151
|
Abstract
Guanine (G)-rich DNA sequences can adopt stable G-quadruplex structures by G-tetrad hydrogen-bonding and hydrophobic stacking. Recently, it has been shown that a DNA sequence forms an aptamer (termed 93del) and adopts a novel dimeric quadruplex folding topology in K+ solution. This aptamer exhibits anti-HIV1 integrase activity in the nanomolar range in vitro. A docking-based model of the 93del-integrase complex positions the DNA aptamer within a channel of the tetrameric integrase. This mutual fitting blocks several catalytic amino acid residues that are essential for integrase function, and accounts for the anti-HIV1 activity of the 93del aptamer.
Collapse
Affiliation(s)
- Shan-Ho Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China.
| | | | | |
Collapse
|
152
|
Amrane S, Saccà B, Mills M, Chauhan M, Klump HH, Mergny JL. Length-dependent energetics of (CTG)n and (CAG)n trinucleotide repeats. Nucleic Acids Res 2005; 33:4065-77. [PMID: 16040598 PMCID: PMC1179733 DOI: 10.1093/nar/gki716] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Trinucleotide repeats are involved in a number of debilitating diseases such as myotonic dystrophy. Twelve to seventy-five base-long (CTG)n oligodeoxynucleotides were analysed using a combination of biophysical [UV-absorbance, circular dichroism and differential scanning calorimetry (DSC)] and biochemical methods (non-denaturing gel electrophoresis and enzymatic footprinting). All oligomers formed stable intramolecular structures under near physiological conditions with a melting temperature that was only weakly dependent on oligomer length. Thermodynamic analysis of the denaturation process by UV-melting and calorimetric experiments revealed an unprecedented length-dependent discrepancy between the enthalpy values deduced from model-dependent (UV-melting) and model-independent (calorimetry) experiments. Evidence for non-zero molar heat capacity changes was also derived from the analysis of the Arrhenius plots and DSC profiles. Such behaviour is analysed in the framework of an intramolecular 'branched-hairpin' model, in which long CTG oligomers do not fold into a simple long hairpin-stem intramolecular structure, but allow the formation of several independent folding units of unequal stability. We demonstrate that, for sequences ranging from 12 to 25 CTG repeats, an intramolecular structure with two loops is formed which we will call 'bis-hairpin'. Similar results were also found for CAG oligomers, suggesting that this observation may be extended to various trinucleotide repeats-containing sequences.
Collapse
Affiliation(s)
| | | | - Martin Mills
- Department of Molecular and Cell Biology, University of Cape TownP.B. Rondebosh 7701, Republic of South Africa
| | - Madhu Chauhan
- Department of Molecular and Cell Biology, University of Cape TownP.B. Rondebosh 7701, Republic of South Africa
| | - Horst H. Klump
- Department of Molecular and Cell Biology, University of Cape TownP.B. Rondebosh 7701, Republic of South Africa
| | - Jean-Louis Mergny
- To whom correspondence should be addressed. Tel: +33 1 40 79 36 89; Fax: +33 1 40 79 37 05;
| |
Collapse
|
153
|
Wells RD, Dere R, Hebert ML, Napierala M, Son LS. Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res 2005; 33:3785-98. [PMID: 16006624 PMCID: PMC1174910 DOI: 10.1093/nar/gki697] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Substantial progress has been realized in the past several years in our understanding of the molecular mechanisms responsible for the expansions and deletions (genetic instabilities) of repeating tri-, tetra- and pentanucleotide repeating sequences associated with a number of hereditary neurological diseases. These instabilities occur by replication, recombination and repair processes, probably acting in concert, due to slippage of the DNA complementary strands relative to each other. The biophysical properties of the folded-back repeating sequence strands play a critical role in these instabilities. Non-B DNA structural elements (hairpins and slipped structures, DNA unwinding elements, tetraplexes, triplexes and sticky DNA) are described. The replication mechanisms are influenced by pausing of the replication fork, orientation of the repeat strands, location of the repeat sequences relative to replication origins and the flap endonuclease. Methyl-directed mismatch repair, nucleotide excision repair, and repair of damage caused by mutagens are discussed. Genetic recombination and double-strand break repair advances in Escherichia coli, yeast and mammalian models are reviewed. Furthermore, the newly discovered capacities of certain triplet repeat sequences to cause gross chromosomal rearrangements are discussed.
Collapse
Affiliation(s)
- Robert D Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
154
|
Smith SS, Schwarz RE. Gastric DNA damage through tobacco chewing: in vitro mechanistic studies of DNA nitrite attack. Cancer Lett 2005; 235:221-8. [PMID: 15946796 DOI: 10.1016/j.canlet.2005.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 04/08/2005] [Accepted: 04/13/2005] [Indexed: 11/20/2022]
Abstract
Smokeless chewing tobacco or snuff has been linked to carcinogenic effects in upper aerodigestive organs. The presence of nitrite within the tobacco product is suspected to foster carcinogenic DNA mechanisms at lower pH. We studied the impact of sodium nitrite on DNA damage at single-strand conformers or hairpin loops, known to be present at fragile sites that have been shown to cause methyltransferase stalling and that can lead to chromosomal breakage. At a pH of 4.2, two base-damage products could be demonstrated at significant levels (1-5% of total nucleotides), with greater sensitivity to hairpin loops compared to a control Watson-Crick duplex. Pyrimidine-rich strands (CCG, CTG) were more reactive than purine-rich strands (CAG, CGG). The data support a mechanism for allele-specific predisposition to DNA damage. This mechanism may be of significance in gastric cancer initiation due to chewing tobacco.
Collapse
Affiliation(s)
- Steven S Smith
- Department of Tumor Cell Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | |
Collapse
|
155
|
Abstract
Guanine-rich DNA sequences of a particular form have the ability to fold into four-stranded structures called G-quadruplexes. In this paper, we present a working rule to predict which primary sequences can form this structure, and describe a search algorithm to identify such sequences in genomic DNA. We count the number of quadruplexes found in the human genome and compare that with the figure predicted by modelling DNA as a Bernoulli stream or as a Markov chain, using windows of various sizes. We demonstrate that the distribution of loop lengths is significantly different from what would be expected in a random case, providing an indication of the number of potentially relevant quadruplex-forming sequences. In particular, we show that there is a significant repression of quadruplexes in the coding strand of exonic regions, which suggests that quadruplex-forming patterns are disfavoured in sequences that will form RNA.
Collapse
|
156
|
Yafe A, Etzioni S, Weisman-Shomer P, Fry M. Formation and properties of hairpin and tetraplex structures of guanine-rich regulatory sequences of muscle-specific genes. Nucleic Acids Res 2005; 33:2887-900. [PMID: 15908587 PMCID: PMC1133794 DOI: 10.1093/nar/gki606] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clustered guanine residues in DNA readily generate hairpin or a variety of tetrahelical structures. The myogenic determination protein MyoD was reported to bind to a tetrahelical structure of guanine-rich enhancer sequence of muscle creatine kinase (MCK) more tightly than to its target E-box motif [K. Walsh and A. Gualberto (1992) J. Biol. Chem., 267, 13714–13718], suggesting that tetraplex structures of regulatory sequences of muscle-specific genes could contribute to transcriptional regulation. In the current study we show that promoter or enhancer sequences of various muscle-specific genes display a disproportionately high incidence of guanine clusters. The sequences derived from the guanine-rich promoter or enhancer regions of three muscle-specific genes, human sarcomeric mitochondrial creatine kinase (sMtCK), mouse MCK and α7 integrin formed diverse secondary structures. The sMtCK sequence folded into a hairpin structure; the α7 integrin oligonucleotide generated a unimolecular tetraplex; and sequences from all three genes associated to generate bimolecular tetraplexes. Furthermore, two neighboring non-contiguous guanine-rich tracts in the α7 integrin promoter region also paired to form a tetraplex structure. We also show that homodimeric MyoD bound bimolecular tetraplex structures of muscle-specific regulatory sequences more efficiently than its target E-box motif. These results are consistent with a role of tetrahelical structures of DNA in the regulation of muscle-specific gene expression.
Collapse
Affiliation(s)
| | | | | | - Michael Fry
- To whom correspondence should be addressed. Tel: +972 4 829 5328; Fax: +972 4 851 0735;
| |
Collapse
|
157
|
Abstract
Fluorescently labeled oligodeoxyribonucleotides containing a single tract of four successive guanines have been used to study the thermodynamic and kinetic properties of short intermolecular DNA quadruplexes. When these assemble to form intermolecular quadruplexes the fluorophores are in close proximity and the fluorescence is quenched. On raising the temperature these complexes dissociate and there is a large increase in fluorescence. These complexes are exceptionally stable in potassium-containing buffers, and possess Tm values that are too high to measure. Tm values were determined in sodium-containing buffers for which the rate of reannealing is extremely slow; the melting profiles are effectively irreversible, and the apparent melting temperatures are dependent on the rates of heating. The dissociation kinetics of these complexes was estimated by rapidly increasing the temperature and following the time-dependent changes in fluorescence. From these data we have estimated the half-lives of these quadruplexes at 37 degrees C. Addition of a T to the unlabeled end of the oligonucleotide increases quadruplex stability. In contrast, addition of a T between the fluorophore and the oligonucleotide leads to a decrease in stability.
