151
|
Analysis of RNA Modifications by Second- and Third-Generation Deep Sequencing: 2020 Update. Genes (Basel) 2021; 12:genes12020278. [PMID: 33669207 PMCID: PMC7919787 DOI: 10.3390/genes12020278] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
The precise mapping and quantification of the numerous RNA modifications that are present in tRNAs, rRNAs, ncRNAs/miRNAs, and mRNAs remain a major challenge and a top priority of the epitranscriptomics field. After the keystone discoveries of massive m6A methylation in mRNAs, dozens of deep sequencing-based methods and protocols were proposed for the analysis of various RNA modifications, allowing us to considerably extend the list of detectable modified residues. Many of the currently used methods rely on the particular reverse transcription signatures left by RNA modifications in cDNA; these signatures may be naturally present or induced by an appropriate enzymatic or chemical treatment. The newest approaches also include labeling at RNA abasic sites that result from the selective removal of RNA modification or the enhanced cleavage of the RNA ribose-phosphate chain (perhaps also protection from cleavage), followed by specific adapter ligation. Classical affinity/immunoprecipitation-based protocols use either antibodies against modified RNA bases or proteins/enzymes, recognizing RNA modifications. In this survey, we review the most recent achievements in this highly dynamic field, including promising attempts to map RNA modifications by the direct single-molecule sequencing of RNA by nanopores.
Collapse
|
152
|
Debnath TK, Xhemalçe B. Deciphering RNA modifications at base resolution: from chemistry to biology. Brief Funct Genomics 2021; 20:77-85. [PMID: 33454749 DOI: 10.1093/bfgp/elaa024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023] Open
Abstract
Nearly 200 distinct chemical modifications of RNAs have been discovered to date. Their analysis via direct methods has been possible in abundant RNA species, such as ribosomal, transfer or viral RNA, since several decades. However, their analysis in less abundant RNAs species, especially cellular messenger RNAs, was rendered possible only recently with the advent of high throughput sequencing techniques. Given the growing biomedical interest of the proteins that write, erase and read RNA modifications, ingenious new methods to enrich and identify RNA modifications at base resolution have been implemented, and more efforts are underway to render them more quantitative. Here, we review several crucial modification-specific (bio)chemical approaches and discuss their advantages and shortcomings for exploring the epitranscriptome.
Collapse
Affiliation(s)
- Turja K Debnath
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712 Austin TX, USA
| | - Blerta Xhemalçe
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712 Austin TX, USA
| |
Collapse
|
153
|
RNA Metabolism Guided by RNA Modifications: The Role of SMUG1 in rRNA Quality Control. Biomolecules 2021; 11:biom11010076. [PMID: 33430019 PMCID: PMC7826747 DOI: 10.3390/biom11010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are essential for proper RNA processing, quality control, and maturation steps. In the last decade, some eukaryotic DNA repair enzymes have been shown to have an ability to recognize and process modified RNA substrates and thereby contribute to RNA surveillance. Single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1) is a base excision repair enzyme that not only recognizes and removes uracil and oxidized pyrimidines from DNA but is also able to process modified RNA substrates. SMUG1 interacts with the pseudouridine synthase dyskerin (DKC1), an enzyme essential for the correct assembly of small nucleolar ribonucleoproteins (snRNPs) and ribosomal RNA (rRNA) processing. Here, we review rRNA modifications and RNA quality control mechanisms in general and discuss the specific function of SMUG1 in rRNA metabolism. Cells lacking SMUG1 have elevated levels of immature rRNA molecules and accumulation of 5-hydroxymethyluridine (5hmU) in mature rRNA. SMUG1 may be required for post-transcriptional regulation and quality control of rRNAs, partly by regulating rRNA and stability.
Collapse
|
154
|
Chen K, Song B, Tang Y, Wei Z, Xu Q, Su J, de Magalhães JP, Rigden DJ, Meng J. RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis. Nucleic Acids Res 2021; 49:D1396-D1404. [PMID: 33010174 PMCID: PMC7778951 DOI: 10.1093/nar/gkaa790] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Deciphering the biological impacts of millions of single nucleotide variants remains a major challenge. Recent studies suggest that RNA modifications play versatile roles in essential biological mechanisms, and are closely related to the progression of various diseases including multiple cancers. To comprehensively unveil the association between disease-associated variants and their epitranscriptome disturbance, we built RMDisease, a database of genetic variants that can affect RNA modifications. By integrating the prediction results of 18 different RNA modification prediction tools and also 303,426 experimentally-validated RNA modification sites, RMDisease identified a total of 202,307 human SNPs that may affect (add or remove) sites of eight types of RNA modifications (m6A, m5C, m1A, m5U, Ψ, m6Am, m7G and Nm). These include 4,289 disease-associated variants that may imply disease pathogenesis functioning at the epitranscriptome layer. These SNPs were further annotated with essential information such as post-transcriptional regulations (sites for miRNA binding, interaction with RNA-binding proteins and alternative splicing) revealing putative regulatory circuits. A convenient graphical user interface was constructed to support the query, exploration and download of the relevant information. RMDisease should make a useful resource for studying the epitranscriptome impact of genetic variants via multiple RNA modifications with emphasis on their potential disease relevance. RMDisease is freely accessible at: www.xjtlu.edu.cn/biologicalsciences/rmd.
Collapse
Affiliation(s)
- Kunqi Chen
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX Liverpool, UK
| | - Bowen Song
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
- Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Yujiao Tang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Zhen Wei
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Qingru Xu
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Jionglong Su
- Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | | | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Jia Meng
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
- AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
155
|
Abstract
The mRNA epitranscriptome imparts diversity to gene expression by installing chemical modifications. Advances in detection methods have identified chemical modifications in eukaryotic, bacterial, and viral messenger RNAs (mRNAs). The biological functions of modifications in mRNAs still remain to be understood. Chemical modifications are introduced in synthetic mRNAs meant for therapeutic applications to maximize expression from the synthetic mRNAs and to evade the host immune response. This overview provides a background of chemical modifications found in mRNAs, with an emphasis on pseudouridine and its known effects on the mRNA life cycle, its potential applications in synthetic mRNA, and the methods used to assess its effects on mRNA translation.
