151
|
Chan CY, Zhu J, Schiestl RH. Effect of rad50 mutation on illegitimate recombination in Saccharomyces cerevisiae. Mol Genet Genomics 2011; 285:471-84. [PMID: 21512733 DOI: 10.1007/s00438-011-0619-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 03/31/2011] [Indexed: 11/28/2022]
Abstract
Genes in the RAD52 epistasis group are involved in repairing DNA double-stranded breaks via homologous recombination. We have previously shown that RAD50 is involved in mitotic nonhomologous integration but not in homologous integration. However, the role of Rad50 in nonhomologous integration has not previously been examined. In the current work, we report that the rad50∆ mutation caused a tenfold decrease in the frequency of nonhomologous integration with the majority of nonhomologous integrants showing an unstable Ura(+) phenotype. Sequencing analysis of the integration target sites showed that integration events of both ends of the integrating vector in the rad50∆ mutant occurred at different chromosomal locations, resulting in large deletions or translocations on the genomic insertion sites. Interestingly, 47% of events in the rad50∆ mutant were integrated into repetitive sequences including rDNA locus, telomeres and Ty elements and 27% of events were integrated into non-repetitive sequences as compared to 11% of events integrated into rDNA and 70% into non-repetitive sequences in the wild-type cells. These results showed that deletion of RAD50 significantly changes the distribution of different classes of integration events, suggesting that Rad50 is required for nonhomologous integration at non-repetitive sequences more so than at repetitive ones. Furthermore, Southern analysis indicated that half of the events contained deletions at one or at both ends of the integrating DNA fragment, suggesting that Rad50 might have a role in protecting free ends of double-strand breaks. In contrast to the rad50∆ mutant, the rad50S mutant (separation of function allele) slightly increases the frequency of nonhomologous integration but the distribution of integration events is similar to that of wild-type cells with the majority of events integrated into a chromosomal locus. Our results suggest that deletion of RAD50 may block the major pathway of nonhomologous integration into a non-repetitive chromosomal locus and Rad50 may be involved in tethering two ends of the integrating DNA into close proximity that facilitates nonhomologous integration of both ends into a single chromosomal locus.
Collapse
Affiliation(s)
- Cecilia Y Chan
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
152
|
Repar J, Cvjetan S, Slade D, Radman M, Zahradka D, Zahradka K. RecA protein assures fidelity of DNA repair and genome stability in Deinococcus radiodurans. DNA Repair (Amst) 2011; 9:1151-61. [PMID: 20817622 DOI: 10.1016/j.dnarep.2010.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 08/02/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
Abstract
Deinococcus radiodurans is one of the most radiation-resistant organisms known. It can repair hundreds of radiation-induced double-strand DNA breaks without loss of viability. Genome reassembly in heavily irradiated D. radiodurans is considered to be an error-free process since no genome rearrangements were detected after post-irradiation repair. Here, we describe for the first time conditions that frequently cause erroneous chromosomal assemblies. Gross chromosomal rearrangements have been detected in recA mutant cells that survived exposure to 5kGy γ-radiation. The recA mutants are prone also to spontaneous DNA rearrangements during normal exponential growth. Some insertion sequences have been identified as dispersed genomic homology blocks that can mediate DNA rearrangements. Whereas the wild-type D. radiodurans appears to repair accurately its genome shattered by 5kGy γ-radiation, extremely high γ-doses, e.g., 25kGy, produce frequent genome rearrangements among survivors. Our results show that the RecA protein is quintessential for the fidelity of repair of both spontaneous and γ-radiation-induced DNA breaks and, consequently, for genome stability in D. radiodurans. The mechanisms of decreased genome stability in the absence of RecA are discussed.
Collapse
Affiliation(s)
- Jelena Repar
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
153
|
Friedreich's ataxia (GAA)n•(TTC)n repeats strongly stimulate mitotic crossovers in Saccharomyces cerevisae. PLoS Genet 2011; 7:e1001270. [PMID: 21249181 PMCID: PMC3020933 DOI: 10.1371/journal.pgen.1001270] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/07/2010] [Indexed: 11/19/2022] Open
Abstract
Expansions of trinucleotide GAA•TTC tracts are associated with the human disease Friedreich's ataxia, and long GAA•TTC tracts elevate genome instability in yeast. We show that tracts of (GAA)230•(TTC)230 stimulate mitotic crossovers in yeast about 10,000-fold relative to a “normal” DNA sequence; (GAA)n•(TTC)n tracts, however, do not significantly elevate meiotic recombination. Most of the mitotic crossovers are associated with a region of non-reciprocal transfer of information (gene conversion). The major class of recombination events stimulated by (GAA)n•(TTC)n tracts is a tract-associated double-strand break (DSB) that occurs in unreplicated chromosomes, likely in G1 of the cell cycle. These findings indicate that (GAA)n•(TTC)n tracts can be a potent source of loss of heterozygosity in yeast. Although meiotic recombination has been much more studied than mitotic recombination, mitotic recombination is a universal property. Meiotic recombination rates are quite variable within the genome, with some chromosomal regions (hotspots) having much higher levels of exchange than other regions (coldspots). For mitotic recombination, although some types of DNA sequences are known to be associated with elevated recombination rates (highly-transcribed genes, inverted repeated sequences), relatively few hotspots have been described. In this report, we show that a 690 base pair region consisting of 230 copies of the (GAA)n•(TTC)n trinucleotide repeat stimulates mitotic crossovers in yeast 10,000-fold more strongly than an “average” yeast sequence. This sequence is a preferred site for chromosome breakage in stationary phase yeast cells. Our findings may be relevant to understanding the expansions of the (GAA)n•(TTC)n trinucleotide repeat tracts that are associated with the human disease Friedreich's ataxia.
Collapse
|
154
|
Nakai W, Westmoreland J, Yeh E, Bloom K, Resnick MA. Chromosome integrity at a double-strand break requires exonuclease 1 and MRX. DNA Repair (Amst) 2011; 10:102-10. [PMID: 21115410 PMCID: PMC3031249 DOI: 10.1016/j.dnarep.2010.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 09/09/2010] [Accepted: 10/11/2010] [Indexed: 12/16/2022]
Abstract
The continuity of duplex DNA is generally considered a prerequisite for chromosome continuity. However, as previously shown in yeast as well as human cells, the introduction of a double-strand break (DSB) does not generate a chromosome break (CRB) in yeast or human cells. The transition from DSB to CRB was found to be under limited control by the tethering function of the RAD50/MRE11/XRS2 (MRX) complex. Using a system for differential fluorescent marking of both sides of an endonuclease-induced DSB in single cells, we found that nearly all DSBs are converted to CRBs in cells lacking both exonuclease 1 (EXO1) activity and MRX complex. Thus, it appears that some feature of exonuclease processing or resection at a DSB is critical for maintaining broken chromosome ends in close proximity. In addition, we discovered a thermal sensitive (cold) component to CRB formation in an MRX mutant that has implications for chromosome end mobility and/or end-processing.
Collapse
Affiliation(s)
- Wataru Nakai
- National Institute of Environmental Health Sciences, NIH, Laboratory of Molecular Genetics, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
155
|
Ma W, Westmoreland J, Nakai W, Malkova A, Resnick MA. Characterizing resection at random and unique chromosome double-strand breaks and telomere ends. Methods Mol Biol 2011; 745:15-31. [PMID: 21660686 PMCID: PMC4857595 DOI: 10.1007/978-1-61779-129-1_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Resection of DNA double-strand break (DSB) ends, which results in 3(') single-stranded tails, is an early event of DSB repair and can be a critical determinant in choice of repair pathways and eventual genome stability. Current techniques for examining resection are restricted to model in vivo systems with defined substrates (i.e., HO-endonuclease targets). We present here a robust assay that can analyze not only the resection of site-specific DSBs which typically have "clean" double-strand ends but also random "dirty-ended" DSBs such as those generated by ionizing radiation and chemotherapeutic agents. The assay is based on our finding that yeast chromosomes with single-stranded DNA tails caused by resection are less mobile during pulsed-field gel electrophoresis (PFGE) than those without a tail. In combination with the use of a circular chromosome and enzymatic trimming of single-stranded DNA, resection of random DSBs can be easily detected and analyzed. This mobility-shift assay provides a unique opportunity to examine the mechanisms of resection, early events in DSB repair, as well as factors involved in pathway regulation.