Collapse
Affiliation(s)
- Elena E Merkina
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, United Kingdom
| | | |
Collapse
|
158
|
Métifiot M, Leon O, Tarrago-Litvak L, Litvak S, Andréola ML. Targeting HIV-1 integrase with aptamers selected against the purified RNase H domain of HIV-1 RT. Biochimie 2005; 87:911-9. [PMID: 16164998 DOI: 10.1016/j.biochi.2005.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 02/10/2005] [Accepted: 03/18/2005] [Indexed: 11/17/2022]
Abstract
Several in vitro strategies have been developed to selectively screen for nucleic acid sequences that bind to specific proteins. We previously used the SELEX procedure to search for aptamers against HIV-1 RNase H activity associated with reverse transcriptase (RT) and human RNase H1. Aptamers containing G-rich sequences were selected in both cases. To investigate whether the interaction with G-rich oligonucleotides (ODNs) was a characteristic of these enzymes, a second in vitro selection was performed with an isolated RNase H domain of HIV-1 RT (p15) as a target and a new DNA library. In this work we found that the second SELEX led again to the isolation of G-rich aptamers. But in contrast to the first selection, these latter ODNs were not able to inhibit the RNase H activity of either the p15 domain or the RNase H embedded in the complete RT. On the other hand, the aptamers from the first SELEX that were inhibitors of the RT-associated RNase H did not inhibit the activity of the isolated p15 domain. This suggests that the active conformation of both RNase H domains is different according to the presence or absence of the DNA polymerase domain. HIV-1 RNase H and integrase both belong to the phosphotransferase family and share structural similarities. An interesting result was obtained when the DNA aptamers initially raised against p15 RNase H were assayed against HIV-1 integrase. In contrast to RNase H, the HIV-1 integrase was inhibited by these aptamers. Our results point out that prototype structures can be exploited to develop inhibitors of two related enzymes.
Collapse
Affiliation(s)
- Mathieu Métifiot
- UMR 5097 CNRS, Université Victor Segalen Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
159
|
Napierala M, Michalowski D, de Mezer M, Krzyzosiak WJ. Facile FMR1 mRNA structure regulation by interruptions in CGG repeats. Nucleic Acids Res 2005; 33:451-63. [PMID: 15659577 PMCID: PMC548340 DOI: 10.1093/nar/gki186] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA metabolism is a major contributor to the pathogenesis of clinical disorders associated with premutation size alleles of the fragile X mental retardation (FMR1) gene. Herein, we determined the structural properties of numerous FMR1 transcripts harboring different numbers of both CGG repeats and AGG interruptions. The stability of hairpins formed by uninterrupted repeat-containing transcripts increased with the lengthening of the repeat tract. Even a single AGG interruption in the repeated sequence dramatically changed the folding of the 5'UTR fragments, typically resulting in branched hairpin structures. Transcripts containing different lengths of CGG repeats, but sharing a common AGG pattern, adopted similar types of secondary structures. We postulate that interruption-dependent structure variants of the FMR1 mRNA contribute to the phenotype diversity, observed in premutation carriers.
Collapse
|
160
|
Hashem VI, Pytlos MJ, Klysik EA, Tsuji K, Khajavi M, Khajav M, Ashizawa T, Sinden RR. Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res 2004; 32:6334-46. [PMID: 15576360 PMCID: PMC535684 DOI: 10.1093/nar/gkh976] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by the expansion of a (CTG).(CAG) repeat in the DMPK gene on chromosome 19q13.3. At least 17 neurological diseases have similar genetic mutations, the expansion of DNA repeats. In most of these disorders, the disease severity is related to the length of the repeat expansion, and in DM1 the expanded repeat undergoes further elongation in somatic and germline tissues. At present, in this class of diseases, no therapeutic approach exists to prevent or slow the repeat expansion and thereby reduce disease severity or delay disease onset. We present initial results testing the hypothesis that repeat deletion may be mediated by various chemotherapeutic agents. Three lymphoblast cell lines derived from two DM1 patients treated with either ethylmethanesulfonate (EMS), mitomycin C, mitoxantrone or doxorubicin, at therapeutic concentrations, accumulated deletions following treatment. Treatment with EMS frequently prevented the repeat expansion observed during growth in culture. A significant reduction of CTG repeat length by 100-350 (CTG).(CAG) repeats often occurred in the cell population following treatment with these drugs. Potential mechanisms of drug-induced deletion are presented.
Collapse
Affiliation(s)
- Vera I Hashem
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, 2121 West Holcombe Boulevard, Houston, TX 77030-3303, USA
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Uddin MK, Kato Y, Takagi Y, Mikuma T, Taira K. Phosphorylation at 5' end of guanosine stretches inhibits dimerization of G-quadruplexes and formation of a G-quadruplex interferes with the enzymatic activities of DNA enzymes. Nucleic Acids Res 2004; 32:4618-29. [PMID: 15333694 PMCID: PMC516048 DOI: 10.1093/nar/gkh766] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 04/30/2004] [Accepted: 07/26/2004] [Indexed: 11/12/2022] Open
Abstract
During an analysis of DNA enzymes by gel electrophoresis, we found that some DNA enzymes can adopt more than one conformation. The DNA enzyme Dz31 that formed more than one conformer contained a stretch of G residues. Further investigations, involving kinetic analysis and measurements of circular dichroism, indicated that this DNA enzyme and its derivatives formed G-quadruplexes. Moreover, we found that some derivative oligomers were capable of forming dimeric G-quadruplexes. We also compared the catalytic activities of Dz31 and its mutant derivatives. The present findings suggest that DNA enzymes with five or more continuous G residues are less favorable than those without G5 in the association step in the enzymatic reaction and, thus, the choice of targets that contain a continuous stretch of C residues downstream of the cleavage site should be avoided. In addition, we found that negative charge-charge repulsion disrupted the dimerization of G-quadruplexes when a phosphate group was added directly to the 5'-terminal G of oligomers with continuous guanosine residues. In the case of 5'-phosphorylated G5CTA, direct attachment of a phosphate group to the continuous G5 sequence inhibited dimerization of G-quadruplexes, at least during electrophoresis on a denaturing gel.
Collapse
Affiliation(s)
- M Khabir Uddin
- Gene Function Research Center and iGENE Therapeutics, Inc., National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | | | |
Collapse
|
162
|
Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 2004; 18:1618-29. [PMID: 15231739 PMCID: PMC443523 DOI: 10.1101/gad.1200804] [Citation(s) in RCA: 425] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We show that intracellular transcription of G-rich regions produces novel DNA structures, visible by electron microscopy as large (150-500 bp) loops. These G-loops are formed cotranscriptionally, and they contain G4 DNA on one strand and a stable RNA/DNA hybrid on the other. G-loop formation requires a G-rich nontemplate strand and reflects the unusual stability of the rG/dC base pair. G-loops and G4 DNA form efficiently within plasmid genomes transcribed in vitro or in Escherichia coli. These results establish that G4 DNA can form in vivo, a finding with implications for stability and maintenance of all G-rich genomic regions.
Collapse
Affiliation(s)
- Michelle L Duquette
- Department of Genetics, Yale University School of Medicine, New Haven, Conneticut 06520, USA
| | | | | | | | | |
Collapse
|
163
|
Khateb S, Weisman-Shomer P, Hershco I, Loeb LA, Fry M. Destabilization of tetraplex structures of the fragile X repeat sequence (CGG)n is mediated by homolog-conserved domains in three members of the hnRNP family. Nucleic Acids Res 2004; 32:4145-54. [PMID: 15302914 PMCID: PMC514371 DOI: 10.1093/nar/gkh745] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hairpin or tetrahelical structures formed by a d(CGG)n sequence in the FMR1 gene are thought to promote expansion of the repeat tract. Subsequent to this expansion FMR1 is silenced and fragile X syndrome ensues. The injurious effects of d(CGG)n secondary structures may potentially be countered by agents that act to decrease their stability. We showed previously that the hnRNP-related protein CBF-A destabilized G'2 bimolecular tetraplex structures of d(CGG)n. Analysis of mutant proteins revealed that the CBF-A-conserved domains RNP11 and ATP/GTP binding box were sufficient and necessary for G'2 d(CGG)n disruption while the RNP21 motif inhibited the destabilization activity. Here, we report that a C-terminal fragment of CBF-A whose only remaining conserved domain was the ATP/GTP binding motif, disrupted G'2 d(CGG)n more selectively than wild-type CBF-A. Further, two additional members of the hnRNP family, hnRNP A2 and mutant hnRNP A1 effectively destabilized G'2 d(CGG)n. Examination of mutant hnRNP A2 proteins revealed that, similar to CBF-A, their RNP11 element and ATP/GTP binding motif mediated G'2 d(CGG)n disruption, while the RNP21 element blocked their action. Similarly, the RNP11 and RNP21 domains of hnRNP A1 were, respectively, positive and negative mediators of G'2 d(CGG)n destabilization. Last, employing the same conserved motifs that mediated disruption of the DNA tetraplex G'2 d(CGG)n, hnRNP A2 destabilized r(CGG)n RNA tetraplex.
