151
|
Evans E, Sugawara N, Haber JE, Alani E. The Saccharomyces cerevisiae Msh2 mismatch repair protein localizes to recombination intermediates in vivo. Mol Cell 2000; 5:789-99. [PMID: 10882115 DOI: 10.1016/s1097-2765(00)80319-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mismatch repair proteins act during double-strand break repair (DSBR) to correct mismatches in heteroduplex DNA, to suppress recombination between divergent sequences, and to promote removal of nonhomologous DNA at DSB ends. We investigated yeast Msh2p association with recombination intermediates in vivo using chromatin immunoprecipitation. During DSBR involving nonhomologous ends, Msh2p localized strongly to recipient and donor sequences. Localization required Msh3p and was greatly reduced in rad50delta strains. Minimal localization of Msh2p was observed during fully homologous repair, but this was increased in rad52delta strains. These findings argue that Msh2p-Msh3p associates with intermediates early in DSBR to participate in the rejection of homeologous pairing and to stabilize nonhomologous tails for cleavage by Rad1p-Rad10p endonuclease.
Collapse
Affiliation(s)
- E Evans
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
152
|
Abstract
DNA mismatch repair (MMR) is one of multiple replication, repair, and recombination processes that are required to maintain genomic stability in prokaryotes and eukaryotes. In the wake of the discoveries that hereditary nonpolyposis colorectal cancer (HNPCC) and other human cancers are associated with mutations in MMR genes, intensive efforts are under way to elucidate the biochemical functions of mammalian MutS and MutL homologs, and the consequences of defects in these genes. Genetic studies in cultured mammalian cells and mice are proving to be instrumental in defining the relationship between the functions of MMR in mutation and tumor avoidance. Furthermore, these approaches have raised awareness that MMR homologs contribute to DNA damage surveillance, transcription-coupled repair, and recombinogenic and meiotic processes.
Collapse
Affiliation(s)
- A B Buermeyer
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | |
Collapse
|
153
|
Abstract
Meiotic chromosomes have been studied for many years, in part because of the fundamental life processes they represent, but also because meiosis involves the formation of homolog pairs, a feature which greatly facilitates the study of chromosome behavior. The complex events involved in homolog juxtaposition necessitate prolongation of prophase, thus permitting resolution of events that are temporally compressed in the mitotic cycle. Furthermore, once homologs are paired, the chromosomes are connected by a specific structure: the synaptonemal complex. Finally, interaction of homologs includes recombination at the DNA level, which is intimately linked to structural features of the chromosomes. In consequence, recombination-related events report on diverse aspects of chromosome morphogenesis, notably relationships between sisters, development of axial structure, and variations in chromatin status. The current article reviews recent information on these topics in an historical context. This juxtaposition has suggested new relationships between structure and function. Additional issues were addressed in a previous chapter (551).
Collapse
Affiliation(s)
- D Zickler
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France.
| | | |
Collapse
|
154
|
Rattray AJ, Shafer BK, Garfinkel DJ. The Saccharomyces cerevisiae DNA recombination and repair functions of the RAD52 epistasis group inhibit Ty1 transposition. Genetics 2000; 154:543-56. [PMID: 10655210 PMCID: PMC1460957 DOI: 10.1093/genetics/154.2.543] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA transcribed from the Saccharomyces cerevisiae retrotransposon Ty1 accumulates to a high level in mitotically growing haploid cells, yet transposition occurs at very low frequencies. The product of reverse transcription is a linear double-stranded DNA molecule that reenters the genome by either Ty1-integrase-mediated insertion or homologous recombination with one of the preexisting genomic Ty1 (or delta) elements. Here we examine the role of the cellular homologous recombination functions on Ty1 transposition. We find that transposition is elevated in cells mutated for genes in the RAD52 recombinational repair pathway, such as RAD50, RAD51, RAD52, RAD54, or RAD57, or in the DNA ligase I gene CDC9, but is not elevated in cells mutated in the DNA repair functions encoded by the RAD1, RAD2, or MSH2 genes. The increase in Ty1 transposition observed when genes in the RAD52 recombinational pathway are mutated is not associated with a significant increase in Ty1 RNA or proteins. However, unincorporated Ty1 cDNA levels are markedly elevated. These results suggest that members of the RAD52 recombinational repair pathway inhibit Ty1 post-translationally by influencing the fate of Ty1 cDNA.
