits related to corn borer resistance.
Collapse
Affiliation(s)
- José Cruz Jiménez-Galindo
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
- National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Ave. Hidalgo 1213, Cd., 31500 Cuauhtémoc, Chihuahua, Mexico
| | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| | - Marlon Caicedo
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
- National Institute of Agricultural Research (INIAP), 170315 Quito, Ecuador
| | - Bernardo Ordás
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| |
Collapse
|
169
|
Anderson SL, Mahan AL, Murray SC, Klein PE. Four Parent Maize (FPM) Population: Effects of Mating Designs on Linkage Disequilibrium and Mapping Quantitative Traits. THE PLANT GENOME 2018; 11:170102. [PMID: 30025026 DOI: 10.3835/plantgenome2017.11.0102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multiparent advanced generation inter-cross (MAGIC) populations can provide improved genetic mapping resolution by increasing allelic diversity and effective recombination. The Four Parent Maize (FPM; L.) population implemented five different mating designs used in MAGIC and bi-parental populations to compare empirical effects on genetic resolution and power of quantitative trait locus (QTL) detection; the combined population here comprised of 1149 individuals with 118,509 genetic markers. Measurements were recorded for plant height (PH), ear height (EH), days to anthesis (DTA) and silking (DTS) in seven environments, spanning three years. Linkage disequilibrium (LD) analysis of subpopulations indicated MAGIC population designs should incorporate generations of intermating to overcome initial LD increase caused by population admixture in a non-intermated four parent population (4way0sib). A 3- to 4-fold increase in genetic resolution (<0.8) and a 2.5-fold decrease in the extent of LD decay (<0.2) compared to the biparental populations was found for the four parent cross at the third generation of intermating (4way3sib). Power of QTL detection was affected to a greater extent by sample size rather than by mating designs. The FPM power simulations indicated that MAGIC populations have the ability to meet or exceed the mapping power of nested association panels with fewer individuals and diversity inputs. Using association mapping software we identified 2, 5, 7, and 6 QTL for PH, EH, DTA, and DTS, respectively. The FPM population is a valuable resource for quantifying empirical improvements of parent number, intermating, and the number of progeny for QTL linkage mapping.
Collapse
|
170
|
Vanous A, Gardner C, Blanco M, Martin-Schwarze A, Lipka AE, Flint-Garcia S, Bohn M, Edwards J, Lübberstedt T. Association Mapping of Flowering and Height Traits in Germplasm Enhancement of Maize Doubled Haploid (GEM-DH) Lines. THE PLANT GENOME 2018; 11. [PMID: 30025021 DOI: 10.3835/plantgenome2017.09.0083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Flowering and height related traits are extensively studied in maize for three main reasons: 1) easily obtained phenotypic measurements, 2) highly heritable, and 3) importance of these traits to adaptation and grain yield. However, variation in flowering and height traits is extensive and findings from previous studies are genotype specific. Herein, a diverse panel of exotic derived doubled haploid lines, in conjunction with genome-wide association analysis, is used to further explore adaptation related trait variation of exotic germplasm for potential use in adapting exotic germplasm to the U.S. Corn-Belt. Phenotypes for the association panel were obtained from six locations across the central-U.S. and genotyping was performed using the genotyping-by-sequencing method. Nineteen flowering time candidate genes were found for three flowering traits. Eighteen candidate genes were found for four height related traits, with the majority of the candidate genes relating to plant hormones auxin and gibberellin. A single gene was discovered for ear height that also had effects on -like flowering gene expression levels. Findings will be used to inform future research efforts of the USDA Germplasm Enhancement of Maize project and eventually aid in the rapid adaptation of exotic germplasm to temperate U.S. environments.
Collapse
|
171
|
Jin M, Liu X, Jia W, Liu H, Li W, Peng Y, Du Y, Wang Y, Yin Y, Zhang X, Liu Q, Deng M, Li N, Cui X, Hao D, Yan J. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:465-480. [PMID: 29319223 DOI: 10.1111/jipb.12632] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/09/2018] [Indexed: 05/26/2023]
Abstract
Flowering time is a trait vital to the adaptation of flowering plants to different environments. Here, we report that CCT domain genes play an important role in flowering in maize (Zea mays L.). Among the 53 CCT family genes we identified in maize, 28 were located in flowering time quantitative trait locus regions and 15 were significantly associated with flowering time, based on candidate-gene association mapping analysis. Furthermore, a CCT gene named ZmCOL3 was shown to be a repressor of flowering. Overexpressing ZmCOL3 delayed flowering time by approximately 4 d, in either long-day or short-day conditions. The absence of one cytosine in the ZmCOL3 3'UTR and the presence of a 551 bp fragment in the promoter region are likely the causal polymorphisms contributing to the maize adaptation from tropical to temperate regions. We propose a modified model of the maize photoperiod pathway, wherein ZmCOL3 acts as an inhibitor of flowering either by transactivating transcription of ZmCCT, one of the key genes regulating maize flowering, or by interfering with the circadian clock.
Collapse
Affiliation(s)
- Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangguo Liu
- Biotechnology Research Centre, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Wei Jia
- College of Life Sciences, Jilin Agricultural University, Changchun 130033, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanfang Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuebin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuejia Yin
- Biotechnology Research Centre, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Xuehai Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Liu
- Biotechnology Research Centre, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Min Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Nan Li
- Biotechnology Research Centre, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Xiyan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun 130033, China
| | - Dongyun Hao
- Biotechnology Research Centre, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
172
|
Minow MAA, Ávila LM, Turner K, Ponzoni E, Mascheretti I, Dussault FM, Lukens L, Rossi V, Colasanti J. Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2937-2952. [PMID: 29688423 PMCID: PMC5972621 DOI: 10.1093/jxb/ery110] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/16/2018] [Indexed: 05/25/2023]
Abstract
Temperate maize was domesticated from its tropical ancestor, teosinte. Whereas temperate maize is an autonomous day-neutral plant, teosinte is an obligate short-day plant that requires uninterrupted long nights to induce flowering. Leaf-derived florigenic signals trigger reproductive growth in both teosinte and temperate maize. To study the genetic mechanisms underlying floral inductive pathways in maize and teosinte, mRNA and small RNA genome-wide expression analyses were conducted on leaf tissue from plants that were induced or not induced to flower. Transcriptome profiles reveal common differentially expressed genes during floral induction, but a comparison of candidate flowering time genes indicates that photoperiod and autonomous pathways act independently. Expression differences in teosinte are consistent with the current paradigm for photoperiod-induced flowering, where changes in circadian clock output trigger florigen production. Conversely, differentially expressed genes in temperate maize link carbon partitioning and flowering, but also show altered expression of circadian clock genes that are distinct from those altered upon photoperiodic induction in teosinte. Altered miRNA399 levels in both teosinte and maize suggest a novel common connection between flowering and phosphorus perception. These findings provide insights into the molecular mechanisms underlying a strengthened autonomous pathway that enabled maize growth throughout temperate regions.