Collapse
Affiliation(s)
- Bijoyita Roy
- RNA and Genome Editing, New England Biolabs Inc, Ipswich, MA, USA.
| |
Collapse
|
156
|
Loss of Pseudouridine Synthases in the RluA Family Causes Hypersensitive Nociception in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:4425-4438. [PMID: 33028630 PMCID: PMC7718762 DOI: 10.1534/g3.120.401767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nociceptive neurons of Drosophila melanogaster larvae are characterized by highly branched dendritic processes whose proper morphogenesis relies on a large number of RNA-binding proteins. Post-transcriptional regulation of RNA in these dendrites has been found to play an important role in their function. Here, we investigate the neuronal functions of two putative RNA modification genes, RluA-1 and RluA-2, which are predicted to encode pseudouridine synthases. RluA-1 is specifically expressed in larval sensory neurons while RluA-2 expression is ubiquitous. Nociceptor-specific RNAi knockdown of RluA-1 caused hypersensitive nociception phenotypes, which were recapitulated with genetic null alleles. These were rescued with genomic duplication and nociceptor-specific expression of UAS- RluA-1 -cDNA As with RluA-1, RluA-2 loss of function mutants also displayed hyperalgesia. Interestingly, nociceptor neuron dendrites showed a hyperbranched morphology in the RluA-1 mutants. The latter may be a cause or a consequence of heightened sensitivity in mutant nociception behaviors.
Collapse
|
157
|
Abstract
Following its transcription, RNA can be modified by >170 chemically distinct types of modifications - the epitranscriptome. In recent years, there have been substantial efforts to uncover and characterize the modifications present on mRNA, motivated by the potential of such modifications to regulate mRNA fate and by discoveries and advances in our understanding of N 6-methyladenosine (m6A). Here, we review our knowledge regarding the detection, distribution, abundance, biogenesis, functions and possible mechanisms of action of six of these modifications - pseudouridine (Ψ), 5-methylcytidine (m5C), N 1-methyladenosine (m1A), N 4-acetylcytidine (ac4C), ribose methylations (Nm) and N 7-methylguanosine (m7G). We discuss the technical and analytical aspects that have led to inconsistent conclusions and controversies regarding the abundance and distribution of some of these modifications. We further highlight shared commonalities and important ways in which these modifications differ with respect to m6A, based on which we speculate on their origin and their ability to acquire functions over evolutionary timescales.
Collapse
|
158
|
RNA methylations in human cancers. Semin Cancer Biol 2020; 75:97-115. [DOI: 10.1016/j.semcancer.2020.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022]
|
159
|
Zhao LY, Song J, Liu Y, Song CX, Yi C. Mapping the epigenetic modifications of DNA and RNA. Protein Cell 2020; 11:792-808. [PMID: 32440736 PMCID: PMC7647981 DOI: 10.1007/s13238-020-00733-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/16/2020] [Indexed: 02/05/2023] Open
Abstract
Over 17 and 160 types of chemical modifications have been identified in DNA and RNA, respectively. The interest in understanding the various biological functions of DNA and RNA modifications has lead to the cutting-edged fields of epigenomics and epitranscriptomics. Developing chemical and biological tools to detect specific modifications in the genome or transcriptome has greatly facilitated their study. Here, we review the recent technological advances in this rapidly evolving field. We focus on high-throughput detection methods and biological findings for these modifications, and discuss questions to be addressed as well. We also summarize third-generation sequencing methods, which enable long-read and single-molecule sequencing of DNA and RNA modification.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yibin Liu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
160
|
Chen X, Xiong Y, Liu Y, Chen Y, Bi S, Zhu X. m5CPred-SVM: a novel method for predicting m5C sites of RNA. BMC Bioinformatics 2020; 21:489. [PMID: 33126851 PMCID: PMC7602301 DOI: 10.1186/s12859-020-03828-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND As one of the most common post-transcriptional modifications (PTCM) in RNA, 5-cytosine-methylation plays important roles in many biological functions such as RNA metabolism and cell fate decision. Through accurate identification of 5-methylcytosine (m5C) sites on RNA, researchers can better understand the exact role of 5-cytosine-methylation in these biological functions. In recent years, computational methods of predicting m5C sites have attracted lots of interests because of its efficiency and low-cost. However, both the accuracy and efficiency of these methods are not satisfactory yet and need further improvement. RESULTS In this work, we have developed a new computational method, m5CPred-SVM, to identify m5C sites in three species, H. sapiens, M. musculus and A. thaliana. To build this model, we first collected benchmark datasets following three recently published methods. Then, six types of sequence-based features were generated based on RNA segments and the sequential forward feature selection strategy was used to obtain the optimal feature subset. After that, the performance of models based on different learning algorithms were compared, and the model based on the support vector machine provided the highest prediction accuracy. Finally, our proposed method, m5CPred-SVM was compared with several existing methods, and the result showed that m5CPred-SVM offered substantially higher prediction accuracy than previously published methods. It is expected that our method, m5CPred-SVM, can become a useful tool for accurate identification of m5C sites. CONCLUSION In this study, by introducing position-specific propensity related features, we built a new model, m5CPred-SVM, to predict RNA m5C sites of three different species. The result shows that our model outperformed the existing state-of-art models. Our model is available for users through a web server at https://zhulab.ahu.edu.cn/m5CPred-SVM .