Collapse
Affiliation(s)
- A J Rattray
- Gene Regulation and Chromosome Biology Laboratory, ABL-Basic Research Program, NCI-FCRDC, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
155
|
Majewski J, Zawadzki P, Pickerill P, Cohan FM, Dowson CG. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol 2000; 182:1016-23. [PMID: 10648528 PMCID: PMC94378 DOI: 10.1128/jb.182.4.1016-1023.2000] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/1999] [Accepted: 11/24/1999] [Indexed: 11/20/2022] Open
Abstract
Interspecies genetic exchange is an important evolutionary mechanism in bacteria. It allows rapid acquisition of novel functions by transmission of adaptive genes between related species. However, the frequency of homologous recombination between bacterial species decreases sharply with the extent of DNA sequence divergence between the donor and the recipient. In Bacillus and Escherichia, this sexual isolation has been shown to be an exponential function of sequence divergence. Here we demonstrate that sexual isolation in transformation between Streptococcus pneumoniae recipient strains and donor DNA from related strains and species follows the described exponential relationship. We show that the Hex mismatch repair system poses a significant barrier to recombination over the entire range of sequence divergence (0.6 to 27%) investigated. Although mismatch repair becomes partially saturated, it is responsible for 34% of the observed sexual isolation. This is greater than the role of mismatch repair in Bacillus but less than that in Escherichia. The remaining non-Hex-mediated barrier to recombination can be provided by a variety of mechanisms. We discuss the possible additional mechanisms of sexual isolation, in view of earlier findings from Bacillus, Escherichia, and Streptococcus.
Collapse
Affiliation(s)
- J Majewski
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA.
| | | | | | | | | |
Collapse
|
156
|
Abstract
Experimental dissection of bacterial genomes requires a well-developed set of genetic tools, but many bacteria lack the essential tools required for genetic analysis. Recombination of a region of chromosomal DNA from poorly characterized donor bacteria with the chromosome of a suitable surrogate host creates a genetically malleable hybrid, providing a short-cut for the detailed genetic analysis of the substituted genes. However, recombination between closely related but nonidentical DNA sequences ("homeologous recombination") is strongly inhibited, posing a powerful barrier to gene exchange between bacteria and a major impediment to the construction of genetic hybrids. By taking advantage of mutS and recD mutant recipients, it is possible to effectively overcome the recombination barrier, allowing construction of genetic hybrids in a related surrogate host. Once stably recombined into the recipient chromosome, the donor DNA can be studied with all the genetic tools available in the surrogate host. In addition to facilitating standard genetic analysis, use of a surrogate host can provide novel approaches to study the physiological roles of unique genes from poorly characterized bacteria.
Collapse
Affiliation(s)
- S Maloy
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
157
|
Nicholson A, Hendrix M, Jinks-Robertson S, Crouse GF. Regulation of mitotic homeologous recombination in yeast. Functions of mismatch repair and nucleotide excision repair genes. Genetics 2000; 154:133-46. [PMID: 10628975 PMCID: PMC1460927 DOI: 10.1093/genetics/154.1.133] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae homologs of the bacterial mismatch repair proteins MutS and MutL correct replication errors and prevent recombination between homeologous (nonidentical) sequences. Previously, we demonstrated that Msh2p, Msh3p, and Pms1p regulate recombination between 91% identical inverted repeats, and here use the same substrates to show that Mlh1p and Msh6p have important antirecombination roles. In addition, substrates containing defined types of mismatches (base-base mismatches; 1-, 4-, or 12-nt insertion/deletion loops; or 18-nt palindromes) were used to examine recognition of these mismatches in mitotic recombination intermediates. Msh2p was required for recognition of all types of mismatches, whereas Msh6p recognized only base-base mismatches and 1-nt insertion/deletion loops. Msh3p was involved in recognition of the palindrome and all loops, but also had an unexpected antirecombination role when the potential heteroduplex contained only base-base mismatches. In contrast to their similar antimutator roles, Pms1p consistently inhibited recombination to a lesser degree than did Msh2p. In addition to the yeast MutS and MutL homologs, the exonuclease Exo1p and the nucleotide excision repair proteins Rad1p and Rad10p were found to have roles in inhibiting recombination between mismatched substrates.
Collapse
Affiliation(s)
- A Nicholson
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
158
|
Nakagawa T, Datta A, Kolodner RD. Multiple functions of MutS- and MutL-related heterocomplexes. Proc Natl Acad Sci U S A 1999; 96:14186-8. [PMID: 10588673 PMCID: PMC33940 DOI: 10.1073/pnas.96.25.14186] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
159
|
Majewski J, Cohan FM. DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 1999; 153:1525-33. [PMID: 10581263 PMCID: PMC1460850 DOI: 10.1093/genetics/153.4.1525] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene transfer in bacteria is notoriously promiscuous. Genetic material is known to be transferred between groups as distantly related as the Gram positives and Gram negatives. However, the frequency of homologous recombination decreases sharply with the level of relatedness between the donor and recipient. Several studies show that this sexual isolation is an exponential function of DNA sequence divergence between recombining substrates. The two major factors implicated in producing the recombinational barrier are the mismatch repair system and the requirement for a short region of sequence identity to initiate strand exchange. Here we demonstrate that sexual isolation in Bacillus transformation results almost exclusively from the need for regions of identity at both the 5' and 3' ends of the donor DNA strand. We show that, by providing the essential identity, we can effectively eliminate sexual isolation between highly divergent sequences. We also present evidence that the potential of a donor sequence to act as a recombinogenic, invasive end is determined by the stability (melting point) of the donor-recipient complex. These results explain the exponential relationship between sexual isolation and sequence divergence observed in bacteria. They also suggest a model for rapid spread of novel adaptations, such as antibiotic resistance genes, among related species.