Collapse
Affiliation(s)
- Wenjian Ma
- Chromosome Stability Section, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
156
|
Hoang ML, Tan FJ, Lai DC, Celniker SE, Hoskins RA, Dunham MJ, Zheng Y, Koshland D. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination. PLoS Genet 2010; 6:e1001228. [PMID: 21151956 PMCID: PMC2996329 DOI: 10.1371/journal.pgen.1001228] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/29/2010] [Indexed: 01/11/2023] Open
Abstract
Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR–dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR–dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer. The human genome is structurally dynamic, frequently undergoing loss, duplication, and rearrangement of large chromosome segments. These structural changes occur both in normal and in cancerous cells and are thought to cause both benign and deleterious changes in cell function. Many of these structural alterations are generated when two dispersed repeated DNA sequences at non-allelic sites recombine during non-allelic homologous recombination (NAHR). Here we study NAHR on a genome-wide scale using the experimentally tractable budding yeast as a eukaryotic model genome with its fully sequenced family of repeated DNA elements, the Ty retrotransposons. With our novel system, we simultaneously measure the effects of known recombination parameters on the frequency of NAHR to understand which parameters most influence the occurrence of rearrangements between repetitive sequences. These findings provide a basic framework for interpreting how structural changes observed in the human genome may have arisen.
Collapse
Affiliation(s)
- Margaret L. Hoang
- Howard Hughes Medical Institute and Department of Embryology, Carnegie Institution, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Frederick J. Tan
- Howard Hughes Medical Institute and Department of Embryology, Carnegie Institution, Baltimore, Maryland, United States of America
| | - David C. Lai
- Baltimore Polytechnic Institute, Ingenuity Program, Baltimore, Maryland, United States of America
| | - Sue E. Celniker
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Roger A. Hoskins
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Yixian Zheng
- Howard Hughes Medical Institute and Department of Embryology, Carnegie Institution, Baltimore, Maryland, United States of America
| | - Douglas Koshland
- Howard Hughes Medical Institute and Department of Embryology, Carnegie Institution, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
157
|
Fu W, Zhang F, Wang Y, Gu X, Jin L. Identification of copy number variation hotspots in human populations. Am J Hum Genet 2010; 87:494-504. [PMID: 20920665 DOI: 10.1016/j.ajhg.2010.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/09/2010] [Accepted: 09/15/2010] [Indexed: 01/22/2023] Open
Abstract
Copy number variants (CNVs) in the human genome contribute to both Mendelian and complex traits as well as to genomic plasticity in evolution. The investigation of mutational rates of CNVs is critical to understanding genomic instability and the etiology of the copy number variation (CNV)-related traits. However, the evaluation of the CNV mutation rate at the genome level poses an insurmountable practical challenge that requires large samples and accurate typing. In this study, we show that an approximate estimation of the CNV mutation rate could be achieved by using the phylogeny information of flanking SNPs. This allows a genome-wide comparison of mutation rates between CNVs with the use of vast, readily available data of SNP genotyping. A total of 4187 CNV regions (CNVRs) previously identified in HapMap populations were investigated in this study. We showed that the mutation rates for the majority of these CNVRs are at the order of 10⁻⁵ per generation, consistent with experimental observations at individual loci. Notably, the mutation rates of 104 (2.5%) CNVRs were estimated at the order of 10⁻³ per generation; therefore, they were identified as potential hotspots. Additional analyses revealed that genome architecture at CNV loci has a potential role in inciting mutational hotspots in the human genome. Interestingly, 49 (47%) CNV hotspots include human genes, some of which are known to be functional CNV loci (e.g., CNVs of C4 and β-defensin causing autoimmune diseases and CNVs of HYDIN with implication in control of cerebral cortex size), implicating the important role of CNV in human health and evolution, especially in common and complex diseases.
Collapse
|
158
|
Gladyshev EA, Arkhipova IR. Genome structure of bdelloid rotifers: shaped by asexuality or desiccation? J Hered 2010; 101 Suppl 1:S85-93. [PMID: 20421328 DOI: 10.1093/jhered/esq008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bdelloid rotifers are microscopic invertebrate animals best known for their ancient asexuality and the ability to survive desiccation at any life stage. Both factors are expected to have a profound influence on their genome structure. Recent molecular studies demonstrated that, although the gene-rich regions of bdelloid genomes are organized as colinear pairs of closely related sequences and depleted in repetitive DNA, subtelomeric regions harbor diverse transposable elements and horizontally acquired genes of foreign origin. Although asexuality is expected to result in depletion of deleterious transposons, only desiccation appears to have the power to produce all the uncovered genomic peculiarities. Repair of desiccation-induced DNA damage would require the presence of a homologous template, maintaining colinear pairs in gene-rich regions and selecting against insertion of repetitive DNA that might cause chromosomal rearrangements. Desiccation may also induce a transient state of competence in recovering animals, allowing them to acquire environmental DNA. Even if bdelloids engage in rare or obscure forms of sexual reproduction, all these features could still be present. The relative contribution of asexuality and desiccation to genome organization may be clarified by analyzing whole-genome sequences and comparing foreign gene and transposon content in species which lost the ability to survive desiccation.
Collapse
Affiliation(s)
- Eugene A Gladyshev
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | |
Collapse
|
159
|
The role of replication bypass pathways in dicentric chromosome formation in budding yeast. Genetics 2010; 186:1161-73. [PMID: 20837992 DOI: 10.1534/genetics.110.122663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gross chromosomal rearrangements (GCRs) are large scale changes to chromosome structure and can lead to human disease. We previously showed in Saccharomyces cerevisiae that nearby inverted repeat sequences (∼20-200 bp of homology, separated by ∼1-5 kb) frequently fuse to form unstable dicentric and acentric chromosomes. Here we analyzed inverted repeat fusion in mutants of three sets of genes. First, we show that genes in the error-free postreplication repair (PRR) pathway prevent fusion of inverted repeats, while genes in the translesion branch have no detectable role. Second, we found that siz1 mutants, which are defective for Srs2 recruitment to replication forks, and srs2 mutants had opposite effects on instability. This may reflect separate roles for Srs2 in different phases of the cell cycle. Third, we provide evidence for a faulty template switch model by studying mutants of DNA polymerases; defects in DNA pol delta (lagging strand polymerase) and Mgs1 (a pol delta interacting protein) lead to a defect in fusion events as well as allelic recombination. Pol delta and Mgs1 may collaborate either in strand annealing and/or DNA replication involved in fusion and allelic recombination events. Fourth, by studying genes implicated in suppression of GCRs in other studies, we found that inverted repeat fusion has a profile of genetic regulation distinct from these other major forms of GCR formation.
Collapse
|
160
|
Nishant KT, Wei W, Mancera E, Argueso JL, Schlattl A, Delhomme N, Ma X, Bustamante CD, Korbel JO, Gu Z, Steinmetz LM, Alani E. The baker's yeast diploid genome is remarkably stable in vegetative growth and meiosis. PLoS Genet 2010; 6:e1001109. [PMID: 20838597 PMCID: PMC2936533 DOI: 10.1371/journal.pgen.1001109] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022] Open
Abstract
Accurate estimates of mutation rates provide critical information to analyze genome evolution and organism fitness. We used whole-genome DNA sequencing, pulse-field gel electrophoresis, and comparative genome hybridization to determine mutation rates in diploid vegetative and meiotic mutation accumulation lines of Saccharomyces cerevisiae. The vegetative lines underwent only mitotic divisions while the meiotic lines underwent a meiotic cycle every ∼20 vegetative divisions. Similar base substitution rates were estimated for both lines. Given our experimental design, these measures indicated that the meiotic mutation rate is within the range of being equal to zero to being 55-fold higher than the vegetative rate. Mutations detected in vegetative lines were all heterozygous while those in meiotic lines were homozygous. A quantitative analysis of intra-tetrad mating events in the meiotic lines showed that inter-spore mating is primarily responsible for rapidly fixing mutations to homozygosity as well as for removing mutations. We did not observe 1-2 nt insertion/deletion (in-del) mutations in any of the sequenced lines and only one structural variant in a non-telomeric location was found. However, a large number of structural variations in subtelomeric sequences were seen in both vegetative and meiotic lines that did not affect viability. Our results indicate that the diploid yeast nuclear genome is remarkably stable during the vegetative and meiotic cell cycles and support the hypothesis that peripheral regions of chromosomes are more dynamic than gene-rich central sections where structural rearrangements could be deleterious. This work also provides an improved estimate for the mutational load carried by diploid organisms.