Collapse
Affiliation(s)
- Xiao Chen
- School of Sciences, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Yi Xiong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yinbo Liu
- School of Sciences, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Yuqing Chen
- School of Sciences, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Shoudong Bi
- School of Sciences, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Xiaolei Zhu
- School of Sciences, Anhui Agricultural University, Hefei, 230036 Anhui China
| |
Collapse
|
161
|
Liu K, Chen W. iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications. Bioinformatics 2020; 36:3336-3342. [PMID: 32134472 DOI: 10.1093/bioinformatics/btaa155] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION RNA modifications play critical roles in a series of cellular and developmental processes. Knowledge about the distributions of RNA modifications in the transcriptomes will provide clues to revealing their functions. Since experimental methods are time consuming and laborious for detecting RNA modifications, computational methods have been proposed for this aim in the past five years. However, there are some drawbacks for both experimental and computational methods in simultaneously identifying modifications occurred on different nucleotides. RESULTS To address such a challenge, in this article, we developed a new predictor called iMRM, which is able to simultaneously identify m6A, m5C, m1A, ψ and A-to-I modifications in Homo sapiens, Mus musculus and Saccharomyces cerevisiae. In iMRM, the feature selection technique was used to pick out the optimal features. The results from both 10-fold cross-validation and jackknife test demonstrated that the performance of iMRM is superior to existing methods for identifying RNA modifications. AVAILABILITY AND IMPLEMENTATION A user-friendly web server for iMRM was established at http://www.bioml.cn/XG_iRNA/home. The off-line command-line version is available at https://github.com/liukeweiaway/iMRM. CONTACT greatchen@ncst.edu.cn. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kewei Liu
- School of Life Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063009, China
| | - Wei Chen
- School of Life Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063009, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
162
|
Vissers C, Sinha A, Ming GL, Song H. The epitranscriptome in stem cell biology and neural development. Neurobiol Dis 2020; 146:105139. [PMID: 33065280 DOI: 10.1016/j.nbd.2020.105139] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/26/2022] Open
Abstract
The blossoming field of epitranscriptomics has recently garnered attention across many fields by findings that chemical modifications on RNA have immense biological consequences. Methylation of nucleotides in RNA, including N6-methyladenosine (m6A), 2-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), and isomerization of uracil to pseudouridine (Ψ), have the potential to alter RNA processing events and contribute to developmental processes and different diseases. Though the abundance and roles of some RNA modifications remain contentious, the epitranscriptome is thought to be especially relevant in stem cell biology and neurobiology. In particular, m6A occurs at the highest levels in the brain and plays major roles in embryonic stem cell differentiation, brain development, and neurodevelopmental disorders. However, studies in these areas have reported conflicting results on epitranscriptomic regulation of stem cell pluripotency and mechanisms in neural development. In this review we provide an overview of the current understanding of several RNA modifications and disentangle the various findings on epitranscriptomic regulation of stem cell biology and neural development.
Collapse
Affiliation(s)
- Caroline Vissers
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biochemistry and Biophysics, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Aniketa Sinha
- Department of Biochemistry and Biophysics, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
163
|
Accornero F, Ross RL, Alfonzo JD. From canonical to modified nucleotides: balancing translation and metabolism. Crit Rev Biochem Mol Biol 2020; 55:525-540. [PMID: 32933330 DOI: 10.1080/10409238.2020.1818685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Every type of nucleic acid in cells may undergo some kind of post-replicative or post-transcriptional chemical modification. Recent evidence has highlighted their importance in biology and their chemical complexity. In the following pages, we will describe new discoveries of modifications, with a focus on tRNA and mRNA. We will highlight current challenges and advances in modification detection and we will discuss how changes in nucleotide post-transcriptional modifications may affect cell homeostasis leading to malfunction. Although, RNA modifications prevail in all forms of life, the present review will focus on eukaryotic systems, where the great degree of intracellular compartmentalization provides barriers and filters for the level at which a given RNA is modified and will of course affect its fate and function. Additionally, although we will mention rRNA modification and modifications of the mRNA 5'-CAP structure, this will only be discussed in passing, as many substantive reviews have been written on these subjects. Here we will not spend much time describing all the possible modifications that have been observed; truly a daunting task. For reference, Bujnicki and coworkers have created MODOMICS, a useful repository for all types of modifications and their associated enzymes. Instead we will discuss a few examples, which illustrate our arguments on the connection of modifications, metabolism and ultimately translation. The fact remains, a full understanding of the long reach of nucleic acid modifications in cells requires both a global and targeted study of unprecedented scale, which at the moment may well be limited only by technology.
Collapse
Affiliation(s)
- Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Robert L Ross
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH, USA
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
164
|
Abstract
Chemical modifications of viral RNA are an integral part of the viral life cycle and are present in most classes of viruses. To date, more than 170 RNA modifications have been discovered in all types of cellular RNA. Only a few, however, have been found in viral RNA, and the function of most of these has yet to be elucidated. Those few we have discovered and whose functions we understand have a varied effect on each virus. They facilitate RNA export from the nucleus, aid in viral protein synthesis, recruit host enzymes, and even interact with the host immune machinery. The most common methods for their study are mass spectrometry and antibody assays linked to next-generation sequencing. However, given that the actual amount of modified RNA can be very small, it is important to pair meticulous scientific methodology with the appropriate detection methods and to interpret the results with a grain of salt. Once discovered, RNA modifications enhance our understanding of viruses and present a potential target in combating them. This review provides a summary of the currently known chemical modifications of viral RNA, the effects they have on viral machinery, and the methods used to detect them.
Collapse
Affiliation(s)
- Jiří František Potužník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
165
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
166
|
Borchardt EK, Martinez NM, Gilbert WV. Regulation and Function of RNA Pseudouridylation in Human Cells. Annu Rev Genet 2020; 54:309-336. [PMID: 32870730 DOI: 10.1146/annurev-genet-112618-043830] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in pseudouridine detection reveal a complex pseudouridine landscape that includes messenger RNA and diverse classes of noncoding RNA in human cells. The known molecular functions of pseudouridine, which include stabilizing RNA conformations and destabilizing interactions with varied RNA-binding proteins, suggest that RNA pseudouridylation could have widespread effects on RNA metabolism and gene expression. Here, we emphasize how much remains to be learned about the RNA targets of human pseudouridine synthases, their basis for recognizing distinct RNA sequences, and the mechanisms responsible for regulated RNA pseudouridylation. We also examine the roles of noncoding RNA pseudouridylation in splicing and translation and point out the potential effects of mRNA pseudouridylation on protein production, including in the context of therapeutic mRNAs.