Collapse
Affiliation(s)
- Samer Khateb
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
164
|
Dixon MJ, Lahue RS. DNA elements important for CAG*CTG repeat thresholds in Saccharomyces cerevisiae. Nucleic Acids Res 2004; 32:1289-97. [PMID: 14982954 PMCID: PMC390281 DOI: 10.1093/nar/gkh292] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trinucleotide repeat (TNR) instability is of interest because of its central role in human diseases such as Huntington's and its unique genetic features. One distinctive characteristic of TNR instability is a threshold, defined as a minimal repeat length that confers frequent mutations. While thresholds are well established, important risk determinants for disease-causing mutations, their mechanistic analysis has been delayed by the lack of suitably tractable experimental systems. In this study, we directly compared for the first time three DNA elements-TNR sequence, purity and flanking sequence-all of which are suggested in the literature to contribute to thresholds. In a yeast model system, we find that CAG repeats require a substantially longer threshold to contract than CTG tracts, indicating that the lagging template repeat sequence helps determine the threshold. In contrast, ATG interruptions within a CTG run do not inhibit contractions via a threshold mechanism, but by altering the likelihood of forming a hairpin intermediate. The presence of a GC-rich flanking sequence, similar to a haplotype found in some Huntington's patients, does not detectably alter expansions of Okazaki fragment CTG tracts, suggesting no role for this flanking sequence on thresholds. Together these results help better define TNR thresholds by delineating sequence elements that modulate instability.
Collapse
Affiliation(s)
- Michael J Dixon
- Eppley Institute for Research in Cancer and Allied Diseases and Department of Pathology and Microbiology, University of Nebraska Medical Center, Box 986805, Omaha, NE 68198-6805, USA
| | | |
Collapse
|
165
|
Fojtík P, Kejnovská I, Vorlícková M. The guanine-rich fragile X chromosome repeats are reluctant to form tetraplexes. Nucleic Acids Res 2004; 32:298-306. [PMID: 14718550 PMCID: PMC373289 DOI: 10.1093/nar/gkh179] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using circular dichroism spectroscopy, UV absorption spectroscopy and polyacrylamide gel electrophoresis, we studied conformational properties of guanine-rich DNA strands of the fragile X chromosome repeats d(GGC)n, d(GCG)n and d(CGG)n, with n = 2, 4, 8 and 16. These strands are generally considered in the literature to form guanine tetraplexes responsible for the repeat expansion. However, we show in this paper that the repeats are reluctant to form tetraplexes. At physiological concentrations of either Na+ or K+ ions, the hexamers and dodecamers associate to form homoduplexes and the longer repeats generate homoduplexes and hairpins. The tetraplexes are rarely observed being relatively most stable with d(GGC)n and least stable with d(GCG)n. The tetraplexes are exclusively formed in the presence of K+ ions, at salt concentrations higher than physiological, more easily at higher than physiological temperatures, and they arise with extremely long kinetics (even days). Moreover, the capability to form tetraplexes sharply diminishes with the oligonucleotide length. These facts make the concept of the tetraplex appearance in this motif in vivo very improbable. Rather, a hairpin of the fragile X repeats, whose stability increases with the repeat length, is the probable structure responsible for the repeat expansion in genomes.
Collapse
Affiliation(s)
- Petr Fojtík
- Academy of Sciences of the Czech Republic, Institute of Biophysics, Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | | |
Collapse
|
166
|
Handa V, Saha T, Usdin K. The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer. Nucleic Acids Res 2003; 31:6243-8. [PMID: 14576312 PMCID: PMC275460 DOI: 10.1093/nar/gkg818] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show here that under physiologically reasonable conditions, CGG repeats in RNA readily form hairpins. In contrast to its DNA counterpart that forms a complex mixture of hairpins and tetraplexes, r(CGG)22 forms a single stable hairpin with no evidence for any other folded structure even at low pH. RNA with the sequence (CGG)9AGG (CGG)12AGG(CGG)97, found in a fragile X syndrome pre-mutation allele, forms a number of different hairpins. The most prominent hairpin forms in the 3' part of the repeat and involves the 97 uninterrupted CGG repeats. In contrast to the CUG-RNA hairpins formed by myotonic dystrophy type 1 repeats, we found no evidence that CGG-RNA hairpins activate PKR, the interferon-inducible protein kinase that is activated by a wide range of double-stranded RNAs. However, we do show that the CGG-RNA is digested, albeit inefficiently, by the human Dicer enzyme, a step central to the RNA interference effect on gene expression. These data provide clues to the basis of the toxic effect of CGG-RNA that is thought to occur in fragile X pre-mutation carriers. In addition, RNA hairpins may also account for the stalling of the 40S ribosomal subunit that is thought to contribute to the translation deficit in fragile X pre-mutation and full mutation alleles.
Collapse
Affiliation(s)
- Vaishali Handa
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | |
Collapse
|
167
|
Zlotorynski E, Rahat A, Skaug J, Ben-Porat N, Ozeri E, Hershberg R, Levi A, Scherer SW, Margalit H, Kerem B. Molecular basis for expression of common and rare fragile sites. Mol Cell Biol 2003; 23:7143-51. [PMID: 14517285 PMCID: PMC230307 DOI: 10.1128/mcb.23.20.7143-7151.2003] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile sites are specific loci that form gaps, constrictions, and breaks on chromosomes exposed to partial replication stress and are rearranged in tumors. Fragile sites are classified as rare or common, depending on their induction and frequency within the population. The molecular basis of rare fragile sites is associated with expanded repeats capable of adopting unusual non-B DNA structures that can perturb DNA replication. The molecular basis of common fragile sites was unknown. Fragile sites from R-bands are enriched in flexible sequences relative to nonfragile regions from the same chromosomal bands. Here we cloned FRA7E, a common fragile site mapped to a G-band, and revealed a significant difference between its flexibility and that of nonfragile regions mapped to G-bands, similar to the pattern found in R-bands. Thus, in the entire genome, flexible sequences might play a role in the mechanism of fragility. The flexible sequences are composed of interrupted runs of AT-dinucleotides, which have the potential to form secondary structures and hence can affect replication. These sequences show similarity to the AT-rich minisatellite repeats that underlie the fragility of the rare fragile sites FRA16B and FRA10B. We further demonstrate that the normal alleles of FRA16B and FRA10B span the same genomic regions as the common fragile sites FRA16C and FRA10E. Our results suggest that a shared molecular basis, conferred by sequences with a potential to form secondary structures that can perturb replication, may underlie the fragility of rare fragile sites harboring AT-rich minisatellite repeats and aphidicolin-induced common fragile sites.
Collapse
Affiliation(s)
- Eitan Zlotorynski
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel 91904
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Lavoie H, Debeane F, Trinh QD, Turcotte JF, Corbeil-Girard LP, Dicaire MJ, Saint-Denis A, Pagé M, Rouleau GA, Brais B. Polymorphism, shared functions and convergent evolution of genes with sequences coding for polyalanine domains. Hum Mol Genet 2003; 12:2967-79. [PMID: 14519685 DOI: 10.1093/hmg/ddg329] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mutations causing expansions of polyalanine domains are responsible for nine hereditary diseases. Other GC-rich sequences coding for some polyalanine domains were found to be polymorphic in human. These observations prompted us to identify all sequences in the human genome coding for polyalanine stretches longer than four alanines and establish their degree of polymorphism. We identified 494 annotated human proteins containing 604 polyalanine domains. Thirty-two percent (31/98) of tested sequences coding for more than seven alanines were polymorphic. The length of the polyalanine-coding sequence and its GCG or GCC repeat content are the major predictors of polymorphism. GCG codons are over-represented in human polyalanine coding sequences. Our data suggest that GCG and GCC codons play a key role in polyalanine-coding sequence appearance and polymorphism. The grouping by shared function of polyalanine-containing proteins in Homo sapiens, Drosophila melanogaster and Caenorhabditis elegans shows that the majority are involved in transcriptional regulation. Phylogenetic analyses of HOX, GATA and EVX protein families demonstrate that polyalanine domains arose independently in different members of these families, suggesting that convergent molecular evolution may have played a role. Finally polyalanine domains in vertebrates are conserved between mammals and are rarer and shorter in Gallus gallus and Danio rerio. Together our results show that the polymorphic nature of sequences coding for polyalanine domains makes them prime candidates for mutations in hereditary diseases and suggests that they have appeared in many different protein families through convergent evolution.
Collapse
Affiliation(s)
- Hugo Lavoie
- Laboratoire de Neurogénétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Jasinska A, Michlewski G, de Mezer M, Sobczak K, Kozlowski P, Napierala M, Krzyzosiak WJ. Structures of trinucleotide repeats in human transcripts and their functional implications. Nucleic Acids Res 2003; 31:5463-8. [PMID: 14500808 PMCID: PMC206467 DOI: 10.1093/nar/gkg767] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Among the goals of RNA structural and functional genomics is determining structures and establishing the functions of a rich repertoire of simple sequence repeats in transcripts. These repeats are present in transcripts from their 'birth' in the nucleus to their 'death' in cytoplasm and have the potential of being involved in many steps of RNA regulation. The knowledge of their structural features and functional roles will also shed more light on the postulated mechanisms of RNA pathogenesis in a growing list of neurological diseases caused by simple sequence repeat expansions. Here, we discuss several different lines of research to support the hypothesis that the mechanism of RNA pathogenesis may be a more common phenomenon triggered or modulated also by abundant long normal repeats. We propose structures of the repeat regions in transcripts of genes involved in Triplet Repeat Expansion Diseases. We have classified the polymorphic repeat alleles of these genes according to their ability to form hairpin structures in transcripts, and describe the distribution of different structural forms of the repeats in the human population. We have also reported the results of a systematic survey of the human transcriptome to identify mRNAs containing triplet repeats and to classify them according to structural and functional criteria. Based on this knowledge, we discuss the putative wider role of triplet repeat RNA hairpins in human diseases. A hypothetical model is proposed in which long normal RNA hairpins formed by the repeats may also be involved in pathogenesis.