Collapse
Affiliation(s)
- K. T. Nishant
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Wu Wei
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Juan Lucas Argueso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | | | - Xin Ma
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Carlos D. Bustamante
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Jan O. Korbel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Lars M. Steinmetz
- European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail: (LMS); (EA)
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (LMS); (EA)
| |
Collapse
|
161
|
Šmarda P, Horová L, Bureš P, Hralová I, Marková M. Stabilizing selection on genome size in a population of Festuca pallens under conditions of intensive intraspecific competition. THE NEW PHYTOLOGIST 2010; 187:1195-1204. [PMID: 20561203 DOI: 10.1111/j.1469-8137.2010.03335.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
*Stabilizing selection is a key evolutionary mechanism for which there is relatively little experimental evidence. To date, stabilizing selection has never been observed at the whole-genome level. *We tested the effect of selection on genome size in a field experiment using seeds collected in a population of Festuca pallens with a highly variable genome size. Using flow cytometry, we measured the genome size in germinating seedlings and juvenile plants grown with or without high intraspecific competition (908 individuals). Above-ground biomass and leaf number were used as measurements of individual vegetative performance. The possible confounding effect of seed weight was controlled for in a separate experiment. *Growth under high competition had a significant stabilizing effect on genome size. Because no relationship was observed between genome size and vegetative performance, we assume that the elimination of plants with extreme genome sizes was the result of decreased survival as a consequence of some unrecognized stress. *Our results indicate that genome size may be under direct selection. The equal disadvantaging of either large or small genomes indicates that the selection for optimum genome size in species may be fully context dependent. This study demonstrates the power of competition experiments for the detection of weak selection processes.
Collapse
Affiliation(s)
- Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Lucie Horová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Ivana Hralová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Michaela Marková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| |
Collapse
|
162
|
Abstract
Meiosis in triploids results in four highly aneuploid gametes because six copies of each homolog must be segregated into four meiotic products. Using DNA microarrays and other physical approaches, we examined meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae. In most tetrads with four viable spores, two of the spores had two copies of a given homolog and two spores had only one copy. Chromosomes segregated randomly into viable spores without preferences for generating near haploid or near diploid spores. Using single-nucleotide polymorphisms, we showed that, in most tetrads, all three pairs of homologs recombined. Strains derived from some of the aneuploid spore colonies had very high frequencies of mitotic chromosome loss, resulting in genetically diverse populations of cells.
Collapse
|
163
|
Manthey GM, Bailis AM. Rad51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces cerevisiae. PLoS One 2010; 5:e11889. [PMID: 20686691 PMCID: PMC2912366 DOI: 10.1371/journal.pone.0011889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022] Open
Abstract
Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer.
Collapse
Affiliation(s)
- Glenn M. Manthey
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Adam M. Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
164
|
Resta N, Giorda R, Bagnulo R, Beri S, Della Mina E, Stella A, Piglionica M, Susca FC, Guanti G, Zuffardi O, Ciccone R. Breakpoint determination of 15 large deletions in Peutz-Jeghers subjects. Hum Genet 2010; 128:373-82. [PMID: 20623358 DOI: 10.1007/s00439-010-0859-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 06/30/2010] [Indexed: 12/17/2022]
Abstract
The Peutz-Jeghers Syndrome (PJS) is an autosomal dominant polyposis disorder with increased risk of multiple cancers. STK11/LKB1 (hereafter named STK11) germline mutations account for the large majority of PJS cases whereas large deletions account for about 30% of the cases. We report here the first thorough molecular characterization of 15 large deletions identified in a cohort of 51 clinically well-characterized PJS patients. The deletions were identified by MLPA analysis and characterized by custom CGH-array and quantitative PCR to define their boundaries. The deletions, ranging from 2.9 to 180 kb, removed one or more loci contiguous to the STK11 gene in six patients, while partial STK11 gene deletions were present in the remaining nine cases. By means of DNA sequencing, we were able to precisely characterize the breakpoints in each case. Of the 30 breakpoints, 16 were located in Alu elements, revealing non-allelic homologous recombination (NAHR) as the putative mechanism for the deletions of the STK11 gene, which lays in a region with high Alu density. In the remaining cases, other mechanisms could be hypothesized, such as microhomology-mediated end-joining (MMEJ) or non-homologous end-joining (NHEJ). In conclusion we here demonstrated the non-random occurrence of large deletions associated with PJS. All our patients had a classical PJS phenotype, which shows that haploinsufficiency for SBNO2, C19orf26, ATP5D, MIDN, C19orf23, CIRBP, C19orf24,and EFNA2, does not apparently affect their clinical phenotype.
Collapse
Affiliation(s)
- Nicoletta Resta
- Dipartimento di Biomedicina dell'Età Evolutiva, Sezione di Genetica Medica, Università di Bari Aldo Moro, Policlinico Piazza G. Cesare 11, 70124, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Covo S, Westmoreland JW, Gordenin DA, Resnick MA. Cohesin Is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genet 2010; 6:e1001006. [PMID: 20617204 PMCID: PMC2895640 DOI: 10.1371/journal.pgen.1001006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/27/2010] [Indexed: 01/09/2023] Open
Abstract
Double-strand break (DSB) repair through homologous recombination (HR) is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin) is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage-induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G(2)/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G(2)/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage-induced recombinants in G(2)/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer.
Collapse
Affiliation(s)
- Shay Covo
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - James W. Westmoreland
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
166
|
Selmecki A, Forche A, Berman J. Genomic plasticity of the human fungal pathogen Candida albicans. EUKARYOTIC CELL 2010; 9:991-1008. [PMID: 20495058 PMCID: PMC2901674 DOI: 10.1128/ec.00060-10] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic plasticity of Candida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagated in vitro as well as in vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity in C. albicans may provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs.
Collapse
Affiliation(s)
- Anna Selmecki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
167
|
Russo D, Fronza G, Ottaggio L, Monti P, Perfumo C, Inga A, Iyer P, Gold B, Menichini P. XRCC1 deficiency influences the cytotoxicity and the genomic instability induced by Me-lex, a specific inducer of N3-methyladenine. DNA Repair (Amst) 2010; 9:728-36. [PMID: 20471330 PMCID: PMC2893271 DOI: 10.1016/j.dnarep.2010.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 12/15/2022]
Abstract
Me-lex is a sequence-specific alkylating agent synthesized to preferentially (>90%) generate N3-methyladenine (3-mA) in the minor groove of double-strand DNA, in A-T rich regions. In this paper we investigated the effect of XRCC1 deficiency in the processing of 3-mA adducts generated by Me-lex, through the molecular analysis of the Hprt mutations and the evaluation of cytogenetic end points such as sister chromatid exchanges (SCEs), micronuclei (MN) and nucleus fragmentation. EM-C11 cells, deficient in XRCC1 activity, showed a 2.5-fold higher sensitivity to the toxicity of Me-lex compared to the DNA repair proficient parental CHO-9 cells, but were not hyper mutable. The spontaneous mutation spectrum at the Hprt locus generated in EM-C11 cells revealed a high percentage of genomic deletions. After Me-lex treatment, the percentage of genomic deletions did not increase, but a class of mutations which appeared to target regulatory regions of the gene significantly increased (p=0.0277), suggesting that non-coding Hprt genomic sequences represent a strong target for the rare mutations induced by Me-lex. The number of SCEs per chromosome increased 3-fold above background in 50mucapital EM, Cyrillic Me-lex treated CHO-9 cells, while at higher Me-lex concentrations a sharp increase in the percentage of MN and fragmented nuclei was observed. In EM-C11 cells the background level of SCEs (0.939+/-0.182) was approximately 10-fold higher than in CHO-9 (0.129+/-0.027) and higher levels of multinucleated cells and MN were also found. In EM-C11, even low doses of Me-lex (25microM) led to a significant increase in genomic damage. These results indicate that XRCC1 deficiency can lead to genomic instability even in the absence of an exogenous genotoxic insult and low levels of Me-lex-induced lesions, i.e., 3-mA and/or a BER intermediate, can exacerbate this instability.