Collapse
Affiliation(s)
- Erin K Borchardt
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| | - Nicole M Martinez
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| |
Collapse
|
167
|
Lopez Sanchez MIG, Cipullo M, Gopalakrishna S, Khawaja A, Rorbach J. Methylation of Ribosomal RNA: A Mitochondrial Perspective. Front Genet 2020; 11:761. [PMID: 32765591 PMCID: PMC7379855 DOI: 10.3389/fgene.2020.00761] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 01/02/2023] Open
Abstract
Ribosomal RNA (rRNA) from all organisms undergoes post-transcriptional modifications that increase the diversity of its composition and activity. In mitochondria, specialized mitochondrial ribosomes (mitoribosomes) are responsible for the synthesis of 13 oxidative phosphorylation proteins encoded by the mitochondrial genome. Mitoribosomal RNA is also modified, with 10 modifications thus far identified and all corresponding modifying enzymes described. This form of epigenetic regulation of mitochondrial gene expression affects mitoribosome biogenesis and function. Here, we provide an overview on rRNA methylation and highlight critical work that is beginning to elucidate its role in mitochondrial gene expression. Given the similarities between bacterial and mitochondrial ribosomes, we focus on studies involving Escherichia coli and human models. Furthermore, we highlight the use of state-of-the-art technologies, such as cryoEM in the study of rRNA methylation and its biological relevance. Understanding the mechanisms and functional relevance of this process represents an exciting frontier in the RNA biology and mitochondrial fields.
Collapse
Affiliation(s)
- M Isabel G Lopez Sanchez
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Centre for Eye Research Australia, Melbourne, VIC, Australia
| | - Miriam Cipullo
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Shreekara Gopalakrishna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Anas Khawaja
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Rorbach
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
168
|
Jones JD, Monroe J, Koutmou KS. A molecular-level perspective on the frequency, distribution, and consequences of messenger RNA modifications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1586. [PMID: 31960607 PMCID: PMC8243748 DOI: 10.1002/wrna.1586] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/21/2019] [Accepted: 01/04/2020] [Indexed: 01/16/2023]
Abstract
Cells use chemical modifications to alter the sterics, charge, and conformations of large biomolecules, modulating their biogenesis, function, and stability. Until recently post-transcriptional RNA modifications were thought to be largely limited to nonprotein coding RNA species. However, this dogma has rapidly transformed with the discovery of a host of modifications in protein coding messenger RNAs (mRNAs). Recent advancements in genome-wide sequencing technologies have enabled the identification of mRNA modifications as a potential new frontier in gene regulation-leading to the development of the epitranscriptome field. As a result, there has been a flurry of multiple groundbreaking discoveries, including new modifications, nucleoside modifying enzymes ("writers" and "erasers"), and RNA binding proteins that recognize chemical modifications ("readers"). These discoveries opened the door to understanding how post-transcriptional mRNA modifications can modulate the mRNA lifecycle, and established a link between the epitranscriptome and human health and disease. Despite a rapidly growing recognition of their importance, fundamental questions regarding the identity, prevalence, and functional consequences of mRNA modifications remain to be answered. Here, we highlight quantitative studies that characterize mRNA modification abundance, frequency, and interactions with cellular machinery. As the field progresses, we see a need for the further integration of quantitative and reductionist approaches to complement transcriptome wide studies in order to establish a molecular-level framework for understanding the consequences of mRNA chemical modifications on biological processes. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Joshua D. Jones
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Jeremy Monroe
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Kristin S. Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
169
|
Zhang N, Shi S, Wang X, Ni W, Yuan X, Duan J, Jia TZ, Yoo B, Ziegler A, Russo JJ, Li W, Zhang S. Direct Sequencing of tRNA by 2D-HELS-AA MS Seq Reveals Its Different Isoforms and Dynamic Base Modifications. ACS Chem Biol 2020; 15:1464-1472. [PMID: 32364699 PMCID: PMC7902080 DOI: 10.1021/acschembio.0c00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Post-transcriptional modifications are intrinsic to RNA structure and function. However, methods to sequence RNA typically require a cDNA intermediate and are either not able to sequence these modifications or are tailored to sequence one specific nucleotide modification only. Interestingly, some of these modifications occur with <100% frequency at their particular sites, and site-specific quantification of their stoichiometries is another challenge. Here, we report a direct method for sequencing tRNAPhe without cDNA by integrating a two-dimensional hydrophobic RNA end-labeling strategy with an anchor-based algorithm in mass spectrometry-based sequencing (2D-HELS-AA MS Seq). The entire tRNAPhe was sequenced and the identity, location, and stoichiometry of all eleven different RNA modifications was determined, five of which were not 100% modified, including a 2'-O-methylated G (Gm) in the wobble anticodon position as well as an N2, N2-dimethylguanosine (m22G), a 7-methylguanosine (m7G), a 1-methyladenosine (m1A), and a wybutosine (Y), suggesting numerous post-transcriptional regulations in tRNA. Two truncated isoforms at the 3'-CCA tail of the tRNAPhe (75 nt with a 3'-CC tail (80% abundance) and 74 nt with a 3'-C tail (3% abundance)) were identified in addition to the full-length 3'-CCA-tailed tRNAPhe (76 nt, 17% abundance). We discovered a new isoform with A-G transitions/editing at the 44 and 45 positions in the tRNAPhe variable loop, and discuss possible mechanisms related to the emergence and functions of the isoforms with these base transitions or editing. Our method revealed new isoforms, base modifications, and RNA editing as well as their stoichiometries in the tRNA that cannot be determined by current cDNA-based methods, opening new opportunities in the field of epitranscriptomics.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Shundi Shi