Collapse
Affiliation(s)
- Anna Jasinska
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 St, 61-704, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
170
|
Weisman-Shomer P, Cohen E, Hershco I, Khateb S, Wolfovitz-Barchad O, Hurley LH, Fry M. The cationic porphyrin TMPyP4 destabilizes the tetraplex form of the fragile X syndrome expanded sequence d(CGG)n. Nucleic Acids Res 2003; 31:3963-70. [PMID: 12853612 PMCID: PMC165968 DOI: 10.1093/nar/gkg453] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fragile X syndrome, the most common cause of inherited mental retardation, is instigated by dynamic expansion of a d(CGG) trinucleotide repeat in the 5'-untranslated region of the first exon of the FMR1 gene, resulting in its silencing. The expanded d(CGG)(n) tract readily folds into hairpin and tetraplex structures which may contribute to the blocking of FMR1 transcription. In this work, we report that the cationic porphyrin 5,10,15,20-tetra(N-methyl-4-pyridyl)porphin (TMPyP4) effectively destabilizes in vitro the G'2 bimolecular tetraplex structure of d(CGG)(n) while it stabilizes the G'2 tetraplex form of the telomeric sequence d(TTAGGG)(2). Similarly to TMPyP4, the hnRNP-related protein CBF-A also destabilizes G'2 tetrahelical d(CGG)(n) while binding and stabilizing tetraplex telomeric DNA. We report that relative to each agent individually, successive incubation of G'2 d(CGG)(n) with TMPyP4 followed by exposure to CBF-A results in a nearly additive extent of disruption of this tetraplex form of the repeat sequence. Our observations open up the prospect of unfolding secondary structures of the expanded FMR1 d(CGG)(n) tract of fragile X cells by their exposure to low molecular size drugs or to proteins such as TMPyP4 or CBF-A.
Collapse
Affiliation(s)
- Pnina Weisman-Shomer
- Unit of Biochemistry, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, PO Box 9649, Haifa 31096, Israel
| | | | | | | | | | | | | |
Collapse
|
171
|
Liu Y, Bambara RA. Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion. J Biol Chem 2003; 278:13728-39. [PMID: 12554738 DOI: 10.1074/jbc.m212061200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Flap endonuclease 1 (FEN1), involved in the joining of Okazaki fragments, has been proposed to restrain DNA repeat sequence expansion, a process associated with aging and disease. Here we analyze properties of human FEN1 having mutations at two conserved glycines (G66S and G242D) causing defects in nuclease activity. Introduction of these mutants into yeast led to sequence expansions. Reconstituting triplet repeat expansion in vitro, we previously found that DNA ligase I promotes expansion, but FEN1 prevents the ligation that forms expanded products. Here we show that among the intermediates that could generate sequence expansion, a bubble is necessary for ligation to produce the expansion product. Severe exonuclease defects in the mutant FEN1 suggested that the inability to degrade bubbles exonucleolytically leads to expansion. However, even wild type FEN1 exonuclease cannot compete with DNA ligase I to degrade a bubble structure before it can be ligated. Instead, we propose that FEN1 suppresses sequence expansion by degrading flaps that equilibrate with bubbles, thereby reducing bubble concentration. In this way FEN1 employs endonuclease rather than exonuclease to prevent expansions. A model is presented describing the roles of DNA structure, DNA ligase I, and FEN1 in sequence expansion.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | |
Collapse
|
172
|
Lyonnais S, Hounsou C, Teulade-Fichou MP, Jeusset J, Le Cam E, Mirambeau G. G-quartets assembly within a G-rich DNA flap. A possible event at the center of the HIV-1 genome. Nucleic Acids Res 2002; 30:5276-83. [PMID: 12466553 PMCID: PMC137959 DOI: 10.1093/nar/gkf644] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2002] [Revised: 09/28/2002] [Accepted: 09/28/2002] [Indexed: 01/12/2023] Open
Abstract
Stretches of guanines can associate in vitro through Hoogsteen hydrogen bonding to form four-stranded structures. In the HIV-1 central DNA flap, generated by reverse transcriptase at the end of retrotranscription, both the two 99 nt-long overlapping (+) strands contain two adjacent tracts of guanines. This study demonstrates that oligonucleotides containing these G-clusters form highly stable G-quadruplexes of various structures in vitro, whose formation was controlled by an easy and reversible protocol using sodium hydroxide. Among these sequences, a G'2 hairpin dimer was the most stable structure adopted by the 5'-tail of the (+) downstream strand. Since the two (+) strands of the HIV-1 central DNA flap hold these G-clusters, and based on the properties of reverse branch migration in DNA flaps, constructions using HIV-1 sequences were assembled to mimic small DNA flaps where the G-clusters are neighbors. G-quartets were successfully probed in such flaps. They were induced by potassium and by a dibenzophenanthroline derivative already known to stabilize them. Such results suggest some function(s) for G-quartets associated with a DNA flap in the HIV-1 pre-integration steps, and argue for their transient formation during the processing of G-rich DNA flaps at the time of replication and/or repair.
Collapse
Affiliation(s)
- Sébastien Lyonnais
- Laboratoire de Microscopie Moléculaire et Cellulaire, CNRS UMR 8126, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | |
Collapse
|
173
|
Völker J, Makube N, Plum GE, Klump HH, Breslauer KJ. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases. Proc Natl Acad Sci U S A 2002; 99:14700-5. [PMID: 12417759 PMCID: PMC137482 DOI: 10.1073/pnas.222519799] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have embedded the hexameric triplet repeats (CAG)(6) and (CTG)(6) between two (GC)(3) domains to produce two 30-mer hairpins with the sequences d[(GC)(3)(CAG)(6)(GC)(3)] and d[(GC)(3)(CTG)(6)(GC)(3)]. This construct reduces the conformational space available to these repetitive DNA sequences. We find that the (CAG)(6) and (CTG)(6) repeats form stable, ordered, single-stranded structures. These structures are stabilized at 62 degrees C by an average enthalpy per base of 1.38 kcal.mol(-1) for the CAG triplet and 2.87 kcal.mol(-1) for the CTG triplet, while being entropically destabilized by 3.50 cal.K(-1).mol(-1) for the CAG triplet and 7.6 cal.K(-1).mol(-1) for the CTG triplet. Remarkably, these values correspond, respectively, to 1/3 (for CAG) and 2/3 (for CTG) of the enthalpy and entropy per base values associated with Watson-Crick base pairs. We show that the presence of the loop structure kinetically inhibits duplex formation from the two complementary 30-mer hairpins, even though the duplex is the thermodynamically more stable state. Duplex formation, however, does occur at elevated temperatures. We propose that this thermally induced formation of a more stable duplex results from thermal disruption of the single-stranded order, thereby allowing the complementary domains to associate (perhaps via "kissing hairpins"). Our melting profiles show that, once duplex formation has occurred, the hairpin intermediate state cannot be reformed, consistent with our interpretation of kinetically trapped hairpin structures. The duplex formed by the two complementary oligonucleotides does not have any unusual optical or thermodynamic properties. By contrast, the very stable structures formed by the individual single-stranded triplet repeat sequences are thermally and thermodynamically unusual. We discuss this stable, triplet repeat, single-stranded structure and its interconversion with duplex in terms of triplet expansion diseases.
Collapse
Affiliation(s)
- J Völker
- Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, 610 Taylor Road, Piscataway 08854, USA
| | | | | | | | | |
Collapse
|
174
|
Fukuda H, Katahira M, Tsuchiya N, Enokizono Y, Sugimura T, Nagao M, Nakagama H. Unfolding of quadruplex structure in the G-rich strand of the minisatellite repeat by the binding protein UP1. Proc Natl Acad Sci U S A 2002; 99:12685-90. [PMID: 12235355 PMCID: PMC130521 DOI: 10.1073/pnas.152456899] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mouse hypervariable minisatellite (MN) Pc-1 consists of tandem repeats of d(GGCAG) and flanked sequences. We have previously demonstrated that single-stranded d(GGCAG)(n) folds into the intramolecular folded-back quadruplex structure under physiological conditions. Because DNA polymerase progression in vitro is blocked at the repeat, the characteristic intramolecular quadruplex structure of the repeat, at least in part, could be responsible for the hypermutable feature of Pc-1 and other MNs with similar repetitive units. On the other hand, we have isolated six MN Pc-1 binding proteins (MNBPs) from nuclear extracts of NIH 3T3 cells. Here, we describe one of those MNBPs, MNBP-B, that binds to the single-stranded d(GGCAG)(n). Amino acid sequences of seven proteolytic peptide fragments of MNBP-B were determined, and the cDNA clones were isolated. MNBP-B was proven identical to the single-stranded DNA-binding protein, UP1. Recombinant UP1 bound to single-stranded d(GGCAG)(n) and other G-rich repetitive sequences, such as d(GTCAGG)(n) and d(GTTAGG)(n). In addition, UP1 was demonstrated by CD spectrum analysis to unfold the intramolecular quadruplex structure of d(GGCAG)(5) and d(TTAGGG)(4) and to abrogate the arrest of DNA synthesis at the d(GGG)(n) site. This ability of UP1 suggests that unfolding of quadruplex DNA is required for DNA synthesis processes.