Collapse
Affiliation(s)
- Mark A A Minow
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Luis M Ávila
- Plant Agriculture Department, University of Guelph, Guelph, Ontario, Canada
| | - Katie Turner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena Ponzoni
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Iride Mascheretti
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Forest M Dussault
- Research and Development, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Lewis Lukens
- Plant Agriculture Department, University of Guelph, Guelph, Ontario, Canada
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
173
|
Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, Osman M, Taheri S, Bakar MFA, Isa MNM, Noor YM. Contribution of transposable elements in the plant's genome. Gene 2018; 665:155-166. [PMID: 29684486 DOI: 10.1016/j.gene.2018.04.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed M Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | - David Rice
- Department of Molecular Biology & Biotecnology, University of Sheffield, United Kingdom
| | - M Y Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Osman
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
174
|
Affiliation(s)
- Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA.
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
175
|
Lu Z, Ricci WA, Schmitz RJ, Zhang X. Identification of cis-regulatory elements by chromatin structure. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:90-94. [PMID: 29704803 DOI: 10.1016/j.pbi.2018.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 05/22/2023]
Abstract
The systematic identification of cis-regulatory elements (CREs) in plant genomes is critically important in understanding transcriptional regulation during development and in response to environmental cues. Several genome-wide structure-based methods have been successfully applied to plant genomes in the past few years. Here, we review recent results on the identification and characterization of CREs in multiple plant species and in different biological processes and discuss future applications of chromatin accessibility data to understand the mechanism, function and evolution of transcriptional regulation networks.
Collapse
Affiliation(s)
- Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - William A Ricci
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
176
|
Zhang M, Cao Y, Wang Z, Wang ZQ, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na + exclusion and salt tolerance in maize. THE NEW PHYTOLOGIST 2018; 217:1161-1176. [PMID: 29139111 DOI: 10.1111/nph.14882] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/07/2017] [Indexed: 05/20/2023]
Abstract
Soil salinity is one of several major abiotic stresses that constrain maize productivity worldwide. An improved understanding of salt-tolerance mechanisms will thus enhance the breeding of salt-tolerant maize and boost productivity. Previous studies have indicated that the maintenance of leaf Na+ concentration is essential for maize salt tolerance, and the difference in leaf Na+ exclusion has previously been associated with variation in salt tolerance between maize varieties. Here, we report the identification and functional characterization of a maize salt-tolerance quantitative trait locus (QTL), Zea mays Na+ Content1 (ZmNC1), which encodes an HKT-type transporter (designated as ZmHKT1). We show that a natural ZmHKT1 loss-of-function allele containing a retrotransposon insertion confers increased accumulation of Na+ in leaves, and salt hypersensitivity. We next show that ZmHKT1 encodes a plasma membrane-localized Na+ -selective transporter, and is preferentially expressed in root stele (including the parenchyma cells surrounding the xylem vessels). We also show that loss of ZmHKT1 function increases xylem sap Na+ concentration and causes increased root-to-shoot Na+ delivery, indicating that ZmHKT1 promotes leaf Na+ exclusion and salt tolerance by withdrawing Na+ from the xylem sap. We conclude that ZmHKT1 is a major salt-tolerance QTL and identifies an important new gene target in breeding for improved maize salt tolerance.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yibo Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhiping Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi-Qiang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junpeng Shi
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaoyan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Qijun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
177
|
Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B. Conserved non-coding elements: developmental gene regulation meets genome organization. Nucleic Acids Res 2018; 45:12611-12624. [PMID: 29121339 PMCID: PMC5728398 DOI: 10.1093/nar/gkx1074] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Comparative genomics has revealed a class of non-protein-coding genomic sequences that display an extraordinary degree of conservation between two or more organisms, regularly exceeding that found within protein-coding exons. These elements, collectively referred to as conserved non-coding elements (CNEs), are non-randomly distributed across chromosomes and tend to cluster in the vicinity of genes with regulatory roles in multicellular development and differentiation. CNEs are organized into functional ensembles called genomic regulatory blocks–dense clusters of elements that collectively coordinate the expression of shared target genes, and whose span in many cases coincides with topologically associated domains. CNEs display sequence properties that set them apart from other sequences under constraint, and have recently been proposed as useful markers for the reconstruction of the evolutionary history of organisms. Disruption of several of these elements is known to contribute to diseases linked with development, and cancer. The emergence, evolutionary dynamics and functions of CNEs still remain poorly understood, and new approaches are required to enable comprehensive CNE identification and characterization. Here, we review current knowledge and identify challenges that need to be tackled to resolve the impasse in understanding extreme non-coding conservation.
Collapse
Affiliation(s)
- Dimitris Polychronopoulos
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - James W D King
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Alexander J Nash
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Ge Tan
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| |
Collapse
|
178
|
Huang C, Sun H, Xu D, Chen Q, Liang Y, Wang X, Xu G, Tian J, Wang C, Li D, Wu L, Yang X, Jin W, Doebley JF, Tian F. ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci U S A 2018; 115:E334-E341. [PMID: 29279404 DOI: 10.1073/pnas.1718058115/suppl_file/pnas.1718058115.sapp.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
From its tropical origin in southwestern Mexico, maize spread over a wide latitudinal cline in the Americas. This feat defies the rule that crops are inhibited from spreading easily across latitudes. How the widespread latitudinal adaptation of maize was accomplished is largely unknown. Through positional cloning and association mapping, we resolved a flowering-time quantitative trait locus to a Harbinger-like transposable element positioned 57 kb upstream of a CCT transcription factor (ZmCCT9). The Harbinger-like element acts in cis to repress ZmCCT9 expression to promote flowering under long days. Knockout of ZmCCT9 by CRISPR/Cas9 causes early flowering under long days. ZmCCT9 is diurnally regulated and negatively regulates the expression of the florigen ZCN8, thereby resulting in late flowering under long days. Population genetics analyses revealed that the Harbinger-like transposon insertion at ZmCCT9 and the CACTA-like transposon insertion at another CCT paralog, ZmCCT10, arose sequentially following domestication and were targeted by selection for maize adaptation to higher latitudes. Our findings help explain how the dynamic maize genome with abundant transposon activity enabled maize to adapt over 90° of latitude during the pre-Columbian era.