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Xuanting Wang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Wenhao Ni
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Xiaohong Yuan
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Jiachen Duan
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, Washington 98154, United States
| | - Barney Yoo
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Ashley Ziegler
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| | - James J Russo
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Wenjia Li
- Department of Computer Science, New York Institute of Technology, New York, New York 10023, United States
| | - Shenglong Zhang
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, New York 10023, United States
| |
Collapse
|
170
|
Song B, Chen K, Tang Y, Ma J, Meng J, Wei Z. PSI-MOUSE: Predicting Mouse Pseudouridine Sites From Sequence and Genome-Derived Features. Evol Bioinform Online 2020; 16:1176934320925752. [PMID: 32565674 PMCID: PMC7285933 DOI: 10.1177/1176934320925752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/30/2020] [Indexed: 12/04/2022] Open
Abstract
Pseudouridine (Ψ) is the first discovered and the most prevalent posttranscriptional modification, which has been widely studied during the past decades. Pseudouridine was observed in almost all kinds of RNAs and shown to have important biological functions. Currently, the time-consuming and high-cost procedures of experimental approaches limit its uses in real-life Ψ site detection. Alternatively, by taking advantage of the explosive growth of Ψ sequencing data, the computational methods may provide a more cost-effective avenue. To date, the existing mouse Ψ site predictors were all developed based on sequence-derived features, and their performance can be further improved by adding the domain knowledge derived feature. Therefore, it is highly desirable to propose a genomic feature-based computational method to increase the accuracy and efficiency of the identification of Ψ RNA modification in the mouse transcriptome. In our study, a predictive framework PSI-MOUSE was built. Besides the conventional sequence-based features, PSI-MOUSE first introduced 38 additional genomic features derived from the mouse genome, which achieved a satisfactory improvement in the prediction performance, compared with other existing models. Moreover, PSI-MOUSE also features in automatically annotating the putative Ψ sites with diverse types of posttranscriptional regulations (RNA-binding protein [RBP]-binding regions, miRNA-RNA interactions, and splicing sites), which can serve as a useful research tool for the study of Ψ RNA modification in the mouse genome. Finally, 3282 experimentally validated mouse Ψ sites were also collected in a database with customized query functions. For the convenience of academic users, a website was built to provide a user-friendly interface for the query and analysis on the database. The website is freely accessible at www.xjtlu.edu.cn/biologicalsciences/psimouse and http://psimouse.rnamd.com. We introduced the genome-derived features to mouse for the first time, and we achieved a good performance in mouse Ψ site prediction. Compared with the existing state-of-art methods, our newly developed approach PSI-MOUSE obtained a substantial improvement in prediction accuracy, marking the reliable contributions of genomic features for the prediction of RNA modifications in a species other than human.
Collapse
Affiliation(s)
- Bowen Song
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Kunqi Chen
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Yujiao Tang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Jialin Ma
- Cancer Genome Computational Analysis, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jia Meng
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Zhen Wei
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
171
|
Furlan M, Tanaka I, Leonardi T, de Pretis S, Pelizzola M. Direct RNA Sequencing for the Study of Synthesis, Processing, and Degradation of Modified Transcripts. Front Genet 2020; 11:394. [PMID: 32425981 PMCID: PMC7212349 DOI: 10.3389/fgene.2020.00394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/30/2020] [Indexed: 01/24/2023] Open
Abstract
It has been known for a few decades that transcripts can be marked by dozens of different modifications. Yet, we are just at the beginning of charting these marks and understanding their functional impact. High-quality methods were developed for the profiling of some of these marks, and approaches to finely study their impact on specific phases of the RNA life-cycle are available, including RNA metabolic labeling. Thanks to these improvements, the most abundant marks, including N6-methyladenosine, are emerging as important determinants of the fate of marked RNAs. However, we still lack approaches to directly study how the set of marks for a given RNA molecule shape its fate. In this perspective, we first review current leading approaches in the field. Then, we propose an experimental and computational setup, based on direct RNA sequencing and mathematical modeling, to decipher the functional consequences of RNA modifications on the fate of individual RNA molecules and isoforms.
Collapse
Affiliation(s)
- Mattia Furlan
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
- Department of Physics, National Institute of Nuclear Physics, University of Turin, Turin, Italy
| | - Iris Tanaka
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
| | - Stefano de Pretis
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
172
|
Li J, Huang Y, Zhou Y. A Mini-review of the Computational Methods Used in Identifying RNA 5-Methylcytosine Sites. Curr Genomics 2020; 21:3-10. [PMID: 32655293 PMCID: PMC7324889 DOI: 10.2174/2213346107666200219124951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 01/10/2023] Open
Abstract
RNA 5-methylcytosine (m5C) is one of the pillars of post-transcriptional modification (PTCM). A growing body of evidence suggests that m5C plays a vital role in RNA metabolism. Accurate localization of RNA m5C sites in tissue cells is the premise and basis for the in-depth understanding of the functions of m5C. However, the main experimental methods of detecting m5C sites are limited to varying degrees. Establishing a computational model to predict modification sites is an excellent complement to wet experiments for identifying m5C sites. In this review, we summarized some available m5C predictors and discussed the characteristics of these methods.