Collapse
Affiliation(s)
- Debora Russo
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova
| | - Gilberto Fronza
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova
| | - Laura Ottaggio
- Cytogenetics Unit, Department of Advanced Diagnostic Techniques, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova, Italy
| | - Paola Monti
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova
| | - Chiara Perfumo
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova
| | - Alberto Inga
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova
| | - Prema Iyer
- Department of Pharmaceutical Sciences, University of Pittsburgh, 512 Salk Hall, Pittsburgh, PA 15261 U.S.A
| | - Barry Gold
- Department of Pharmaceutical Sciences, University of Pittsburgh, 512 Salk Hall, Pittsburgh, PA 15261 U.S.A
| | - Paola Menichini
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132-Genova
| |
Collapse
|
168
|
Zhang F, Seeman P, Liu P, Weterman MA, Gonzaga-Jauregui C, Towne CF, Batish SD, De Vriendt E, De Jonghe P, Rautenstrauss B, Krause KH, Khajavi M, Posadka J, Vandenberghe A, Palau F, Van Maldergem L, Baas F, Timmerman V, Lupski JR. Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability. Am J Hum Genet 2010; 86:892-903. [PMID: 20493460 DOI: 10.1016/j.ajhg.2010.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 12/20/2022] Open
Abstract
Genomic rearrangements involving the peripheral myelin protein gene (PMP22) in human chromosome 17p12 are associated with neuropathy: duplications cause Charcot-Marie-Tooth disease type 1A (CMT1A), whereas deletions lead to hereditary neuropathy with liability to pressure palsies (HNPP). Our previous studies showed that >99% of these rearrangements are recurrent and mediated by nonallelic homologous recombination (NAHR). Rare copy number variations (CNVs) generated by nonrecurrent rearrangements also exist in 17p12, but their underlying mechanisms are not well understood. We investigated 21 subjects with rare CNVs associated with CMT1A or HNPP by oligonucleotide-based comparative genomic hybridization microarrays and breakpoint sequence analyses, and we identified 17 unique CNVs, including two genomic deletions, ten genomic duplications, two complex rearrangements, and three small exonic deletions. Each of these CNVs includes either the entire PMP22 gene, or exon(s) only, or ultraconserved potential regulatory sequences upstream of PMP22, further supporting the contention that PMP22 is the critical gene mediating the neuropathy phenotypes associated with 17p12 rearrangements. Breakpoint sequence analysis reveals that, different from the predominant NAHR mechanism in recurrent rearrangement, various molecular mechanisms, including nonhomologous end joining, Alu-Alu-mediated recombination, and replication-based mechanisms (e.g., FoSTeS and/or MMBIR), can generate nonrecurrent 17p12 rearrangements associated with neuropathy. We document a multitude of ways in which gene function can be altered by CNVs. Given the characteristics, including small size, structural complexity, and location outside of coding regions, of selected rare CNVs, their identification remains a challenge for genome analysis. Rare CNVs may potentially represent an important portion of "missing heritability" for human diseases.
Collapse
|
169
|
Chromosome rearrangements and aneuploidy in yeast strains lacking both Tel1p and Mec1p reflect deficiencies in two different mechanisms. Proc Natl Acad Sci U S A 2010; 107:11465-70. [PMID: 20534547 DOI: 10.1073/pnas.1006281107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human ATM and ATR proteins participate in the DNA damage and DNA replication checkpoint pathways and are critical to maintaining genome stability. The Saccharomyces cerevisiae homologs of ATM and ATR are Tel1p and Mec1p, respectively. Haploid tel1 mec1 strains have very short telomeres and very high rates of chromosomal aberrations. Here, we examine genetic stability in tel1 mec1 diploid cells. In the absence of induced DNA damage, these yeast strains had very high frequencies of aneuploidy (both trisomy and monosomy) in addition to elevated rates of chromosome rearrangements. Although we found the aneuploidy in the tel1 mec1 diploids mimicked that observed in bub1 diploids, the tel1 mec1 diploids had a functional spindle assembly checkpoint. Restoration of wild-type telomere lengths in the tel1 mec1 strain substantially reduced the rate of chromosome rearrangements but had no effect on the frequency of aneuploidy.
Collapse
|
170
|
Westmoreland JW, Summers JA, Holland CL, Resnick MA, Lewis LK. Blunt-ended DNA double-strand breaks induced by endonucleases PvuII and EcoRV are poor substrates for repair in Saccharomyces cerevisiae. DNA Repair (Amst) 2010; 9:617-26. [PMID: 20356803 PMCID: PMC2883614 DOI: 10.1016/j.dnarep.2010.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/11/2010] [Accepted: 02/12/2010] [Indexed: 12/26/2022]
Abstract
Most mechanistic studies of repair of DNA double-strand breaks (DSBs) produced by in vivo expression of endonucleases have utilized enzymes that produce cohesive-ended DSBs such as HO, I-SceI and EcoRI. We have developed systems for expression of PvuII and EcoRV, nucleases that produce DSBs containing blunt ends, using a modified GAL1 promoter that has reduced basal activity. Expression of PvuII and EcoRV caused growth inhibition and strong cell killing in both haploid and diploid yeast cells. Surprisingly, there was little difference in sensitivities of wildtype cells and mutants defective in homologous recombination, nonhomologous end-joining (NHEJ), or both pathways. Physical analysis using standard and pulsed field gel electrophoresis demonstrated time-dependent breakage of chromosomal DNA within cells. Although ionizing radiation-induced DSBs were largely repaired within 4h, no repair of PvuII-induced breaks could be detected in diploid cells, even after arrest in G2/M. Rare survivors of PvuII expression had an increased frequency of chromosome XII deletions, an indication that a fraction of the induced DSBs could be repaired by an error-prone process. These results indicate that, unlike DSBs with complementary single-stranded DNA overhangs, blunt-ended DSBs in yeast chromosomes are poor substrates for repair by either NHEJ or recombination.
Collapse
Affiliation(s)
- James W. Westmoreland
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Jennifer A. Summers
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666
| | - Cory L. Holland
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - L. Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666
| |
Collapse
|
171
|
Gladyshev EA, Arkhipova IR. A subtelomeric non-LTR retrotransposon Hebe in the bdelloid rotifer Adineta vaga is subject to inactivation by deletions but not 5' truncations. Mob DNA 2010; 1:12. [PMID: 20359339 PMCID: PMC2861651 DOI: 10.1186/1759-8753-1-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 04/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rotifers of the class Bdelloidea are microscopic freshwater invertebrates best known for: their capacity for anhydrobiosis; the lack of males and meiosis; and for the ability to capture genes from other non-metazoan species. Although genetic exchange between these animals might take place by non-canonical means, the overall lack of meiosis and syngamy should greatly impair the ability of transposable elements (TEs) to spread in bdelloid populations. Previous studies demonstrated that bdelloid chromosome ends, in contrast to gene-rich regions, harbour various kinds of TEs, including specialized telomere-associated retroelements, as well as DNA TEs and retrovirus-like retrotransposons which are prone to horizontal transmission. Vertically-transmitted retrotransposons have not previously been reported in bdelloids and their identification and studies of the patterns of their distribution and evolution could help in the understanding of the high degree of TE compartmentalization within bdelloid genomes. RESULTS We identified and characterized a non-long terminal repeat (LTR) retrotransposon residing primarily in subtelomeric regions of the genome in the bdelloid rotifer Adineta vaga. Contrary to the currently prevailing views on the mode of proliferation of non-LTR retrotransposons, which results in frequent formation of 5'-truncated ('dead-on-arrival') copies due to the premature disengagement of the element-encoded reverse transcriptase from its template, this non-LTR element, Hebe, is represented only by non-5'-truncated copies. Most of these copies, however, were subject to internal deletions associated with microhomologies, a hallmark of non-homologous end-joining events. CONCLUSIONS The non-LTR retrotransposon Hebe from the bdelloid rotifer A. vaga was found to undergo frequent microhomology-associated deletions, rather than 5'-terminal truncations characteristic of this class of retrotransposons, and to exhibit preference for telomeric localization. These findings represent the first example of a vertically transmitted putatively deleterious TE in bdelloids, and may indicate the involvement of microhomology-mediated non-homologous end-joining in desiccation-induced double-strand break repair at the genome periphery.