Collapse
Affiliation(s)
- Cheng Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Huayue Sun
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dingyi Xu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuyue Chen
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yameng Liang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xufeng Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Guanghui Xu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jinge Tian
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chenglong Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dan Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Lishuan Wu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - John F Doebley
- Department of Genetics, University of Wisconsin, Madison, WI 53706
| | - Feng Tian
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
179
|
Gao W, Qu J, Zhang J, Sonnenberg A, Chen Q, Zhang Y, Huang C. A genetic linkage map of Pleurotus tuoliensis integrated with physical mapping of the de novo sequenced genome and the mating type loci. BMC Genomics 2018; 19:18. [PMID: 29304732 PMCID: PMC5755439 DOI: 10.1186/s12864-017-4421-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/27/2017] [Indexed: 11/21/2022] Open
Abstract
Background Pleurotus tuoliensis (Bailinggu) is a commercially cultivated mushroom species with an increasing popularity in China and other Asian countries. Commercial profits are now low, mainly due to a low yield, long cultivation period and sensitivity to diseases. Breeding efforts are thus required to improve agronomical important traits. Developing saturated genetic linkage and physical maps is a start for applying genetic and molecular approaches to accelerate the precise breeding programs. Results Here we present a genetic linkage map for P. tuoliensis constructed by using 115 haploid monokaryons derived from a hybrid strain H6. One thousand one hundred and eighty-two SNP markers developed by 2b–RAD (type IIB restriction-site associated DNA) approach were mapped to 12 linkage groups. The map covers 1073 cM with an average marker spacing of 1.0 cM. The genome of P. tuoliensis was de novo sequenced as 40.8 Mb and consisted of 500 scaffolds (>500 bp), which showed a high level of colinearity to the genome of P. eryngii var. eryngii. A total of 97.4% SNP markers (1151) were physically localized on 78 scaffolds, and the physical length of these anchored scaffolds were 33.9 Mb representing 83.1% of the whole genome. Mating type loci A and B were mapped on separate linkage groups and identified physically on the assembled genomes. Five putative pheromone receptors and two putative pheromone precursors were identified for the mating type B locus. Conclusions This study reported a first genetic linkage map integrated with physical mapping of the de novo sequenced genome and the mating type loci of an important cultivated mushroom in China, P. tuoliensis. The de novo sequenced and annotated genome, assembled using a 2b–RAD generated linkage map, provides a basis for marker-assisted breeding of this economic important mushroom species. Electronic supplementary material The online version of this article (10.1186/s12864-017-4421-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Jibin Qu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Anton Sonnenberg
- Plant Breeding, Wageningen University & Research Centre, 6708, PB, Wageningen, The Netherlands
| | - Qiang Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Yan Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
180
|
Brohammer AB, Kono TJY, Springer NM, McGaugh SE, Hirsch CN. The limited role of differential fractionation in genome content variation and function in maize (Zea mays L.) inbred lines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:131-141. [PMID: 29124819 DOI: 10.1111/tpj.13765] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/14/2017] [Accepted: 10/27/2017] [Indexed: 05/22/2023]
Abstract
Maize is a diverse paleotetraploid species with considerable presence/absence variation and copy number variation. One mechanism through which presence/absence variation can arise is differential fractionation. Fractionation refers to the loss of duplicate gene pairs from one of the maize subgenomes during diploidization. Differential fractionation refers to non-shared gene loss events between individuals following a whole-genome duplication event. We investigated the prevalence of presence/absence variation resulting from differential fractionation in the syntenic portion of the genome using two whole-genome de novo assemblies of the inbred lines B73 and PH207. Between these two genomes, syntenic genes were highly conserved with less than 1% of syntenic genes being subject to differential fractionation. The few variably fractionated syntenic genes that were identified are unlikely to contribute to functional phenotypic variation, as there is a significant depletion of these genes in annotated gene sets. In further comparisons of 60 diverse inbred lines, non-syntenic genes were six times more likely to be variable than syntenic genes, suggesting that comparisons among additional genome assemblies are not likely to result in the discovery of large-scale presence/absence variation among syntenic genes.
Collapse
Affiliation(s)
- Alex B Brohammer
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
| | - Thomas J Y Kono
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, 1445 Gortner Avenue, St Paul, MN, 55108, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St Paul, MN, 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
| |
Collapse
|
181
|
Wang B, Zhu Y, Zhu J, Liu Z, Liu H, Dong X, Guo J, Li W, Chen J, Gao C, Zheng X, E L, Lai J, Zhao H, Song W. Identification and Fine-Mapping of a Major Maize Leaf Width QTL in a Re-sequenced Large Recombinant Inbred Lines Population. FRONTIERS IN PLANT SCIENCE 2018; 9:101. [PMID: 29487604 PMCID: PMC5816676 DOI: 10.3389/fpls.2018.00101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/18/2018] [Indexed: 05/11/2023]
Abstract
Leaf width (LW) influences canopy architecture of population-cultured maize and can thus contribute to density breeding. In previous studies, almost all maize LW-related mutants have extreme effect on leaf development or accompanied unfavorable phenotypes. In addition, the identification of quantitative trait loci (QTLs) has been resolution-limited, with cloning and fine-mapping rarely performed. Here, we constructed a bin map for 670 recombinant inbred lines (RILs) using ∼1.2 billion 100-bp re-sequencing reads. QTL analysis of the LW trait directly narrowed the major effect QTL, qLW4, to a ∼270-kb interval. A fine-mapping population and near-isogenic lines (NILs) were quickly constructed using a key RIL harboring heterozygous genotypes across the qLW4 region. A recombinant-derived progeny testing strategy was subsequently used to further fine-map qLW4 to a 55-kb interval. Examination of NILs revealed that qLW4 has a completely dominant effect on LW, with no additional effect on leaf length. Candidate gene analysis suggested that this locus may be a novel LW controlling allele in maize. Our findings demonstrate the advantage of large-population high-density bin mapping, and suggest a strategy for efficiently fine-mapping or even cloning of QTLs. These results should also be helpful for further dissection of the genetic mechanism of LW variation, and benefit maize density breeding.
Collapse
|
182
|
Abstract
Flowering time is a critical determinant of crop adaptation to local environments. As a result of natural and artificial selection, maize has evolved a reduced photoperiod sensitivity to adapt to regions over 90° of latitude in the Americas. Here we show that a distant Harbinger-like transposon acts as a cis-regulatory element to repress ZmCCT9 expression to promote flowering under the long days of higher latitudes. The transposon at ZmCCT9 and another functional transposon at a second flowering-time gene, ZmCCT10, arose sequentially following domestication and were targeted by selection as maize spread from the tropics to higher latitudes. Our results demonstrate that new functional variation created by transposon insertions helped maize to spread over a broad range of latitudes rapidly. From its tropical origin in southwestern Mexico, maize spread over a wide latitudinal cline in the Americas. This feat defies the rule that crops are inhibited from spreading easily across latitudes. How the widespread latitudinal adaptation of maize was accomplished is largely unknown. Through positional cloning and association mapping, we resolved a flowering-time quantitative trait locus to a Harbinger-like transposable element positioned 57 kb upstream of a CCT transcription factor (ZmCCT9). The Harbinger-like element acts in cis to repress ZmCCT9 expression to promote flowering under long days. Knockout of ZmCCT9 by CRISPR/Cas9 causes early flowering under long days. ZmCCT9 is diurnally regulated and negatively regulates the expression of the florigen ZCN8, thereby resulting in late flowering under long days. Population genetics analyses revealed that the Harbinger-like transposon insertion at ZmCCT9 and the CACTA-like transposon insertion at another CCT paralog, ZmCCT10, arose sequentially following domestication and were targeted by selection for maize adaptation to higher latitudes. Our findings help explain how the dynamic maize genome with abundant transposon activity enabled maize to adapt over 90° of latitude during the pre-Columbian era.