Collapse
Affiliation(s)
- J Majewski
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA.
| | | |
Collapse
|
160
|
Fujitani Y, Kobayashi I. Effect of DNA sequence divergence on homologous recombination as analyzed by a random-walk model. Genetics 1999; 153:1973-88. [PMID: 10581300 PMCID: PMC1460839 DOI: 10.1093/genetics/153.4.1973] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A point connecting a pair of homologous regions of DNA duplexes moves along the homology in a reaction intermediate of the homologous recombination. Formulating this movement as a random walk, we were previously successful at explaining the dependence of the recombination frequency on the homology length. Recently, the dependence of the recombination frequency on the DNA sequence divergence in the homologous region was investigated experimentally; if the methyl-directed mismatch repair (MMR) system is active, the logarithm of the recombination frequency decreases very rapidly with an increase of the divergence in a low-divergence regime. Beyond this regime, the logarithm decreases slowly and linearly with the divergence. This "very rapid drop-off" is not observed when the MMR system is defective. In this article, we show that our random-walk model can explain these data in a straightforward way. When a connecting point encounters a diverged base pair, it is assumed to be destroyed with a probability that depends on the level of MMR activity.
Collapse
Affiliation(s)
- Y Fujitani
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | | |
Collapse
|
161
|
Hillers KJ, Stahl FW. The conversion gradient at HIS4 of Saccharomyces cerevisiae. I. Heteroduplex rejection and restoration of Mendelian segregation. Genetics 1999; 153:555-72. [PMID: 10511539 PMCID: PMC1460792 DOI: 10.1093/genetics/153.2.555] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Saccharomyces cerevisiae, some gene loci manifest gradients in the frequency of aberrant segregation in meiosis, with the high end of each gradient corresponding to a hotspot for DNA double-strand breaks (DSBs). The slope of a gradient is reduced when mismatch repair functions fail to act upon heteroduplex DNA-aberrant segregation frequencies at the low end of the gradient are higher in the absence of mismatch repair. Two models for the role of mismatch repair functions in the generation of meiotic "conversion gradients" have been proposed. The heteroduplex rejection model suggests that recognition of mismatches by mismatch repair enzymes limits hybrid DNA flanking the site of a DSB. The restoration-conversion model proposes that mismatch repair does not affect the length of hybrid DNA, but instead increasingly favors restoration of Mendelian segregation over full conversion with increasing distance from the DSB site. In our experiment designed to distinguish between these two models, data for one subset of well repairable mismatches in the HIS4 gene failed to show restoration-type repair but did indicate reduction in the length of hybrid DNA, supporting the heteroduplex rejection model. However, another subset of data manifested restoration-type repair, indicating a relationship between Holliday junction resolution and mismatch repair. We also present evidence for the infrequent formation of symmetric hybrid DNA during meiotic DSB repair.
Collapse
Affiliation(s)
- K J Hillers
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
162
|
Nickoloff JA, Sweetser DB, Clikeman JA, Khalsa GJ, Wheeler SL. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast. Genetics 1999; 153:665-79. [PMID: 10511547 PMCID: PMC1460766 DOI: 10.1093/genetics/153.2.665] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spontaneous and double-strand break (DSB)-induced allelic recombination in yeast was investigated in crosses between ura3 heteroalleles inactivated by an HO site and a +1 frameshift mutation, with flanking markers defining a 3.4-kbp interval. In some crosses, nine additional phenotypically silent RFLP mutations were present at approximately 100-bp intervals. Increasing heterology from 0.2 to 1% in this interval reduced spontaneous, but not DSB-induced, recombination. For DSB-induced events, 75% were continuous tract gene conversions without a crossover in this interval; discontinuous tracts and conversions associated with a crossover each comprised approximately 7% of events, and 10% also converted markers in unbroken alleles. Loss of heterozygosity was seen for all markers centromere distal to the HO site in 50% of products; such loss could reflect gene conversion, break-induced replication, chromosome loss, or G2 crossovers. Using telomere-marked strains we determined that nearly all allelic DSB repair occurs by gene conversion. We further show that most allelic conversion results from mismatch repair of heteroduplex DNA. Interestingly, markers shared between the sparsely and densely marked interval converted at higher rates in the densely marked interval. Thus, the extra markers increased gene conversion tract lengths, which may reflect mismatch repair-induced recombination, or a shift from restoration- to conversion-type repair.