Collapse
Affiliation(s)
- Eugene A Gladyshev
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
172
|
Navarro-Costa P, Gonçalves J, Plancha CE. The AZFc region of the Y chromosome: at the crossroads between genetic diversity and male infertility. Hum Reprod Update 2010; 16:525-42. [PMID: 20304777 PMCID: PMC2918367 DOI: 10.1093/humupd/dmq005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The three azoospermia factor (AZF) regions of the Y chromosome represent genomic niches for spermatogenesis genes. Yet, the most distal region, AZFc, is a major generator of large-scale variation in the human genome. Determining to what extent this variability affects spermatogenesis is a highly contentious topic in human reproduction. METHODS In this review, an extensive characterization of the molecular mechanisms responsible for AZFc genotypical variation is undertaken. Such data are complemented with the assessment of the clinical consequences for male fertility imputable to the different AZFc variants. For this, a critical re-evaluation of 23 association studies was performed in order to extract unifying conclusions by curtailing methodological heterogeneities. RESULTS Intrachromosomal homologous recombination mechanisms, either crossover or non-crossover based, are the main drivers for AZFc genetic diversity. In particular, rearrangements affecting gene dosage are the most likely to introduce phenotypical disruptions in the spermatogenic profile. In the specific cases of partial AZFc deletions, both the actual existence and the severity of the spermatogenic defect are dependent on the evolutionary background of the Y chromosome. CONCLUSIONS AZFc is one of the most genetically dynamic regions in the human genome. This property may serve as counter against the genetic degeneracy associated with the lack of a meiotic partner. However, such strategy comes at a price: some rearrangements represent a risk factor or a de-facto causative agent of spermatogenic disruption. Interestingly, this precarious balance is modulated, among other yet unknown factors, by the evolutionary history of the Y chromosome.
Collapse
Affiliation(s)
- Paulo Navarro-Costa
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal.
| | | | | |
Collapse
|
173
|
From the Cover: mitotic gene conversion events induced in G1-synchronized yeast cells by gamma rays are similar to spontaneous conversion events. Proc Natl Acad Sci U S A 2010; 107:7383-8. [PMID: 20231456 DOI: 10.1073/pnas.1001940107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a previous study, we mapped spontaneous mitotic reciprocal crossovers (RCOs) in a 120-kb interval of chromosome V of Saccharomyces cerevisiae. About three-quarters of the crossovers were associated with gene conversion tracts. About 40% of these conversion tracts had the pattern expected as a consequence of repair of a double-stranded DNA break (DSB) of an unreplicated chromosome. We test this hypothesis by examining the crossovers and gene conversion events induced by gamma irradiation in G1- and G2-arrested diploid yeast cells. The gene conversion patterns of G1-irradiated cells (but not G2-irradiated cells) mimic conversion events associated with spontaneous RCOs, confirming our previous conclusion that many spontaneous crossovers are initiated by a DSB on an unreplicated chromosome.
Collapse
|
174
|
Abstract
Aberrant DNA replication is a major source of the mutations and chromosome rearrangements that are associated with pathological disorders. When replication is compromised, DNA becomes more prone to breakage. Secondary structures, highly transcribed DNA sequences and damaged DNA stall replication forks, which then require checkpoint factors and specialized enzymatic activities for their stabilization and subsequent advance. These mechanisms ensure that the local DNA damage response, which enables replication fork progression and DNA repair in S phase, is coupled with cell cycle transitions. The mechanisms that operate in eukaryotic cells to promote replication fork integrity and coordinate replication with other aspects of chromosome maintenance are becoming clear.
Collapse
Affiliation(s)
- Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
175
|
Rose AM, O'Neil NJ, Bilenky M, Butterfield YS, Malhis N, Flibotte S, Jones MR, Marra M, Baillie DL, Jones SJM. Genomic sequence of a mutant strain of Caenorhabditis elegans with an altered recombination pattern. BMC Genomics 2010; 11:131. [PMID: 20178641 PMCID: PMC2837035 DOI: 10.1186/1471-2164-11-131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 02/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background The original sequencing and annotation of the Caenorhabditis elegans genome along with recent advances in sequencing technology provide an exceptional opportunity for the genomic analysis of wild-type and mutant strains. Using the Illumina Genome Analyzer, we sequenced the entire genome of Rec-1, a strain that alters the distribution of meiotic crossovers without changing the overall frequency. Rec-1 was derived from ethylmethane sulfonate (EMS)-treated strains, one of which had a high level of transposable element mobility. Sequencing of this strain provides an opportunity to examine the consequences on the genome of altering the distribution of meiotic recombination events. Results Using Illumina sequencing and MAQ software, 83% of the base pair sequence reads were aligned to the reference genome available at Wormbase, providing a 21-fold coverage of the genome. Using the software programs MAQ and Slider, we observed 1124 base pair differences between Rec-1 and the reference genome in Wormbase (WS190), and 441 between the mutagenized Rec-1 (BC313) and the wild-type N2 strain (VC2010). The most frequent base-substitution was G:C to A:T, 141 for the entire genome most of which were on chromosomes I or X, 55 and 31 respectively. With this data removed, no obvious pattern in the distribution of the base differences along the chromosomes was apparent. No major chromosomal rearrangements were observed, but additional insertions of transposable elements were detected. There are 11 extra copies of Tc1, and 8 of Tc2 in the Rec-1 genome, most likely the remains of past high-hopper activity in a progenitor strain. Conclusion Our analysis of high-throughput sequencing was able to detect regions of direct repeat sequences, deletions, insertions of transposable elements, and base pair differences. A subset of sequence alterations affecting coding regions were confirmed by an independent approach using oligo array comparative genome hybridization. The major phenotype of the Rec-1 strain is an alteration in the preferred position of the meiotic recombination event with no other significant phenotypic consequences. In this study, we observed no evidence of a mutator effect at the nucleotide level attributable to the Rec-1 mutation.
Collapse
Affiliation(s)
- Ann M Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Alterations in DNA replication and histone levels promote histone gene amplification in Saccharomyces cerevisiae. Genetics 2010; 184:985-97. [PMID: 20139344 DOI: 10.1534/genetics.109.113662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gene amplification, a process that increases the copy number of a gene or a genomic region to two or more, is utilized by many organisms in response to environmental stress or decreased levels of a gene product. Our previous studies in Saccharomyces cerevisiae identified the amplification of a histone H2A-H2B gene pair, HTA2-HTB2, in response to the deletion of the other H2A-H2B gene pair, HTA1-HTB1. This amplification arises from a recombination event between two flanking Ty1 elements to form a new, stable circular chromosome and occurs at a frequency higher than has been observed for other Ty1-Ty1 recombination events. To understand the regulation of this amplification event, we screened the S. cerevisiae nonessential deletion set for mutations that alter the amplification frequency. Among the deletions that increase HTA2-HTB2 amplification frequency, we identified those that either decrease DNA replication fork progression (rrm3Delta, dpb3Delta, dpb4Delta, and clb5Delta) or that reduce histone H3-H4 levels (hht2-hhf2Delta). These two classes are related because reduced histone H3-H4 levels increase replication fork pauses, and impaired replication forks cause a reduction in histone levels. Consistent with our mutant screen, we found that the introduction of DNA replication stress by hydroxyurea induces the HTA2-HTB2 amplification event. Taken together, our results suggest that either reduced histone levels or slowed replication forks stimulate the HTA2-HTB2 amplification event, contributing to the restoration of normal chromatin structure.