Collapse
|
183
|
Kumar J, Gupta S, Biradar RS, Gupta P, Dubey S, Singh NP. Association of functional markers with flowering time in lentil. J Appl Genet 2017; 59:9-21. [PMID: 29230682 DOI: 10.1007/s13353-017-0419-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022]
Abstract
In the present study, a diverse panel of 96 accessions of lentil germplasm was used to study flowering time over environments and to identify simple sequence repeat markers associated with flowering time through association mapping. The study showed high broad sense heritability estimate (h 2 bs=0.93) for flowering time in lentil. Screening of 534 SSR markers resulted in an identification of 75 SSR polymorphic markers (13.9%) across studied genotypes. These markers amplified 266 loci and generated 697 alleles ranging from two to 16 alleles per locus. Model-based cluster analysis used for the determination of population structure resulted in the identification of two distinct subpopulations. Distribution of flowering time was ranged from 40 to 70 days in subpopulation I and from 54 to 69 days in subpopulation II and did not skew either late or early flowering time within a subpopulation. No admixture was observed within the subpopulations. Use of the most accepted maximum likelihood model (P3D mixed linear model with optimum compression) of MTA analysis showed significant association of 26 SSR markers with flowering time at <0.05 probability. The percent of phenotypic explained by each associated marker with flowering time ranged from 2.1 to 21.8% and identified QTLs for flowering time explaining high phenotypic variation across the environments (10.7-21.8%) or in a particular environment (10.2-21.4%). In the present study, 13 EST-SSR showed significant association with flowering time and explained large phenotypic variation (2.3-21.8%) compared to genomic SSR markers (2.1-10.2%). Hence, these markers can be used as functional markers in the lentil breeding program to develop short duration cultivars.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Sunanda Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Revanappa S Biradar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Priyanka Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sonali Dubey
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Narendra Pratap Singh
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| |
Collapse
|
184
|
Kretschmer M, Croll D, Kronstad JW. Maize susceptibility to Ustilago maydis is influenced by genetic and chemical perturbation of carbohydrate allocation. MOLECULAR PLANT PATHOLOGY 2017; 18:1222-1237. [PMID: 27564861 PMCID: PMC6638311 DOI: 10.1111/mpp.12486] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 05/03/2023]
Abstract
The ability of biotrophic fungi to metabolically adapt to the host environment is a critical factor in fungal diseases of crop plants. In this study, we analysed the transcriptome of maize tumours induced by Ustilago maydis to identify key features underlying metabolic shifts during disease. Among other metabolic changes, this analysis highlighted modifications during infection in the transcriptional regulation of carbohydrate allocation and starch metabolism. We confirmed the relevance of these changes by establishing that symptom development was altered in an id1 (indeterminate1) mutant that showed increased accumulation of sucrose as well as being defective in the vegetative to reproductive transition. We further established the relevance of specific metabolic functions related to carbohydrate allocation by assaying disease in su1 (sugary1) mutant plants with altered starch metabolism and in plants treated with glucose, sucrose and silver nitrate during infection. We propose that specific regulatory and metabolic changes influence the balance between susceptibility and resistance by altering carbon allocation to promote fungal growth or to influence plant defence. Taken together, these studies reveal key aspects of metabolism that are critical for biotrophic adaptation during the maize-U. maydis interaction.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories, University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Daniel Croll
- Michael Smith Laboratories, University of British ColumbiaVancouverBCV6T 1Z4Canada
- Present address:
Institute of Integrative BiologyETH Zürich8092 ZürichSwitzerland
| | - James W. Kronstad
- Michael Smith Laboratories, University of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
185
|
Li Y, Tong L, Deng L, Liu Q, Xing Y, Wang C, Liu B, Yang X, Xu M. Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2587-2600. [PMID: 28916922 DOI: 10.1007/s00122-017-2978-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/30/2017] [Indexed: 05/26/2023]
Abstract
The elite ZmCCT haplotypes which have no transposable element in the promoter could enhance maize resistance to Gibberella stalk rot and improve yield-related traits, while having no or mild impact on flowering time. Therefore, they are expected to have great value in future maize breeding programs. A CCT domain-containing gene, ZmCCT, is involved in both photoperiod response and stalk rot resistance in maize. At least 15 haplotypes are present at the ZmCCT locus in maize germplasm, whereas only three of them are found in Chinese commercial maize hybrids. Here, we evaluated ZmCCT haplotypes for their potential application in corn breeding. Nine resistant ZmCCT haplotypes that have no CACTA-like transposable element in the promoter were introduced into seven elite maize inbred lines by marker-assisted backcrossing. The resultant 63 converted lines had 0.7-5.1 Mb of resistant ZmCCT donor segments with over 90% recovery rates. All converted lines tested exhibited enhanced resistance to maize stalk rot but varied in photoperiod sensitivity. There was a close correlation between the hybrids and their parental lines with respect to both resistance performance and photoperiod sensitivity. Furthermore, in a given hybrid A5302/83B28, resistant ZmCCT haplotype could largely improve yield-related traits, such as ear length and 100-kernel weight, resulting in enhanced grain yield. Of nine resistant ZmCCT haplotypes, haplotype H5 exhibited excellent performance for both flowering time and stalk rot resistance and is thus expected to have potential value in future maize breeding programs.
Collapse
Affiliation(s)
- Yipu Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lixiu Tong
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lele Deng
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qiyu Liu
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuexian Xing
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, Jilin, People's Republic of China
| | - Chao Wang
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Baoshen Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xiaohong Yang
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mingliang Xu
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
186
|
Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat Commun 2017; 8:1874. [PMID: 29187731 PMCID: PMC5707364 DOI: 10.1038/s41467-017-02063-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022] Open
Abstract
Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17 × 10-8 ~3.87 × 10-8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.
Collapse
|
187
|
Zikhali M, Wingen LU, Leverington‐Waite M, Specel S, Griffiths S. The identification of new candidate genes Triticum aestivum FLOWERING LOCUS T3-B1 (TaFT3-B1) and TARGET OF EAT1 (TaTOE1-B1) controlling the short-day photoperiod response in bread wheat. PLANT, CELL & ENVIRONMENT 2017; 40:2678-2690. [PMID: 28667827 PMCID: PMC5669021 DOI: 10.1111/pce.13018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 06/16/2017] [Accepted: 06/18/2017] [Indexed: 05/04/2023]
Abstract
Perception of photoperiod changes enables plants to flower under optimum conditions for survival. We used doubled haploid populations of crosses among Avalon × Cadenza, Charger × Badger and Spark × Rialto and identified short-day flowering time response quantitative trait loci (QTL) on wheat chromosomes 1BS and 1BL. We used synteny between Brachypodium distachyon and wheat to identify potential candidates for both QTL. The 1BL QTL peak coincided with TaFT3-B1, a homologue of the barley gene HvFT3, the most likely candidate gene. The 1BS QTL peak coincided with homologues of Arabidopsis thaliana SENSITIVITY TO RED LIGHT REDUCED 1, WUSCHEL-like and RAP2.7, which is also known as Zea mays TARGET OF EAT1, named TaSRR1-B1, TaWUSCHELL-B1 and TaTOE1-B1, respectively. Gene expression assays suggest that TaTOE1-B1 and TaFT3-B1 are expressed more during short days. We identified four alleles of TaFT3-B1 and three alleles of TaTOE1-B1. We studied the effect of these alleles in the Watkins and GEDIFLUX diversity panels by using 936 and 431 accessions, respectively. Loss of TaFT3-B1 by deletion was associated with late flowering. Increased TaFT3-B1 copy number was associated with early flowering, suggesting that TaFT3-B1 promotes flowering. Significant association was observed in the GEDIFLUX collection for TaTOE1-B1, a putative flowering repressor.