Collapse
Affiliation(s)
- Hirokazu Fukuda
- Biochemistry Division, National Cancer Center Research Institute, 1-1, Tsukiji 5, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
175
|
Pinheiro P, Scarlett G, Rodger A, Rodger PM, Murray A, Brown T, Newbury SF, McClellan JA. Structures of CUG repeats in RNA. Potential implications for human genetic diseases. J Biol Chem 2002; 277:35183-90. [PMID: 12077125 DOI: 10.1074/jbc.m202235200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triplet repeats that cause human genetic diseases have been shown to exhibit unusual compact structures in DNA, and in this paper we show that similar structures exist in shorter "normal length" CNG RNA. CUG and control RNAs were made chemically and by in vitro transcription. We find that "normal" short CUG RNAs migrate anomalously fast on non-denaturing gels, compared with control oligos of similar base composition. By contrast, longer tracts approaching clinically relevant lengths appear to form higher order structures. The CD spectrum of shorter tracts is similar to triplex and pseudoknot nucleic acid structures and different from classical hairpin spectra. A model is outlined that enables the base stacking features of poly(r(G-C))(2).poly(r(U)) or poly(d(G-C))(2).poly(d(T)) triplexes to be achieved, even by a single 15-mer.
Collapse
Affiliation(s)
- Philip Pinheiro
- Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, PO1 2DT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Weisman-Shomer P, Cohen E, Fry M. Distinct domains in the CArG-box binding factor A destabilize tetraplex forms of the fragile X expanded sequence d(CGG)n. Nucleic Acids Res 2002; 30:3672-81. [PMID: 12202751 PMCID: PMC137428 DOI: 10.1093/nar/gkf506] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formation of hairpin or tetraplex structures of the FMR1 gene d(CGG)n sequence triggers its expansion, setting off fragile X syndrome. In searching for proteins that destabilize d(CGG)n secondary structures we purified from rat liver quadruplex telomeric DNA binding protein 42 (qTBP42) that disrupts G'2 bimolecular tetraplex d(CGG)n while paradoxically stabilizing the G'2 structure of the telomeric sequence d(TTAGGG)n. Based on peptide sequence homology of qTBP42 and mouse CArG-box binding factor A (CBF-A), we provide direct evidence that recombinant CBF-A protein is physically and immunochemically indistinguishable from qTBP42 and that it too destabilizes G'2 d(CGG)n while stabilizing G'2 d(TTAGGG)n. We inquired whether CBF-A employs the same or different domains to differentially interact with G'2 d(CGG)n and G'2 d(TTAGGG)n. Mutant CBF-A proteins that lack each or combinations of its five conserved motifs: RNP1(1), RNP1(2), RNP2(1), RNP2(2) and ATP/GTP-binding box were tested for their G'2 d(CGG)n destabilization and G'2 d(TTAGGG)n stabilization activities. We find that either RNP1(1) or the ATP/GTP motifs are necessary and sufficient for G'2 d(CGG)n destabilization whereas RNP2(1) suppresses destabilization by either one of these two motifs. Neither RNP1(1) nor the ATP/GTP motif are required for G'2 d(TTAGGG)n stabilization. Hence, CBF-A employs different domains to destabilize G'2 d(CGG)n or stabilize G'2 d(TTAGGG)n.
Collapse
Affiliation(s)
- Pnina Weisman-Shomer
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, PO Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
177
|
Abstract
DNA oligonucleotides that have repetitive tracts of guanine bases can form G-quadruplex structures that display an amazing polymorphism. Structures of several new G-quadruplexes have been solved recently that greatly expand the known structural motifs observed in nucleic acid quadruplexes. Base triads, base hexads, and quartets that contain cytosine have recently been identified stacked over the familiar G-quartets. The current status of the diverse array of structural features in quadruplexes is described and used to provide insight into the polymorphism and folding pathways. This review also summarizes recent progress in the techniques used to probe the structures of G-quadruplexes and discusses the role of ion binding in quadruplex formation. Several of the quadruplex structures featured in this review can be accessed in the online version of this review as CHIME representations.
Collapse
Affiliation(s)
- M A Keniry
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
178
|
Abstract
Among the many unusual conformations of DNA and RNA, quadruplex structures, based on the guanine quartet, possess several unique properties. These properties, along with the general features of guanine quadruplexes, are described in the context of possible roles for these structures in biological systems. A variety of experimental observations supporting the notion that quadruplexes are important in vivo is presented, including proteins known to specifically bind to quadruplex structures, guanine-rich DNA, and RNA sequences endowed with the potential for forming quartet-based structures in telomeres and regulatory regions, such as gene promoters, quadruplexes as DNA aptamer folding motifs arising from in vitro selection experiments, and potential chemotherapeutic, quadruplex-forming oligonucleotides. Taken together, all of these observations argue cogently not only for the presence of quadruplexes in biological systems but also for their significance in terms of their roles in various biological processes.
Collapse
Affiliation(s)
- R H Shafer
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143-0446, USA.
| | | |
Collapse
|
179
|
Sinden RR, Potaman VN, Oussatcheva EA, Pearson CE, Lyubchenko YL, Shlyakhtenko LS. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA. J Biosci 2002; 27:53-65. [PMID: 11927777 DOI: 10.1007/bf02703683] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fourteen genetic neurodegenerative diseases and three fragile sites have been associated with the expansion of (CTG)n (CAG)n, (CGG)n (CCG)n, or (GAA)n (TTC)n repeat tracts. Different models have been proposed for the expansion of triplet repeats, most of which presume the formation of alternative DNA structures in repeat tracts. One of the most likely structures, slipped strand DNA, may stably and reproducibly form within triplet repeat sequences. The propensity to form slipped strand DNA is proportional to the length and homogeneity of the repeat tract. The remarkable stability of slipped strand DNA may, in part, be due to loop-loop interactions facilitated by the sequence complementarity of the loops and the dynamic structure of three-way junctions formed at the loop-outs.
Collapse
Affiliation(s)
- Richard R Sinden
- Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, 2121 West Holcombe Blvd., Houston, TX 77030-3303, USA.
| | | | | | | | | | | |
Collapse
|
180
|
Chowdhury S, Bansal M. Modelling studies on neurodegenerative disease-causing triplet repeat sequences d(GGC/GCC)n and d(CAG/CTG)n. J Biosci 2001; 26:649-65. [PMID: 11807295 DOI: 10.1007/bf02704763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Model building and molecular mechanics studies have been carried out to examine the potential structures for d(GGC/GCC)5 and d(CAG/CTG)5 that might relate to their biological function and association with triplet repeat expansion diseases. Model building studies suggested that hairpin and quadruplex structures could be formed with these repeat sequences. Molecular mechanics studies have demonstrated that the hairpin and hairpin dimer structures of triplet repeat sequences formed by looping out of the two strands are as favourable as the corresponding B-DNA type hetero duplex structures. Further, at high salt condition, Greek key type quadruplex structures are energetically comparable with hairpin dimer and B-DNA type duplex structures. All tetrads in the quadruplex structures are well stacked and provide favourable stacking energy values. Interestingly, in the energy minimized hairpin dimer and Greek key type quadruplex structures, all the bases even in the non-G tetrads are cyclically hydrogen bonded, even though the A, C and T-tetrads were not hydrogen bonded in the starting structures.
Collapse
Affiliation(s)
- S Chowdhury
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
181
|
Bellizzi D, Losso MA, Sgaramella V. A model for the involvement of Okazaki fragments maturation in the expansion of short tandem repeats. Gene 2001; 276:153-9. [PMID: 11591482 DOI: 10.1016/s0378-1119(01)00642-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We propose a model for the expansion of short tandem repeats (ESTR), a phenomenon which has been found to occur in human DNA and is associated with a dozen of neuromuscular diseases. The model is based mainly on theoretical considerations and recovers experimental data from the literature; it also finds support in preliminary results obtained by us in multiprimed polymerase chain reactions designed to assess the effects of a downstream primer on the fidelity of the elongation of an upstream one. The model links the occurrence of the ESTR to a defective maturation of the Okazaki fragments (OF), and in particular to an improper processing of their 3' termini. This may occur when the last OF approaches the 5' terminus of the previous one in a susceptible region of the template. It is postulated here that when a growing OF has progressed past the priming region and its main portion has been synthesized, upon approaching its conclusion, the final elongation may take place in a region of the template where certain triplets are repeated: in that case a series of aberrations on the elongation mechanism may occur. These aberrations could involve (a) the displacement of the 5' terminus of the penultimate, properly matured OF, enacted by the incoming 3' terminus of the last OF, (b) the switch of the latter to the displaced strand of the former as template, (c) the fold-back on itself of the growing 3' terminus of the last OF, (d) its assumption of an unusual structure because of the repetition, and (e) some impairment of its removal by structure-specific exo-endonuclease(s). Derangements of this last part of the process may trigger the ESTR.