Collapse
Affiliation(s)
- J A Nickoloff
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
163
|
Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horváth EM, Dix PJ, Medgyesy P. Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 1999; 152:1111-22. [PMID: 10388829 PMCID: PMC1460644 DOI: 10.1093/genetics/152.3.1111] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Efficient plastid transformation has been achieved in Nicotiana tabacum using cloned plastid DNA of Solanum nigrum carrying mutations conferring spectinomycin and streptomycin resistance. The use of the incompletely homologous (homeologous) Solanum plastid DNA as donor resulted in a Nicotiana plastid transformation frequency comparable with that of other experiments where completely homologous plastid DNA was introduced. Physical mapping and nucleotide sequence analysis of the targeted plastid DNA region in the transformants demonstrated efficient site-specific integration of the 7.8-kb Solanum plastid DNA and the exclusion of the vector DNA. The integration of the cloned Solanum plastid DNA into the Nicotiana plastid genome involved multiple recombination events as revealed by the presence of discontinuous tracts of Solanum-specific sequences that were interspersed between Nicotiana-specific markers. Marked position effects resulted in very frequent cointegration of the nonselected peripheral donor markers located adjacent to the vector DNA. Data presented here on the efficiency and features of homeologous plastid DNA recombination are consistent with the existence of an active RecA-mediated, but a diminished mismatch, recombination/repair system in higher-plant plastids.
Collapse
Affiliation(s)
- T A Kavanagh
- Department of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Vulić M, Lenski RE, Radman M. Mutation, recombination, and incipient speciation of bacteria in the laboratory. Proc Natl Acad Sci U S A 1999; 96:7348-51. [PMID: 10377417 PMCID: PMC22088 DOI: 10.1073/pnas.96.13.7348] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the DNA mismatch repair system increase mutation and recombination. They may thereby promote the genetic divergence that underlies speciation, after which the reacquisition of a functional repair system may sustain that divergence by creating a barrier to recombination. We tested several lines of Escherichia coli, derived from a common ancestor and evolved for 20,000 generations, for their recombination ability. Some lines, but not others, had become mismatch repair-defective mutators during experimental evolution, providing different opportunities for DNA sequence divergence. We knocked out the repair system in lines that had retained this function, and we restored function to those lines that had become defective. We then estimated recombination rates in various crosses between these repair-deficient and -proficient strains. The effect of the mismatch repair system on recombination was greatest in those lines that had evolved nonfunctional repair, indicating they had undergone more sequence divergence and, consequently, were more sensitive to the recombination-inhibiting effect of a functional repair system. These results demonstrate the establishment of an incipient genetic barrier between formerly identical lines, and they support a model in which the mismatch repair system can influence speciation dynamics through its simultaneous effects on mutation and recombination.
Collapse
Affiliation(s)
- M Vulić
- Laboratoire de Mutagenèse, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 05, France.
| | | | | |
Collapse
|
165
|
Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999. [PMID: 10357855 DOI: 10.0000/pmid10357855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
166
|
Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63:349-404. [PMID: 10357855 PMCID: PMC98970 DOI: 10.1128/mmbr.63.2.349-404.1999] [Citation(s) in RCA: 1670] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
167
|
Inbar O, Kupiec M. Homology search and choice of homologous partner during mitotic recombination. Mol Cell Biol 1999; 19:4134-42. [PMID: 10330153 PMCID: PMC104372 DOI: 10.1128/mcb.19.6.4134] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1999] [Accepted: 03/08/1999] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination is an important DNA repair mechanism in vegetative cells. During the repair of double-strand breaks, genetic information is transferred between the interacting DNA sequences (gene conversion). This event is often accompanied by a reciprocal exchange between the homologous molecules, resulting in crossing over. The repair of DNA damage by homologous recombination with repeated sequences dispersed throughout the genome might result in chromosomal aberrations or in the inactivation of genes. It is therefore important to understand how the suitable homologous partner for recombination is chosen. We have developed a system in the yeast Saccharomyces cerevisiae that can monitor the fate of a chromosomal double-strand break without the need to select for recombinants. The broken chromosome is efficiently repaired by recombination with one of two potential partners located elsewhere in the genome. One of the partners has homology to the broken ends of the chromosome, whereas the other is homologous to sequences distant from the break. Surprisingly, a large proportion of the repair is carried out by recombination involving the sequences distant from the broken ends. This repair is very efficient, despite the fact that it requires the processing of a large chromosomal region flanking the break. Our results imply that the homology search involves extensive regions of the broken chromosome and is not carried out exclusively by sequences adjacent to the double-strand break. We show that the mechanism that governs the choice of homologous partners is affected by the length and sequence divergence of the interacting partners, as well as by mutations in the mismatch repair genes. We present a model to explain how the suitable homologous partner is chosen during recombinational repair. The model provides a mechanism that may guard the integrity of the genome by preventing recombination between dispersed repeated sequences.