Collapse
Affiliation(s)
- Meluleki Zikhali
- John Innes CentreNorwich Research ParkNR4 7UHNorwichUK
- Seed Co Limited, Rattray Arnold Research StationPO Box CH142HarareZimbabwe
| | | | | | - Sebastien Specel
- Limagrain Europe Centre de Recherche de ChappesBâtiment 1, Route d'Ennezat63720ChappesFrance
| | | |
Collapse
|
188
|
Mahajan R, Zargar SM, Salgotra RK, Singh R, Wani AA, Nazir M, Sofi PA. Linkage disequilibrium based association mapping of micronutrients in common bean ( Phaseolus vulgaris L.): a collection of Jammu & Kashmir, India. 3 Biotech 2017; 7:295. [PMID: 28868222 DOI: 10.1007/s13205-017-0928-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Micronutrient deficiencies are of major concern in human health and plant metabolism. Iron (Fe), zinc (Zn), iodine (I), selenium (Se) are regarded as micronutrients having major impact on human health. More than 50% of populations mainly from developing countries are suffering from one or the other micronutrient malnutrition. Ensuring adequate supply of these micronutrients through diet consisting of staple foods, such as common bean (Phaseolus vulgaris L.) is must. Here, we evaluated common bean genotypes that were collected from various regions of Jammu and Kashmir, India for Fe, Zn and protein contents and used SSRs to identify the markers associated with these traits. We found significant variation among genotypes for Fe, Zn and protein contents. Genotype R2 was having 7.22 mg 100 g-1 of Fe content, genotype K15 with 1.93 mg 100 g-1 of Zn content and genotype KS6 with 31.6% of protein content. Diversity study was done using both cluster and structure based approach. Further, association mapping analysis using General Linear Method (GLM) approach was done to identify SSRs associated with accumulation of Fe, Zn and protein. 13 SSRs were identified that significantly (p < 0.05) showed association with Fe, Zn and protein contents in common bean. The markers associated with Fe were located on chromosome no. 2, 5, 6, 7, 9 and 10, markers associated with Zn were located on chromosome no. 1, 3, 5, 7 and 10 whereas only one marker located on chromosome no. 4 was found associated with protein content. These findings will provide potential opportunity to improve Fe and Zn concentrations in common bean, through molecular breeding.
Collapse
Affiliation(s)
- Reetika Mahajan
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir India
| | - Sajad Majeed Zargar
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir India
| | - R K Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir India
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir India
| | - Aijaz Ahmad Wani
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir India
| | - Muslima Nazir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir India
| | - Parvaze A Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Science and Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir India
| |
Collapse
|
189
|
Gouesnard B, Negro S, Laffray A, Glaubitz J, Melchinger A, Revilla P, Moreno-Gonzalez J, Madur D, Combes V, Tollon-Cordet C, Laborde J, Kermarrec D, Bauland C, Moreau L, Charcosset A, Nicolas S. Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2165-2189. [PMID: 28780587 DOI: 10.1007/s00122-017-2949-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Genotyping by sequencing is suitable for analysis of global diversity in maize. We showed the distinctiveness of flint maize inbred lines of interest to enrich the diversity of breeding programs. Genotyping-by-sequencing (GBS) is a highly cost-effective procedure that permits the analysis of large collections of inbred lines. We used it to characterize diversity in 1191 maize flint inbred lines from the INRA collection, the European Cornfed association panel, and lines recently derived from landraces. We analyzed the properties of GBS data obtained with different imputation methods, through comparison with a 50 K SNP array. We identified seven ancestral groups within the Flint collection (dent, Northern flint, Italy, Pyrenees-Galicia, Argentina, Lacaune, Popcorn) in agreement with breeding knowledge. Analysis highlighted many crosses between different origins and the improvement of flint germplasm with dent germplasm. We performed association studies on different agronomic traits, revealing SNPs associated with cob color, kernel color, and male flowering time variation. We compared the diversity of both our collection and the USDA collection which has been previously analyzed by GBS. The population structure of the 4001 inbred lines confirmed the influence of the historical inbred lines (B73, A632, Oh43, Mo17, W182E, PH207, and Wf9) within the dent group. It showed distinctly different tropical and popcorn groups, a sweet-Northern flint group and a flint group sub-structured in Italian and European flint (Pyrenees-Galicia and Lacaune) groups. Interestingly, we identified several selective sweeps between dent, flint, and tropical inbred lines that co-localized with SNPs associated with flowering time variation. The joint analysis of collections by GBS offers opportunities for a global diversity analysis of maize inbred lines.