Collapse
|
177
|
Abstract
Genome rearrangements are often associated with genome instability observed in cancer and other pathological disorders. Different types of repeat elements are common in genomes and are prone to instability. S-phase checkpoints, recombination, and telomere maintenance pathways have been implicated in suppressing chromosome rearrangements, but little is known about the molecular mechanisms and the chromosome intermediates generating such genome-wide instability. In the December 15, 2009, issue of Genes & Development, two studies by Paek and colleagues (2861-2875) and Mizuno and colleagues (pp. 2876-2886), demonstrate that nearby inverted repeats in budding and fission yeasts recombine spontaneously and frequently to form dicentric and acentric chromosomes. The recombination mechanism underlying this phenomenon does not appear to require double-strand break formation, and is likely caused by a replication mechanism involving template switching.
Collapse
|
178
|
Pannunzio NR, Manthey GM, Bailis AM. RAD59 and RAD1 cooperate in translocation formation by single-strand annealing in Saccharomyces cerevisiae. Curr Genet 2009; 56:87-100. [PMID: 20012294 PMCID: PMC2808509 DOI: 10.1007/s00294-009-0282-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 11/30/2022]
Abstract
Studies in the budding yeast, Saccharomyces cerevisiae, have demonstrated that a substantial fraction of double-strand break repair following acute radiation exposure involves homologous recombination between repetitive genomic elements. We have previously described an assay in S. cerevisiae that allows us to model how repair of multiple breaks leads to the formation of chromosomal translocations by single-strand annealing (SSA) and found that Rad59, a paralog of the single-stranded DNA annealing protein Rad52, is critically important in this process. We have constructed several rad59 missense alleles to study its function more closely. Characterization of these mutants revealed proportional defects in both translocation formation and spontaneous direct-repeat recombination, which is also thought to occur by SSA. Combining the rad59 missense alleles with a null allele of RAD1, which encodes a subunit of a nuclease required for the removal of non-homologous tails from annealed intermediates, substantially suppressed the low frequency of translocations observed in rad1-null single mutants. These data suggest that at least one role of Rad59 in translocation formation by SSA is supporting the machinery required for cleavage of non-homologous tails.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
179
|
Manthey GM, Naik N, Bailis AM. Msh2 blocks an alternative mechanism for non-homologous tail removal during single-strand annealing in Saccharomyces cerevisiae. PLoS One 2009; 4:e7488. [PMID: 19834615 PMCID: PMC2759526 DOI: 10.1371/journal.pone.0007488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/25/2009] [Indexed: 11/19/2022] Open
Abstract
Chromosomal translocations are frequently observed in cells exposed to agents that cause DNA double-strand breaks (DSBs), such as ionizing radiation and chemotherapeutic drugs, and are often associated with tumors in mammals. Recently, translocation formation in the budding yeast, Saccharomyces cerevisiae, has been found to occur at high frequencies following the creation of multiple DSBs adjacent to repetitive sequences on non-homologous chromosomes. The genetic control of translocation formation and the chromosome complements of the clones that contain translocations suggest that translocation formation occurs by single-strand annealing (SSA). Among the factors important for translocation formation by SSA is the central mismatch repair (MMR) and homologous recombination (HR) factor, Msh2. Here we describe the effects of several msh2 missense mutations on translocation formation that suggest that Msh2 has separable functions in stabilizing annealed single strands, and removing non-homologous sequences from their ends. Additionally, interactions between the msh2 alleles and a null allele of RAD1, which encodes a subunit of a nuclease critical for the removal of non-homologous tails suggest that Msh2 blocks an alternative mechanism for removing these sequences. These results suggest that Msh2 plays multiple roles in the formation of chromosomal translocations following acute levels of DNA damage.
Collapse
Affiliation(s)
- Glenn M. Manthey
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Nilan Naik
- Scripps College Post-Baccalaureate Premedical Program, Claremont, California, United States of America
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
180
|
Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 2009; 19:2258-70. [PMID: 19812109 DOI: 10.1101/gr.091777.109] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (approximately 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Collapse
Affiliation(s)
- Juan Lucas Argueso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Westmoreland J, Ma W, Yan Y, Van Hulle K, Malkova A, Resnick MA. RAD50 is required for efficient initiation of resection and recombinational repair at random, gamma-induced double-strand break ends. PLoS Genet 2009; 5:e1000656. [PMID: 19763170 PMCID: PMC2734177 DOI: 10.1371/journal.pgen.1000656] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 08/19/2009] [Indexed: 11/19/2022] Open
Abstract
Resection of DNA double-strand break (DSB) ends is generally considered a critical determinant in pathways of DSB repair and genome stability. Unlike for enzymatically induced site-specific DSBs, little is known about processing of random “dirty-ended” DSBs created by DNA damaging agents such as ionizing radiation. Here we present a novel system for monitoring early events in the repair of random DSBs, based on our finding that single-strand tails generated by resection at the ends of large molecules in budding yeast decreases mobility during pulsed field gel electrophoresis (PFGE). We utilized this “PFGE-shift” to follow the fate of both ends of linear molecules generated by a single random DSB in circular chromosomes. Within 10 min after γ-irradiation of G2/M arrested WT cells, there is a near-synchronous PFGE-shift of the linearized circular molecules, corresponding to resection of a few hundred bases. Resection at the radiation-induced DSBs continues so that by the time of significant repair of DSBs at 1 hr there is about 1–2 kb resection per DSB end. The PFGE-shift is comparable in WT and recombination-defective rad52 and rad51 strains but somewhat delayed in exo1 mutants. However, in rad50 and mre11 null mutants the initiation and generation of resected ends at radiation-induced DSB ends is greatly reduced in G2/M. Thus, the Rad50/Mre11/Xrs2 complex is responsible for rapid processing of most damaged ends into substrates that subsequently undergo recombinational repair. A similar requirement was found for RAD50 in asynchronously growing cells. Among the few molecules exhibiting shift in the rad50 mutant, the residual resection is consistent with resection at only one of the DSB ends. Surprisingly, within 1 hr after irradiation, double-length linear molecules are detected in the WT and rad50, but not in rad52, strains that are likely due to crossovers that are largely resection- and RAD50-independent. Double-strand breaks (DSBs) in chromosomal DNA are common sources of genomic change that may be beneficial or deleterious to an organism, from yeast to humans. While they can arise through programmed cellular events, DSBs are frequently associated with defective chromosomal replication, and they are induced by various types of DNA damaging agents such as those employed in cancer therapy, especially ionizing radiation. Elaborate systems have evolved for DSB recognition and subsequent repair, either by homologous recombination or by direct joining of ends. Although much is known about repair mechanisms associated with defined, artificially produced DSBs, there is a relative dearth of information about events surrounding random DSBs. Using a novel, yeast-based system that is applicable to other organisms, we have addressed resection at DSBs, considered a first step in repair. We provide the first direct evidence that cells possess a highly efficient system for recognition and initiation of resection at γ-radiation–induced dirty ends and that the resection is largely dependent on the Rad50/Mre11/Xrs2 complex, identified by the RAD50 gene. The system provides unique opportunities to address other components in resection and repair as well as to identify the contribution of random DSBs and resection to genome instability resulting from other DNA damaging agents.
Collapse
Affiliation(s)
- Jim Westmoreland
- Chromosome Stability Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Wenjian Ma
- Chromosome Stability Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Yan Yan
- Chromosome Stability Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Kelly Van Hulle
- Biology Department, Indiana University–Purdue University, Indianapolis, Indiana, United States of America
| | - Anna Malkova
- Biology Department, Indiana University–Purdue University, Indianapolis, Indiana, United States of America
| | - Michael A. Resnick
- Chromosome Stability Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
182
|
Di Rienzi SC, Collingwood D, Raghuraman MK, Brewer BJ. Fragile genomic sites are associated with origins of replication. Genome Biol Evol 2009; 1:350-63. [PMID: 20333204 PMCID: PMC2817429 DOI: 10.1093/gbe/evp034] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2009] [Indexed: 01/03/2023] Open
Abstract
Genome rearrangements are mediators of evolution and disease. Such rearrangements are frequently bounded by transfer RNAs (tRNAs), transposable elements, and other repeated elements, suggesting a functional role for these elements in creating or repairing breakpoints. Though not well explored, there is evidence that origins of replication also colocalize with breakpoints. To investigate a potential correlation between breakpoints and origins, we analyzed evolutionary breakpoints defined between Saccharomyces cerevisiae and Kluyveromyces waltii and S. cerevisiae and a hypothetical ancestor of both yeasts, as well as breakpoints reported in the experimental literature. We find that origins correlate strongly with both evolutionary breakpoints and those described in the literature. Specifically, we find that origins firing earlier in S phase are more strongly correlated with breakpoints than are later-firing origins. Despite origins being located in genomic regions also bearing tRNAs and Ty elements, the correlation we observe between origins and breakpoints appears to be independent of these genomic features. This study lays the groundwork for understanding the mechanisms by which origins of replication may impact genome architecture and disease.