Collapse
Affiliation(s)
- O Inbar
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
168
|
Vedel M, Nicolas A. CYS3, a hotspot of meiotic recombination in Saccharomyces cerevisiae. Effects of heterozygosity and mismatch repair functions on gene conversion and recombination intermediates. Genetics 1999; 151:1245-59. [PMID: 10101154 PMCID: PMC1460566 DOI: 10.1093/genetics/151.4.1245] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have examined meiotic recombination at the CYS3 locus. Genetic analysis indicates that CYS3 is a hotspot of meiotic gene conversion, with a putative 5'-3' polarity gradient of conversion frequencies. This gradient is relieved in the presence of msh2 and pms1 mutations, indicating an involvement of mismatch repair functions in meiotic recombination. To investigate the role of mismatch repair proteins in meiotic recombination, we performed a physical analysis of meiotic DNA in wild-type and msh2 pms1 strains in the presence or absence of allelic differences at CYS3. Neither the mutations in CYS3 nor the absence of mismatch repair functions affects the frequency and distribution of nearby recombination-initiating DNA double-strand breaks (DSBs). Processing of DSBs is also similar in msh2 pms1 and wild-type strains. We conclude that mismatch repair functions do not control the distribution of meiotic gene conversion events at the initiating steps. In the MSH2 PMS1 background, strains heteroallelic for frameshift mutations in CYS3 exhibit a frequency of gene conversion greater than that observed for either marker alone. Physical analysis revealed no modification in the formation of DSBs, suggesting that this marker effect results from subsequent processing events that are not yet understood.
Collapse
Affiliation(s)
- M Vedel
- Institut Curie, Section de Recherche, Compartimentation et Dynamique Cellulaires, UMR144, Centre National de la Recherche Scientifique, 75248 Paris Cedex 05, France
| | | |
Collapse
|
169
|
Chen W, Jinks-Robertson S. The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. Genetics 1999; 151:1299-313. [PMID: 10101158 PMCID: PMC1460550 DOI: 10.1093/genetics/151.4.1299] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nonidentical recombination substrates recombine less efficiently than do identical substrates in yeast, and much of this inhibition can be attributed to action of the mismatch repair (MMR) machinery. In this study an intron-based inverted repeat assay system has been used to directly compare the rates of mitotic and meiotic recombination between pairs of 350-bp substrates varying from 82% to 100% in sequence identity. The recombination rate data indicate that sequence divergence impacts mitotic and meiotic recombination similarly, although subtle differences are evident. In addition to assessing recombination rates as a function of sequence divergence, the endpoints of mitotic and meiotic recombination events involving 94%-identical substrates were determined by DNA sequencing. The endpoint analysis indicates that the extent of meiotic heteroduplex DNA formed in a MMR-defective strain is 65% longer than that formed in a wild-type strain. These data are consistent with a model in which the MMR machinery interferes with the formation and/or extension of heteroduplex intermediates during recombination.
Collapse
Affiliation(s)
- W Chen
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
170
|
Marsischky GT, Lee S, Griffith J, Kolodner RD. 'Saccharomyces cerevisiae MSH2/6 complex interacts with Holliday junctions and facilitates their cleavage by phage resolution enzymes. J Biol Chem 1999; 274:7200-6. [PMID: 10066781 DOI: 10.1074/jbc.274.11.7200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic and biochemical studies have indicated that mismatch repair proteins can interact with recombination intermediates. In this study, gel shift assays and electron microscopic analysis were used to show that the Saccharomyces cerevisiae MSH2/6 complex binds to Holliday junctions and has an affinity and specificity for them that is at least as high as it has as for mispaired bases. Under equilibrium binding conditions, the MSH2/6 complex had a Kd of binding to Holliday junctions of 0.5 nM. The MSH2/6 complex enhanced the cleavage of Holliday junctions by T4 endonuclease VII and T7 endonuclease I. This is consistent with the view that the MSH2/6 complex can function in both mismatch repair and the resolution of recombination intermediates as predicted by genetic studies.
Collapse
Affiliation(s)
- G T Marsischky
- Charles A. Dana Division of Human Cancer Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
171
|
Abstract
Eukaryotic mismatch repair (MMR) has been shown to require two different heterodimeric complexes of MutS-related proteins: MSH2-MSH3 and MSH2-MSH6. These two complexes have different mispair recognition properties and different abilities to support MMR. Alternative models have been proposed for how these MSH complexes function in MMR. Two different heterodimeric complexes of MutL-related proteins, MLH1-PMS1 (human PMS2) and MLH1-MLH3 (human PMS1) also function in MMR and appear to interact with other MMR proteins including the MSH complexes and replication factors. A number of other proteins have been implicated in MMR, including DNA polymerase delta, RPA (replication protein A), PCNA (proliferating cell nuclear antigen), RFC (replication factor C), Exonuclease 1, FEN1 (RAD27) and the DNA polymerase delta and epsilon associated exonucleases. MMR proteins have also been shown to function in other types of repair and recombination that appear distinct from MMR. MMR proteins function in these processes in conjunction with components of nucleotide excision repair (NER) and, possibly, recombination.