Collapse
Affiliation(s)
| | - Sandra Negro
- INRA, UMR 0320 Génétique Quantitative et Évolution, le Moulon, Ferme du Moulon, 91190, Gif/Yvette, France
| | - Amélie Laffray
- INRA, UMR 0320 Génétique Quantitative et Évolution, le Moulon, Ferme du Moulon, 91190, Gif/Yvette, France
| | - Jeff Glaubitz
- Cornell University, 135 Biotechnology Bldg, Ithaca, NY, 14853, USA
| | - Albrecht Melchinger
- University of Hohenheim, 350 Institute of Plant Breeding, Seed Science, and Population Genetics, 70593, Stuttgart, Germany
| | - Pedro Revilla
- CSIC, Misión Biológica de Galicia, Apartado 28, 36080, Pontevedra, Spain
| | - Jesus Moreno-Gonzalez
- CIAM-INGACAL, Mabegondo Agricultural Research Centre, Xunta de Galicia, Carretera AC-542 de Betanzos a Mesón do Vento, km 7, Abegondo, 15318, A Coruña, Spain
| | - Delphine Madur
- INRA, UMR 0320 Génétique Quantitative et Évolution, le Moulon, Ferme du Moulon, 91190, Gif/Yvette, France
| | - Valérie Combes
- INRA, UMR 0320 Génétique Quantitative et Évolution, le Moulon, Ferme du Moulon, 91190, Gif/Yvette, France
| | | | - Jacques Laborde
- INRA, Unité Expérimentale du Maïs, 40390, St Martin de Hinx, France
| | - Dominique Kermarrec
- INRA, Unité Expérimentale Ressources Génétiques Végétales en Conditions Océaniques (UERGCO), Kéraïber, 29260, Ploudaniel, France
| | - Cyril Bauland
- INRA, UMR 0320 Génétique Quantitative et Évolution, le Moulon, Ferme du Moulon, 91190, Gif/Yvette, France
| | - Laurence Moreau
- INRA, UMR 0320 Génétique Quantitative et Évolution, le Moulon, Ferme du Moulon, 91190, Gif/Yvette, France
| | - Alain Charcosset
- INRA, UMR 0320 Génétique Quantitative et Évolution, le Moulon, Ferme du Moulon, 91190, Gif/Yvette, France
| | - Stéphane Nicolas
- INRA, UMR 0320 Génétique Quantitative et Évolution, le Moulon, Ferme du Moulon, 91190, Gif/Yvette, France
| |
Collapse
|
190
|
Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize ( Zea mays L.) Heterotic Groups. Genetics 2017; 207:1167-1180. [PMID: 28971957 PMCID: PMC5669627 DOI: 10.1534/genetics.117.300305] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022] Open
Abstract
Several plant and animal species of agricultural importance are commercialized as hybrids to take advantage of the heterosis phenomenon. Understanding the genetic architecture of hybrid performances is therefore of key importance. We developed two multiparental maize (Zea mays L.) populations, each corresponding to an important heterotic group (dent or flint) and comprised of six connected biparental segregating populations of inbred lines (802 and 822 lines for each group, respectively) issued from four founder lines. Instead of using "testers" to evaluate their hybrid values, segregating lines were crossed according to an incomplete factorial design to produce 951 dent-flint hybrids, evaluated for four biomass production traits in eight environments. QTL detection was carried out for the general-combining-ability (GCA) and specific-combining-ability (SCA) components of hybrid value, considering allelic effects transmitted from each founder line. In total, 42 QTL were detected across traits. We detected mostly QTL affecting GCA, 31% (41% for dry matter yield) of which also had mild effects on SCA. The small impact of dominant effects is consistent with the known differentiation between the dent and flint heterotic groups and the small percentage of hybrid variance due to SCA observed in our design (∼20% for the different traits). Furthermore, most (80%) of GCA QTL were segregating in only one of the two heterotic groups. Relative to tester-based designs, use of hybrids between two multiparental populations appears highly cost efficient to detect QTL in two heterotic groups simultaneously. This presents new prospects for selecting superior hybrid combinations with markers.
Collapse
|
191
|
Liu H, Huang R, Ma J, Sui S, Guo Y, Liu D, Li Z, Lin Y, Li M. Two C3H Type Zinc Finger Protein Genes, CpCZF1 and CpCZF2, from Chimonanthus praecox Affect Stamen Development in Arabidopsis. Genes (Basel) 2017; 8:E199. [PMID: 28796196 PMCID: PMC5575663 DOI: 10.3390/genes8080199] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 12/13/2022] Open
Abstract
Wintersweet (Chimonanthus praecox) is a popular garden plant because of its flowering time, sweet fragrance, and ornamental value. However, research into the molecular mechanism that regulates flower development in wintersweet is still limited. In this study, we sought to investigate the molecular characteristics, expression patterns, and potential functions of two C3H-type zinc finger (CZF) protein genes, CpCZF1 and CpCZF2, which were isolated from the wintersweet flowers based on the flower developmental transcriptome database. CpCZF1 and CpCZF2 were more highly expressed in flower organs than in vegetative tissues, and during the flower development, their expression profiles were associated with flower primordial differentiation, especially that of petal and stamen primordial differentiation. Overexpression of either CpCZF1 or CpCZF2 caused alterations on stamens in transgenic Arabidopsis. The expression levels of the stamen identity-related genes, such as AGAMOUS (AG), PISTILLATA (PI), SEPALLATA1 (SEP1), SEPALLATA2 (SEP2), SEPALLATA3 (SEP3), APETALA1 (AP1), APETALA2 (AP2), and boundary gene RABBIT EAR (RBE) were significantly up-regulated in CpCZF1 overexpression lines. Additionally, the transcripts of AG, PI, APETALA3SEP1-3, AP1, and RBE were markedly increased in CpCZF2 overexpressed plant inflorescences. Moreover, CpCZF1 and CpCZF2 could interact with each other by using yeast two-hybrid and bimolecular fluorescence complementation assays. Our results suggest that CpCZF1 and CpCZF2 may be involved in the regulation of stamen development and cause the formation of abnormal flowers in transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Huamin Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape, Southwest University, Chongqing 400715, China.
| | - Renwei Huang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape, Southwest University, Chongqing 400715, China.
| | - Jing Ma
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape, Southwest University, Chongqing 400715, China.
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape, Southwest University, Chongqing 400715, China.
| | - Yulong Guo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape, Southwest University, Chongqing 400715, China.
| | - Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape, Southwest University, Chongqing 400715, China.
| | - Zhineng Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape, Southwest University, Chongqing 400715, China.
| | - Yechun Lin
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550003, China.
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape, Southwest University, Chongqing 400715, China.
| |
Collapse
|
192
|
Wang J, Tang M, Chen S, Zheng X, Mo H, Li S, Wang Z, Zhu K, Ding L, Liu S, Li Y, Tan X. Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1024-1033. [PMID: 28097785 PMCID: PMC5506660 DOI: 10.1111/pbi.12696] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 05/03/2023]
Abstract
Brassica napus L. is an important oil crop worldwide and is the main raw material for biofuel. Seed weight and seed size are the main contributors to seed yield. DA1 (DA means big in Chinese) is an ubiquitin receptor and negatively regulates seed size. Down-regulation of AtDA1 in Arabidopsis leads to larger seeds and organs by increasing cell proliferation in integuments. In this study, BnDA1 was down-regulated in B. napus by over expressed of AtDA1R358K , which is a functional deficiency of DA1 with an arginine-to-lysine mutation at the 358th amino acid. The results showed that the biomass and size of the seeds, cotyledons, leaves, flowers and siliques of transgenic plants all increased significantly. In particular, the 1000 seed weight increased 21.23% and the seed yield per plant increased 13.22% in field condition. The transgenic plants had no negative traits related to yield. The candidate gene association analysis demonstrated that the BnDA1 locus was contributed to the seeds weight. Therefore, our study showed that regulation of DA1 in B. napus can increase the seed yield and biomass, and DA1 is a promising target for crop improvement.