Collapse
|
182
|
Pataskar SS, Dash D, Brahmachari SK. Progressive myoclonus epilepsy [EPM1] repeat d(CCCCGCCCCGCG)n forms folded hairpin structures at physiological pH. J Biomol Struct Dyn 2001; 19:293-305. [PMID: 11697734 DOI: 10.1080/07391102.2001.10506740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The secondary structure of DNA has been shown to be an important component in the mechanism of expansion of the trinucleotide repeats that are associated with many neurodegenerative disorders. Recently, expansion of a dodecamer repeat, (CCCCGCCCCGCG)n upstream of cystatin B gene has been shown to be the most common mutation associated with Progressive Myoclonus Epilepsy (EPM1) of Unverricht-Lundborg type. We have investigated structure of oligonucleotides containing one, two and three copies of the EPM1 repeat sequences at physiological pH. CD spectra and anomalous faster gel electrophoretic mobilty indicates formation of intramolecularly folded structures that are formed independent of concentration. Hydroxylamine probing allowed us to identify the C residues that are involved in C.G base pairing. P1 nuclease studies elucidated the presence of unpaired regions in the folded back structures. UV melting studies show biphasic melting curves for the oligonucleotides containing two and three EPM1 repeats. Our data suggests multiple hairpin structures for two and three repeat containing oligonucleotides. In this paper we show that oligonucleotides containing EPM1 repeat adopt secondary structures that may facilitate strand slippage thereby causing the expansion.
Collapse
Affiliation(s)
- S S Pataskar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | | | |
Collapse
|
183
|
Grabczyk E, Kumari D, Usdin K. Fragile X syndrome and Friedreich's ataxia: two different paradigms for repeat induced transcript insufficiency. Brain Res Bull 2001; 56:367-73. [PMID: 11719274 DOI: 10.1016/s0361-9230(01)00572-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA repeat expansion is the genetic basis for a growing number of neurological disorders. While the largest subset of these diseases results in an increase in the length of a polyglutamine tract in the protein encoded by the affected gene, the most common form of inherited mental retardation, fragile X syndrome, and the most common inherited ataxia, Friedreich's ataxia, are both caused by expansions that are transcribed but not translated. These expansions both decrease expression of the gene in which the expanded repeat is located, but they do so by quite different mechanisms. In fragile X syndrome, CGG. CCG expansion in the 5' untranslated region of the FMR1 gene leads to hypermethylation of the repeats and the adjacent CpG-rich promoter. Methylation prevents the binding of the transcription factor alpha-Pal/NRF-1, and may indirectly affect the binding of other factors via the formation of transcriptionally silent chromatin. In Friedreich's ataxia, GAA. TTC expansion in an intron of the FRDA gene reduces expression by interfering with transcription elongation. The model that best describes the available data is transcription-driven formation of a transient purine. purine. pyrimidine DNA triplex behind an advancing RNA polymerase. This structure lassoes the RNA polymerase that caused it, trapping the enzyme on the template.
Collapse
Affiliation(s)
- E Grabczyk
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | |
Collapse
|
184
|
Schaeffer C, Bardoni B, Mandel JL, Ehresmann B, Ehresmann C, Moine H. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J 2001; 20:4803-13. [PMID: 11532944 PMCID: PMC125594 DOI: 10.1093/emboj/20.17.4803] [Citation(s) in RCA: 368] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome is caused by the absence of protein FMRP, the function of which is still poorly understood. Previous studies have suggested that FMRP may be involved in various aspects of mRNA metabolism, including transport, stability and/or translatability. FMRP was shown to interact with a subset of brain mRNAs as well as with its own mRNA; however, no specific RNA-binding site could be identified precisely. Here, we report the identification and characterization of a specific and high affinity binding site for FMRP in the RGG-coding region of its own mRNA. This site contains a purine quartet motif that is essential for FMRP binding and can be substituted by a heterologous quartet-forming motif. The specific binding of FMRP to its target site was confirmed further in a reticulocyte lysate through its ability to repress translation of a reporter gene harboring the RNA target site in the 5'-untranslated region. Our data address interesting questions concerning the role of FMRP in the post-transcriptional control of its own gene and possibly other target genes.
Collapse
Affiliation(s)
| | - Barbara Bardoni
- UPR-9002, CNRS, 15 rue R.Descartes, 67084 Strasbourg cedex and
Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch cedex, France Corresponding author e-mail:
| | - Jean-Louis Mandel
- UPR-9002, CNRS, 15 rue R.Descartes, 67084 Strasbourg cedex and
Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch cedex, France Corresponding author e-mail:
| | | | | | - Hervé Moine
- UPR-9002, CNRS, 15 rue R.Descartes, 67084 Strasbourg cedex and
Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch cedex, France Corresponding author e-mail:
| |
Collapse
|
185
|
Angers M, Cloutier JF, Castonguay A, Drouin R. Optimal conditions to use Pfu exo(-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols. Nucleic Acids Res 2001; 29:E83. [PMID: 11504891 PMCID: PMC55867 DOI: 10.1093/nar/29.16.e83] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ligation-Mediated Polymerase Chain Reaction (LMPCR) is the most sensitive sequencing technique available to map single-stranded DNA breaks at the nucleotide level of resolution using genomic DNA. LMPCR has been adapted to map DNA damage and reveal DNA-protein interactions inside living cells. However, the sequence context (GC content), the global break frequency and the current combination of DNA polymerases used in LMPCR affect the quality of the results. In this study, we developed and optimized an LMPCR protocol adapted for Pyrococcus furiosus exo(-) DNA polymerase (Pfu exo(-)). The relative efficiency of Pfu exo(-) was compared to T7-modified DNA polymerase (Sequenase 2.0) at the primer extension step and to Thermus aquaticus DNA polymerase (Taq) at the PCR amplification step of LMPCR. At all break frequencies tested, Pfu exo(-) proved to be more efficient than Sequenase 2.0. During both primer extension and PCR amplification steps, the ratio of DNA molecules per unit of DNA polymerase was the main determinant of the efficiency of Pfu exo(-), while the efficiency of Taq was less affected by this ratio. Substitution of NaCl for KCl in the PCR reaction buffer of Taq strikingly improved the efficiency of the DNA polymerase. Pfu exo(-) was clearly more efficient than Taq to specifically amplify extremely GC-rich genomic DNA sequences. Our results show that a combination of Pfu exo(-) at the primer extension step and Taq at the PCR amplification step is ideal for in vivo DNA analysis and DNA damage mapping using LMPCR.
Collapse
Affiliation(s)
- M Angers
- Unite de Recherche en Genetique Humaine et Moleculaire, Centre de Recherche, Hopital Saint-Francois d'Assise, Centre Hospitalier Universitaire de Quebec, 10 rue de l'Espinay, Quebec, QC G1L 3L5, Canada
| | | | | | | |
Collapse
|
186
|
Jackson AL, Loeb LA. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 2001; 477:7-21. [PMID: 11376682 DOI: 10.1016/s0027-5107(01)00091-4] [Citation(s) in RCA: 412] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is increasing evidence that most human cancers contain multiple mutations. By the time a tumor is clinically detectable it may have accumulated tens of thousands of mutations. In normal cells, mutations are rare events occurring at a rate of 10(-10) mutations per nucleotide per cell per generation. We have argued that the mutation rates exhibited by normal human cells are insufficient to account for the large number of mutations found in human cancers, and therefore, that an early event in tumorigenesis is the development of a mutator phenotype. In normal cells, spontaneous and induced DNA damage is balanced by multiple pathways for DNA repair, and most DNA damage is repaired without error. However, in tumor cells this balance may be shifted such that damage overwhelms the repair capacity, resulting in the accumulation of multiple mutations. Our hypothesis is that multiple random mutations occur during carcinogenesis. The sequential mutations that are observed in some human tumors result from selective events required for tumor progression. We consider the possibility that endogenous sources of DNA damage, in particular oxidative DNA damage, may contribute to genomic instability and to a mutator phenotype in some tumors. Endogenous and environmental sources of reactive oxygen species (ROS) are abundant. In tumor cells, antioxidant or DNA repair capacity may be insufficient to compensate for the production of ROS, and these endogenous ROS may be capable of damaging DNA and inducing mutations in critical DNA stability genes. The possibility that oxidative DNA damage could be a significant source of the genomic instability characteristic of human cancers is exciting, because it may be feasible to modulate the extent of oxidative damage through antioxidant therapy. The use of antioxidants to reduce the extent of molecular damage by ROS could delay the progression of cancer.
Collapse
Affiliation(s)
- A L Jackson
- Department of Pathology, University of Washington, Seattle, Washington, WA 98195, USA
| | | |
Collapse
|
187
|
Abstract
In a recent paper, we have put forward the hypothesis that there exist smart purposive mechanisms - tandem repeat length managers - which regulate the length of some tandem repeat, or cause rearrangements, and are almost always driven by some variable number tandem repeat. We have called the framework in which such mechanisms act 'dynamical genetics'. The purpose of this paper is to contribute to lay the foundations of a molecular study of the above mechanisms, by proposing a hypothesis, based on various kinds of supporting evidence and plausibility arguments, about the special importance of DNA quadruplexes for dynamical genetics, and by considering the involved enzymes. This hypothesis states that a tandem repeat length manager acts almost always by monitoring a DNA tract that has the characteristics of being a variable number tandem repeat and/or forming a DNA quadruplex, and that it is almost always driven by at least one of them.