Collapse
Affiliation(s)
- R D Kolodner
- Ludwig Institute for Cancer Research, Department of Medicine and CancerCenter, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0660, USA. rkolodner@ucsd. edu
| | | |
Collapse
|
172
|
Durant ST, Morris MM, Illand M, McKay HJ, McCormick C, Hirst GL, Borts RH, Brown R. Dependence on RAD52 and RAD1 for anticancer drug resistance mediated by inactivation of mismatch repair genes. Curr Biol 1999; 9:51-4. [PMID: 9889125 DOI: 10.1016/s0960-9822(99)80047-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mismatch repair (MMR) proteins repair mispaired DNA bases and have an important role in maintaining the integrity of the genome [1]. Loss of MMR has been correlated with resistance to a variety of DNA-damaging agents, including many anticancer drugs [2]. How loss of MMR leads to resistance is not understood, but is proposed to be due to loss of futile MMR activity and/or replication stalling [3] [4]. We report that inactivation of MMR genes (MLH1, MLH2, MSH2, MSH3, MSH6, but not PMS1) in isogenic strains of Saccharomyces cerevisiae led to increased resistance to the anticancer drugs cisplatin, carboplatin and doxorubicin, but had no effect on sensitivity to ultraviolet C (UVC) radiation. Sensitivity to cisplatin and doxorubicin was increased in mlh1 mutant strains when the MLH1 gene was reintroduced, demonstrating a direct involvement of MMR proteins in sensitivity to these DNA-damaging agents. Inactivation of MLH1, MLH2 or MSH2 had no significant effect, however, on drug sensitivities in the rad52 or rad1 mutant strains that are defective in mitotic recombination and removing unpaired DNA single strands. We propose a model whereby MMR proteins - in addition to their role in DNA-damage recognition - decrease adduct tolerance during DNA replication by modulating the levels of recombination-dependent bypass. This hypothesis is supported by the finding that, in human ovarian tumour cells, loss of hMLH1 correlated with acquisition of cisplatin resistance and increased cisplatin-induced sister chromatid exchange, both of which were reversed by restoration of hMLH1 expression.
Collapse
Affiliation(s)
- S T Durant
- CRC Department of Medical Oncology, CRC Beatson Laboratories, Glasgow, G61 1BD, UK
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Chen W, Jinks-Robertson S. Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Mol Cell Biol 1998; 18:6525-37. [PMID: 9774668 PMCID: PMC109238 DOI: 10.1128/mcb.18.11.6525] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1998] [Accepted: 08/19/1998] [Indexed: 11/20/2022] Open
Abstract
Mismatch repair (MMR) proteins actively inhibit recombination between diverged sequences in both prokaryotes and eukaryotes. Although the molecular basis of the antirecombination activity exerted by MMR proteins is unclear, it presumably involves the recognition of mismatches present in heteroduplex recombination intermediates. This recognition could be exerted during the initial stage of strand exchange, during the extension of heteroduplex DNA, or during the resolution of recombination intermediates. We previously used an assay system based on 350-bp inverted-repeat substrates to demonstrate that MMR proteins strongly inhibit mitotic recombination between diverged sequences in Saccharomyces cerevisiae. The assay system detects only those events that reverse the orientation of the region between the recombination substrates, which can occur as a result of either intrachromatid crossover or sister chromatid conversion. In the present study we sequenced the products of mitotic recombination between 94%-identical substrates in order to map gene conversion tracts in wild-type versus MMR-defective yeast strains. The sequence data indicate that (i) most recombination occurs via sister chromatid conversion and (ii) gene conversion tracts in an MMR-defective strain are significantly longer than those in an isogenic wild-type strain. The shortening of conversion tracts observed in a wild-type strain relative to an MMR-defective strain suggests that at least part of the antirecombination activity of MMR proteins derives from the blockage of heteroduplex extension in the presence of mismatches.