Collapse
Affiliation(s)
- Jie‐Li Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Min‐Qiang Tang
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Sheng Chen
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | | | - Hui‐Xian Mo
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology (IGDB)Chinese Academy of Sciences (CAS)BeijingChina
| | - Sheng‐Jun Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology (IGDB)Chinese Academy of Sciences (CAS)BeijingChina
| | - Zheng Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ke‐Ming Zhu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Li‐Na Ding
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Sheng‐Yi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Yun‐Hai Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology (IGDB)Chinese Academy of Sciences (CAS)BeijingChina
| | - Xiao‐Li Tan
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| |
Collapse
|
193
|
Kumar J, Gupta DS, Gupta S, Dubey S, Gupta P, Kumar S. Quantitative trait loci from identification to exploitation for crop improvement. PLANT CELL REPORTS 2017; 36:1187-1213. [PMID: 28352970 DOI: 10.1007/s00299-017-2127-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/09/2017] [Indexed: 05/24/2023]
Abstract
Advancement in the field of genetics and genomics after the discovery of Mendel's laws of inheritance has led to map the genes controlling qualitative and quantitative traits in crop plant species. Mapping of genomic regions controlling the variation of quantitatively inherited traits has become routine after the advent of different types of molecular markers. Recently, the next generation sequencing methods have accelerated the research on QTL analysis. These efforts have led to the identification of more closely linked molecular markers with gene/QTLs and also identified markers even within gene/QTL controlling the trait of interest. Efforts have also been made towards cloning gene/QTLs or identification of potential candidate genes responsible for a trait. Further new concepts like crop QTLome and QTL prioritization have accelerated precise application of QTLs for genetic improvement of complex traits. In the past years, efforts have also been made in exploitation of a number of QTL for improving grain yield or other agronomic traits in various crops through markers assisted selection leading to cultivation of these improved varieties at farmers' field. In present article, we reviewed QTLs from their identification to exploitation in plant breeding programs and also reviewed that how improved cultivars developed through introgression of QTLs have improved the yield productivity in many crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sunanda Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sonali Dubey
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Priyanka Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institutes, B.P. 6299, Rabat, Morocco
| |
Collapse
|
194
|
Oka R, Zicola J, Weber B, Anderson SN, Hodgman C, Gent JI, Wesselink JJ, Springer NM, Hoefsloot HCJ, Turck F, Stam M. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biol 2017; 18:137. [PMID: 28732548 PMCID: PMC5522596 DOI: 10.1186/s13059-017-1273-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/05/2017] [Indexed: 11/10/2022] Open
Abstract
Background While most cells in multicellular organisms carry the same genetic information, in each cell type only a subset of genes is being transcribed. Such differentiation in gene expression depends, for a large part, on the activation and repression of regulatory sequences, including transcriptional enhancers. Transcriptional enhancers can be located tens of kilobases from their target genes, but display characteristic chromatin and DNA features, allowing their identification by genome-wide profiling. Here we show that integration of chromatin characteristics can be applied to predict distal enhancer candidates in Zea mays, thereby providing a basis for a better understanding of gene regulation in this important crop plant. Result To predict transcriptional enhancers in the crop plant maize (Zea mays L. ssp. mays), we integrated available genome-wide DNA methylation data with newly generated maps for chromatin accessibility and histone 3 lysine 9 acetylation (H3K9ac) enrichment in young seedling and husk tissue. Approximately 1500 intergenic regions, displaying low DNA methylation, high chromatin accessibility and H3K9ac enrichment, were classified as enhancer candidates. Based on their chromatin profiles, candidate sequences can be classified into four subcategories. Tissue-specificity of enhancer candidates is defined based on the tissues in which they are identified and putative target genes are assigned based on tissue-specific expression patterns of flanking genes. Conclusions Our method identifies three previously identified distal enhancers in maize, validating the new set of enhancer candidates and enlarging the toolbox for the functional characterization of gene regulation in the highly repetitive maize genome. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1273-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rurika Oka
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Johan Zicola
- Department Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Blaise Weber
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Sarah N Anderson
- Department of Plant Biology, University of Minnesota, 40 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Charlie Hodgman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | | | - Nathan M Springer
- Department of Plant Biology, University of Minnesota, 40 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Huub C J Hoefsloot
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Franziska Turck
- Department Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany.
| | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
195
|
Maize (Zea mays L.) genome size indicated by 180-bp knob abundance is associated with flowering time. Sci Rep 2017; 7:5954. [PMID: 28729714 PMCID: PMC5519714 DOI: 10.1038/s41598-017-06153-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/09/2017] [Indexed: 11/24/2022] Open
Abstract
Flowering time is considered one of the most important agronomic traits in maize (Zea mays L.), and previous studies have indicated that this trait is correlated with genome size. We observed a significant difference in genome size between tropical and temperate inbred lines and a moderate positive correlation between genome size and 180-bp knob abundance determined by high-throughput sequencing in maize inbred lines in this study. We assembled the reads that were mapped to 180-bp knob sequences and found that the top ten abundant 180-bp knob sequences are highly variable. Moreover, our results indicate that genome size is associated with the flowering time of both male and female flowers, in both tropical and temperate inbred lines and under both tropical and temperate environments. To identify loci associated with genome size, we performed a genome-wide association study. The analysis identified three genomic regions associated with genome size, of which two were novel while the third one is located close to the known knobs K8L1 and K8L2. Overall, our results indicate that selection for breeding materials with earlier flowering times can be assisted by choosing germplasms with smaller genome sizes and that genome size can be determined based on the abundance of 180-bp knobs.
Collapse
|
196
|
Useful parasites: the evolutionary biology and biotechnology applications of transposable elements. J Genet 2017; 95:1039-1052. [PMID: 27994207 DOI: 10.1007/s12041-016-0702-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Transposable elements usually comprise the most abundant nongenic fraction of eukaryotic genomes. Because of their capacity to selfreplicate and to induce a wide range of mutations, transposable elements have long been considered as 'parasitic' or 'selfish'. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work. Numerous studies have provided evidences that mobile elements have the potential to act as agents of evolution by increasing, rearranging and diversifying the genetic repertoire of their hosts. With large-scale sequencing becoming increasingly available, more and more scientists come across transposable element sequences in their data. I will provide examples that transposable elements, although having signatures of 'selfish' DNA, play a significant biological role in the maintainance of genome integrity and providing novel regulatoty networks. These features, along with the transpositional and mutagenic capacity to produce a raw genetic diversity, make the genome mobile fraction, a key player in species adaptation and microevolution. The last but not least, transposable elements stand as informative DNA markers that may complement other conventional DNA markers. Altogether, transposable elements represent a promising, but still largely unexplored research niche and deserve to be included into the agenda of molecular ecologists, evolutionary geneticists, conservation biologists and plant breeders.
Collapse
|
197
|
Brandenburg JT, Mary-Huard T, Rigaill G, Hearne SJ, Corti H, Joets J, Vitte C, Charcosset A, Nicolas SD, Tenaillon MI. Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts. PLoS Genet 2017; 13:e1006666. [PMID: 28301472 PMCID: PMC5373671 DOI: 10.1371/journal.pgen.1006666] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 03/30/2017] [Accepted: 03/01/2017] [Indexed: 12/27/2022] Open
Abstract
Through the local selection of landraces, humans have guided the adaptation of crops to a vast range of climatic and ecological conditions. This is particularly true of maize, which was domesticated in a restricted area of Mexico but now displays one of the broadest cultivated ranges worldwide. Here, we sequenced 67 genomes with an average sequencing depth of 18x to document routes of introduction, admixture and selective history of European maize and its American counterparts. To avoid the confounding effects of recent breeding, we targeted germplasm (lines) directly derived from landraces. Among our lines, we discovered 22,294,769 SNPs and between 0.9% to 4.1% residual heterozygosity. Using a segmentation method, we identified 6,978 segments of unexpectedly high rate of heterozygosity. These segments point to genes potentially involved in inbreeding depression, and to a lesser extent to the presence of structural variants. Genetic structuring and inferences of historical splits revealed 5 genetic groups and two independent European introductions, with modest bottleneck signatures. Our results further revealed admixtures between distinct sources that have contributed to the establishment of 3 groups at intermediate latitudes in North America and Europe. We combined differentiation- and diversity-based statistics to identify both genes and gene networks displaying strong signals of selection. These include genes/gene networks involved in flowering time, drought and cold tolerance, plant defense and starch properties. Overall, our results provide novel insights into the evolutionary history of European maize and highlight a major role of admixture in environmental adaptation, paralleling recent findings in humans.