Collapse
Affiliation(s)
- V D Fonzo
- EuroBioPark c/o Parco Scientifico, Università di Roma 'Tor Vergata', Rome, Italy
| | | | | | | |
Collapse
|
188
|
Kuryavyi V, Majumdar A, Shallop A, Chernichenko N, Skripkin E, Jones R, Patel DJ. A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads flanked by a G-(T-T) Triad and a T-T-T triple. J Mol Biol 2001; 310:181-94. [PMID: 11419945 DOI: 10.1006/jmbi.2001.4759] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The architecture of G-G-G-G tetrad-aligned DNA quadruplexes in monovalent cation solution is dependent on the directionality of the four strands, which in turn are defined by loop connectivities and the guanine syn/anti distribution along individual strands and within individual G-G-G-G tetrads. The smallest unimolecular G-quadruplex belongs to the d(G2NnG2NnG2NnG2) family, which has the potential to form two stacked G-tetrads linked by Nn loop connectivities. Previous studies have focused on the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), where Nn was T2 for the first and third connecting loops and TGT for the middle connecting loop. This DNA aptamer in K(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(anti)-G(syn)-G(anti) tetrads, adjacent strands which are antiparallel to each other and edge-wise connecting T2, TGT and T2 loops. We now report on the NMR-based solution structure of the d(G2T4G2CAG2GT4G2T) sequence, which differs from the thrombin-binding DNA aptamer sequence in having longer first (T4) and third (GT4) loops and a shorter (CA) middle loop. This d(G2T4G2CAG2GT4G2T) sequence in Na(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads, adjacent strands which have one parallel and one antiparallel neighbors and distinct non-edge-wise loop connectivities. Specifically, the longer first (T4) and third (GT4) loops are of the diagonal type while the shorter middle loop is of the double chain reversal type. In addition, the pair of stacked G-G-G-G tetrads are flanked on one side by a G-(T-T) triad and on the other side by a T-T-T triple. The distinct differences in strand directionalities, loop connectivities and syn/anti distribution within G-G-G-G tetrads between the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2) quadruplex reported previously, and the d(G2T4G2CAG2GT4G2T) quadruplex reported here, reinforces the polymorphic nature of higher-order DNA architectures. Further, these two small unimolecular G-quadruplexes, which are distinct from each other and from parallel-stranded G-quadruplexes, provide novel targets for ligand recognition. Our results demonstrate that the double chain reversal loop connectivity identified previously by our laboratory within the Tetrahymena telomere d(T2G4)4 quadruplex, is a robust folding topology, since it has now also been observed within the d(G2T4G2CAG2GT4G2T) quadruplex. The identification of a G-(T-T) triad and a T-T-T triple, expands on the available recognition alignments for base triads and triples.
Collapse
Affiliation(s)
- V Kuryavyi
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Miyoshi D, Nakao A, Toda T, Sugimoto N. Effect of divalent cations on antiparallel G-quartet structure of d(G4T4G4). FEBS Lett 2001; 496:128-33. [PMID: 11356196 DOI: 10.1016/s0014-5793(01)02416-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thermodynamic parameters of an antiparallel G-quartet formation of d(G4T4G4) with 1 mM divalent cation (Mg(2+), Ca(2+), Mn(2+), Co(2+), and Zn(2+)) were obtained. The thermodynamic parameters showed that the divalent cation destabilizes the antiparallel G-quartet of d(G4T4G4) in the following order: Zn(2+)>Co(2+)>Mn(2+)>Mg(2+)>Ca(2+). In addition, a higher concentration of a divalent cation induced a transition from an antiparallel to a parallel G-quartet structure. These results indicate that these divalent cations are a good tool for regulating the G-quartet structures.
Collapse
Affiliation(s)
- D Miyoshi
- Department of Chemistry, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | | | | | |
Collapse
|
190
|
Kamath-Loeb AS, Loeb LA, Johansson E, Burgers PM, Fry M. Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence. J Biol Chem 2001; 276:16439-46. [PMID: 11279038 DOI: 10.1074/jbc.m100253200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Werner syndrome (WS) is an inherited disorder characterized by premature aging and genomic instability. The protein encoded by the WS gene, WRN, possesses intrinsic 3' --> 5' DNA helicase and 3' --> 5' DNA exonuclease activities. WRN helicase resolves alternate DNA structures including tetraplex and triplex DNA, and Holliday junctions. Thus, one function of WRN may be to unwind secondary structures that impede cellular DNA transactions. We report here that hairpin and G'2 bimolecular tetraplex structures of the fragile X expanded sequence, d(CGG)(n), effectively impede synthesis by three eukaryotic replicative DNA polymerases (pol): pol alpha, pol delta, and pol epsilon. The constraints imposed on pol delta-catalyzed synthesis are relieved, however, by WRN; WRN facilitates pol delta to traverse these template secondary structures to synthesize full-length DNA products. The alleviatory effect of WRN is limited to pol delta; neither pol alpha nor pol epsilon can traverse template d(CGG)(n) hairpin and tetraplex structures in the presence of WRN. Alleviation of pausing by pol delta is observed with Escherichia coli RecQ but not with UvrD helicase, suggesting a concerted action of RecQ helicases and pol delta. Our findings suggest a possible role of WRN in rescuing pol delta-mediated replication at forks stalled by unusual DNA secondary structures.
Collapse
Affiliation(s)
- A S Kamath-Loeb
- Gottstein Memorial Cancer Research Laboratory, Departments of Pathology and Biochemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
191
|
Gearheart L, Caswell KK, Murphy CJ. Recognition of hypermethylated triplet repeats in vitro by cationic nanoparticles. JOURNAL OF BIOMEDICAL OPTICS 2001; 6:111-115. [PMID: 11375719 DOI: 10.1117/1.1344189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2000] [Accepted: 09/13/2000] [Indexed: 05/23/2023]
Abstract
Genomic DNA contains many higher-order structural deviations from the Watson-Crick global average. The massive expansion and hypermethylation of the duplex triplet repeat (CCG)(n)(CGG)(n) has characteristic higher-order structures that are associated with the fragile X syndrome. We have used luminescent mineral nanoparticles of protein-sized cadmium sulfide in optical assays to detect anomalous DNA structures. The photoluminescence of these particles is sensitive to the presence and nature of adsorbates. We previously found that our nanoparticles bind the fragile X repeat well but do not bind to normal double-helical DNA. In this study, we have determined that these particles are also able to detect the hypermethylated forms of these triplet repeats. Therefore, these nanoparticles may form the basis for future optical assays of higher-order DNA structures, especially those associated with human disease.
Collapse
Affiliation(s)
- L Gearheart
- University of South Carolina, Department of Chemistry and Biochemistry, 631 Sumter Street, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
192
|
Saha T, Usdin K. Tetraplex formation by the progressive myoclonus epilepsy type-1 repeat: implications for instability in the repeat expansion diseases. FEBS Lett 2001; 491:184-7. [PMID: 11240124 DOI: 10.1016/s0014-5793(01)02190-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The repeat expansion diseases are a group of genetic disorders resulting from an increase in size or expansion of a specific array of tandem repeats. It has been suggested that DNA secondary structures are responsible for this expansion. If this is so, we would expect that all unstable repeats should form such structures. We show here that the unstable repeat that causes progressive myoclonus epilepsy type-1 (EPM1), like the repeats associated with other diseases in this category, forms a variety of secondary structures. However, EPM1 is unique in that tetraplexes are the only structures likely to form in long unpaired repeat tracts under physiological conditions.
Collapse
Affiliation(s)
- T Saha
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Kidney Diseases, Building 8, Room 202, National Institutes of Health, 8 CENTER DR MSC 0830, Bethesda, MD 20892-0830, USA
| | | |
Collapse
|
193
|
Arthanari H, Bolton PH. Functional and dysfunctional roles of quadruplex DNA in cells. CHEMISTRY & BIOLOGY 2001; 8:221-30. [PMID: 11306347 DOI: 10.1016/s1074-5521(01)00007-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A number of biological roles have been proposed for quadruplex, also referred to as G4 or tetraplex, DNA. The presence of quadruplex DNA may lead to errors in some biological processes and be required in others. Proteins that interact with quadruplex DNA have been identified including those that cause Bloom's and Werner's syndromes. There are small molecules that specifically bind to quadruplex DNA, inhibit telomerase, and are cytotoxic towards tumor cells indicating a role for quadruplex DNA in telomere function. It is now possible to make testable proposals for the possible biological implications of quadruplex DNA in replication, transcription, and recombination as well as possible routes to therapeutic intervention.
Collapse
Affiliation(s)
- H Arthanari
- Chemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
194
|
Romero RM, Rojsitthisak P, Haworth IS. DNA Interstrand Crosslink Formation by Mechlorethamine at a Cytosine–Cytosine Mismatch Pair: Kinetics and Sequence Dependence. Arch Biochem Biophys 2001; 386:143-53. [PMID: 11368336 DOI: 10.1006/abbi.2000.2198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expansion of the triplet repeat DNA sequence d[CGG]n.d[CCG]n is a characteristic of Fragile X syndrome, a human neurodegenerative disease. Stable intrastrand conformations formed by both d[CGG]n and d[CCG]n, and involving G-G and C-C mismatch pairs, respectively, are believed to be of importance in the development of the disease. We have shown previously that C-C mismatch pairs can be crosslinked covalently by mechlorethamine, a nitrogen mustard alkylating agent, and hence this reaction may be of value as a probe for conformers of d[CCG]n. To characterize the mechlorethamine C-C crosslink reaction further, here we report the kinetics and sequence dependence of formation of the crosslink species, using a series of model duplexes. The rate of reaction depends on the base sequence proximal to the C-C mismatch pair. Hence, in 19mer duplexes containing a central d[M4M3M2M1Cn1n2n3n4].d[N4N3N2N1Cm1m2m3m4] sequence, where M-m and N-n are complementary base pairs, the amount of crosslink increased with increasing G-C content of the eight base pairs neighboring the C-C mismatch and with the proximity of the G-C pairs to the C-C mismatch. Molecular dynamics simulations of the solvated duplexes provided an explanation of these data. Hence, for a C-C pair flanked by G-C base pairs the mismatched cytosine bases remain stacked within the duplex, but for a C-C pair flanked by A-T base pairs, the simulations suggested local opening of the duplex around the C-C pair, making it a less effective target for mechlorethamine.