Collapse
|
183
|
Abstract
High-throughput DNA analyses are increasingly being used to detect rare mutations in moderately sized genomes. These methods have yielded genome mutation rates that are markedly higher than those obtained using pre-genomic strategies. Recent work in a variety of organisms has shown that mutation rate is strongly affected by sequence context and genome position. These observations suggest that high-throughput DNA analyses will ultimately allow researchers to identify trans-acting factors and cis sequences that underlie mutation rate variation. Such work should provide insights on how mutation rate variability can impact genome organization and disease progression.
Collapse
Affiliation(s)
- Koodali T Nishant
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
184
|
Aneuploidy and improved growth are coincident but not causal in a yeast cancer model. PLoS Biol 2009; 7:e1000161. [PMID: 19636358 PMCID: PMC2708349 DOI: 10.1371/journal.pbio.1000161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 06/16/2009] [Indexed: 11/19/2022] Open
Abstract
Aneuploidy is a hallmark of cancer cells and is assumed to play a causative role. This relationship is dissected in a yeast, with results that show that anueploidy can be removed, but cells maintain their proliferative advantage. Cancer cells have acquired mutations that alter their growth. Aneuploidy that typify cancer cells are often assumed to contribute to the abnormal growth characteristics. Here we test the idea of a link between aneuploidy and mutations allowing improved growth, using Saccharomyces cerevisiae containing a mcm4 helicase allele that was shown to cause cancer in mice. Yeast bearing this mcm4 allele are prone to undergoing a “hypermutable phase” characterized by a changing karyotype, ultimately yielding progeny with improved growth properties. When such progeny are returned to a normal karyotype by mating, their improved growth remains. Genetic analysis shows their improved growth is due to mutations in just a few loci. In sum, the effects of the mcm4 allele in mice are recapitulated in yeast, and the aneuploidy is not required to maintain improved growth. Aneuploidy, an abnormality in chromosome number and structure, occurs commonly in cancers and has been suggested to be required to maintain accelerated cell proliferation. However, this hypothesis remains untested as it is not possible to selectively remove the acquired aneuploidy in cells that already have altered growth. Using a yeast model bearing mcm4Chaos3, an allele that causes mammary tumors in mice, these technical hurdles in animal cells can be overcome. We show that aneuploidy is not responsible for accelerated proliferation in yeast but mutations in just a few loci are. This study provides an excellent example of how a complex disease can be dissected in a simple model organism, and that the information extracted from yeast may be used to guide mammalian studies.
Collapse
|
185
|
Chromosome aberrations resulting from double-strand DNA breaks at a naturally occurring yeast fragile site composed of inverted ty elements are independent of Mre11p and Sae2p. Genetics 2009; 183:423-39, 1SI-26SI. [PMID: 19635935 DOI: 10.1534/genetics.109.106385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic instability at palindromes and spaced inverted repeats (IRs) leads to chromosome rearrangements. Perfect palindromes and IRs with short spacers can extrude as cruciforms or fold into hairpins on the lagging strand during replication. Cruciform resolution produces double-strand breaks (DSBs) with hairpin-capped ends, and Mre11p and Sae2p are required to cleave the hairpin tips to facilitate homologous recombination. Fragile site 2 (FS2) is a naturally occurring IR in Saccharomyces cerevisiae composed of a pair of Ty1 elements separated by approximately 280 bp. Our results suggest that FS2 forms a hairpin, rather than a cruciform, during replication in cells with low levels of DNA polymerase. Cleavage of this hairpin results in a recombinogenic DSB. We show that DSB formation at FS2 does not require Mre11p, Sae2p, Rad1p, Slx4p, Pso2p, Exo1p, Mus81p, Yen1p, or Rad27p. Also, repair of DSBs by homologous recombination is efficient in mre11 and sae2 mutants. Homologous recombination is impaired at FS2 in rad52 mutants and most aberrations reflect either joining of two broken chromosomes in a "half crossover" or telomere capping of the break. In support of hairpin formation precipitating DSBs at FS2, two telomere-capped deletions had a breakpoint near the center of the IR. In summary, Mre11p and Sae2p are not required for DSB formation at FS2 or the subsequent repair of these DSBs.
Collapse
|
186
|
Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty. BMC Genomics 2009; 10:334. [PMID: 19630942 PMCID: PMC2736999 DOI: 10.1186/1471-2164-10-334] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 07/24/2009] [Indexed: 11/30/2022] Open
Abstract
Background Large-scale genome rearrangements brought about by chromosome breaks underlie numerous inherited diseases, initiate or promote many cancers and are also associated with karyotype diversification during species evolution. Recent research has shown that these breakpoints are nonrandomly distributed throughout the mammalian genome and many, termed "evolutionary breakpoints" (EB), are specific genomic locations that are "reused" during karyotypic evolution. When the phylogenetic trajectory of orthologous chromosome segments is considered, many of these EB are coincident with ancient centromere activity as well as new centromere formation. While EB have been characterized as repeat-rich regions, it has not been determined whether specific sequences have been retained during evolution that would indicate previous centromere activity or a propensity for new centromere formation. Likewise, the conservation of specific sequence motifs or classes at EBs among divergent mammalian taxa has not been determined. Results To define conserved sequence features of EBs associated with centromere evolution, we performed comparative sequence analysis of more than 4.8 Mb within the tammar wallaby, Macropus eugenii, derived from centromeric regions (CEN), euchromatic regions (EU), and an evolutionary breakpoint (EB) that has undergone convergent breakpoint reuse and past centromere activity in marsupials. We found a dramatic enrichment for long interspersed nucleotide elements (LINE1s) and endogenous retroviruses (ERVs) and a depletion of short interspersed nucleotide elements (SINEs) shared between CEN and EBs. We analyzed the orthologous human EB (14q32.33), known to be associated with translocations in many cancers including multiple myelomas and plasma cell leukemias, and found a conserved distribution of similar repetitive elements. Conclusion Our data indicate that EBs tracked within the class Mammalia harbor sequence features retained since the divergence of marsupials and eutherians that may have predisposed these genomic regions to large-scale chromosomal instability.
Collapse
|
187
|
Vissers LE, Bhatt SS, Janssen IM, Xia Z, Lalani SR, Pfundt R, Derwinska K, de Vries BB, Gilissen C, Hoischen A, Nesteruk M, Wisniowiecka-Kowalnik B, Smyk M, Brunner HG, Cheung SW, van Kessel AG, Veltman JA, Stankiewicz P. Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture. Hum Mol Genet 2009; 18:3579-93. [DOI: 10.1093/hmg/ddp306] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
188
|
Huang J, Ma L, Sundararajan S, Fei SZ, Li L. Visualization by atomic force microscopy and FISH of the 45S rDNA gaps in mitotic chromosomes of Lolium perenne. PROTOPLASMA 2009; 236:59-65. [PMID: 19468820 DOI: 10.1007/s00709-009-0051-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 05/04/2009] [Indexed: 05/12/2023]
Abstract
The mitotic chromosome structure of 45S rDNA site gaps in Lolium perenne was studied by atomic force microscope (AFM) combining with fluorescence in situ hybridization (FISH) analysis in the present study. FISH on the mitotic chromosomes showed that 45S rDNA gaps were completely broken or local despiralizations of the chromatid which had the appearance of one or a few thin DNA fiber threads. Topography imaging using AFM confirmed these observations. In addition, AFM imaging showed that the broken end of the chromosome fragment lacking the 45S rDNA was sharper, suggesting high condensation. In contrast, the broken ends containing the 45S rDNA or thin 45S rDNA fibers exhibited lower density and were uncompacted. Higher magnification visualization by AFM of the terminals of decondensed 45S rDNA chromatin indicated that both ends containing the 45S rDNA also exhibited lower density zones. The measured height of a decondensed 45S rDNA chromatin as obtained from the AFM image was about 55-65 nm, composed of just two 30-nm single fibers of chromatin. FISH in flow-sorted G2 interphase nuclei showed that 45S rDNA was highly decondensed in more than 90% of the G2/M nuclei. Our results suggested that a failure of the complex folding of the chromatin fibers occurred at 45S rDNA sites, resulting in gap formation or break.