Collapse
Affiliation(s)
- Jean-Tristan Brandenburg
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| | - Tristan Mary-Huard
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
- UMR 518 AgroParisTech/INRA, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris-Saclay, UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, France
| | - Sarah J. Hearne
- CIMMYT (International Maize and Wheat Improvement Centre), El Batan, Texcoco, Edo de Mexico, Mexico
| | - Hélène Corti
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| | - Johann Joets
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| | - Clémentine Vitte
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| | - Alain Charcosset
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| | - Stéphane D. Nicolas
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| | - Maud I. Tenaillon
- Génétique Quantitative et Evolution – Le Moulon, Institut National de la Recherche agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, France
| |
Collapse
|
198
|
Zaid IU, Tang W, Liu E, Khan SU, Wang H, Mawuli EW, Hong D. Genome-Wide Single-Nucleotide Polymorphisms in CMS and Restorer Lines Discovered by Genotyping Using Sequencing and Association with Marker-Combining Ability for 12 Yield-Related Traits in Oryza sativa L. subsp. Japonica. FRONTIERS IN PLANT SCIENCE 2017; 8:143. [PMID: 28228768 PMCID: PMC5297617 DOI: 10.3389/fpls.2017.00143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/24/2017] [Indexed: 05/26/2023]
Abstract
Heterosis or hybrid vigor is closely related with general combing ability (GCA) of parents and special combining ability (SCA) of combinations. The evaluation of GCA and SCA facilitate selection of parents and combinations in heterosis breeding. In order to improve combining ability (CA) by molecular marker assist selection, it is necessary to identify marker loci associated with the CA. To identify the single nucleotide polymorphisms (SNP) loci associated with CA in the parental genomes of japonica rice, genome-wide discovered SNP loci were tested for association with the CA of 18 parents for 12 yield-related traits. In this study, 81 hybrids were created and evaluated to calculate the CA of 18 parents. The parents were sequenced by genotyping by sequencing (GBS) method for identification of genome-wide SNPs. The analysis of GBS indicated that the successful mapping of 9.86 × 106 short reads in the Nipponbare reference genome consists of 39,001 SNPs in parental genomes at 11,085 chromosomal positions. The discovered SNPs were non-randomly distributed within and among the 12 chromosomes of rice. Overall, 20.4% (8026) of the discovered SNPs were coding types, and 8.6% (3344) and 9.9% (3951) of the SNPs revealed synonymous and non-synonymous changes, which provide valuable knowledge about the underlying performance of the parents. Furthermore, the associations between SNPs and CA indicated that 362 SNP loci were significantly related to the CA of 12 parental traits. The identified SNP loci of CA in our study were distributed genome wide and caused a positive or negative effect on the CA of traits. For the yield-related traits, such as grain thickness, days to heading, panicle length, grain length and 1000-grain weight, a maximum number of positive SNP loci of CA were found in CMS A171 and in the restorers LC64 and LR27. On an individual basis, some of associated loci that resided on chromosomes 2, 5, 7, 9, and 11 recorded maximum positive values for the CA of traits. From our results, we suggest that heterosis in japonica rice would be improved by pyramiding the favorable SNP loci of CA and eliminating the unfavorable loci from parental genomes.
Collapse
Affiliation(s)
- Imdad U. Zaid
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Weijie Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Erbao Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Sana U. Khan
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbane, QLD, Australia
| | - Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Edzesi W. Mawuli
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Delin Hong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
199
|
A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet 2017; 49:476-480. [DOI: 10.1038/ng.3784] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
|
200
|
Jiménez-Galindo JC, Ordás B, Butrón A, Samayoa LF, Malvar RA. QTL Mapping for Yield and Resistance against Mediterranean Corn Borer in Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:698. [PMID: 28533785 PMCID: PMC5420578 DOI: 10.3389/fpls.2017.00698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/18/2017] [Indexed: 05/19/2023]
Abstract
Introduction: The Mediterranean corn borer (MCB), Sesamia nonagrioides, is a major pest of maize, Zea mays, in Mediterranean countries, inflicting significant kernel yield losses. For that reason, it necessary to know the genetic mechanisms that regulate the agronomic and resistance traits. A quantitative trait loci (QTL) mapping study for yield, resistance against MCB attack, and other relevant agronomic traits was performed using a recombinant inbred line (RIL) population derived from the cross A637 × A509 that is expected to segregate for yield, and ear, and stalk resistance to MCB. 171 RILs were evaluated in 2014 and 2015 at Pontevedra, Spain, along with the two parental inbreds A637 and A509 using a 13 × 14 single lattice design with two replications. A genetic map with 285 SNP markers was used for QTL analysis. Our objectives were to detect QTL for resistance to MCB and tolerance-related agronomic traits, to gain insights on the genetic relationship between resistance to MCB attack and yield, and to establish the best way for simultaneously improving yield and resistance to MCB. Results: Twelve significant QTL were detected for agronomic and resistance traits. QTL at bins 1.10 and 5.04 were especially interesting because the same allelic variant at these QTL simultaneously improved yield and insect resistance. In contrast, in the region 8.04-8.05, QTL showed opposite effects for yield and resistance. Several QTL for indexes which combine yield and resistance traits were found especially in the region 10.02-10.03. Conclusions: Selecting genotypes with the favorable allele of QTL on chromosome 5 (bin 5.01) will decrease tunnel length without affect yield, silking and plant height and QTL on the region 5.04 could be used to improve stalk resistance and yield simultaneously. An allele of QTL on bin 9.07 will increase ear resistance to MCB attack but it could produce later varieties while favorable allele in region 1.10 could improve ear and stalk resistance and yield without secondary negative effects. The region 8.03-8.05 mainly but also the region 10.02-10.03 and 5.04 may play an important role to elucidate the association between yield, other agronomic traits and MCB resistance.
Collapse
Affiliation(s)
- José C. Jiménez-Galindo
- Misión Biológica de Galicia, Spanish National Research CouncilPontevedra, Spain
- National Institute of Forestry, Agriculture and Livestock ResearchChihuahua, Mexico
- *Correspondence: José C. Jiménez-Galindo
| | - Bernardo Ordás
- Misión Biológica de Galicia, Spanish National Research CouncilPontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research CouncilPontevedra, Spain
| | - Luis F. Samayoa
- Department of Crop Science, North Carolina State UniversityRaleigh, NC, USA
| | - Rosa A. Malvar
- Misión Biológica de Galicia, Spanish National Research CouncilPontevedra, Spain
| |
Collapse
|