Collapse
Affiliation(s)
- W Chen
- Graduate Program in Genetics and Molecular Biology and Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
174
|
Flores-Rozas H, Kolodner RD. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc Natl Acad Sci U S A 1998; 95:12404-9. [PMID: 9770499 PMCID: PMC22844 DOI: 10.1073/pnas.95.21.12404] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1998] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae genome encodes four MutL homologs. Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches. We have investigated the role of MLH3 in mismatch repair. Mutations in MLH3 increased the rate of reversion of the hom3-10 allele by increasing the rate of deletion of a single T in a run of 7 Ts. Combination of mutations in MLH3 and MSH6 caused a synergistic increase in the hom3-10 reversion rate, whereas the hom3-10 reversion rate in an mlh3 msh3 double mutant was the same as in the respective single mutants. Similar results were observed when the accumulation of mutations at frameshift hot spots in the LYS2 gene was analyzed, although mutation of MLH3 did not cause the same extent of affect at every LYS2 frameshift hot spot. MLH3 interacted with MLH1 in a two-hybrid system. These data are consistent with the idea that a proportion of the repair of specific insertion/deletion mispairs by the MSH3-dependent mismatch repair pathway uses a heterodimeric MLH1-MLH3 complex in place of the MLH1-PMS1 complex.
Collapse
Affiliation(s)
- H Flores-Rozas
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
175
|
Stambuk S, Radman M. Mechanism and control of interspecies recombination in Escherichia coli. I. Mismatch repair, methylation, recombination and replication functions. Genetics 1998; 150:533-42. [PMID: 9755187 PMCID: PMC1460348 DOI: 10.1093/genetics/150.2.533] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A genetic analysis of interspecies recombination in Escherichia coli between the linear Hfr DNA from Salmonella typhimurium and the circular recipient chromosome reveals some fundamental aspects of recombination between related DNA sequences. The MutS and MutL mismatch binding proteins edit (prevent) homeologous recombination between these 16% diverged genomes by at least two distinct mechanisms. One is MutH independent and presumably acts by aborting the initiated recombination through the UvrD helicase activity. The RecBCD nuclease might contribute to this editing step, presumably by preventing reiterated initiations of recombination at a given locus. The other editing mechanism is MutH dependent, requires unmethylated GATC sequences, and probably corresponds to an incomplete long-patch mismatch repair process that does not depend on UvrD helicase activity. Insignificant effects of the Dam methylation of parental DNAs suggest that unmethylated GATC sequences involved in the MutH-dependent editing are newly synthesized in the course of recombination. This hypothetical, recombination-associated DNA synthesis involves PriA and RecF functions, which, therefore, determine the extent of MutH effect on interspecies recombination. Sequence divergence of recombining DNAs appears to limit the frequency, length, and stability of early heteroduplex intermediates, which can be stabilized, and the recombinants mature via the initiation of DNA replication.
Collapse
Affiliation(s)
- S Stambuk
- Laboratoire de Mutagénèse, Institut Jacques Monod, 75251-Paris Cedex 05, France.
| | | |
Collapse
|
176
|
Kirkpatrick DT, Dominska M, Petes TD. Conversion-type and restoration-type repair of DNA mismatches formed during meiotic recombination in Saccharomyces cerevisiae. Genetics 1998; 149:1693-705. [PMID: 9691029 PMCID: PMC1460284 DOI: 10.1093/genetics/149.4.1693] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Meiotic recombination in yeast is associated with heteroduplex formation. Heteroduplexes formed between nonidentical DNA strands contain DNA mismatches, and most DNA mismatches in wild-type strains are efficiently corrected. Although some patterns of mismatch correction result in non-Mendelian segregation of the heterozygous marker (gene conversion), one predicted pattern of correction (restoration-type repair) results in normal Mendelian segregation. Using a yeast strain in which a marker leading to a well-repaired mismatch is flanked by markers that lead to poorly repaired mismatches, we present direct evidence for restoration-type repair in yeast. In addition, we find that the frequency of tetrads with conversion-type repair is higher for a marker at the 5' end of the HIS4 gene than for a marker in the middle of the gene. These results suggest that the ratio of conversion-type to restoration-type repair may be important in generating gradients of gene conversion (polarity gradients).
Collapse
Affiliation(s)
- D T Kirkpatrick
- Department of Biology, Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | |
Collapse
|
177
|
McGill CB, Holbeck SL, Strathern JN. The chromosome bias of misincorporations during double-strand break repair is not altered in mismatch repair-defective strains of Saccharomyces cerevisiae. Genetics 1998; 148:1525-33. [PMID: 9560371 PMCID: PMC1460100 DOI: 10.1093/genetics/148.4.1525] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recombinational repair of a site-specific, double-strand DNA break (DSB) results in increased reversion frequency for nearby mutations. Although some models for DSB repair predict that newly synthesized DNA will be inherited equally by both the originally broken chromosome and the chromosome that served as a template, the DNA synthesis errors are almost exclusively found on the chromosome that had the original DSB (introduced by the HO endonuclease). To determine whether mismatch repair acts on the template chromosome in a directed fashion to restore mismatches to the initial sequence, these experiments were repeated in mismatch repair-defective (pms1, mlh1, and msh2) backgrounds. The results suggest that mismatch repair is not responsible for the observed bias.