Collapse
Affiliation(s)
- Jianwei Li
- 1Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China; 2Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Noncoding RNA Medicine, Peking University, Beijing, China
| | - Yan Huang
- 1Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China; 2Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Noncoding RNA Medicine, Peking University, Beijing, China
| | - Yuan Zhou
- 1Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China; 2Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Noncoding RNA Medicine, Peking University, Beijing, China
| |
Collapse
|
173
|
Yang X, Liu M, Li M, Zhang S, Hiju H, Sun J, Mao Z, Zheng M, Feng B. Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Mol Cancer 2020; 19:64. [PMID: 32209098 PMCID: PMC7092482 DOI: 10.1186/s12943-020-01159-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Empowered by recent advances of sequencing techniques, transcriptome-wide studies have characterized over 150 different types of post-transcriptional chemical modifications of RNA, ranging from methylations of single base to complex installing reactions catalyzed by coordinated actions of multiple modification enzymes. These modifications have been shown to regulate the function and fate of RNAs and further affecting various cellular events. However, the current understanding of their biological functions in human diseases, especially in cancers, is still limited. Once regarded as “junk” or “noise” of the transcriptome, noncoding RNA (ncRNA) has been proved to be involved in a plethora of cellular signaling pathways especially those regulating cancer initiation and progression. Accumulating evidence has demonstrated that ncRNAs manipulate multiple phenotypes of cancer cells including proliferation, metastasis and chemoresistance and may become promising biomarkers and targets for diagnosis and treatment of cancer. Importantly, recent studies have mapped plenty of modified residues in ncRNA transcripts, indicating the existence of epigenetic modulation of ncRNAs and the potential effects of RNA modulation on cancer progression. In this review, we briefly introduced the characteristics of several main epigenetic marks on ncRNAs and summarized their consecutive effects on cancer cells. We found that ncRNAs could act both as regulators and targets of epigenetic enzymes, which indicated a cross-regulating network in cancer cells and unveil a novel dimension of cancer biology. Moreover, by epitomizing the knowledge of RNA epigenetics, our work may pave the way for the design of patient-tailored therapeutics of cancers.
Collapse
Affiliation(s)
- Xiao Yang
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Ming Liu
- Department of genecology and obstetrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Mengmeng Li
- Shanghai tenth People's Hospital, Medical School of Tongji University, Shanghai, 200205, China
| | - Sen Zhang
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Hong Hiju
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Jing Sun
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Zhihai Mao
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China.
| | - Minhua Zheng
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China.
| | - Bo Feng
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China.
| |
Collapse
|
174
|
Song B, Tang Y, Wei Z, Liu G, Su J, Meng J, Chen K. PIANO: A Web Server for Pseudouridine-Site (Ψ) Identification and Functional Annotation. Front Genet 2020; 11:88. [PMID: 32226440 PMCID: PMC7080813 DOI: 10.3389/fgene.2020.00088] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 12/04/2022] Open
Abstract
Known as the "fifth RNA nucleotide", pseudouridine (Ψ or psi) is the first-discovered and most abundant RNA modification occurring at the Uridine site, and it plays a prominent role in a number of biological processes. Thousands of Ψ sites have been identified within different biological contexts thanks to the advancement in high-throughput sequencing technology; nevertheless, the transcriptome-wide distribution, biomolecular functions, regulatory mechanisms, and disease relevance of pseudouridylation are largely elusive. We report here a web server-PIANO-for pseudouridine site (Ψ) identification and functional annotation. PIANO was built upon a high-accuracy predictor that takes advantage of both conventional sequence features and 42 additional genomic features. When tested on six independent datasets generated from four independent Ψ-profiling technologies (Ψ-seq, RBS-seq, Pseudo-seq, and CeU-seq) as benchmarks, PIANO achieved an average AUC of 0.955 and 0.838 under the full transcript and mature mRNA models, respectively, marking a substantial improvement in accuracy compared to the existing in silico Ψ-site prediction methods, i.e., PPUS (0.713 and 0.707), iRNA-PseU (0.713 and 0.712), and PseUI (0.634 and 0.652). Besides, PIANO web server systematically annotates the predicted Ψ sites with post-transcriptional regulatory mechanisms (miRNA-targets, RBP-binding regions, and splicing sites) in its prediction report to help the users explore potential machinery of Ψ. Moreover, a concise query interface was also built for 4,303 known Ψ sites, which is currently the largest collection of experimentally validated human Ψ sites. The PIANO website is freely accessible at: http://piano.rnamd.com.
Collapse
Affiliation(s)
- Bowen Song
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yujiao Tang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Zhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Ageing & Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Gang Liu
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jionglong Su
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kunqi Chen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Ageing & Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
175
|
Murphy MR, Kleiman FE. Connections between 3' end processing and DNA damage response: Ten years later. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1571. [PMID: 31657151 PMCID: PMC7295566 DOI: 10.1002/wrna.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
Ten years ago we reviewed how the cellular DNA damage response (DDR) is controlled by changes in the functional and structural properties of nuclear proteins, resulting in a timely coordinated control of gene expression that allows DNA repair. Expression of genes that play a role in DDR is regulated not only at transcriptional level during mRNA biosynthesis but also by changing steady-state levels due to turnover of the transcripts. The 3' end processing machinery, which is important in the regulation of mRNA stability, is involved in these gene-specific responses to DNA damage. Here, we review the latest mechanistic connections described between 3' end processing and DDR, with a special emphasis on alternative polyadenylation, microRNA and RNA binding proteins-mediated deadenylation, and discuss the implications of deregulation of these steps in DDR and human disease. This article is categorized under: RNA Processing > 3' End Processing RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Michael Robert Murphy
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| | - Frida Esther Kleiman
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| |
Collapse
|
176
|
Uddin MB, Wang Z, Yang C. Dysregulations of Functional RNA Modifications in Cancer, Cancer Stemness and Cancer Therapeutics. Theranostics 2020; 10:3164-3189. [PMID: 32194861 PMCID: PMC7053189 DOI: 10.7150/thno.41687] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
More than a hundred chemical modifications in coding and non-coding RNAs have been identified so far. Many of the RNA modifications are dynamic and reversible, playing critical roles in gene regulation at the posttranscriptional level. The abundance and functions of RNA modifications are controlled mainly by the modification regulatory proteins: writers, erasers and readers. Modified RNA bases and their regulators form intricate networks which are associated with a vast array of diverse biological functions. RNA modifications are not only essential for maintaining the stability and structural integrity of the RNA molecules themselves, they are also associated with the functional outcomes and phenotypic attributes of cells. In addition to their normal biological roles, many of the RNA modifications also play important roles in various diseases particularly in cancer as evidenced that the modified RNA transcripts and their regulatory proteins are aberrantly expressed in many cancer types. This review will first summarize the most commonly reported RNA modifications and their regulations, followed by discussing recent studies on the roles of RNA modifications in cancer, cancer stemness as wells as functional RNA modification machinery as potential cancer therapeutic targets. It is concluded that, while advanced technologies have uncovered the contributions of many of RNA modifications in cancer, the underlying mechanisms are still poorly understood. Moreover, whether and how environmental pollutants, important cancer etiological factors, trigger abnormal RNA modifications and their roles in environmental carcinogenesis remain largely unknown. Further studies are needed to elucidate the mechanism of how RNA modifications promote cell malignant transformation and generation of cancer stem cells, which will lead to the development of new strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| |