Collapse
Affiliation(s)
- R M Romero
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles 90089-9121, USA
| | | | | |
Collapse
|
195
|
Arimondo PB, Riou JF, Mergny JL, Tazi J, Sun JS, Garestier T, Hélène C. Interaction of human DNA topoisomerase I with G-quartet structures. Nucleic Acids Res 2000; 28:4832-8. [PMID: 11121473 PMCID: PMC115246 DOI: 10.1093/nar/28.24.4832] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because of their role in the control of the topological state of DNA, topoisomerases are ubiquitous and vital enzymes, which participate in nearly all events related to DNA metabolism including replication and transcription. We show here that human topoisomerase I (Topo I) plays an unexpected role of 'molecular matchmaker' for G-quartet formation. G-quadruplexes are multi-stranded structures held together by square planes of four guanines ('G-quartets') interacting by forming Hoogsteen hydrogen bonds. Topo I is able to promote the formation of four-stranded intermolecular DNA structures when added to single-stranded DNA containing a stretch of at least five guanines. We provide evidence that these complexes are parallel G-quartet structures, mediated by tetrads of hydrogen-bonded guanine. In addition, Topo I binds specifically to pre-formed parallel and anti-parallel G4-DNA.
Collapse
Affiliation(s)
- P B Arimondo
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle CNRS UMR 8646, INSERM U201, 43 rue Cuvier, 75231 Paris cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
196
|
Patel PK, Bhavesh NS, Hosur RV. Cation-dependent conformational switches in d-TGGCGGC containing two triplet repeats of Fragile X Syndrome: NMR observations. Biochem Biophys Res Commun 2000; 278:833-8. [PMID: 11095993 DOI: 10.1006/bbrc.2000.3878] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Higher ordered structures formed by different DNA sequences have been widely investigated in recent years because of their implications in a variety of biological functions. Among these, G-quadruplexes have exhibited a great variety depending on the exact sequence, the lengths of the G-stretches, interception by other nucleotides, and environmental conditions such as pH, temperature, salt type, and its concentration. We report here interesting conformational switches observed by NMR in the sequence d-TGGCGGC containing two GGC triplet repeats related to the disease Fragile X-Syndrome. At neutral pH, the solution structure is a parallel-stranded quadruplex in presence of K(+) ions. Lowering the pH does not cause a major change in the structure; however, the chemical shift patterns of the C4 and G3 base protons suggest protonation of the C-tetrad in the center of the quadruplex. In contrast, the sequence forms an antiparallel duplex in Na(+) containing solutions. As the pH of the Na(+) sample is lowered, an equilibrium mixture of a duplex and a quadruplex appears, and at pH 2.2, the molecule exists entirely as a quadruplex. These results would be of significance from the point of view of recognition and regulation by different helicase enzymes, which have been found to discriminate between different types of quadruplex structures.
Collapse
Affiliation(s)
- P K Patel
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | | | | |
Collapse
|
197
|
Lew A, Rutter WJ, Kennedy GC. Unusual DNA structure of the diabetes susceptibility locus IDDM2 and its effect on transcription by the insulin promoter factor Pur-1/MAZ. Proc Natl Acad Sci U S A 2000; 97:12508-12. [PMID: 11070077 PMCID: PMC18794 DOI: 10.1073/pnas.97.23.12508] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the loci responsible for genetic susceptibility to insulin-dependent diabetes mellitus (IDDM) is the insulin-linked polymorphic region (ILPR, also known as IDDM2). This polymorphic G-rich minisatellite, located in the promoter region of the human insulin gene, comprises a variable number of tandemly repeating sequences related to ACAGGGGTGTGGGG. An interesting characteristic of the ILPR is its ability to form unusual DNA structures in vitro, presumably through formation of G-quartets. This ability to form G-quartets raises the intriguing possibility that transcriptional activity of the insulin gene may in fact be influenced by the quaternary DNA topology of the ILPR. We now show that single nucleotide differences in the ILPR known to affect insulin transcription are correlated with ability to form unusual DNA structures. Through the design and testing of two high transcriptional activity ILPR repeats, we demonstrate that both inter- and intramolecular G-quartet formation in the ILPR can influence transcriptional activity of the human insulin gene, and thus, may contribute to that portion of diabetes susceptibility attributed to the IDDM2 locus.
Collapse
Affiliation(s)
- A Lew
- Hormone Research Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0534, USA
| | | | | |
Collapse
|
198
|
Uliel L, Weisman-Shomer P, Oren-Jazan H, Newcomb T, Loeb LA, Fry M. Human Ku antigen tightly binds and stabilizes a tetrahelical form of the Fragile X syndrome d(CGG)n expanded sequence. J Biol Chem 2000; 275:33134-41. [PMID: 10924524 DOI: 10.1074/jbc.m005542200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hairpin and tetrahelical structures of a d(CGG)(n) sequence in the FMR1 gene have been implicated in its expansion in fragile X syndrome. The identification of tetraplex d(CGG)(n) destabilizing proteins (Fry, M., and Loeb, L. A.(1999) J. Biol. Chem. 274, 12797-12803; Weisman-Shomer, P., Naot, Y., and Fry, M. (2000) J. Biol. Chem. 275, 2231-2238) suggested that proteins might modulate d(CGG)(n) folding and aggregation. We assayed human TK-6 lymphoblastoid cell extracts for d(CGG)(8) oligomer binding proteins. The principal binding protein was identified as Ku antigen by its partial amino acid sequence and antigenicity. The purified 88/75-kDa heterodimeric Ku bound with similar affinities (K(d) approximately 1. 8-10.2 x 10(-9) mol/liter) to double-stranded d(CGG)(8).d(CCG)(8), hairpin d(CGG)(8), single-stranded d(CII)(8), or tetraplex structures of telomeric or IgG switch region sequences. However, Ku associated more tightly with bimolecular G'2 tetraplex d(CGG)(8) (K(d) approximately 0.35 x 10(-9) mol/liter). Binding to Ku protected G'2 d(CGG)(8) against nuclease digestion and impeded its unwinding by the tetraplex destabilizing protein qTBP42. Stabilization of d(CGG)(n) tetraplex domains in FMR1 by Ku or other proteins might promote d(CGG) expansion and FMR1 silencing.
Collapse
Affiliation(s)
- L Uliel
- Unit of Biochemistry, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
199
|
Pluciennik A, Iyer RR, Parniewski P, Wells RD. Tandem duplication. A novel type of triplet repeat instability. J Biol Chem 2000; 275:28386-97. [PMID: 10877999 DOI: 10.1074/jbc.m000154200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Triplet repeat sequence (TRS) inserts containing (CTG.CAG)(n) (17-175 units in length) were tandemly duplicated when propagated in plasmids in Escherichia coli. The products of this novel type of TRS genetic instability are tracts of as many as 34 multiple units, which contain the entire TRS as well as 129 base pairs of nonrepetitive flanking sequence. The duplication process required the presence of two or more TRS-containing units. Close proximity (170 base pairs) of the TRS to the R6K gamma origin of replication of the pUTminiTn5Cm-derived constructs stimulated the tandem duplication process. These events are proposed to occur due to secondary structure formation, stalling of DNA synthesis, and slippage-mediated misalignment of the complementary strands relative to each other during DNA replication. This mechanism may account for the TRS-associated duplications in protein kinase and metalloprotease genes in neuroblastomas and melanomas, as well as the massive repeat expansions in type II triplet repeat neurological diseases.
Collapse
Affiliation(s)
- A Pluciennik
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University, Texas Medical Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
200
|
Marathias VM, Bolton PH. Structures of the potassium-saturated, 2:1, and intermediate, 1:1, forms of a quadruplex DNA. Nucleic Acids Res 2000; 28:1969-77. [PMID: 10756199 PMCID: PMC103305 DOI: 10.1093/nar/28.9.1969] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Potassium can stabilize the formation of chair- or edge-type quadruplex DNA structures and appears to be the only naturally occurring cation that can do so. As quadruplex DNAs may be important in the structure of telomere, centromere, triplet repeat and other DNAs, information about the details of the potassium-quadruplex DNA interactions are of interest. The structures of the 1:1 and the fully saturated, 2:1, potassium-DNA complexes of d(GGTTGGTGTGGTTGG) have been determined using the combination of experimental NMR results and restrained molecular dynamics simulations. The refined structures have been used to model the interactions at the potassium binding sites. Comparison of the 1:1 and 2:1 potassium:DNA structures indicates how potassium binding can determine the folding pattern of the DNA. In each binding site potassium interacts with the carbonyl oxygens of both the loop thymine residues and the guanine residues of the adjacent quartet.
Collapse
Affiliation(s)
- V M Marathias
- Chemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|