Collapse
Affiliation(s)
- C B McGill
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, ABL-Basic Research Program, Maryland 21702-1201, USA
| | | | | |
Collapse
|
178
|
Gary TP, Colowick NE, Mosig G. A species barrier between bacteriophages T2 and T4: exclusion, join-copy and join-cut-copy recombination and mutagenesis in the dCTPase genes. Genetics 1998; 148:1461-73. [PMID: 9560366 PMCID: PMC1460086 DOI: 10.1093/genetics/148.4.1461] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteriophage T2 alleles are excluded in crosses between T2 and T4 because of genetic isolation between these two virus species. The severity of exclusion varies in different genes, with gene 56, encoding an essential dCT(D)Pase/dUT(D)Pase of these phages, being most strongly affected. To investigate reasons for such strong exclusion, we have (1) sequenced the T2 gene 56 and an adjacent region, (2) compared the sequence with the corresponding T4 DNA, (3) constructed chimeric phages in which T2 and T4 sequences of this region are recombined, and (4) tested complementation, recombination, and exclusion with gene 56 cloned in a plasmid and in the chimeric phages in Escherichia coli CR63, in which growth of wild-type T2 is not restricted by T4. Our results argue against a role of the dCTPase protein in this exclusion and implicate instead DNA sequence differences as major contributors to the apparent species barrier. This sequence divergence exhibits a remarkable pattern: a major heterologous sequence counter-clockwise from gene 56 (and downstream of the gene 56 transcripts) replaces in T2 DNA the T4 gene 69. Gene 56 base sequences bordering this substituted region are significantly different, whereas sequences of the dam genes, adjacent in the clockwise direction, are similar in T2 and in T4. The gene 56 sequence differences can best be explained by multiple compensating frameshifts and base substitutions, which result in T2 and T4 dCTPases whose amino acid sequences and functions remain similar. Based on these findings we propose a model for the evolution of multiple sequence differences concomitant with the substitution of an adjacent gene by foreign DNA: invasion by the single-stranded segments of foreign DNA, nucleated from a short DNA sequence that was complementary by chance, has triggered recombination-dependent replication by "join-copy" and "join-cut-copy" pathways that are known to operate in the T-even phages and are implicated in other organisms as well. This invasion, accompanied by heteroduplex formation between partially similar sequences, and perhaps subsequent partial heteroduplex repair, simultaneously substituted T4 gene 69 for foreign sequences and scrambled the sequence of the dCTPase gene 56. We suggest that similar mechanisms can mobilize DNA segments for horizontal transfer without necessarily requiring transposase or site-specific recombination functions.
Collapse
Affiliation(s)
- T P Gary
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | |
Collapse
|
179
|
Karthikeyan G, Wagle MD, Rao BJ. Non-Watson-Crick base pairs modulate homologous alignments in RecA pairing reactions. FEBS Lett 1998; 425:45-51. [PMID: 9541004 DOI: 10.1016/s0014-5793(98)00195-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complementary pairing by RecA was examined in vitro to investigate how homology is deciphered from non-homology. Somewhere in a window of 40-50% sequence complementarity, RecA pairing begins to manifest the specificity of homology. Quantitation reveals a hierarchy among non-Watson-Crick mispairs: RecA reaction treats six out of 12 possible mispairs as good ones and three each of the remaining ones as moderate and bad pairs. The mispairs seem to function as independent pairing units free of sequence context effects. The overall strength of pairing is simply the sum of the constituent units. RecA mediated gradation of mispairs, free of sequence context effects, might offer a general thumb-rule for predicting the pairing strength of any alignment that carries multiple mispairs.
Collapse
Affiliation(s)
- G Karthikeyan
- Molecular Biology Unit, Tata Institute of Fundamental Research, Colaba, Bombay, India
| | | | | |
Collapse
|
180
|
|
181
|
Vulić M, Dionisio F, Taddei F, Radman M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A 1997; 94:9763-7. [PMID: 9275198 PMCID: PMC23264 DOI: 10.1073/pnas.94.18.9763] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Speciation involves the establishment of genetic barriers between closely related organisms. The extent of genetic recombination is a key determinant and a measure of genetic isolation. The results reported here reveal that genetic barriers can be established, eliminated, or modified by manipulating two systems which control genetic recombination, SOS and mismatch repair. The extent of genetic isolation between enterobacteria is a simple mathematical function of DNA sequence divergence. The function does not depend on hybrid DNA stability, but rather on the number of blocks of sequences identical in the two mating partners and sufficiently large to allow the initiation of recombination. Further, there is no obvious discontinuity in the function that could be used to define a level of divergence for distinguishing species.
Collapse
Affiliation(s)
- M Vulić
- Laboratoire de Mutagenèse, Institut Jacques Monod, 2 Place Jussieu, 75251 Paris Cedex 05, France.
| | | | | | | |
Collapse
|