Collapse
|
177
|
Dai X, Gonzalez G, Li L, Li J, You C, Miao W, Hu J, Fu L, Zhao Y, Li R, Li L, Chen X, Xu Y, Gu W, Wang Y. YTHDF2 Binds to 5-Methylcytosine in RNA and Modulates the Maturation of Ribosomal RNA. Anal Chem 2020; 92:1346-1354. [PMID: 31815440 PMCID: PMC6949395 DOI: 10.1021/acs.analchem.9b04505] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
5-Methylcytosine is found in both DNA and RNA; although its functions in DNA are well established, the exact role of 5-methylcytidine (m5C) in RNA remains poorly defined. Here we identified, by employing a quantitative proteomics method, multiple candidate recognition proteins of m5C in RNA, including several YTH domain-containing family (YTHDF) proteins. We showed that YTHDF2 could bind directly to m5C in RNA, albeit at a lower affinity than that toward N6-methyladenosine (m6A) in RNA, and this binding involves Trp432, a conserved residue located in the hydrophobic pocket of YTHDF2 that is also required for m6A recognition. RNA bisulfite sequencing results revealed that, after CRISPR-Cas9-mediated knockout of the YTHDF2 gene, the majority of m5C sites in rRNA (rRNA) exhibited substantially augmented levels of methylation. Moreover, we found that YTHDF2 is involved in pre-rRNA processing in cells. Together, our data expanded the functions of the YTHDF2 protein in post-transcriptional regulations of RNA and provided novel insights into the functions of m5C in RNA biology.
Collapse
Affiliation(s)
- Xiaoxia Dai
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
- State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Gwendolyn Gonzalez
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Jie Li
- Fudan University Shanghai Cancer Center, Department of Oncology; and Institutes of Biomedical Sciences and School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Changjun You
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
- State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Weili Miao
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Junchi Hu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lijuan Fu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Yonghui Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521-0403, United States
| | - Ruidong Li
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521-0403, United States
| | - Lichao Li
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521-0403, United States
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521-0403, United States
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Department of Oncology; and Institutes of Biomedical Sciences and School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Weifeng Gu
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
178
|
Heissenberger C, Liendl L, Nagelreiter F, Gonskikh Y, Yang G, Stelzer EM, Krammer TL, Micutkova L, Vogt S, Kreil DP, Sekot G, Siena E, Poser I, Harreither E, Linder A, Ehret V, Helbich TH, Grillari-Voglauer R, Jansen-Dürr P, Koš M, Polacek N, Grillari J, Schosserer M. Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res 2019; 47:11807-11825. [PMID: 31722427 PMCID: PMC7145617 DOI: 10.1093/nar/gkz1043] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
Modifications of ribosomal RNA expand the nucleotide repertoire and thereby contribute to ribosome heterogeneity and translational regulation of gene expression. One particular m5C modification of 25S ribosomal RNA, which is introduced by Rcm1p, was previously shown to modulate stress responses and lifespan in yeast and other small organisms. Here, we report that NSUN5 is the functional orthologue of Rcm1p, introducing m5C3782 into human and m5C3438 into mouse 28S ribosomal RNA. Haploinsufficiency of the NSUN5 gene in fibroblasts from William Beuren syndrome patients causes partial loss of this modification. The N-terminal domain of NSUN5 is required for targeting to nucleoli, while two evolutionary highly conserved cysteines mediate catalysis. Phenotypic consequences of NSUN5 deficiency in mammalian cells include decreased proliferation and size, which can be attributed to a reduction in total protein synthesis by altered ribosomes. Strikingly, Nsun5 knockout in mice causes decreased body weight and lean mass without alterations in food intake, as well as a trend towards reduced protein synthesis in several tissues. Together, our findings emphasize the importance of single RNA modifications for ribosome function and normal cellular and organismal physiology.
Collapse
Affiliation(s)
- Clemens Heissenberger
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Lisa Liendl
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Fabian Nagelreiter
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Yulia Gonskikh
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Guohuan Yang
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Elena M Stelzer
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Teresa L Krammer
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Lucia Micutkova
- Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Vogt
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - David P Kreil
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Gerhard Sekot
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Emilio Siena
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Ina Poser
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Eva Harreither
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Angela Linder
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Viktoria Ehret
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Preclinical Imaging Laboratory, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Preclinical Imaging Laboratory, Medical University of Vienna, 1090 Vienna, Austria
| | - Regina Grillari-Voglauer
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Koš
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Norbert Polacek
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Johannes Grillari
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, 1190 Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
| | - Markus Schosserer
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190 Vienna, Austria
| |
Collapse
|
179
|
Fang T, Zhang Z, Sun R, Zhu L, He J, Huang B, Xiong Y, Zhu X. RNAm5CPred: Prediction of RNA 5-Methylcytosine Sites Based on Three Different Kinds of Nucleotide Composition. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:739-747. [PMID: 31726390 PMCID: PMC6859278 DOI: 10.1016/j.omtn.2019.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
5-methylcytosine (m5C) is one of the most common and abundant post-transcriptional modifications (PTCMs) in RNA. Recent studies showed that m5C plays important roles in many biological functions such as RNA metabolism and cell fate decision. Because most experimental methods that determine m5C sites across the transcriptome are time-consuming and expensive, it is urgent to develop accurate computational methods to identify m5C sites effectively. A benchmark dataset is important for developing and evaluating computational methods. In this work, we constructed four different datasets according to the data redundancy and imbalance. Based on these datasets, we generated three different kinds of features, i.e., KNFs (K-nucleotide frequencies), KSNPFs (K-spaced nucleotide pair frequencies), and pseDNC (pseudo-dinucleotide composition), and then used a support vector machine (SVM) to build our models. Based on the imbalanced and nonredundant dataset, Met935, we extensively studied the three kinds of features and determined an optimal combination of the features. Based on the feature combination, we built models on the three different datasets and compared them with state-of-the-art models. According to the predictive results of the stringent jackknife test, the models based on the three features, 4NF, 1SNPF, and pseDNC, are superior or comparable to other methods. To determine the best model between the models based on the imbalanced dataset Met935 and the balanced dataset Met240, we further evaluated the two models on an independent test set Test1157. Our results demonstrate that the model based on the balanced dataset Met240 achieved the highest recall (68.79%) and the highest Matthews correlation coefficient (MCC) (0.154). In addition, the model is also superior to other state-of-the-art methods according to the integrated parameter MCC on the independent test set. Thus, we selected the model based on Met240 as our final model, which was named RNAm5CPred. In addition, a web server for RNAm5CPred (http://zhulab.ahu.edu.cn/RNAm5CPred/) has been provided to facilitate experimental research.