Collapse
Affiliation(s)
- Jing Huang
- Key laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
189
|
Gordon JL, Byrne KP, Wolfe KH. Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome. PLoS Genet 2009; 5:e1000485. [PMID: 19436716 PMCID: PMC2675101 DOI: 10.1371/journal.pgen.1000485] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 04/20/2009] [Indexed: 11/26/2022] Open
Abstract
Comparative genomics can be used to infer the history of genomic rearrangements that occurred during the evolution of a species. We used the principle of parsimony, applied to aligned synteny blocks from 11 yeast species, to infer the gene content and gene order that existed in the genome of an extinct ancestral yeast about 100 Mya, immediately before it underwent whole-genome duplication (WGD). The reconstructed ancestral genome contains 4,703 ordered loci on eight chromosomes. The reconstruction is complete except for the subtelomeric regions. We then inferred the series of rearrangement steps that led from this ancestor to the current Saccharomyces cerevisiae genome; relative to the ancestral genome we observe 73 inversions, 66 reciprocal translocations, and five translocations involving telomeres. Some fragile chromosomal sites were reused as evolutionary breakpoints multiple times. We identified 124 genes that have been gained by S. cerevisiae in the time since the WGD, including one that is derived from a hAT family transposon, and 88 ancestral loci at which S. cerevisiae did not retain either of the gene copies that were formed by WGD. Sites of gene gain and evolutionary breakpoints both tend to be associated with tRNA genes and, to a lesser extent, with origins of replication. Many of the gained genes in S. cerevisiae have functions associated with ethanol production, growth in hypoxic environments, or the uptake of alternative nutrient sources.
Collapse
Affiliation(s)
- Jonathan L. Gordon
- Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Kevin P. Byrne
- Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | | |
Collapse
|
190
|
D'Angelo CS, Gajecka M, Kim CA, Gentles AJ, Glotzbach CD, Shaffer LG, Koiffmann CP. Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements. Hum Genet 2009; 125:551-63. [PMID: 19271239 DOI: 10.1007/s00439-009-0650-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/25/2009] [Indexed: 12/23/2022]
Abstract
The mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has made important contributions to this line of inquiry. Despite the unique architecture of segmental duplications inherent to human subtelomeres, no common mechanism has been identified thus far and different nonexclusive recombination-repair mechanisms seem to predominate. In order to gain further insights into the mechanisms of chromosome breakage, repair, and stabilization mediating subtelomeric rearrangements in humans, we investigated the constitutional rearrangements of 1p36. Cloning of the breakpoint junctions in a complex rearrangement and three non-reciprocal translocations revealed similarities at the junctions, such as microhomology of up to three nucleotides, along with no significant sequence identity in close proximity to the breakpoint regions. All the breakpoints appeared to be unique and their occurrence was limited to non-repetitive, unique DNA sequences. Several recombination- or cleavage-associated motifs that may promote non-homologous recombination were observed in close proximity to the junctions. We conclude that NHEJ is likely the mechanism of DNA repair that generates these rearrangements. Additionally, two apparently pure terminal deletions were also investigated, and the refinement of the breakpoint regions identified two distinct genomic intervals ~25-kb apart, each containing a series of 1p36 specific segmental duplications with 90-98% identity. Segmental duplications can serve as substrates for ectopic homologous recombination or stimulate genomic rearrangements.
Collapse
Affiliation(s)
- Carla S D'Angelo
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano, Instituto de Biociências, Universidade de São Paulo, SP CEP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
191
|
|
192
|
Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S, Nakamura N, Shimonaga T, Hattori M, Ashikari T. Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 2009; 16:115-29. [PMID: 19261625 PMCID: PMC2673734 DOI: 10.1093/dnares/dsp003] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.
Collapse
Affiliation(s)
- Yoshihiro Nakao
- R&D Planning Division, Suntory Limited, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Daly MJ. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 2009; 7:237-45. [PMID: 19172147 DOI: 10.1038/nrmicro2073] [Citation(s) in RCA: 329] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In classical models of radiation toxicity, DNA is the molecule that is most affected by ionizing radiation (IR). However, recent data show that the amount of protein damage caused during irradiation of bacteria is better related to survival than to DNA damage. In this Opinion article, a new model is presented in which proteins are the most important target in the hierarchy of macromolecules affected by IR. A first line of defence against IR in extremely radiation-resistant bacteria might be the accumulation of manganese complexes, which can prevent the production of iron-dependent reactive oxygen species. This would allow an irradiated cell to protect sufficient enzymatic activity needed to repair DNA and survive.
Collapse
Affiliation(s)
- Michael J Daly
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
194
|
The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 2008; 4:e1000303. [PMID: 19079573 PMCID: PMC2586090 DOI: 10.1371/journal.pgen.1000303] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 11/07/2008] [Indexed: 01/07/2023] Open
Abstract
The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based techniques to characterize genetic changes—including point mutations, structural changes, and insertion variation—that resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in either glucose, sulfate, or phosphate-limited chemostats for ∼200 generations. We identified frequent genomic amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely global patterns of gene expression, and to increases in fitness by 5–50%. We found that the spectrum of available mutations in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive mutations (e.g., transporter gene amplifications) to known features of the relevant metabolic pathways, but many of the mutations pointed to genes not previously associated with the relevant physiology. Thus, in addition to answering basic mechanistic questions about evolutionary mechanisms, our work suggests that experimental evolution can also shed light on the function and regulation of individual metabolic pathways. Adaptive evolution is a central biological process that underlies diverse phenomena from the acquisition of antibiotic resistance by microbes to the evolution of niche specialization. Two unresolved questions regarding adaptive evolution are what types of genomic variation are associated with adaptation and how repeatable is the process. We evolved yeast populations for more than 200 generations in nutrient-limited chemostats. We find that the phenotype of adapted individuals, as measured using global gene expression, is much less variable in clones adapted to sulfate limitation than either glucose or phosphate limitation. We comprehensively analyzed the genomes of adapted clones and found that those adapted to sulfate limitation almost invariably carry amplifications of the gene encoding a sulfur transporter, but the mutations in individuals adapted to glucose and phosphate limitation are much more diverse. This parallelism holds true at the level of single-nucleotide mutations. Although there may be other paths to adapt to sulfate limitation, one path confers a much greater advantage than all others so it dominates. By contrast, there are a number of ways to adapt to glucose and phosphate limitation that confer similar advantages. We conclude that the reproducibility of evolution depends on the specific selective pressure experienced by the organism.
Collapse
|
195
|
Babu MM, Janga SC, de Santiago I, Pombo A. Eukaryotic gene regulation in three dimensions and its impact on genome evolution. Curr Opin Genet Dev 2008; 18:571-82. [PMID: 19007886 DOI: 10.1016/j.gde.2008.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/07/2008] [Accepted: 10/09/2008] [Indexed: 12/11/2022]
Abstract
Recent advances in molecular techniques and high-resolution imaging are beginning to provide exciting insights into the higher order chromatin organization within the cell nucleus and its influence on eukaryotic gene regulation. This improved understanding of gene regulation also raises fundamental questions about how spatial features might have constrained the organization of genes on eukaryotic chromosomes and how mutations that affect these processes might contribute to disease conditions. In this review, we discuss recent studies that highlight the role of spatial components in gene regulation and their impact on genome evolution. We then address implications for human diseases and outline new directions for future research.
Collapse
Affiliation(s)
- M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | |
Collapse
|
196
|
|