Collapse
Affiliation(s)
- Ting Fang
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China; School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Zizheng Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Rui Sun
- Beijing Baidu Netcom Sciences and Technology Co., Ltd., Beijing, China
| | - Lin Zhu
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Jingjing He
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Bei Huang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiaolei Zhu
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China; School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
180
|
Fleming AM, Alenko A, Kitt JP, Orendt AM, Flynn PF, Harris JM, Burrows CJ. Structural Elucidation of Bisulfite Adducts to Pseudouridine That Result in Deletion Signatures during Reverse Transcription of RNA. J Am Chem Soc 2019; 141:16450-16460. [PMID: 31538776 DOI: 10.1021/jacs.9b08630] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent report of RBS-Seq to map simultaneously the epitranscriptomic modifications N1-methyladenosine, 5-methylcytosine, and pseudouridine (Ψ) via bisulfite treatment of RNA provides a key advance to locate these important modifications. The locations of Ψ were found by a deletion signature generated during cDNA synthesis after bisulfite treatment for which the chemical details of the reaction are poorly understood. In the present work, the bisulfite reaction with Ψ was explored to identify six isomers of bisulfite adducted to Ψ. We found four of these adducts involved the heterocyclic ring, similar to the reaction with other pyrimidines. The remaining two adducts were bonded to the 1' carbon, which resulted in opening of the ribose ring. The utilization of complementary 1D- and 2D-NMR, Raman, and electronic circular dichroism spectroscopies led to the assignment of the two ribose adducts being the constitutional isomers of an S- and an O-adduct of bisulfite to the ribose, and these are the final products after heating. A mechanistic proposal is provided to rationalize chemically the formation and stereochemistries of all six isomeric bisulfite adducts to Ψ; conversion of intermediate adducts to the two final products is proposed to involve E2, SN2', and [2,3]-sigmatropic shift reactions. Lastly, a synthetic RNA template with Ψ at a known location was treated with bisulfite, leading to a deletion signature after reverse transcription, supporting the RBS-Seq report. This classical bisulfite reaction used for epigenomic and epitranscriptomic sequencing diverges from the C nucleoside Ψ to form stable bisulfite end products that yield signatures for next-generation sequencing.
Collapse
|
181
|
Tzelepis K, Rausch O, Kouzarides T. RNA-modifying enzymes and their function in a chromatin context. Nat Struct Mol Biol 2019; 26:858-862. [PMID: 31582848 PMCID: PMC7613430 DOI: 10.1038/s41594-019-0312-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/30/2019] [Indexed: 12/29/2022]
Abstract
Exciting research has connected specific RNA modifications to chromatin, providing evidence for co-transcriptional deposition and function in gene regulation. Here we review insights gained from studying the co-transcriptional roles of RNA modifications, and their influence in normal and disease contexts. We also discuss how the availability of novel technical approaches could raise the translational potential of targeting RNA-modifying enzymes for the treatment of disease.
Collapse
Affiliation(s)
- Konstantinos Tzelepis
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK
| | - Oliver Rausch
- Storm Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | - Tony Kouzarides
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
182
|
Li W, Wang F, Chen Y, Weng X, Zhou X. A sensitive and radiolabeling-free method for pseudouridine detection. Anal Biochem 2019; 581:113350. [PMID: 31255565 DOI: 10.1016/j.ab.2019.113350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/28/2023]
Abstract
Existing methodologies for detecting Pseudouridine (Ψ) mostly use CMCT labeling or radiolabeling. Described herein is a sensitive and quantitative method for Ψ detection that does not need this labelling. This approach combines the selectivity of a 10-23 DNAzyme, which can distinguish Ψ from uridine (U), with rolling circle amplification (RCA) to increase the sensitivity of the assay.
Collapse
Affiliation(s)
- Wei Li
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Fang Wang
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, PR China
| |
Collapse
|
183
|
Ranjan N, Leidel SA. The epitranscriptome in translation regulation: mRNA and tRNA modifications as the two sides of the same coin? FEBS Lett 2019; 593:1483-1493. [PMID: 31206634 DOI: 10.1002/1873-3468.13491] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
Translation of mRNA is a highly regulated process that is tightly coordinated with cotranslational protein maturation. Recently, mRNA modifications and tRNA modifications - the so called epitranscriptome - have added a new layer of regulation that is still poorly understood. Both types of modifications can affect codon-anticodon interactions, thereby affecting mRNA translation and protein synthesis in similar ways. Here, we describe an updated view on how the different types of modifications can be mapped, how they affect translation, how they trigger phenotypes and discuss how the combined action of mRNA and tRNA modifications coordinate translation in health and disease.
Collapse
Affiliation(s)
- Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|